sparc64: Fix wedged irq regression.
[linux-2.6] / arch / sparc64 / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <asm/system.h>
8 #include <asm/page.h>
9 #include <asm/tlbflush.h>
10 #include <asm/tlb.h>
11 #include <asm/mmu_context.h>
12 #include <asm/pgtable.h>
13 #include <asm/tsb.h>
14 #include <asm/oplib.h>
15
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
17
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
19 {
20         vaddr >>= hash_shift;
21         return vaddr & (nentries - 1);
22 }
23
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
25 {
26         return (tag == (vaddr >> 22));
27 }
28
29 /* TSB flushes need only occur on the processor initiating the address
30  * space modification, not on each cpu the address space has run on.
31  * Only the TLB flush needs that treatment.
32  */
33
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
35 {
36         unsigned long v;
37
38         for (v = start; v < end; v += PAGE_SIZE) {
39                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40                                               KERNEL_TSB_NENTRIES);
41                 struct tsb *ent = &swapper_tsb[hash];
42
43                 if (tag_compare(ent->tag, v)) {
44                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45                         membar_storeload_storestore();
46                 }
47         }
48 }
49
50 static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
51 {
52         unsigned long i;
53
54         for (i = 0; i < mp->tlb_nr; i++) {
55                 unsigned long v = mp->vaddrs[i];
56                 unsigned long tag, ent, hash;
57
58                 v &= ~0x1UL;
59
60                 hash = tsb_hash(v, hash_shift, nentries);
61                 ent = tsb + (hash * sizeof(struct tsb));
62                 tag = (v >> 22UL);
63
64                 tsb_flush(ent, tag);
65         }
66 }
67
68 void flush_tsb_user(struct mmu_gather *mp)
69 {
70         struct mm_struct *mm = mp->mm;
71         unsigned long nentries, base, flags;
72
73         spin_lock_irqsave(&mm->context.lock, flags);
74
75         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
76         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
77         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
78                 base = __pa(base);
79         __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
80
81 #ifdef CONFIG_HUGETLB_PAGE
82         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
83                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
84                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
85                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
86                         base = __pa(base);
87                 __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
88         }
89 #endif
90         spin_unlock_irqrestore(&mm->context.lock, flags);
91 }
92
93 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
94 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
95 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
96 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
97 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_64K
98 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_64K
99 #elif defined(CONFIG_SPARC64_PAGE_SIZE_512KB)
100 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_512K
101 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_512K
102 #elif defined(CONFIG_SPARC64_PAGE_SIZE_4MB)
103 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_4MB
104 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_4MB
105 #else
106 #error Broken base page size setting...
107 #endif
108
109 #ifdef CONFIG_HUGETLB_PAGE
110 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
111 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_64K
112 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_64K
113 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
114 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_512K
115 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_512K
116 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
117 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
118 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
119 #else
120 #error Broken huge page size setting...
121 #endif
122 #endif
123
124 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
125 {
126         unsigned long tsb_reg, base, tsb_paddr;
127         unsigned long page_sz, tte;
128
129         mm->context.tsb_block[tsb_idx].tsb_nentries =
130                 tsb_bytes / sizeof(struct tsb);
131
132         base = TSBMAP_BASE;
133         tte = pgprot_val(PAGE_KERNEL_LOCKED);
134         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
135         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
136
137         /* Use the smallest page size that can map the whole TSB
138          * in one TLB entry.
139          */
140         switch (tsb_bytes) {
141         case 8192 << 0:
142                 tsb_reg = 0x0UL;
143 #ifdef DCACHE_ALIASING_POSSIBLE
144                 base += (tsb_paddr & 8192);
145 #endif
146                 page_sz = 8192;
147                 break;
148
149         case 8192 << 1:
150                 tsb_reg = 0x1UL;
151                 page_sz = 64 * 1024;
152                 break;
153
154         case 8192 << 2:
155                 tsb_reg = 0x2UL;
156                 page_sz = 64 * 1024;
157                 break;
158
159         case 8192 << 3:
160                 tsb_reg = 0x3UL;
161                 page_sz = 64 * 1024;
162                 break;
163
164         case 8192 << 4:
165                 tsb_reg = 0x4UL;
166                 page_sz = 512 * 1024;
167                 break;
168
169         case 8192 << 5:
170                 tsb_reg = 0x5UL;
171                 page_sz = 512 * 1024;
172                 break;
173
174         case 8192 << 6:
175                 tsb_reg = 0x6UL;
176                 page_sz = 512 * 1024;
177                 break;
178
179         case 8192 << 7:
180                 tsb_reg = 0x7UL;
181                 page_sz = 4 * 1024 * 1024;
182                 break;
183
184         default:
185                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
186                        current->comm, current->pid, tsb_bytes);
187                 do_exit(SIGSEGV);
188         };
189         tte |= pte_sz_bits(page_sz);
190
191         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
192                 /* Physical mapping, no locked TLB entry for TSB.  */
193                 tsb_reg |= tsb_paddr;
194
195                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
196                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
197                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
198         } else {
199                 tsb_reg |= base;
200                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
201                 tte |= (tsb_paddr & ~(page_sz - 1UL));
202
203                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
204                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
205                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
206         }
207
208         /* Setup the Hypervisor TSB descriptor.  */
209         if (tlb_type == hypervisor) {
210                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
211
212                 switch (tsb_idx) {
213                 case MM_TSB_BASE:
214                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
215                         break;
216 #ifdef CONFIG_HUGETLB_PAGE
217                 case MM_TSB_HUGE:
218                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
219                         break;
220 #endif
221                 default:
222                         BUG();
223                 };
224                 hp->assoc = 1;
225                 hp->num_ttes = tsb_bytes / 16;
226                 hp->ctx_idx = 0;
227                 switch (tsb_idx) {
228                 case MM_TSB_BASE:
229                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
230                         break;
231 #ifdef CONFIG_HUGETLB_PAGE
232                 case MM_TSB_HUGE:
233                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
234                         break;
235 #endif
236                 default:
237                         BUG();
238                 };
239                 hp->tsb_base = tsb_paddr;
240                 hp->resv = 0;
241         }
242 }
243
244 static struct kmem_cache *tsb_caches[8] __read_mostly;
245
246 static const char *tsb_cache_names[8] = {
247         "tsb_8KB",
248         "tsb_16KB",
249         "tsb_32KB",
250         "tsb_64KB",
251         "tsb_128KB",
252         "tsb_256KB",
253         "tsb_512KB",
254         "tsb_1MB",
255 };
256
257 void __init pgtable_cache_init(void)
258 {
259         unsigned long i;
260
261         for (i = 0; i < 8; i++) {
262                 unsigned long size = 8192 << i;
263                 const char *name = tsb_cache_names[i];
264
265                 tsb_caches[i] = kmem_cache_create(name,
266                                                   size, size,
267                                                   0, NULL);
268                 if (!tsb_caches[i]) {
269                         prom_printf("Could not create %s cache\n", name);
270                         prom_halt();
271                 }
272         }
273 }
274
275 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
276  * do_sparc64_fault() invokes this routine to try and grow it.
277  *
278  * When we reach the maximum TSB size supported, we stick ~0UL into
279  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
280  * will not trigger any longer.
281  *
282  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
283  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
284  * must be 512K aligned.  It also must be physically contiguous, so we
285  * cannot use vmalloc().
286  *
287  * The idea here is to grow the TSB when the RSS of the process approaches
288  * the number of entries that the current TSB can hold at once.  Currently,
289  * we trigger when the RSS hits 3/4 of the TSB capacity.
290  */
291 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
292 {
293         unsigned long max_tsb_size = 1 * 1024 * 1024;
294         unsigned long new_size, old_size, flags;
295         struct tsb *old_tsb, *new_tsb;
296         unsigned long new_cache_index, old_cache_index;
297         unsigned long new_rss_limit;
298         gfp_t gfp_flags;
299
300         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
301                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
302
303         new_cache_index = 0;
304         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
305                 unsigned long n_entries = new_size / sizeof(struct tsb);
306
307                 n_entries = (n_entries * 3) / 4;
308                 if (n_entries > rss)
309                         break;
310
311                 new_cache_index++;
312         }
313
314         if (new_size == max_tsb_size)
315                 new_rss_limit = ~0UL;
316         else
317                 new_rss_limit = ((new_size / sizeof(struct tsb)) * 3) / 4;
318
319 retry_tsb_alloc:
320         gfp_flags = GFP_KERNEL;
321         if (new_size > (PAGE_SIZE * 2))
322                 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
323
324         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
325                                         gfp_flags, numa_node_id());
326         if (unlikely(!new_tsb)) {
327                 /* Not being able to fork due to a high-order TSB
328                  * allocation failure is very bad behavior.  Just back
329                  * down to a 0-order allocation and force no TSB
330                  * growing for this address space.
331                  */
332                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
333                     new_cache_index > 0) {
334                         new_cache_index = 0;
335                         new_size = 8192;
336                         new_rss_limit = ~0UL;
337                         goto retry_tsb_alloc;
338                 }
339
340                 /* If we failed on a TSB grow, we are under serious
341                  * memory pressure so don't try to grow any more.
342                  */
343                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
344                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
345                 return;
346         }
347
348         /* Mark all tags as invalid.  */
349         tsb_init(new_tsb, new_size);
350
351         /* Ok, we are about to commit the changes.  If we are
352          * growing an existing TSB the locking is very tricky,
353          * so WATCH OUT!
354          *
355          * We have to hold mm->context.lock while committing to the
356          * new TSB, this synchronizes us with processors in
357          * flush_tsb_user() and switch_mm() for this address space.
358          *
359          * But even with that lock held, processors run asynchronously
360          * accessing the old TSB via TLB miss handling.  This is OK
361          * because those actions are just propagating state from the
362          * Linux page tables into the TSB, page table mappings are not
363          * being changed.  If a real fault occurs, the processor will
364          * synchronize with us when it hits flush_tsb_user(), this is
365          * also true for the case where vmscan is modifying the page
366          * tables.  The only thing we need to be careful with is to
367          * skip any locked TSB entries during copy_tsb().
368          *
369          * When we finish committing to the new TSB, we have to drop
370          * the lock and ask all other cpus running this address space
371          * to run tsb_context_switch() to see the new TSB table.
372          */
373         spin_lock_irqsave(&mm->context.lock, flags);
374
375         old_tsb = mm->context.tsb_block[tsb_index].tsb;
376         old_cache_index =
377                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
378         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
379                     sizeof(struct tsb));
380
381
382         /* Handle multiple threads trying to grow the TSB at the same time.
383          * One will get in here first, and bump the size and the RSS limit.
384          * The others will get in here next and hit this check.
385          */
386         if (unlikely(old_tsb &&
387                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
388                 spin_unlock_irqrestore(&mm->context.lock, flags);
389
390                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
391                 return;
392         }
393
394         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
395
396         if (old_tsb) {
397                 extern void copy_tsb(unsigned long old_tsb_base,
398                                      unsigned long old_tsb_size,
399                                      unsigned long new_tsb_base,
400                                      unsigned long new_tsb_size);
401                 unsigned long old_tsb_base = (unsigned long) old_tsb;
402                 unsigned long new_tsb_base = (unsigned long) new_tsb;
403
404                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
405                         old_tsb_base = __pa(old_tsb_base);
406                         new_tsb_base = __pa(new_tsb_base);
407                 }
408                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
409         }
410
411         mm->context.tsb_block[tsb_index].tsb = new_tsb;
412         setup_tsb_params(mm, tsb_index, new_size);
413
414         spin_unlock_irqrestore(&mm->context.lock, flags);
415
416         /* If old_tsb is NULL, we're being invoked for the first time
417          * from init_new_context().
418          */
419         if (old_tsb) {
420                 /* Reload it on the local cpu.  */
421                 tsb_context_switch(mm);
422
423                 /* Now force other processors to do the same.  */
424                 smp_tsb_sync(mm);
425
426                 /* Now it is safe to free the old tsb.  */
427                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
428         }
429 }
430
431 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
432 {
433 #ifdef CONFIG_HUGETLB_PAGE
434         unsigned long huge_pte_count;
435 #endif
436         unsigned int i;
437
438         spin_lock_init(&mm->context.lock);
439
440         mm->context.sparc64_ctx_val = 0UL;
441
442 #ifdef CONFIG_HUGETLB_PAGE
443         /* We reset it to zero because the fork() page copying
444          * will re-increment the counters as the parent PTEs are
445          * copied into the child address space.
446          */
447         huge_pte_count = mm->context.huge_pte_count;
448         mm->context.huge_pte_count = 0;
449 #endif
450
451         /* copy_mm() copies over the parent's mm_struct before calling
452          * us, so we need to zero out the TSB pointer or else tsb_grow()
453          * will be confused and think there is an older TSB to free up.
454          */
455         for (i = 0; i < MM_NUM_TSBS; i++)
456                 mm->context.tsb_block[i].tsb = NULL;
457
458         /* If this is fork, inherit the parent's TSB size.  We would
459          * grow it to that size on the first page fault anyways.
460          */
461         tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
462
463 #ifdef CONFIG_HUGETLB_PAGE
464         if (unlikely(huge_pte_count))
465                 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
466 #endif
467
468         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
469                 return -ENOMEM;
470
471         return 0;
472 }
473
474 static void tsb_destroy_one(struct tsb_config *tp)
475 {
476         unsigned long cache_index;
477
478         if (!tp->tsb)
479                 return;
480         cache_index = tp->tsb_reg_val & 0x7UL;
481         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
482         tp->tsb = NULL;
483         tp->tsb_reg_val = 0UL;
484 }
485
486 void destroy_context(struct mm_struct *mm)
487 {
488         unsigned long flags, i;
489
490         for (i = 0; i < MM_NUM_TSBS; i++)
491                 tsb_destroy_one(&mm->context.tsb_block[i]);
492
493         spin_lock_irqsave(&ctx_alloc_lock, flags);
494
495         if (CTX_VALID(mm->context)) {
496                 unsigned long nr = CTX_NRBITS(mm->context);
497                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
498         }
499
500         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
501 }