2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
89 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 int __ip_local_out(struct sk_buff *skb)
94 struct iphdr *iph = ip_hdr(skb);
96 iph->tot_len = htons(skb->len);
98 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
102 int ip_local_out(struct sk_buff *skb)
106 err = __ip_local_out(skb);
107 if (likely(err == 1))
108 err = dst_output(skb);
112 EXPORT_SYMBOL_GPL(ip_local_out);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 skb_reset_mac_header(newskb);
118 __skb_pull(newskb, skb_network_offset(newskb));
119 newskb->pkt_type = PACKET_LOOPBACK;
120 newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 WARN_ON(!newskb->dst);
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 int ttl = inet->uc_ttl;
131 ttl = dst_metric(dst, RTAX_HOPLIMIT);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 __be32 saddr, __be32 daddr, struct ip_options *opt)
142 struct inet_sock *inet = inet_sk(sk);
143 struct rtable *rt = skb->rtable;
146 /* Build the IP header. */
147 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 skb_reset_network_header(skb);
152 iph->tos = inet->tos;
153 if (ip_dont_fragment(sk, &rt->u.dst))
154 iph->frag_off = htons(IP_DF);
157 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
158 iph->daddr = rt->rt_dst;
159 iph->saddr = rt->rt_src;
160 iph->protocol = sk->sk_protocol;
161 ip_select_ident(iph, &rt->u.dst, sk);
163 if (opt && opt->optlen) {
164 iph->ihl += opt->optlen>>2;
165 ip_options_build(skb, opt, daddr, rt, 0);
168 skb->priority = sk->sk_priority;
169 skb->mark = sk->sk_mark;
172 return ip_local_out(skb);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 static inline int ip_finish_output2(struct sk_buff *skb)
179 struct dst_entry *dst = skb->dst;
180 struct rtable *rt = (struct rtable *)dst;
181 struct net_device *dev = dst->dev;
182 unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 if (rt->rt_type == RTN_MULTICAST)
185 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 else if (rt->rt_type == RTN_BROADCAST)
187 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 struct sk_buff *skb2;
193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
199 skb_set_owner_w(skb2, skb->sk);
205 return neigh_hh_output(dst->hh, skb);
206 else if (dst->neighbour)
207 return dst->neighbour->output(skb);
210 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 skb->dst->dev->mtu : dst_mtu(skb->dst);
223 static int ip_finish_output(struct sk_buff *skb)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb->dst->xfrm != NULL) {
228 IPCB(skb)->flags |= IPSKB_REROUTED;
229 return dst_output(skb);
232 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 return ip_fragment(skb, ip_finish_output2);
235 return ip_finish_output2(skb);
238 int ip_mc_output(struct sk_buff *skb)
240 struct sock *sk = skb->sk;
241 struct rtable *rt = skb->rtable;
242 struct net_device *dev = rt->u.dst.dev;
245 * If the indicated interface is up and running, send the packet.
247 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
250 skb->protocol = htons(ETH_P_IP);
253 * Multicasts are looped back for other local users
256 if (rt->rt_flags&RTCF_MULTICAST) {
257 if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
270 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
274 ip_dev_loopback_xmit);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb)->ttl == 0) {
285 if (rt->rt_flags&RTCF_BROADCAST) {
286 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 newskb->dev, ip_dev_loopback_xmit);
292 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
294 !(IPCB(skb)->flags & IPSKB_REROUTED));
297 int ip_output(struct sk_buff *skb)
299 struct net_device *dev = skb->dst->dev;
301 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
304 skb->protocol = htons(ETH_P_IP);
306 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
308 !(IPCB(skb)->flags & IPSKB_REROUTED));
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
313 struct sock *sk = skb->sk;
314 struct inet_sock *inet = inet_sk(sk);
315 struct ip_options *opt = inet->opt;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
326 /* Make sure we can route this packet. */
327 rt = (struct rtable *)__sk_dst_check(sk, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl = { .oif = sk->sk_bound_dev_if,
340 .saddr = inet->saddr,
341 .tos = RT_CONN_FLAGS(sk) } },
342 .proto = sk->sk_protocol,
344 { .sport = inet->sport,
345 .dport = inet->dport } } };
347 /* If this fails, retransmit mechanism of transport layer will
348 * keep trying until route appears or the connection times
351 security_sk_classify_flow(sk, &fl);
352 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
355 sk_setup_caps(sk, &rt->u.dst);
357 skb->dst = dst_clone(&rt->u.dst);
360 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
363 /* OK, we know where to send it, allocate and build IP header. */
364 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
365 skb_reset_network_header(skb);
367 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
368 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
369 iph->frag_off = htons(IP_DF);
372 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
373 iph->protocol = sk->sk_protocol;
374 iph->saddr = rt->rt_src;
375 iph->daddr = rt->rt_dst;
376 /* Transport layer set skb->h.foo itself. */
378 if (opt && opt->optlen) {
379 iph->ihl += opt->optlen >> 2;
380 ip_options_build(skb, opt, inet->daddr, rt, 0);
383 ip_select_ident_more(iph, &rt->u.dst, sk,
384 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 skb->priority = sk->sk_priority;
387 skb->mark = sk->sk_mark;
389 return ip_local_out(skb);
392 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 return -EHOSTUNREACH;
398 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 to->pkt_type = from->pkt_type;
401 to->priority = from->priority;
402 to->protocol = from->protocol;
403 dst_release(to->dst);
404 to->dst = dst_clone(from->dst);
406 to->mark = from->mark;
408 /* Copy the flags to each fragment. */
409 IPCB(to)->flags = IPCB(from)->flags;
411 #ifdef CONFIG_NET_SCHED
412 to->tc_index = from->tc_index;
415 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
416 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
417 to->nf_trace = from->nf_trace;
419 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
420 to->ipvs_property = from->ipvs_property;
422 skb_copy_secmark(to, from);
426 * This IP datagram is too large to be sent in one piece. Break it up into
427 * smaller pieces (each of size equal to IP header plus
428 * a block of the data of the original IP data part) that will yet fit in a
429 * single device frame, and queue such a frame for sending.
432 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
437 struct net_device *dev;
438 struct sk_buff *skb2;
439 unsigned int mtu, hlen, left, len, ll_rs, pad;
441 __be16 not_last_frag;
442 struct rtable *rt = skb->rtable;
448 * Point into the IP datagram header.
453 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
454 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
455 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
456 htonl(ip_skb_dst_mtu(skb)));
462 * Setup starting values.
466 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
467 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 /* When frag_list is given, use it. First, check its validity:
470 * some transformers could create wrong frag_list or break existing
471 * one, it is not prohibited. In this case fall back to copying.
473 * LATER: this step can be merged to real generation of fragments,
474 * we can switch to copy when see the first bad fragment.
476 if (skb_shinfo(skb)->frag_list) {
477 struct sk_buff *frag;
478 int first_len = skb_pagelen(skb);
481 if (first_len - hlen > mtu ||
482 ((first_len - hlen) & 7) ||
483 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
487 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
488 /* Correct geometry. */
489 if (frag->len > mtu ||
490 ((frag->len & 7) && frag->next) ||
491 skb_headroom(frag) < hlen)
494 /* Partially cloned skb? */
495 if (skb_shared(frag))
502 frag->destructor = sock_wfree;
503 truesizes += frag->truesize;
507 /* Everything is OK. Generate! */
511 frag = skb_shinfo(skb)->frag_list;
512 skb_shinfo(skb)->frag_list = NULL;
513 skb->data_len = first_len - skb_headlen(skb);
514 skb->truesize -= truesizes;
515 skb->len = first_len;
516 iph->tot_len = htons(first_len);
517 iph->frag_off = htons(IP_MF);
521 /* Prepare header of the next frame,
522 * before previous one went down. */
524 frag->ip_summed = CHECKSUM_NONE;
525 skb_reset_transport_header(frag);
526 __skb_push(frag, hlen);
527 skb_reset_network_header(frag);
528 memcpy(skb_network_header(frag), iph, hlen);
530 iph->tot_len = htons(frag->len);
531 ip_copy_metadata(frag, skb);
533 ip_options_fragment(frag);
534 offset += skb->len - hlen;
535 iph->frag_off = htons(offset>>3);
536 if (frag->next != NULL)
537 iph->frag_off |= htons(IP_MF);
538 /* Ready, complete checksum */
545 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
555 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
564 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
569 left = skb->len - hlen; /* Space per frame */
570 ptr = raw + hlen; /* Where to start from */
572 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
573 * we need to make room for the encapsulating header
575 pad = nf_bridge_pad(skb);
576 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
580 * Fragment the datagram.
583 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
584 not_last_frag = iph->frag_off & htons(IP_MF);
587 * Keep copying data until we run out.
592 /* IF: it doesn't fit, use 'mtu' - the data space left */
595 /* IF: we are not sending upto and including the packet end
596 then align the next start on an eight byte boundary */
604 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
605 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
611 * Set up data on packet
614 ip_copy_metadata(skb2, skb);
615 skb_reserve(skb2, ll_rs);
616 skb_put(skb2, len + hlen);
617 skb_reset_network_header(skb2);
618 skb2->transport_header = skb2->network_header + hlen;
621 * Charge the memory for the fragment to any owner
626 skb_set_owner_w(skb2, skb->sk);
629 * Copy the packet header into the new buffer.
632 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
635 * Copy a block of the IP datagram.
637 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
642 * Fill in the new header fields.
645 iph->frag_off = htons((offset >> 3));
647 /* ANK: dirty, but effective trick. Upgrade options only if
648 * the segment to be fragmented was THE FIRST (otherwise,
649 * options are already fixed) and make it ONCE
650 * on the initial skb, so that all the following fragments
651 * will inherit fixed options.
654 ip_options_fragment(skb);
657 * Added AC : If we are fragmenting a fragment that's not the
658 * last fragment then keep MF on each bit
660 if (left > 0 || not_last_frag)
661 iph->frag_off |= htons(IP_MF);
666 * Put this fragment into the sending queue.
668 iph->tot_len = htons(len + hlen);
676 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
679 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
684 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
688 EXPORT_SYMBOL(ip_fragment);
691 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
693 struct iovec *iov = from;
695 if (skb->ip_summed == CHECKSUM_PARTIAL) {
696 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
700 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 skb->csum = csum_block_add(skb->csum, csum, odd);
708 csum_page(struct page *page, int offset, int copy)
713 csum = csum_partial(kaddr + offset, copy, 0);
718 static inline int ip_ufo_append_data(struct sock *sk,
719 int getfrag(void *from, char *to, int offset, int len,
720 int odd, struct sk_buff *skb),
721 void *from, int length, int hh_len, int fragheaderlen,
722 int transhdrlen, int mtu,unsigned int flags)
727 /* There is support for UDP fragmentation offload by network
728 * device, so create one single skb packet containing complete
731 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
732 skb = sock_alloc_send_skb(sk,
733 hh_len + fragheaderlen + transhdrlen + 20,
734 (flags & MSG_DONTWAIT), &err);
739 /* reserve space for Hardware header */
740 skb_reserve(skb, hh_len);
742 /* create space for UDP/IP header */
743 skb_put(skb,fragheaderlen + transhdrlen);
745 /* initialize network header pointer */
746 skb_reset_network_header(skb);
748 /* initialize protocol header pointer */
749 skb->transport_header = skb->network_header + fragheaderlen;
751 skb->ip_summed = CHECKSUM_PARTIAL;
753 sk->sk_sndmsg_off = 0;
755 /* specify the length of each IP datagram fragment */
756 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
757 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
758 __skb_queue_tail(&sk->sk_write_queue, skb);
761 return skb_append_datato_frags(sk, skb, getfrag, from,
762 (length - transhdrlen));
766 * ip_append_data() and ip_append_page() can make one large IP datagram
767 * from many pieces of data. Each pieces will be holded on the socket
768 * until ip_push_pending_frames() is called. Each piece can be a page
771 * Not only UDP, other transport protocols - e.g. raw sockets - can use
772 * this interface potentially.
774 * LATER: length must be adjusted by pad at tail, when it is required.
776 int ip_append_data(struct sock *sk,
777 int getfrag(void *from, char *to, int offset, int len,
778 int odd, struct sk_buff *skb),
779 void *from, int length, int transhdrlen,
780 struct ipcm_cookie *ipc, struct rtable *rt,
783 struct inet_sock *inet = inet_sk(sk);
786 struct ip_options *opt = NULL;
793 unsigned int maxfraglen, fragheaderlen;
794 int csummode = CHECKSUM_NONE;
799 if (skb_queue_empty(&sk->sk_write_queue)) {
805 if (inet->cork.opt == NULL) {
806 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
807 if (unlikely(inet->cork.opt == NULL))
810 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
811 inet->cork.flags |= IPCORK_OPT;
812 inet->cork.addr = ipc->addr;
814 dst_hold(&rt->u.dst);
815 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
817 dst_mtu(rt->u.dst.path);
818 inet->cork.dst = &rt->u.dst;
819 inet->cork.length = 0;
820 sk->sk_sndmsg_page = NULL;
821 sk->sk_sndmsg_off = 0;
822 if ((exthdrlen = rt->u.dst.header_len) != 0) {
824 transhdrlen += exthdrlen;
827 rt = (struct rtable *)inet->cork.dst;
828 if (inet->cork.flags & IPCORK_OPT)
829 opt = inet->cork.opt;
833 mtu = inet->cork.fragsize;
835 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
837 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
838 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
840 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
841 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
846 * transhdrlen > 0 means that this is the first fragment and we wish
847 * it won't be fragmented in the future.
850 length + fragheaderlen <= mtu &&
851 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
853 csummode = CHECKSUM_PARTIAL;
855 inet->cork.length += length;
856 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
857 (sk->sk_protocol == IPPROTO_UDP) &&
858 (rt->u.dst.dev->features & NETIF_F_UFO)) {
859 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
860 fragheaderlen, transhdrlen, mtu,
867 /* So, what's going on in the loop below?
869 * We use calculated fragment length to generate chained skb,
870 * each of segments is IP fragment ready for sending to network after
871 * adding appropriate IP header.
874 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
878 /* Check if the remaining data fits into current packet. */
879 copy = mtu - skb->len;
881 copy = maxfraglen - skb->len;
884 unsigned int datalen;
885 unsigned int fraglen;
886 unsigned int fraggap;
887 unsigned int alloclen;
888 struct sk_buff *skb_prev;
892 fraggap = skb_prev->len - maxfraglen;
897 * If remaining data exceeds the mtu,
898 * we know we need more fragment(s).
900 datalen = length + fraggap;
901 if (datalen > mtu - fragheaderlen)
902 datalen = maxfraglen - fragheaderlen;
903 fraglen = datalen + fragheaderlen;
905 if ((flags & MSG_MORE) &&
906 !(rt->u.dst.dev->features&NETIF_F_SG))
909 alloclen = datalen + fragheaderlen;
911 /* The last fragment gets additional space at tail.
912 * Note, with MSG_MORE we overallocate on fragments,
913 * because we have no idea what fragment will be
916 if (datalen == length + fraggap)
917 alloclen += rt->u.dst.trailer_len;
920 skb = sock_alloc_send_skb(sk,
921 alloclen + hh_len + 15,
922 (flags & MSG_DONTWAIT), &err);
925 if (atomic_read(&sk->sk_wmem_alloc) <=
927 skb = sock_wmalloc(sk,
928 alloclen + hh_len + 15, 1,
930 if (unlikely(skb == NULL))
937 * Fill in the control structures
939 skb->ip_summed = csummode;
941 skb_reserve(skb, hh_len);
944 * Find where to start putting bytes.
946 data = skb_put(skb, fraglen);
947 skb_set_network_header(skb, exthdrlen);
948 skb->transport_header = (skb->network_header +
950 data += fragheaderlen;
953 skb->csum = skb_copy_and_csum_bits(
954 skb_prev, maxfraglen,
955 data + transhdrlen, fraggap, 0);
956 skb_prev->csum = csum_sub(skb_prev->csum,
959 pskb_trim_unique(skb_prev, maxfraglen);
962 copy = datalen - transhdrlen - fraggap;
963 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
970 length -= datalen - fraggap;
973 csummode = CHECKSUM_NONE;
976 * Put the packet on the pending queue.
978 __skb_queue_tail(&sk->sk_write_queue, skb);
985 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
989 if (getfrag(from, skb_put(skb, copy),
990 offset, copy, off, skb) < 0) {
991 __skb_trim(skb, off);
996 int i = skb_shinfo(skb)->nr_frags;
997 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
998 struct page *page = sk->sk_sndmsg_page;
999 int off = sk->sk_sndmsg_off;
1002 if (page && (left = PAGE_SIZE - off) > 0) {
1005 if (page != frag->page) {
1006 if (i == MAX_SKB_FRAGS) {
1011 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1012 frag = &skb_shinfo(skb)->frags[i];
1014 } else if (i < MAX_SKB_FRAGS) {
1015 if (copy > PAGE_SIZE)
1017 page = alloc_pages(sk->sk_allocation, 0);
1022 sk->sk_sndmsg_page = page;
1023 sk->sk_sndmsg_off = 0;
1025 skb_fill_page_desc(skb, i, page, 0, 0);
1026 frag = &skb_shinfo(skb)->frags[i];
1031 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1035 sk->sk_sndmsg_off += copy;
1038 skb->data_len += copy;
1039 skb->truesize += copy;
1040 atomic_add(copy, &sk->sk_wmem_alloc);
1049 inet->cork.length -= length;
1050 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1054 ssize_t ip_append_page(struct sock *sk, struct page *page,
1055 int offset, size_t size, int flags)
1057 struct inet_sock *inet = inet_sk(sk);
1058 struct sk_buff *skb;
1060 struct ip_options *opt = NULL;
1065 unsigned int maxfraglen, fragheaderlen, fraggap;
1070 if (flags&MSG_PROBE)
1073 if (skb_queue_empty(&sk->sk_write_queue))
1076 rt = (struct rtable *)inet->cork.dst;
1077 if (inet->cork.flags & IPCORK_OPT)
1078 opt = inet->cork.opt;
1080 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1083 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1084 mtu = inet->cork.fragsize;
1086 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1087 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1089 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1090 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1094 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1097 inet->cork.length += size;
1098 if ((sk->sk_protocol == IPPROTO_UDP) &&
1099 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1100 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1101 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1108 if (skb_is_gso(skb))
1112 /* Check if the remaining data fits into current packet. */
1113 len = mtu - skb->len;
1115 len = maxfraglen - skb->len;
1118 struct sk_buff *skb_prev;
1122 fraggap = skb_prev->len - maxfraglen;
1124 alloclen = fragheaderlen + hh_len + fraggap + 15;
1125 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1126 if (unlikely(!skb)) {
1132 * Fill in the control structures
1134 skb->ip_summed = CHECKSUM_NONE;
1136 skb_reserve(skb, hh_len);
1139 * Find where to start putting bytes.
1141 skb_put(skb, fragheaderlen + fraggap);
1142 skb_reset_network_header(skb);
1143 skb->transport_header = (skb->network_header +
1146 skb->csum = skb_copy_and_csum_bits(skb_prev,
1148 skb_transport_header(skb),
1150 skb_prev->csum = csum_sub(skb_prev->csum,
1152 pskb_trim_unique(skb_prev, maxfraglen);
1156 * Put the packet on the pending queue.
1158 __skb_queue_tail(&sk->sk_write_queue, skb);
1162 i = skb_shinfo(skb)->nr_frags;
1165 if (skb_can_coalesce(skb, i, page, offset)) {
1166 skb_shinfo(skb)->frags[i-1].size += len;
1167 } else if (i < MAX_SKB_FRAGS) {
1169 skb_fill_page_desc(skb, i, page, offset, len);
1175 if (skb->ip_summed == CHECKSUM_NONE) {
1177 csum = csum_page(page, offset, len);
1178 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1182 skb->data_len += len;
1183 skb->truesize += len;
1184 atomic_add(len, &sk->sk_wmem_alloc);
1191 inet->cork.length -= size;
1192 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1196 static void ip_cork_release(struct inet_sock *inet)
1198 inet->cork.flags &= ~IPCORK_OPT;
1199 kfree(inet->cork.opt);
1200 inet->cork.opt = NULL;
1201 dst_release(inet->cork.dst);
1202 inet->cork.dst = NULL;
1206 * Combined all pending IP fragments on the socket as one IP datagram
1207 * and push them out.
1209 int ip_push_pending_frames(struct sock *sk)
1211 struct sk_buff *skb, *tmp_skb;
1212 struct sk_buff **tail_skb;
1213 struct inet_sock *inet = inet_sk(sk);
1214 struct net *net = sock_net(sk);
1215 struct ip_options *opt = NULL;
1216 struct rtable *rt = (struct rtable *)inet->cork.dst;
1222 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1224 tail_skb = &(skb_shinfo(skb)->frag_list);
1226 /* move skb->data to ip header from ext header */
1227 if (skb->data < skb_network_header(skb))
1228 __skb_pull(skb, skb_network_offset(skb));
1229 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1230 __skb_pull(tmp_skb, skb_network_header_len(skb));
1231 *tail_skb = tmp_skb;
1232 tail_skb = &(tmp_skb->next);
1233 skb->len += tmp_skb->len;
1234 skb->data_len += tmp_skb->len;
1235 skb->truesize += tmp_skb->truesize;
1236 __sock_put(tmp_skb->sk);
1237 tmp_skb->destructor = NULL;
1241 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1242 * to fragment the frame generated here. No matter, what transforms
1243 * how transforms change size of the packet, it will come out.
1245 if (inet->pmtudisc < IP_PMTUDISC_DO)
1248 /* DF bit is set when we want to see DF on outgoing frames.
1249 * If local_df is set too, we still allow to fragment this frame
1251 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1252 (skb->len <= dst_mtu(&rt->u.dst) &&
1253 ip_dont_fragment(sk, &rt->u.dst)))
1256 if (inet->cork.flags & IPCORK_OPT)
1257 opt = inet->cork.opt;
1259 if (rt->rt_type == RTN_MULTICAST)
1262 ttl = ip_select_ttl(inet, &rt->u.dst);
1264 iph = (struct iphdr *)skb->data;
1268 iph->ihl += opt->optlen>>2;
1269 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1271 iph->tos = inet->tos;
1273 ip_select_ident(iph, &rt->u.dst, sk);
1275 iph->protocol = sk->sk_protocol;
1276 iph->saddr = rt->rt_src;
1277 iph->daddr = rt->rt_dst;
1279 skb->priority = sk->sk_priority;
1280 skb->mark = sk->sk_mark;
1281 skb->dst = dst_clone(&rt->u.dst);
1283 if (iph->protocol == IPPROTO_ICMP)
1284 icmp_out_count(net, ((struct icmphdr *)
1285 skb_transport_header(skb))->type);
1287 /* Netfilter gets whole the not fragmented skb. */
1288 err = ip_local_out(skb);
1291 err = inet->recverr ? net_xmit_errno(err) : 0;
1297 ip_cork_release(inet);
1301 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1306 * Throw away all pending data on the socket.
1308 void ip_flush_pending_frames(struct sock *sk)
1310 struct sk_buff *skb;
1312 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1315 ip_cork_release(inet_sk(sk));
1320 * Fetch data from kernel space and fill in checksum if needed.
1322 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1323 int len, int odd, struct sk_buff *skb)
1327 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1328 skb->csum = csum_block_add(skb->csum, csum, odd);
1333 * Generic function to send a packet as reply to another packet.
1334 * Used to send TCP resets so far. ICMP should use this function too.
1336 * Should run single threaded per socket because it uses the sock
1337 * structure to pass arguments.
1339 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1342 struct inet_sock *inet = inet_sk(sk);
1344 struct ip_options opt;
1347 struct ipcm_cookie ipc;
1349 struct rtable *rt = skb->rtable;
1351 if (ip_options_echo(&replyopts.opt, skb))
1354 daddr = ipc.addr = rt->rt_src;
1357 if (replyopts.opt.optlen) {
1358 ipc.opt = &replyopts.opt;
1361 daddr = replyopts.opt.faddr;
1365 struct flowi fl = { .oif = arg->bound_dev_if,
1368 .saddr = rt->rt_spec_dst,
1369 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1370 /* Not quite clean, but right. */
1372 { .sport = tcp_hdr(skb)->dest,
1373 .dport = tcp_hdr(skb)->source } },
1374 .proto = sk->sk_protocol };
1375 security_skb_classify_flow(skb, &fl);
1376 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1380 /* And let IP do all the hard work.
1382 This chunk is not reenterable, hence spinlock.
1383 Note that it uses the fact, that this function is called
1384 with locally disabled BH and that sk cannot be already spinlocked.
1387 inet->tos = ip_hdr(skb)->tos;
1388 sk->sk_priority = skb->priority;
1389 sk->sk_protocol = ip_hdr(skb)->protocol;
1390 sk->sk_bound_dev_if = arg->bound_dev_if;
1391 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1392 &ipc, rt, MSG_DONTWAIT);
1393 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1394 if (arg->csumoffset >= 0)
1395 *((__sum16 *)skb_transport_header(skb) +
1396 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1398 skb->ip_summed = CHECKSUM_NONE;
1399 ip_push_pending_frames(sk);
1407 void __init ip_init(void)
1412 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1413 igmp_mc_proc_init();
1417 EXPORT_SYMBOL(ip_generic_getfrag);
1418 EXPORT_SYMBOL(ip_queue_xmit);
1419 EXPORT_SYMBOL(ip_send_check);