2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29 * taken together; in truncation, i_mutex is taken outermost.
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
35 * mm->page_table_lock or pte_lock
36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
57 #include <asm/tlbflush.h>
59 struct kmem_cache *anon_vma_cachep;
61 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
63 #ifdef CONFIG_DEBUG_VM
64 struct anon_vma *anon_vma = find_vma->anon_vma;
65 struct vm_area_struct *vma;
66 unsigned int mapcount = 0;
69 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
71 BUG_ON(mapcount > 100000);
79 /* This must be called under the mmap_sem. */
80 int anon_vma_prepare(struct vm_area_struct *vma)
82 struct anon_vma *anon_vma = vma->anon_vma;
85 if (unlikely(!anon_vma)) {
86 struct mm_struct *mm = vma->vm_mm;
87 struct anon_vma *allocated, *locked;
89 anon_vma = find_mergeable_anon_vma(vma);
93 spin_lock(&locked->lock);
95 anon_vma = anon_vma_alloc();
96 if (unlikely(!anon_vma))
102 /* page_table_lock to protect against threads */
103 spin_lock(&mm->page_table_lock);
104 if (likely(!vma->anon_vma)) {
105 vma->anon_vma = anon_vma;
106 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 spin_unlock(&mm->page_table_lock);
112 spin_unlock(&locked->lock);
113 if (unlikely(allocated))
114 anon_vma_free(allocated);
119 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
121 BUG_ON(vma->anon_vma != next->anon_vma);
122 list_del(&next->anon_vma_node);
125 void __anon_vma_link(struct vm_area_struct *vma)
127 struct anon_vma *anon_vma = vma->anon_vma;
130 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
131 validate_anon_vma(vma);
135 void anon_vma_link(struct vm_area_struct *vma)
137 struct anon_vma *anon_vma = vma->anon_vma;
140 spin_lock(&anon_vma->lock);
141 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
142 validate_anon_vma(vma);
143 spin_unlock(&anon_vma->lock);
147 void anon_vma_unlink(struct vm_area_struct *vma)
149 struct anon_vma *anon_vma = vma->anon_vma;
155 spin_lock(&anon_vma->lock);
156 validate_anon_vma(vma);
157 list_del(&vma->anon_vma_node);
159 /* We must garbage collect the anon_vma if it's empty */
160 empty = list_empty(&anon_vma->head);
161 spin_unlock(&anon_vma->lock);
164 anon_vma_free(anon_vma);
167 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 SLAB_CTOR_CONSTRUCTOR) {
172 struct anon_vma *anon_vma = data;
174 spin_lock_init(&anon_vma->lock);
175 INIT_LIST_HEAD(&anon_vma->head);
179 void __init anon_vma_init(void)
181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
186 * Getting a lock on a stable anon_vma from a page off the LRU is
187 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 struct anon_vma *anon_vma = NULL;
192 unsigned long anon_mapping;
195 anon_mapping = (unsigned long) page->mapping;
196 if (!(anon_mapping & PAGE_MAPPING_ANON))
198 if (!page_mapped(page))
201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 spin_lock(&anon_vma->lock);
209 * At what user virtual address is page expected in vma?
211 static inline unsigned long
212 vma_address(struct page *page, struct vm_area_struct *vma)
214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 unsigned long address;
217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 /* page should be within any vma from prio_tree_next */
220 BUG_ON(!PageAnon(page));
227 * At what user virtual address is page expected in vma? checking that the
228 * page matches the vma: currently only used on anon pages, by unuse_vma;
230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 if (PageAnon(page)) {
233 if ((void *)vma->anon_vma !=
234 (void *)page->mapping - PAGE_MAPPING_ANON)
236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 vma->vm_file->f_mapping != page->mapping)
242 return vma_address(page, vma);
246 * Check that @page is mapped at @address into @mm.
248 * On success returns with pte mapped and locked.
250 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
251 unsigned long address, spinlock_t **ptlp)
259 pgd = pgd_offset(mm, address);
260 if (!pgd_present(*pgd))
263 pud = pud_offset(pgd, address);
264 if (!pud_present(*pud))
267 pmd = pmd_offset(pud, address);
268 if (!pmd_present(*pmd))
271 pte = pte_offset_map(pmd, address);
272 /* Make a quick check before getting the lock */
273 if (!pte_present(*pte)) {
278 ptl = pte_lockptr(mm, pmd);
280 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
284 pte_unmap_unlock(pte, ptl);
289 * Subfunctions of page_referenced: page_referenced_one called
290 * repeatedly from either page_referenced_anon or page_referenced_file.
292 static int page_referenced_one(struct page *page,
293 struct vm_area_struct *vma, unsigned int *mapcount)
295 struct mm_struct *mm = vma->vm_mm;
296 unsigned long address;
301 address = vma_address(page, vma);
302 if (address == -EFAULT)
305 pte = page_check_address(page, mm, address, &ptl);
309 if (ptep_clear_flush_young(vma, address, pte))
312 /* Pretend the page is referenced if the task has the
313 swap token and is in the middle of a page fault. */
314 if (mm != current->mm && has_swap_token(mm) &&
315 rwsem_is_locked(&mm->mmap_sem))
319 pte_unmap_unlock(pte, ptl);
324 static int page_referenced_anon(struct page *page)
326 unsigned int mapcount;
327 struct anon_vma *anon_vma;
328 struct vm_area_struct *vma;
331 anon_vma = page_lock_anon_vma(page);
335 mapcount = page_mapcount(page);
336 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
337 referenced += page_referenced_one(page, vma, &mapcount);
341 spin_unlock(&anon_vma->lock);
346 * page_referenced_file - referenced check for object-based rmap
347 * @page: the page we're checking references on.
349 * For an object-based mapped page, find all the places it is mapped and
350 * check/clear the referenced flag. This is done by following the page->mapping
351 * pointer, then walking the chain of vmas it holds. It returns the number
352 * of references it found.
354 * This function is only called from page_referenced for object-based pages.
356 static int page_referenced_file(struct page *page)
358 unsigned int mapcount;
359 struct address_space *mapping = page->mapping;
360 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
361 struct vm_area_struct *vma;
362 struct prio_tree_iter iter;
366 * The caller's checks on page->mapping and !PageAnon have made
367 * sure that this is a file page: the check for page->mapping
368 * excludes the case just before it gets set on an anon page.
370 BUG_ON(PageAnon(page));
373 * The page lock not only makes sure that page->mapping cannot
374 * suddenly be NULLified by truncation, it makes sure that the
375 * structure at mapping cannot be freed and reused yet,
376 * so we can safely take mapping->i_mmap_lock.
378 BUG_ON(!PageLocked(page));
380 spin_lock(&mapping->i_mmap_lock);
383 * i_mmap_lock does not stabilize mapcount at all, but mapcount
384 * is more likely to be accurate if we note it after spinning.
386 mapcount = page_mapcount(page);
388 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
389 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 == (VM_LOCKED|VM_MAYSHARE)) {
394 referenced += page_referenced_one(page, vma, &mapcount);
399 spin_unlock(&mapping->i_mmap_lock);
404 * page_referenced - test if the page was referenced
405 * @page: the page to test
406 * @is_locked: caller holds lock on the page
408 * Quick test_and_clear_referenced for all mappings to a page,
409 * returns the number of ptes which referenced the page.
411 int page_referenced(struct page *page, int is_locked)
415 if (page_test_and_clear_young(page))
418 if (TestClearPageReferenced(page))
421 if (page_mapped(page) && page->mapping) {
423 referenced += page_referenced_anon(page);
425 referenced += page_referenced_file(page);
426 else if (TestSetPageLocked(page))
430 referenced += page_referenced_file(page);
437 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
439 struct mm_struct *mm = vma->vm_mm;
440 unsigned long address;
445 address = vma_address(page, vma);
446 if (address == -EFAULT)
449 pte = page_check_address(page, mm, address, &ptl);
453 if (!pte_dirty(*pte) && !pte_write(*pte))
456 entry = ptep_get_and_clear(mm, address, pte);
457 entry = pte_mkclean(entry);
458 entry = pte_wrprotect(entry);
459 ptep_establish(vma, address, pte, entry);
460 lazy_mmu_prot_update(entry);
464 pte_unmap_unlock(pte, ptl);
469 static int page_mkclean_file(struct address_space *mapping, struct page *page)
471 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
472 struct vm_area_struct *vma;
473 struct prio_tree_iter iter;
476 BUG_ON(PageAnon(page));
478 spin_lock(&mapping->i_mmap_lock);
479 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
480 if (vma->vm_flags & VM_SHARED)
481 ret += page_mkclean_one(page, vma);
483 spin_unlock(&mapping->i_mmap_lock);
487 int page_mkclean(struct page *page)
491 BUG_ON(!PageLocked(page));
493 if (page_mapped(page)) {
494 struct address_space *mapping = page_mapping(page);
496 ret = page_mkclean_file(mapping, page);
503 * page_set_anon_rmap - setup new anonymous rmap
504 * @page: the page to add the mapping to
505 * @vma: the vm area in which the mapping is added
506 * @address: the user virtual address mapped
508 static void __page_set_anon_rmap(struct page *page,
509 struct vm_area_struct *vma, unsigned long address)
511 struct anon_vma *anon_vma = vma->anon_vma;
514 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
515 page->mapping = (struct address_space *) anon_vma;
517 page->index = linear_page_index(vma, address);
520 * nr_mapped state can be updated without turning off
521 * interrupts because it is not modified via interrupt.
523 __inc_zone_page_state(page, NR_ANON_PAGES);
527 * page_add_anon_rmap - add pte mapping to an anonymous page
528 * @page: the page to add the mapping to
529 * @vma: the vm area in which the mapping is added
530 * @address: the user virtual address mapped
532 * The caller needs to hold the pte lock.
534 void page_add_anon_rmap(struct page *page,
535 struct vm_area_struct *vma, unsigned long address)
537 if (atomic_inc_and_test(&page->_mapcount))
538 __page_set_anon_rmap(page, vma, address);
539 /* else checking page index and mapping is racy */
543 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
544 * @page: the page to add the mapping to
545 * @vma: the vm area in which the mapping is added
546 * @address: the user virtual address mapped
548 * Same as page_add_anon_rmap but must only be called on *new* pages.
549 * This means the inc-and-test can be bypassed.
551 void page_add_new_anon_rmap(struct page *page,
552 struct vm_area_struct *vma, unsigned long address)
554 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
555 __page_set_anon_rmap(page, vma, address);
559 * page_add_file_rmap - add pte mapping to a file page
560 * @page: the page to add the mapping to
562 * The caller needs to hold the pte lock.
564 void page_add_file_rmap(struct page *page)
566 if (atomic_inc_and_test(&page->_mapcount))
567 __inc_zone_page_state(page, NR_FILE_MAPPED);
571 * page_remove_rmap - take down pte mapping from a page
572 * @page: page to remove mapping from
574 * The caller needs to hold the pte lock.
576 void page_remove_rmap(struct page *page)
578 if (atomic_add_negative(-1, &page->_mapcount)) {
579 if (unlikely(page_mapcount(page) < 0)) {
580 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
581 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
582 printk (KERN_EMERG " page->count = %x\n", page_count(page));
583 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
588 * It would be tidy to reset the PageAnon mapping here,
589 * but that might overwrite a racing page_add_anon_rmap
590 * which increments mapcount after us but sets mapping
591 * before us: so leave the reset to free_hot_cold_page,
592 * and remember that it's only reliable while mapped.
593 * Leaving it set also helps swapoff to reinstate ptes
594 * faster for those pages still in swapcache.
596 if (page_test_and_clear_dirty(page))
597 set_page_dirty(page);
598 __dec_zone_page_state(page,
599 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
604 * Subfunctions of try_to_unmap: try_to_unmap_one called
605 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
607 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
610 struct mm_struct *mm = vma->vm_mm;
611 unsigned long address;
615 int ret = SWAP_AGAIN;
617 address = vma_address(page, vma);
618 if (address == -EFAULT)
621 pte = page_check_address(page, mm, address, &ptl);
626 * If the page is mlock()d, we cannot swap it out.
627 * If it's recently referenced (perhaps page_referenced
628 * skipped over this mm) then we should reactivate it.
630 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
631 (ptep_clear_flush_young(vma, address, pte)))) {
636 /* Nuke the page table entry. */
637 flush_cache_page(vma, address, page_to_pfn(page));
638 pteval = ptep_clear_flush(vma, address, pte);
640 /* Move the dirty bit to the physical page now the pte is gone. */
641 if (pte_dirty(pteval))
642 set_page_dirty(page);
644 /* Update high watermark before we lower rss */
645 update_hiwater_rss(mm);
647 if (PageAnon(page)) {
648 swp_entry_t entry = { .val = page_private(page) };
650 if (PageSwapCache(page)) {
652 * Store the swap location in the pte.
653 * See handle_pte_fault() ...
655 swap_duplicate(entry);
656 if (list_empty(&mm->mmlist)) {
657 spin_lock(&mmlist_lock);
658 if (list_empty(&mm->mmlist))
659 list_add(&mm->mmlist, &init_mm.mmlist);
660 spin_unlock(&mmlist_lock);
662 dec_mm_counter(mm, anon_rss);
663 #ifdef CONFIG_MIGRATION
666 * Store the pfn of the page in a special migration
667 * pte. do_swap_page() will wait until the migration
668 * pte is removed and then restart fault handling.
671 entry = make_migration_entry(page, pte_write(pteval));
674 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
675 BUG_ON(pte_file(*pte));
677 #ifdef CONFIG_MIGRATION
679 /* Establish migration entry for a file page */
681 entry = make_migration_entry(page, pte_write(pteval));
682 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
685 dec_mm_counter(mm, file_rss);
688 page_remove_rmap(page);
689 page_cache_release(page);
692 pte_unmap_unlock(pte, ptl);
698 * objrmap doesn't work for nonlinear VMAs because the assumption that
699 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
700 * Consequently, given a particular page and its ->index, we cannot locate the
701 * ptes which are mapping that page without an exhaustive linear search.
703 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
704 * maps the file to which the target page belongs. The ->vm_private_data field
705 * holds the current cursor into that scan. Successive searches will circulate
706 * around the vma's virtual address space.
708 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
709 * more scanning pressure is placed against them as well. Eventually pages
710 * will become fully unmapped and are eligible for eviction.
712 * For very sparsely populated VMAs this is a little inefficient - chances are
713 * there there won't be many ptes located within the scan cluster. In this case
714 * maybe we could scan further - to the end of the pte page, perhaps.
716 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
717 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
719 static void try_to_unmap_cluster(unsigned long cursor,
720 unsigned int *mapcount, struct vm_area_struct *vma)
722 struct mm_struct *mm = vma->vm_mm;
730 unsigned long address;
733 address = (vma->vm_start + cursor) & CLUSTER_MASK;
734 end = address + CLUSTER_SIZE;
735 if (address < vma->vm_start)
736 address = vma->vm_start;
737 if (end > vma->vm_end)
740 pgd = pgd_offset(mm, address);
741 if (!pgd_present(*pgd))
744 pud = pud_offset(pgd, address);
745 if (!pud_present(*pud))
748 pmd = pmd_offset(pud, address);
749 if (!pmd_present(*pmd))
752 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
754 /* Update high watermark before we lower rss */
755 update_hiwater_rss(mm);
757 for (; address < end; pte++, address += PAGE_SIZE) {
758 if (!pte_present(*pte))
760 page = vm_normal_page(vma, address, *pte);
761 BUG_ON(!page || PageAnon(page));
763 if (ptep_clear_flush_young(vma, address, pte))
766 /* Nuke the page table entry. */
767 flush_cache_page(vma, address, pte_pfn(*pte));
768 pteval = ptep_clear_flush(vma, address, pte);
770 /* If nonlinear, store the file page offset in the pte. */
771 if (page->index != linear_page_index(vma, address))
772 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
774 /* Move the dirty bit to the physical page now the pte is gone. */
775 if (pte_dirty(pteval))
776 set_page_dirty(page);
778 page_remove_rmap(page);
779 page_cache_release(page);
780 dec_mm_counter(mm, file_rss);
783 pte_unmap_unlock(pte - 1, ptl);
786 static int try_to_unmap_anon(struct page *page, int migration)
788 struct anon_vma *anon_vma;
789 struct vm_area_struct *vma;
790 int ret = SWAP_AGAIN;
792 anon_vma = page_lock_anon_vma(page);
796 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
797 ret = try_to_unmap_one(page, vma, migration);
798 if (ret == SWAP_FAIL || !page_mapped(page))
801 spin_unlock(&anon_vma->lock);
806 * try_to_unmap_file - unmap file page using the object-based rmap method
807 * @page: the page to unmap
809 * Find all the mappings of a page using the mapping pointer and the vma chains
810 * contained in the address_space struct it points to.
812 * This function is only called from try_to_unmap for object-based pages.
814 static int try_to_unmap_file(struct page *page, int migration)
816 struct address_space *mapping = page->mapping;
817 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
818 struct vm_area_struct *vma;
819 struct prio_tree_iter iter;
820 int ret = SWAP_AGAIN;
821 unsigned long cursor;
822 unsigned long max_nl_cursor = 0;
823 unsigned long max_nl_size = 0;
824 unsigned int mapcount;
826 spin_lock(&mapping->i_mmap_lock);
827 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
828 ret = try_to_unmap_one(page, vma, migration);
829 if (ret == SWAP_FAIL || !page_mapped(page))
833 if (list_empty(&mapping->i_mmap_nonlinear))
836 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
837 shared.vm_set.list) {
838 if ((vma->vm_flags & VM_LOCKED) && !migration)
840 cursor = (unsigned long) vma->vm_private_data;
841 if (cursor > max_nl_cursor)
842 max_nl_cursor = cursor;
843 cursor = vma->vm_end - vma->vm_start;
844 if (cursor > max_nl_size)
845 max_nl_size = cursor;
848 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
854 * We don't try to search for this page in the nonlinear vmas,
855 * and page_referenced wouldn't have found it anyway. Instead
856 * just walk the nonlinear vmas trying to age and unmap some.
857 * The mapcount of the page we came in with is irrelevant,
858 * but even so use it as a guide to how hard we should try?
860 mapcount = page_mapcount(page);
863 cond_resched_lock(&mapping->i_mmap_lock);
865 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
866 if (max_nl_cursor == 0)
867 max_nl_cursor = CLUSTER_SIZE;
870 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
871 shared.vm_set.list) {
872 if ((vma->vm_flags & VM_LOCKED) && !migration)
874 cursor = (unsigned long) vma->vm_private_data;
875 while ( cursor < max_nl_cursor &&
876 cursor < vma->vm_end - vma->vm_start) {
877 try_to_unmap_cluster(cursor, &mapcount, vma);
878 cursor += CLUSTER_SIZE;
879 vma->vm_private_data = (void *) cursor;
880 if ((int)mapcount <= 0)
883 vma->vm_private_data = (void *) max_nl_cursor;
885 cond_resched_lock(&mapping->i_mmap_lock);
886 max_nl_cursor += CLUSTER_SIZE;
887 } while (max_nl_cursor <= max_nl_size);
890 * Don't loop forever (perhaps all the remaining pages are
891 * in locked vmas). Reset cursor on all unreserved nonlinear
892 * vmas, now forgetting on which ones it had fallen behind.
894 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
895 vma->vm_private_data = NULL;
897 spin_unlock(&mapping->i_mmap_lock);
902 * try_to_unmap - try to remove all page table mappings to a page
903 * @page: the page to get unmapped
905 * Tries to remove all the page table entries which are mapping this
906 * page, used in the pageout path. Caller must hold the page lock.
909 * SWAP_SUCCESS - we succeeded in removing all mappings
910 * SWAP_AGAIN - we missed a mapping, try again later
911 * SWAP_FAIL - the page is unswappable
913 int try_to_unmap(struct page *page, int migration)
917 BUG_ON(!PageLocked(page));
920 ret = try_to_unmap_anon(page, migration);
922 ret = try_to_unmap_file(page, migration);
924 if (!page_mapped(page))