2 * File: arch/blackfin/kernel/process.c
7 * Description: Blackfin architecture-dependent process handling.
10 * Copyright 2004-2006 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/smp_lock.h>
32 #include <linux/unistd.h>
33 #include <linux/user.h>
34 #include <linux/a.out.h>
35 #include <linux/uaccess.h>
37 #include <asm/blackfin.h>
38 #include <asm/fixed_code.h>
43 asmlinkage void ret_from_fork(void);
45 /* Points to the SDRAM backup memory for the stack that is currently in
46 * L1 scratchpad memory.
48 void *current_l1_stack_save;
50 /* The number of tasks currently using a L1 stack area. The SRAM is
51 * allocated/deallocated whenever this changes from/to zero.
55 /* Start and length of the area in L1 scratchpad memory which we've allocated
59 unsigned long l1_stack_len;
62 * Powermanagement idle function, if any..
64 void (*pm_idle)(void) = NULL;
65 EXPORT_SYMBOL(pm_idle);
67 void (*pm_power_off)(void) = NULL;
68 EXPORT_SYMBOL(pm_power_off);
71 * We are using a different LED from the one used to indicate timer interrupt.
73 #if defined(CONFIG_BFIN_IDLE_LED)
74 static inline void leds_switch(int flag)
76 unsigned short tmp = 0;
78 tmp = bfin_read_CONFIG_BFIN_IDLE_LED_PORT();
82 tmp &= ~CONFIG_BFIN_IDLE_LED_PIN; /* light on */
84 tmp |= CONFIG_BFIN_IDLE_LED_PIN; /* light off */
86 bfin_write_CONFIG_BFIN_IDLE_LED_PORT(tmp);
91 static inline void leds_switch(int flag)
97 * The idle loop on BFIN
100 void default_idle(void)__attribute__((l1_text));
101 void cpu_idle(void)__attribute__((l1_text));
104 void default_idle(void)
106 while (!need_resched()) {
107 leds_switch(LED_OFF);
109 if (likely(!need_resched()))
110 idle_with_irq_disabled();
116 void (*idle)(void) = default_idle;
119 * The idle thread. There's no useful work to be
120 * done, so just try to conserve power and have a
121 * low exit latency (ie sit in a loop waiting for
122 * somebody to say that they'd like to reschedule)
126 /* endless idle loop with no priority at all */
129 preempt_enable_no_resched();
135 void machine_restart(char *__unused)
137 #if defined(CONFIG_BLKFIN_CACHE)
138 bfin_write_IMEM_CONTROL(0x01);
142 /* Dont do anything till the reset occurs */
148 void machine_halt(void)
151 asm volatile ("idle");
154 void machine_power_off(void)
157 asm volatile ("idle");
160 void show_regs(struct pt_regs *regs)
162 printk(KERN_NOTICE "\n");
164 "PC: %08lu Status: %04lu SysStatus: %04lu RETS: %08lu\n",
165 regs->pc, regs->astat, regs->seqstat, regs->rets);
167 "A0.x: %08lx A0.w: %08lx A1.x: %08lx A1.w: %08lx\n",
168 regs->a0x, regs->a0w, regs->a1x, regs->a1w);
169 printk(KERN_NOTICE "P0: %08lx P1: %08lx P2: %08lx P3: %08lx\n",
170 regs->p0, regs->p1, regs->p2, regs->p3);
171 printk(KERN_NOTICE "P4: %08lx P5: %08lx\n", regs->p4, regs->p5);
172 printk(KERN_NOTICE "R0: %08lx R1: %08lx R2: %08lx R3: %08lx\n",
173 regs->r0, regs->r1, regs->r2, regs->r3);
174 printk(KERN_NOTICE "R4: %08lx R5: %08lx R6: %08lx R7: %08lx\n",
175 regs->r4, regs->r5, regs->r6, regs->r7);
178 printk(KERN_NOTICE "USP: %08lx\n", rdusp());
181 /* Fill in the fpu structure for a core dump. */
183 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
189 * This gets run with P1 containing the
190 * function to call, and R1 containing
191 * the "args". Note P0 is clobbered on the way here.
193 void kernel_thread_helper(void);
194 __asm__(".section .text\n"
196 "_kernel_thread_helper:\n\t"
198 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
201 * Create a kernel thread.
203 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
207 memset(®s, 0, sizeof(regs));
209 regs.r1 = (unsigned long)arg;
210 regs.p1 = (unsigned long)fn;
211 regs.pc = (unsigned long)kernel_thread_helper;
213 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
216 __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
217 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL,
221 void flush_thread(void)
225 asmlinkage int bfin_vfork(struct pt_regs *regs)
227 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
231 asmlinkage int bfin_clone(struct pt_regs *regs)
233 unsigned long clone_flags;
236 /* syscall2 puts clone_flags in r0 and usp in r1 */
237 clone_flags = regs->r0;
243 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
247 copy_thread(int nr, unsigned long clone_flags,
248 unsigned long usp, unsigned long topstk,
249 struct task_struct *p, struct pt_regs *regs)
251 struct pt_regs *childregs;
253 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
258 p->thread.ksp = (unsigned long)childregs;
259 p->thread.pc = (unsigned long)ret_from_fork;
265 * fill in the user structure for a core dump..
267 void dump_thread(struct pt_regs *regs, struct user *dump)
269 dump->magic = CMAGIC;
270 dump->start_code = 0;
271 dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
272 dump->u_tsize = ((unsigned long)current->mm->end_code) >> PAGE_SHIFT;
273 dump->u_dsize = ((unsigned long)(current->mm->brk +
274 (PAGE_SIZE - 1))) >> PAGE_SHIFT;
275 dump->u_dsize -= dump->u_tsize;
278 if (dump->start_stack < TASK_SIZE)
280 ((unsigned long)(TASK_SIZE -
281 dump->start_stack)) >> PAGE_SHIFT;
283 dump->u_ar0 = (struct user_regs_struct *)((int)&dump->regs - (int)dump);
285 dump->regs.r0 = regs->r0;
286 dump->regs.r1 = regs->r1;
287 dump->regs.r2 = regs->r2;
288 dump->regs.r3 = regs->r3;
289 dump->regs.r4 = regs->r4;
290 dump->regs.r5 = regs->r5;
291 dump->regs.r6 = regs->r6;
292 dump->regs.r7 = regs->r7;
293 dump->regs.p0 = regs->p0;
294 dump->regs.p1 = regs->p1;
295 dump->regs.p2 = regs->p2;
296 dump->regs.p3 = regs->p3;
297 dump->regs.p4 = regs->p4;
298 dump->regs.p5 = regs->p5;
299 dump->regs.orig_p0 = regs->orig_p0;
300 dump->regs.a0w = regs->a0w;
301 dump->regs.a1w = regs->a1w;
302 dump->regs.a0x = regs->a0x;
303 dump->regs.a1x = regs->a1x;
304 dump->regs.rets = regs->rets;
305 dump->regs.astat = regs->astat;
306 dump->regs.pc = regs->pc;
310 * sys_execve() executes a new program.
313 asmlinkage int sys_execve(char *name, char **argv, char **envp)
317 struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
320 filename = getname(name);
321 error = PTR_ERR(filename);
322 if (IS_ERR(filename))
324 error = do_execve(filename, argv, envp, regs);
331 unsigned long get_wchan(struct task_struct *p)
333 unsigned long fp, pc;
334 unsigned long stack_page;
336 if (!p || p == current || p->state == TASK_RUNNING)
339 stack_page = (unsigned long)p;
342 if (fp < stack_page + sizeof(struct thread_info) ||
343 fp >= 8184 + stack_page)
345 pc = ((unsigned long *)fp)[1];
346 if (!in_sched_functions(pc))
348 fp = *(unsigned long *)fp;
350 while (count++ < 16);
354 void finish_atomic_sections (struct pt_regs *regs)
356 if (regs->pc < ATOMIC_SEQS_START || regs->pc >= ATOMIC_SEQS_END)
360 case ATOMIC_XCHG32 + 2:
361 put_user(regs->r1, (int *)regs->p0);
365 case ATOMIC_CAS32 + 2:
366 case ATOMIC_CAS32 + 4:
367 if (regs->r0 == regs->r1)
368 put_user(regs->r2, (int *)regs->p0);
369 regs->pc = ATOMIC_CAS32 + 8;
371 case ATOMIC_CAS32 + 6:
372 put_user(regs->r2, (int *)regs->p0);
376 case ATOMIC_ADD32 + 2:
377 regs->r0 = regs->r1 + regs->r0;
379 case ATOMIC_ADD32 + 4:
380 put_user(regs->r0, (int *)regs->p0);
381 regs->pc = ATOMIC_ADD32 + 6;
384 case ATOMIC_SUB32 + 2:
385 regs->r0 = regs->r1 - regs->r0;
387 case ATOMIC_SUB32 + 4:
388 put_user(regs->r0, (int *)regs->p0);
389 regs->pc = ATOMIC_SUB32 + 6;
392 case ATOMIC_IOR32 + 2:
393 regs->r0 = regs->r1 | regs->r0;
395 case ATOMIC_IOR32 + 4:
396 put_user(regs->r0, (int *)regs->p0);
397 regs->pc = ATOMIC_IOR32 + 6;
400 case ATOMIC_AND32 + 2:
401 regs->r0 = regs->r1 & regs->r0;
403 case ATOMIC_AND32 + 4:
404 put_user(regs->r0, (int *)regs->p0);
405 regs->pc = ATOMIC_AND32 + 6;
408 case ATOMIC_XOR32 + 2:
409 regs->r0 = regs->r1 ^ regs->r0;
411 case ATOMIC_XOR32 + 4:
412 put_user(regs->r0, (int *)regs->p0);
413 regs->pc = ATOMIC_XOR32 + 6;
418 #if defined(CONFIG_ACCESS_CHECK)
419 int _access_ok(unsigned long addr, unsigned long size)
422 if (addr > (addr + size))
424 if (segment_eq(get_fs(), KERNEL_DS))
426 #ifdef CONFIG_MTD_UCLINUX
427 if (addr >= memory_start && (addr + size) <= memory_end)
429 if (addr >= memory_mtd_end && (addr + size) <= physical_mem_end)
432 if (addr >= memory_start && (addr + size) <= physical_mem_end)
435 if (addr >= (unsigned long)__init_begin &&
436 addr + size <= (unsigned long)__init_end)
438 if (addr >= L1_SCRATCH_START
439 && addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH)
441 #if L1_CODE_LENGTH != 0
442 if (addr >= L1_CODE_START + (_etext_l1 - _stext_l1)
443 && addr + size <= L1_CODE_START + L1_CODE_LENGTH)
446 #if L1_DATA_A_LENGTH != 0
447 if (addr >= L1_DATA_A_START + (_ebss_l1 - _sdata_l1)
448 && addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH)
451 #if L1_DATA_B_LENGTH != 0
452 if (addr >= L1_DATA_B_START
453 && addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH)
458 EXPORT_SYMBOL(_access_ok);
459 #endif /* CONFIG_ACCESS_CHECK */