2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
50 #include <asm/machvec.h>
52 #include <asm/meminit.h>
54 #include <asm/paravirt.h>
55 #include <asm/paravirt_patch.h>
56 #include <asm/patch.h>
57 #include <asm/pgtable.h>
58 #include <asm/processor.h>
60 #include <asm/sections.h>
61 #include <asm/setup.h>
63 #include <asm/system.h>
64 #include <asm/tlbflush.h>
65 #include <asm/unistd.h>
66 #include <asm/hpsim.h>
68 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
69 # error "struct cpuinfo_ia64 too big!"
73 unsigned long __per_cpu_offset[NR_CPUS];
74 EXPORT_SYMBOL(__per_cpu_offset);
77 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
78 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
85 static struct resource data_resource = {
86 .name = "Kernel data",
87 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
90 static struct resource code_resource = {
91 .name = "Kernel code",
92 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
95 static struct resource bss_resource = {
97 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
100 unsigned long ia64_max_cacheline_size;
102 int dma_get_cache_alignment(void)
104 return ia64_max_cacheline_size;
106 EXPORT_SYMBOL(dma_get_cache_alignment);
108 unsigned long ia64_iobase; /* virtual address for I/O accesses */
109 EXPORT_SYMBOL(ia64_iobase);
110 struct io_space io_space[MAX_IO_SPACES];
111 EXPORT_SYMBOL(io_space);
112 unsigned int num_io_spaces;
115 * "flush_icache_range()" needs to know what processor dependent stride size to use
116 * when it makes i-cache(s) coherent with d-caches.
118 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
119 unsigned long ia64_i_cache_stride_shift = ~0;
121 * "clflush_cache_range()" needs to know what processor dependent stride size to
122 * use when it flushes cache lines including both d-cache and i-cache.
124 /* Safest way to go: 32 bytes by 32 bytes */
125 #define CACHE_STRIDE_SHIFT 5
126 unsigned long ia64_cache_stride_shift = ~0;
129 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
130 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
131 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
132 * address of the second buffer must be aligned to (merge_mask+1) in order to be
133 * mergeable). By default, we assume there is no I/O MMU which can merge physically
134 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
137 unsigned long ia64_max_iommu_merge_mask = ~0UL;
138 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
141 * We use a special marker for the end of memory and it uses the extra (+1) slot
143 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
144 int num_rsvd_regions __initdata;
148 * Filter incoming memory segments based on the primitive map created from the boot
149 * parameters. Segments contained in the map are removed from the memory ranges. A
150 * caller-specified function is called with the memory ranges that remain after filtering.
151 * This routine does not assume the incoming segments are sorted.
154 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
156 unsigned long range_start, range_end, prev_start;
157 void (*func)(unsigned long, unsigned long, int);
161 if (start == PAGE_OFFSET) {
162 printk(KERN_WARNING "warning: skipping physical page 0\n");
164 if (start >= end) return 0;
168 * lowest possible address(walker uses virtual)
170 prev_start = PAGE_OFFSET;
173 for (i = 0; i < num_rsvd_regions; ++i) {
174 range_start = max(start, prev_start);
175 range_end = min(end, rsvd_region[i].start);
177 if (range_start < range_end)
178 call_pernode_memory(__pa(range_start), range_end - range_start, func);
180 /* nothing more available in this segment */
181 if (range_end == end) return 0;
183 prev_start = rsvd_region[i].end;
185 /* end of memory marker allows full processing inside loop body */
190 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
191 * are not filtered out.
194 filter_memory(unsigned long start, unsigned long end, void *arg)
196 void (*func)(unsigned long, unsigned long, int);
199 if (start == PAGE_OFFSET) {
200 printk(KERN_WARNING "warning: skipping physical page 0\n");
208 call_pernode_memory(__pa(start), end - start, func);
213 sort_regions (struct rsvd_region *rsvd_region, int max)
217 /* simple bubble sorting */
219 for (j = 0; j < max; ++j) {
220 if (rsvd_region[j].start > rsvd_region[j+1].start) {
221 struct rsvd_region tmp;
222 tmp = rsvd_region[j];
223 rsvd_region[j] = rsvd_region[j + 1];
224 rsvd_region[j + 1] = tmp;
231 * Request address space for all standard resources
233 static int __init register_memory(void)
235 code_resource.start = ia64_tpa(_text);
236 code_resource.end = ia64_tpa(_etext) - 1;
237 data_resource.start = ia64_tpa(_etext);
238 data_resource.end = ia64_tpa(_edata) - 1;
239 bss_resource.start = ia64_tpa(__bss_start);
240 bss_resource.end = ia64_tpa(_end) - 1;
241 efi_initialize_iomem_resources(&code_resource, &data_resource,
247 __initcall(register_memory);
253 * This function checks if the reserved crashkernel is allowed on the specific
254 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
255 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
256 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
257 * in kdump case. See the comment in sba_init() in sba_iommu.c.
259 * So, the only machvec that really supports loading the kdump kernel
260 * over 4 GB is "sn2".
262 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
264 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
267 return pbase < (1UL << 32);
270 static void __init setup_crashkernel(unsigned long total, int *n)
272 unsigned long long base = 0, size = 0;
275 ret = parse_crashkernel(boot_command_line, total,
277 if (ret == 0 && size > 0) {
279 sort_regions(rsvd_region, *n);
280 base = kdump_find_rsvd_region(size,
284 if (!check_crashkernel_memory(base, size)) {
285 pr_warning("crashkernel: There would be kdump memory "
286 "at %ld GB but this is unusable because it "
287 "must\nbe below 4 GB. Change the memory "
288 "configuration of the machine.\n",
289 (unsigned long)(base >> 30));
294 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
295 "for crashkernel (System RAM: %ldMB)\n",
296 (unsigned long)(size >> 20),
297 (unsigned long)(base >> 20),
298 (unsigned long)(total >> 20));
299 rsvd_region[*n].start =
300 (unsigned long)__va(base);
301 rsvd_region[*n].end =
302 (unsigned long)__va(base + size);
304 crashk_res.start = base;
305 crashk_res.end = base + size - 1;
308 efi_memmap_res.start = ia64_boot_param->efi_memmap;
309 efi_memmap_res.end = efi_memmap_res.start +
310 ia64_boot_param->efi_memmap_size;
311 boot_param_res.start = __pa(ia64_boot_param);
312 boot_param_res.end = boot_param_res.start +
313 sizeof(*ia64_boot_param);
316 static inline void __init setup_crashkernel(unsigned long total, int *n)
321 * reserve_memory - setup reserved memory areas
323 * Setup the reserved memory areas set aside for the boot parameters,
324 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
325 * see arch/ia64/include/asm/meminit.h if you need to define more.
328 reserve_memory (void)
331 unsigned long total_memory;
334 * none of the entries in this table overlap
336 rsvd_region[n].start = (unsigned long) ia64_boot_param;
337 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
340 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
341 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
344 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
345 rsvd_region[n].end = (rsvd_region[n].start
346 + strlen(__va(ia64_boot_param->command_line)) + 1);
349 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
350 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
353 n += paravirt_reserve_memory(&rsvd_region[n]);
355 #ifdef CONFIG_BLK_DEV_INITRD
356 if (ia64_boot_param->initrd_start) {
357 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
358 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
363 #ifdef CONFIG_CRASH_DUMP
364 if (reserve_elfcorehdr(&rsvd_region[n].start,
365 &rsvd_region[n].end) == 0)
369 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
372 setup_crashkernel(total_memory, &n);
374 /* end of memory marker */
375 rsvd_region[n].start = ~0UL;
376 rsvd_region[n].end = ~0UL;
379 num_rsvd_regions = n;
380 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
382 sort_regions(rsvd_region, num_rsvd_regions);
387 * find_initrd - get initrd parameters from the boot parameter structure
389 * Grab the initrd start and end from the boot parameter struct given us by
395 #ifdef CONFIG_BLK_DEV_INITRD
396 if (ia64_boot_param->initrd_start) {
397 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
398 initrd_end = initrd_start+ia64_boot_param->initrd_size;
400 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
401 initrd_start, ia64_boot_param->initrd_size);
409 unsigned long phys_iobase;
412 * Set `iobase' based on the EFI memory map or, failing that, the
413 * value firmware left in ar.k0.
415 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
416 * the port's virtual address, so ia32_load_state() loads it with a
417 * user virtual address. But in ia64 mode, glibc uses the
418 * *physical* address in ar.k0 to mmap the appropriate area from
419 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
420 * cases, user-mode can only use the legacy 0-64K I/O port space.
422 * ar.k0 is not involved in kernel I/O port accesses, which can use
423 * any of the I/O port spaces and are done via MMIO using the
424 * virtual mmio_base from the appropriate io_space[].
426 phys_iobase = efi_get_iobase();
428 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
429 printk(KERN_INFO "No I/O port range found in EFI memory map, "
430 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
432 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
433 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
435 /* setup legacy IO port space */
436 io_space[0].mmio_base = ia64_iobase;
437 io_space[0].sparse = 1;
442 * early_console_setup - setup debugging console
444 * Consoles started here require little enough setup that we can start using
445 * them very early in the boot process, either right after the machine
446 * vector initialization, or even before if the drivers can detect their hw.
448 * Returns non-zero if a console couldn't be setup.
450 static inline int __init
451 early_console_setup (char *cmdline)
455 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
457 extern int sn_serial_console_early_setup(void);
458 if (!sn_serial_console_early_setup())
462 #ifdef CONFIG_EFI_PCDP
463 if (!efi_setup_pcdp_console(cmdline))
466 if (!simcons_register())
469 return (earlycons) ? 0 : -1;
473 mark_bsp_online (void)
476 /* If we register an early console, allow CPU 0 to printk */
477 cpu_set(smp_processor_id(), cpu_online_map);
481 static __initdata int nomca;
482 static __init int setup_nomca(char *s)
487 early_param("nomca", setup_nomca);
490 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
491 * is_kdump_kernel() to determine if we are booting after a panic. Hence
492 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
494 #ifdef CONFIG_CRASH_DUMP
495 /* elfcorehdr= specifies the location of elf core header
496 * stored by the crashed kernel.
498 static int __init parse_elfcorehdr(char *arg)
503 elfcorehdr_addr = memparse(arg, &arg);
506 early_param("elfcorehdr", parse_elfcorehdr);
508 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
510 unsigned long length;
512 /* We get the address using the kernel command line,
513 * but the size is extracted from the EFI tables.
514 * Both address and size are required for reservation
518 if (!is_vmcore_usable())
521 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
526 *start = (unsigned long)__va(elfcorehdr_addr);
527 *end = *start + length;
531 #endif /* CONFIG_PROC_VMCORE */
534 setup_arch (char **cmdline_p)
538 paravirt_arch_setup_early();
540 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
541 paravirt_patch_apply();
543 *cmdline_p = __va(ia64_boot_param->command_line);
544 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
549 #ifdef CONFIG_IA64_GENERIC
550 /* machvec needs to be parsed from the command line
551 * before parse_early_param() is called to ensure
552 * that ia64_mv is initialised before any command line
553 * settings may cause console setup to occur
555 machvec_init_from_cmdline(*cmdline_p);
560 if (early_console_setup(*cmdline_p) == 0)
564 /* Initialize the ACPI boot-time table parser */
566 early_acpi_boot_init();
567 # ifdef CONFIG_ACPI_NUMA
569 #ifdef CONFIG_ACPI_HOTPLUG_CPU
570 prefill_possible_map();
572 per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
573 32 : cpus_weight(early_cpu_possible_map)),
574 additional_cpus > 0 ? additional_cpus : 0);
578 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
580 #endif /* CONFIG_APCI_BOOT */
584 /* process SAL system table: */
585 ia64_sal_init(__va(efi.sal_systab));
587 #ifdef CONFIG_ITANIUM
588 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
591 u64 num_phys_stacked;
593 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
594 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
599 cpu_physical_id(0) = hard_smp_processor_id();
602 cpu_init(); /* initialize the bootstrap CPU */
603 mmu_context_init(); /* initialize context_id bitmap */
610 paravirt_arch_setup_console(cmdline_p);
614 # if defined(CONFIG_DUMMY_CONSOLE)
615 conswitchp = &dummy_con;
617 # if defined(CONFIG_VGA_CONSOLE)
619 * Non-legacy systems may route legacy VGA MMIO range to system
620 * memory. vga_con probes the MMIO hole, so memory looks like
621 * a VGA device to it. The EFI memory map can tell us if it's
622 * memory so we can avoid this problem.
624 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
625 conswitchp = &vga_con;
630 /* enable IA-64 Machine Check Abort Handling unless disabled */
631 if (paravirt_arch_setup_nomca())
636 platform_setup(cmdline_p);
637 #ifndef CONFIG_IA64_HP_SIM
638 check_sal_cache_flush();
644 * Display cpu info for all CPUs.
647 show_cpuinfo (struct seq_file *m, void *v)
650 # define lpj c->loops_per_jiffy
651 # define cpunum c->cpu
653 # define lpj loops_per_jiffy
658 const char *feature_name;
660 { 1UL << 0, "branchlong" },
661 { 1UL << 1, "spontaneous deferral"},
662 { 1UL << 2, "16-byte atomic ops" }
664 char features[128], *cp, *sep;
665 struct cpuinfo_ia64 *c = v;
667 unsigned long proc_freq;
672 /* build the feature string: */
673 memcpy(features, "standard", 9);
675 size = sizeof(features);
677 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
678 if (mask & feature_bits[i].mask) {
679 cp += snprintf(cp, size, "%s%s", sep,
680 feature_bits[i].feature_name),
682 mask &= ~feature_bits[i].mask;
683 size = sizeof(features) - (cp - features);
686 if (mask && size > 1) {
687 /* print unknown features as a hex value */
688 snprintf(cp, size, "%s0x%lx", sep, mask);
691 proc_freq = cpufreq_quick_get(cpunum);
693 proc_freq = c->proc_freq / 1000;
707 "cpu MHz : %lu.%03lu\n"
708 "itc MHz : %lu.%06lu\n"
709 "BogoMIPS : %lu.%02lu\n",
710 cpunum, c->vendor, c->family, c->model,
711 c->model_name, c->revision, c->archrev,
712 features, c->ppn, c->number,
713 proc_freq / 1000, proc_freq % 1000,
714 c->itc_freq / 1000000, c->itc_freq % 1000000,
715 lpj*HZ/500000, (lpj*HZ/5000) % 100);
717 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
718 if (c->socket_id != -1)
719 seq_printf(m, "physical id: %u\n", c->socket_id);
720 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
724 c->core_id, c->thread_id);
732 c_start (struct seq_file *m, loff_t *pos)
735 while (*pos < nr_cpu_ids && !cpu_online(*pos))
738 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
742 c_next (struct seq_file *m, void *v, loff_t *pos)
745 return c_start(m, pos);
749 c_stop (struct seq_file *m, void *v)
753 const struct seq_operations cpuinfo_op = {
761 static char brandname[MAX_BRANDS][128];
763 static char * __cpuinit
764 get_model_name(__u8 family, __u8 model)
770 memcpy(brand, "Unknown", 8);
771 if (ia64_pal_get_brand_info(brand)) {
773 memcpy(brand, "Merced", 7);
774 else if (family == 0x1f) switch (model) {
775 case 0: memcpy(brand, "McKinley", 9); break;
776 case 1: memcpy(brand, "Madison", 8); break;
777 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
780 for (i = 0; i < MAX_BRANDS; i++)
781 if (strcmp(brandname[i], brand) == 0)
783 for (i = 0; i < MAX_BRANDS; i++)
784 if (brandname[i][0] == '\0')
785 return strcpy(brandname[i], brand);
788 "%s: Table overflow. Some processor model information will be missing\n",
793 static void __cpuinit
794 identify_cpu (struct cpuinfo_ia64 *c)
797 unsigned long bits[5];
803 u64 ppn; /* processor serial number */
807 unsigned revision : 8;
810 unsigned archrev : 8;
811 unsigned reserved : 24;
817 pal_vm_info_1_u_t vm1;
818 pal_vm_info_2_u_t vm2;
820 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
822 for (i = 0; i < 5; ++i)
823 cpuid.bits[i] = ia64_get_cpuid(i);
825 memcpy(c->vendor, cpuid.field.vendor, 16);
827 c->cpu = smp_processor_id();
829 /* below default values will be overwritten by identify_siblings()
830 * for Multi-Threading/Multi-Core capable CPUs
832 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
835 identify_siblings(c);
837 if (c->threads_per_core > smp_num_siblings)
838 smp_num_siblings = c->threads_per_core;
840 c->ppn = cpuid.field.ppn;
841 c->number = cpuid.field.number;
842 c->revision = cpuid.field.revision;
843 c->model = cpuid.field.model;
844 c->family = cpuid.field.family;
845 c->archrev = cpuid.field.archrev;
846 c->features = cpuid.field.features;
847 c->model_name = get_model_name(c->family, c->model);
849 status = ia64_pal_vm_summary(&vm1, &vm2);
850 if (status == PAL_STATUS_SUCCESS) {
851 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
852 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
854 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
855 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
859 setup_per_cpu_areas (void)
861 /* start_kernel() requires this... */
865 * Do the following calculations:
867 * 1. the max. cache line size.
868 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
869 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
871 static void __cpuinit
874 unsigned long line_size, max = 1;
875 u64 l, levels, unique_caches;
876 pal_cache_config_info_t cci;
879 status = ia64_pal_cache_summary(&levels, &unique_caches);
881 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
883 max = SMP_CACHE_BYTES;
884 /* Safest setup for "flush_icache_range()" */
885 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
886 /* Safest setup for "clflush_cache_range()" */
887 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
891 for (l = 0; l < levels; ++l) {
892 /* cache_type (data_or_unified)=2 */
893 status = ia64_pal_cache_config_info(l, 2, &cci);
896 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
897 __func__, l, status);
898 max = SMP_CACHE_BYTES;
899 /* The safest setup for "flush_icache_range()" */
900 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
901 /* The safest setup for "clflush_cache_range()" */
902 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
903 cci.pcci_unified = 1;
905 if (cci.pcci_stride < ia64_cache_stride_shift)
906 ia64_cache_stride_shift = cci.pcci_stride;
908 line_size = 1 << cci.pcci_line_size;
913 if (!cci.pcci_unified) {
914 /* cache_type (instruction)=1*/
915 status = ia64_pal_cache_config_info(l, 1, &cci);
918 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
919 __func__, l, status);
920 /* The safest setup for "flush_icache_range()" */
921 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
924 if (cci.pcci_stride < ia64_i_cache_stride_shift)
925 ia64_i_cache_stride_shift = cci.pcci_stride;
928 if (max > ia64_max_cacheline_size)
929 ia64_max_cacheline_size = max;
933 * cpu_init() initializes state that is per-CPU. This function acts
934 * as a 'CPU state barrier', nothing should get across.
939 extern void __cpuinit ia64_mmu_init (void *);
940 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
941 unsigned long num_phys_stacked;
942 pal_vm_info_2_u_t vmi;
943 unsigned int max_ctx;
944 struct cpuinfo_ia64 *cpu_info;
947 cpu_data = per_cpu_init();
950 * insert boot cpu into sibling and core mapes
951 * (must be done after per_cpu area is setup)
953 if (smp_processor_id() == 0) {
954 cpu_set(0, per_cpu(cpu_sibling_map, 0));
955 cpu_set(0, cpu_core_map[0]);
958 * Set ar.k3 so that assembly code in MCA handler can compute
959 * physical addresses of per cpu variables with a simple:
960 * phys = ar.k3 + &per_cpu_var
961 * and the alt-dtlb-miss handler can set per-cpu mapping into
962 * the TLB when needed. head.S already did this for cpu0.
964 ia64_set_kr(IA64_KR_PER_CPU_DATA,
965 ia64_tpa(cpu_data) - (long) __per_cpu_start);
972 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
973 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
974 * depends on the data returned by identify_cpu(). We break the dependency by
975 * accessing cpu_data() through the canonical per-CPU address.
977 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
978 identify_cpu(cpu_info);
980 #ifdef CONFIG_MCKINLEY
982 # define FEATURE_SET 16
983 struct ia64_pal_retval iprv;
985 if (cpu_info->family == 0x1f) {
986 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
987 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
988 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
989 (iprv.v1 | 0x80), FEATURE_SET, 0);
994 /* Clear the stack memory reserved for pt_regs: */
995 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
997 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
1000 * Initialize the page-table base register to a global
1001 * directory with all zeroes. This ensure that we can handle
1002 * TLB-misses to user address-space even before we created the
1003 * first user address-space. This may happen, e.g., due to
1004 * aggressive use of lfetch.fault.
1006 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1009 * Initialize default control register to defer speculative faults except
1010 * for those arising from TLB misses, which are not deferred. The
1011 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1012 * the kernel must have recovery code for all speculative accesses). Turn on
1013 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1014 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1017 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1018 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1019 atomic_inc(&init_mm.mm_count);
1020 current->active_mm = &init_mm;
1021 BUG_ON(current->mm);
1023 ia64_mmu_init(ia64_imva(cpu_data));
1024 ia64_mca_cpu_init(ia64_imva(cpu_data));
1026 #ifdef CONFIG_IA32_SUPPORT
1030 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1033 /* disable all local interrupt sources: */
1034 ia64_set_itv(1 << 16);
1035 ia64_set_lrr0(1 << 16);
1036 ia64_set_lrr1(1 << 16);
1037 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1038 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1040 /* clear TPR & XTP to enable all interrupt classes: */
1041 ia64_setreg(_IA64_REG_CR_TPR, 0);
1043 /* Clear any pending interrupts left by SAL/EFI */
1044 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1051 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1052 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1053 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1054 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1056 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1057 max_ctx = (1U << 15) - 1; /* use architected minimum */
1059 while (max_ctx < ia64_ctx.max_ctx) {
1060 unsigned int old = ia64_ctx.max_ctx;
1061 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1065 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1066 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1068 num_phys_stacked = 96;
1070 /* size of physical stacked register partition plus 8 bytes: */
1071 if (num_phys_stacked > max_num_phys_stacked) {
1072 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1073 max_num_phys_stacked = num_phys_stacked;
1075 platform_cpu_init();
1076 pm_idle = default_idle;
1082 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1083 (unsigned long) __end___mckinley_e9_bundles);
1086 static int __init run_dmi_scan(void)
1091 core_initcall(run_dmi_scan);