1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
9 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
10 for more information on this driver.
12 Please submit bugs to http://bugzilla.kernel.org/ .
16 #define DRV_NAME "tulip"
17 #ifdef CONFIG_TULIP_NAPI
18 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
20 #define DRV_VERSION "1.1.15"
22 #define DRV_RELDATE "Feb 27, 2007"
25 #include <linux/module.h>
26 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/crc32.h>
34 #include <asm/unaligned.h>
35 #include <asm/uaccess.h>
41 static char version[] __devinitdata =
42 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
45 /* A few user-configurable values. */
47 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
48 static unsigned int max_interrupt_work = 25;
51 /* Used to pass the full-duplex flag, etc. */
52 static int full_duplex[MAX_UNITS];
53 static int options[MAX_UNITS];
54 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
56 /* The possible media types that can be set in options[] are: */
57 const char * const medianame[32] = {
58 "10baseT", "10base2", "AUI", "100baseTx",
59 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
60 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
61 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
62 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
63 "","","","", "","","","", "","","","Transceiver reset",
66 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
67 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
68 || defined(CONFIG_SPARC) || defined(__ia64__) \
69 || defined(__sh__) || defined(__mips__)
70 static int rx_copybreak = 1518;
72 static int rx_copybreak = 100;
76 Set the bus performance register.
77 Typical: Set 16 longword cache alignment, no burst limit.
78 Cache alignment bits 15:14 Burst length 13:8
79 0000 No alignment 0x00000000 unlimited 0800 8 longwords
80 4000 8 longwords 0100 1 longword 1000 16 longwords
81 8000 16 longwords 0200 2 longwords 2000 32 longwords
82 C000 32 longwords 0400 4 longwords
83 Warning: many older 486 systems are broken and require setting 0x00A04800
84 8 longword cache alignment, 8 longword burst.
85 ToDo: Non-Intel setting could be better.
88 #if defined(__alpha__) || defined(__ia64__)
89 static int csr0 = 0x01A00000 | 0xE000;
90 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
91 static int csr0 = 0x01A00000 | 0x8000;
92 #elif defined(CONFIG_SPARC) || defined(__hppa__)
93 /* The UltraSparc PCI controllers will disconnect at every 64-byte
94 * crossing anyways so it makes no sense to tell Tulip to burst
97 static int csr0 = 0x01A00000 | 0x9000;
98 #elif defined(__arm__) || defined(__sh__)
99 static int csr0 = 0x01A00000 | 0x4800;
100 #elif defined(__mips__)
101 static int csr0 = 0x00200000 | 0x4000;
103 #warning Processor architecture undefined!
104 static int csr0 = 0x00A00000 | 0x4800;
107 /* Operational parameters that usually are not changed. */
108 /* Time in jiffies before concluding the transmitter is hung. */
109 #define TX_TIMEOUT (4*HZ)
112 MODULE_AUTHOR("The Linux Kernel Team");
113 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
114 MODULE_LICENSE("GPL");
115 MODULE_VERSION(DRV_VERSION);
116 module_param(tulip_debug, int, 0);
117 module_param(max_interrupt_work, int, 0);
118 module_param(rx_copybreak, int, 0);
119 module_param(csr0, int, 0);
120 module_param_array(options, int, NULL, 0);
121 module_param_array(full_duplex, int, NULL, 0);
123 #define PFX DRV_NAME ": "
126 int tulip_debug = TULIP_DEBUG;
131 static void tulip_timer(unsigned long data)
133 struct net_device *dev = (struct net_device *)data;
134 struct tulip_private *tp = netdev_priv(dev);
136 if (netif_running(dev))
137 schedule_work(&tp->media_work);
141 * This table use during operation for capabilities and media timer.
143 * It is indexed via the values in 'enum chips'
146 struct tulip_chip_table tulip_tbl[] = {
147 { }, /* placeholder for array, slot unused currently */
148 { }, /* placeholder for array, slot unused currently */
151 { "Digital DS21140 Tulip", 128, 0x0001ebef,
152 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 /* DC21142, DC21143 */
156 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
157 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
158 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
161 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
162 HAS_MII | HAS_PNICNWAY, pnic_timer, },
165 { "Macronix 98713 PMAC", 128, 0x0001ebef,
166 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
169 { "Macronix 98715 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
173 { "Macronix 98725 PMAC", 256, 0x0001ebef,
174 HAS_MEDIA_TABLE, mxic_timer, },
177 { "ASIX AX88140", 128, 0x0001fbff,
178 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
179 | IS_ASIX, tulip_timer, tulip_media_task },
182 { "Lite-On PNIC-II", 256, 0x0801fbff,
183 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
186 { "ADMtek Comet", 256, 0x0001abef,
187 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
190 { "Compex 9881 PMAC", 128, 0x0001ebef,
191 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
194 { "Intel DS21145 Tulip", 128, 0x0801fbff,
195 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
196 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
199 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
200 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
201 tulip_timer, tulip_media_task },
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
210 static struct pci_device_id tulip_pci_tbl[] = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
232 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
234 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
235 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
240 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
245 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
246 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
247 { } /* terminate list */
249 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252 /* A full-duplex map for media types. */
253 const char tulip_media_cap[32] =
254 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
256 static void tulip_tx_timeout(struct net_device *dev);
257 static void tulip_init_ring(struct net_device *dev);
258 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
259 static int tulip_open(struct net_device *dev);
260 static int tulip_close(struct net_device *dev);
261 static void tulip_up(struct net_device *dev);
262 static void tulip_down(struct net_device *dev);
263 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
264 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
265 static void set_rx_mode(struct net_device *dev);
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 static void poll_tulip(struct net_device *dev);
270 static void tulip_set_power_state (struct tulip_private *tp,
271 int sleep, int snooze)
273 if (tp->flags & HAS_ACPI) {
275 pci_read_config_dword (tp->pdev, CFDD, &tmp);
276 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
278 newtmp |= CFDD_Sleep;
280 newtmp |= CFDD_Snooze;
282 pci_write_config_dword (tp->pdev, CFDD, newtmp);
288 static void tulip_up(struct net_device *dev)
290 struct tulip_private *tp = netdev_priv(dev);
291 void __iomem *ioaddr = tp->base_addr;
292 int next_tick = 3*HZ;
296 #ifdef CONFIG_TULIP_NAPI
297 napi_enable(&tp->napi);
300 /* Wake the chip from sleep/snooze mode. */
301 tulip_set_power_state (tp, 0, 0);
303 /* On some chip revs we must set the MII/SYM port before the reset!? */
304 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
305 iowrite32(0x00040000, ioaddr + CSR6);
307 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
308 iowrite32(0x00000001, ioaddr + CSR0);
309 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
313 Wait the specified 50 PCI cycles after a reset by initializing
314 Tx and Rx queues and the address filter list. */
315 iowrite32(tp->csr0, ioaddr + CSR0);
316 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
320 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
322 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
323 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
324 tp->cur_rx = tp->cur_tx = 0;
325 tp->dirty_rx = tp->dirty_tx = 0;
327 if (tp->flags & MC_HASH_ONLY) {
328 u32 addr_low = get_unaligned_le32(dev->dev_addr);
329 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
330 if (tp->chip_id == AX88140) {
331 iowrite32(0, ioaddr + CSR13);
332 iowrite32(addr_low, ioaddr + CSR14);
333 iowrite32(1, ioaddr + CSR13);
334 iowrite32(addr_high, ioaddr + CSR14);
335 } else if (tp->flags & COMET_MAC_ADDR) {
336 iowrite32(addr_low, ioaddr + 0xA4);
337 iowrite32(addr_high, ioaddr + 0xA8);
338 iowrite32(0, ioaddr + 0xAC);
339 iowrite32(0, ioaddr + 0xB0);
342 /* This is set_rx_mode(), but without starting the transmitter. */
343 u16 *eaddrs = (u16 *)dev->dev_addr;
344 u16 *setup_frm = &tp->setup_frame[15*6];
347 /* 21140 bug: you must add the broadcast address. */
348 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
349 /* Fill the final entry of the table with our physical address. */
350 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
351 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
352 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
354 mapping = pci_map_single(tp->pdev, tp->setup_frame,
355 sizeof(tp->setup_frame),
357 tp->tx_buffers[tp->cur_tx].skb = NULL;
358 tp->tx_buffers[tp->cur_tx].mapping = mapping;
360 /* Put the setup frame on the Tx list. */
361 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
362 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
363 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
368 tp->saved_if_port = dev->if_port;
369 if (dev->if_port == 0)
370 dev->if_port = tp->default_port;
372 /* Allow selecting a default media. */
374 if (tp->mtable == NULL)
377 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
378 (dev->if_port == 12 ? 0 : dev->if_port);
379 for (i = 0; i < tp->mtable->leafcount; i++)
380 if (tp->mtable->mleaf[i].media == looking_for) {
381 printk(KERN_INFO "%s: Using user-specified media %s.\n",
382 dev->name, medianame[dev->if_port]);
386 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
387 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
388 for (i = 0; i < tp->mtable->leafcount; i++)
389 if (tp->mtable->mleaf[i].media == looking_for) {
390 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
391 dev->name, medianame[looking_for]);
395 /* Start sensing first non-full-duplex media. */
396 for (i = tp->mtable->leafcount - 1;
397 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
406 if (tp->chip_id == DC21143 &&
407 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
408 /* We must reset the media CSRs when we force-select MII mode. */
409 iowrite32(0x0000, ioaddr + CSR13);
410 iowrite32(0x0000, ioaddr + CSR14);
411 iowrite32(0x0008, ioaddr + CSR15);
413 tulip_select_media(dev, 1);
414 } else if (tp->chip_id == DC21142) {
416 tulip_select_media(dev, 1);
418 printk(KERN_INFO "%s: Using MII transceiver %d, status "
420 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
421 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
422 tp->csr6 = csr6_mask_hdcap;
424 iowrite32(0x0000, ioaddr + CSR13);
425 iowrite32(0x0000, ioaddr + CSR14);
427 t21142_start_nway(dev);
428 } else if (tp->chip_id == PNIC2) {
429 /* for initial startup advertise 10/100 Full and Half */
430 tp->sym_advertise = 0x01E0;
431 /* enable autonegotiate end interrupt */
432 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
433 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
434 pnic2_start_nway(dev);
435 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
438 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
439 iowrite32(0x0001, ioaddr + CSR15);
440 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
443 /* Start with 10mbps to do autonegotiation. */
444 iowrite32(0x32, ioaddr + CSR12);
445 tp->csr6 = 0x00420000;
446 iowrite32(0x0001B078, ioaddr + 0xB8);
447 iowrite32(0x0201B078, ioaddr + 0xB8);
450 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
451 && ! tp->medialock) {
453 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
454 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
455 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
456 /* Provided by BOLO, Macronix - 12/10/1998. */
458 tp->csr6 = 0x01a80200;
459 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
460 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
461 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
462 /* Enable automatic Tx underrun recovery. */
463 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
464 dev->if_port = tp->mii_cnt ? 11 : 0;
465 tp->csr6 = 0x00040000;
466 } else if (tp->chip_id == AX88140) {
467 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
469 tulip_select_media(dev, 1);
471 /* Start the chip's Tx to process setup frame. */
475 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
477 /* Enable interrupts by setting the interrupt mask. */
478 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
479 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
480 tulip_start_rxtx(tp);
481 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
483 if (tulip_debug > 2) {
484 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
485 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
486 ioread32(ioaddr + CSR6));
489 /* Set the timer to switch to check for link beat and perhaps switch
490 to an alternate media type. */
491 tp->timer.expires = RUN_AT(next_tick);
492 add_timer(&tp->timer);
493 #ifdef CONFIG_TULIP_NAPI
494 init_timer(&tp->oom_timer);
495 tp->oom_timer.data = (unsigned long)dev;
496 tp->oom_timer.function = oom_timer;
501 tulip_open(struct net_device *dev)
505 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
508 tulip_init_ring (dev);
512 netif_start_queue (dev);
518 static void tulip_tx_timeout(struct net_device *dev)
520 struct tulip_private *tp = netdev_priv(dev);
521 void __iomem *ioaddr = tp->base_addr;
524 spin_lock_irqsave (&tp->lock, flags);
526 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
527 /* Do nothing -- the media monitor should handle this. */
529 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
531 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
532 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
533 || tp->chip_id == DM910X) {
534 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
535 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
536 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
537 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
538 tp->timeout_recovery = 1;
539 schedule_work(&tp->media_work);
541 } else if (tp->chip_id == PNIC2) {
542 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
543 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
544 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
545 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
547 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
548 "%8.8x, resetting...\n",
549 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
553 #if defined(way_too_many_messages)
554 if (tulip_debug > 3) {
556 for (i = 0; i < RX_RING_SIZE; i++) {
557 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
559 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
560 "%2.2x %2.2x %2.2x.\n",
561 i, (unsigned int)tp->rx_ring[i].status,
562 (unsigned int)tp->rx_ring[i].length,
563 (unsigned int)tp->rx_ring[i].buffer1,
564 (unsigned int)tp->rx_ring[i].buffer2,
565 buf[0], buf[1], buf[2]);
566 for (j = 0; buf[j] != 0xee && j < 1600; j++)
567 if (j < 100) printk(" %2.2x", buf[j]);
568 printk(" j=%d.\n", j);
570 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
571 for (i = 0; i < RX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
573 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
574 for (i = 0; i < TX_RING_SIZE; i++)
575 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
580 tulip_tx_timeout_complete(tp, ioaddr);
583 spin_unlock_irqrestore (&tp->lock, flags);
584 dev->trans_start = jiffies;
585 netif_wake_queue (dev);
589 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
590 static void tulip_init_ring(struct net_device *dev)
592 struct tulip_private *tp = netdev_priv(dev);
599 for (i = 0; i < RX_RING_SIZE; i++) {
600 tp->rx_ring[i].status = 0x00000000;
601 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
602 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
603 tp->rx_buffers[i].skb = NULL;
604 tp->rx_buffers[i].mapping = 0;
606 /* Mark the last entry as wrapping the ring. */
607 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
608 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
610 for (i = 0; i < RX_RING_SIZE; i++) {
613 /* Note the receive buffer must be longword aligned.
614 dev_alloc_skb() provides 16 byte alignment. But do *not*
615 use skb_reserve() to align the IP header! */
616 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
617 tp->rx_buffers[i].skb = skb;
620 mapping = pci_map_single(tp->pdev, skb->data,
621 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
622 tp->rx_buffers[i].mapping = mapping;
623 skb->dev = dev; /* Mark as being used by this device. */
624 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
625 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
627 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
629 /* The Tx buffer descriptor is filled in as needed, but we
630 do need to clear the ownership bit. */
631 for (i = 0; i < TX_RING_SIZE; i++) {
632 tp->tx_buffers[i].skb = NULL;
633 tp->tx_buffers[i].mapping = 0;
634 tp->tx_ring[i].status = 0x00000000;
635 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
637 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
641 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
643 struct tulip_private *tp = netdev_priv(dev);
648 spin_lock_irq(&tp->lock);
650 /* Calculate the next Tx descriptor entry. */
651 entry = tp->cur_tx % TX_RING_SIZE;
653 tp->tx_buffers[entry].skb = skb;
654 mapping = pci_map_single(tp->pdev, skb->data,
655 skb->len, PCI_DMA_TODEVICE);
656 tp->tx_buffers[entry].mapping = mapping;
657 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
659 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
660 flag = 0x60000000; /* No interrupt */
661 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
662 flag = 0xe0000000; /* Tx-done intr. */
663 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
664 flag = 0x60000000; /* No Tx-done intr. */
665 } else { /* Leave room for set_rx_mode() to fill entries. */
666 flag = 0xe0000000; /* Tx-done intr. */
667 netif_stop_queue(dev);
669 if (entry == TX_RING_SIZE-1)
670 flag = 0xe0000000 | DESC_RING_WRAP;
672 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
673 /* if we were using Transmit Automatic Polling, we would need a
675 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
680 /* Trigger an immediate transmit demand. */
681 iowrite32(0, tp->base_addr + CSR1);
683 spin_unlock_irq(&tp->lock);
685 dev->trans_start = jiffies;
690 static void tulip_clean_tx_ring(struct tulip_private *tp)
692 unsigned int dirty_tx;
694 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
696 int entry = dirty_tx % TX_RING_SIZE;
697 int status = le32_to_cpu(tp->tx_ring[entry].status);
700 tp->stats.tx_errors++; /* It wasn't Txed */
701 tp->tx_ring[entry].status = 0;
704 /* Check for Tx filter setup frames. */
705 if (tp->tx_buffers[entry].skb == NULL) {
706 /* test because dummy frames not mapped */
707 if (tp->tx_buffers[entry].mapping)
708 pci_unmap_single(tp->pdev,
709 tp->tx_buffers[entry].mapping,
710 sizeof(tp->setup_frame),
715 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
716 tp->tx_buffers[entry].skb->len,
719 /* Free the original skb. */
720 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
721 tp->tx_buffers[entry].skb = NULL;
722 tp->tx_buffers[entry].mapping = 0;
726 static void tulip_down (struct net_device *dev)
728 struct tulip_private *tp = netdev_priv(dev);
729 void __iomem *ioaddr = tp->base_addr;
732 cancel_work_sync(&tp->media_work);
734 #ifdef CONFIG_TULIP_NAPI
735 napi_disable(&tp->napi);
738 del_timer_sync (&tp->timer);
739 #ifdef CONFIG_TULIP_NAPI
740 del_timer_sync (&tp->oom_timer);
742 spin_lock_irqsave (&tp->lock, flags);
744 /* Disable interrupts by clearing the interrupt mask. */
745 iowrite32 (0x00000000, ioaddr + CSR7);
747 /* Stop the Tx and Rx processes. */
750 /* prepare receive buffers */
751 tulip_refill_rx(dev);
753 /* release any unconsumed transmit buffers */
754 tulip_clean_tx_ring(tp);
756 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
757 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
759 spin_unlock_irqrestore (&tp->lock, flags);
761 init_timer(&tp->timer);
762 tp->timer.data = (unsigned long)dev;
763 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
765 dev->if_port = tp->saved_if_port;
767 /* Leave the driver in snooze, not sleep, mode. */
768 tulip_set_power_state (tp, 0, 1);
772 static int tulip_close (struct net_device *dev)
774 struct tulip_private *tp = netdev_priv(dev);
775 void __iomem *ioaddr = tp->base_addr;
778 netif_stop_queue (dev);
783 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
784 dev->name, ioread32 (ioaddr + CSR5));
786 free_irq (dev->irq, dev);
788 /* Free all the skbuffs in the Rx queue. */
789 for (i = 0; i < RX_RING_SIZE; i++) {
790 struct sk_buff *skb = tp->rx_buffers[i].skb;
791 dma_addr_t mapping = tp->rx_buffers[i].mapping;
793 tp->rx_buffers[i].skb = NULL;
794 tp->rx_buffers[i].mapping = 0;
796 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
797 tp->rx_ring[i].length = 0;
798 /* An invalid address. */
799 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
801 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
806 for (i = 0; i < TX_RING_SIZE; i++) {
807 struct sk_buff *skb = tp->tx_buffers[i].skb;
810 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
811 skb->len, PCI_DMA_TODEVICE);
814 tp->tx_buffers[i].skb = NULL;
815 tp->tx_buffers[i].mapping = 0;
821 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
823 struct tulip_private *tp = netdev_priv(dev);
824 void __iomem *ioaddr = tp->base_addr;
826 if (netif_running(dev)) {
829 spin_lock_irqsave (&tp->lock, flags);
831 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
833 spin_unlock_irqrestore(&tp->lock, flags);
840 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
842 struct tulip_private *np = netdev_priv(dev);
843 strcpy(info->driver, DRV_NAME);
844 strcpy(info->version, DRV_VERSION);
845 strcpy(info->bus_info, pci_name(np->pdev));
848 static const struct ethtool_ops ops = {
849 .get_drvinfo = tulip_get_drvinfo
852 /* Provide ioctl() calls to examine the MII xcvr state. */
853 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
855 struct tulip_private *tp = netdev_priv(dev);
856 void __iomem *ioaddr = tp->base_addr;
857 struct mii_ioctl_data *data = if_mii(rq);
858 const unsigned int phy_idx = 0;
859 int phy = tp->phys[phy_idx] & 0x1f;
860 unsigned int regnum = data->reg_num;
863 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
866 else if (tp->flags & HAS_NWAY)
868 else if (tp->chip_id == COMET)
873 case SIOCGMIIREG: /* Read MII PHY register. */
874 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
875 int csr12 = ioread32 (ioaddr + CSR12);
876 int csr14 = ioread32 (ioaddr + CSR14);
879 if (((csr14<<5) & 0x1000) ||
880 (dev->if_port == 5 && tp->nwayset))
881 data->val_out = 0x1000;
883 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
884 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
889 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
890 ((csr12&0x06) == 6 ? 0 : 4);
891 data->val_out |= 0x6048;
894 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
896 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
897 ((csr14 >> 1) & 0x20) + 1;
898 data->val_out |= ((csr14 >> 9) & 0x03C0);
900 case 5: data->val_out = tp->lpar; break;
901 default: data->val_out = 0; break;
904 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
908 case SIOCSMIIREG: /* Write MII PHY register. */
909 if (!capable (CAP_NET_ADMIN))
913 if (data->phy_id == phy) {
914 u16 value = data->val_in;
916 case 0: /* Check for autonegotiation on or reset. */
917 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
918 if (tp->full_duplex_lock)
919 tp->full_duplex = (value & 0x0100) ? 1 : 0;
922 tp->advertising[phy_idx] =
923 tp->mii_advertise = data->val_in;
927 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
928 u16 value = data->val_in;
930 if ((value & 0x1200) == 0x1200) {
931 if (tp->chip_id == PNIC2) {
932 pnic2_start_nway (dev);
934 t21142_start_nway (dev);
937 } else if (regnum == 4)
938 tp->sym_advertise = value;
940 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
951 /* Set or clear the multicast filter for this adaptor.
952 Note that we only use exclusion around actually queueing the
953 new frame, not around filling tp->setup_frame. This is non-deterministic
954 when re-entered but still correct. */
957 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
959 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
961 struct tulip_private *tp = netdev_priv(dev);
963 struct dev_mc_list *mclist;
967 memset(hash_table, 0, sizeof(hash_table));
968 set_bit_le(255, hash_table); /* Broadcast entry */
969 /* This should work on big-endian machines as well. */
970 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
971 i++, mclist = mclist->next) {
972 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
974 set_bit_le(index, hash_table);
977 for (i = 0; i < 32; i++) {
978 *setup_frm++ = hash_table[i];
979 *setup_frm++ = hash_table[i];
981 setup_frm = &tp->setup_frame[13*6];
983 /* Fill the final entry with our physical address. */
984 eaddrs = (u16 *)dev->dev_addr;
985 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
986 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
987 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
990 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
992 struct tulip_private *tp = netdev_priv(dev);
993 struct dev_mc_list *mclist;
997 /* We have <= 14 addresses so we can use the wonderful
998 16 address perfect filtering of the Tulip. */
999 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
1000 i++, mclist = mclist->next) {
1001 eaddrs = (u16 *)mclist->dmi_addr;
1002 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1003 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1004 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1006 /* Fill the unused entries with the broadcast address. */
1007 memset(setup_frm, 0xff, (15-i)*12);
1008 setup_frm = &tp->setup_frame[15*6];
1010 /* Fill the final entry with our physical address. */
1011 eaddrs = (u16 *)dev->dev_addr;
1012 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1013 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1014 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1018 static void set_rx_mode(struct net_device *dev)
1020 struct tulip_private *tp = netdev_priv(dev);
1021 void __iomem *ioaddr = tp->base_addr;
1024 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1026 tp->csr6 &= ~0x00D5;
1027 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1028 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1029 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1030 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1031 /* Too many to filter well -- accept all multicasts. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else if (tp->flags & MC_HASH_ONLY) {
1035 /* Some work-alikes have only a 64-entry hash filter table. */
1036 /* Should verify correctness on big-endian/__powerpc__ */
1037 struct dev_mc_list *mclist;
1039 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1040 tp->csr6 |= AcceptAllMulticast;
1041 csr6 |= AcceptAllMulticast;
1043 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1045 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1046 i++, mclist = mclist->next) {
1047 if (tp->flags & COMET_MAC_ADDR)
1048 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1050 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1052 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1053 if (tulip_debug > 2)
1054 printk(KERN_INFO "%s: Added filter for %pM"
1056 dev->name, mclist->dmi_addr,
1057 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1059 if (mc_filter[0] == tp->mc_filter[0] &&
1060 mc_filter[1] == tp->mc_filter[1])
1062 else if (tp->flags & IS_ASIX) {
1063 iowrite32(2, ioaddr + CSR13);
1064 iowrite32(mc_filter[0], ioaddr + CSR14);
1065 iowrite32(3, ioaddr + CSR13);
1066 iowrite32(mc_filter[1], ioaddr + CSR14);
1067 } else if (tp->flags & COMET_MAC_ADDR) {
1068 iowrite32(mc_filter[0], ioaddr + 0xAC);
1069 iowrite32(mc_filter[1], ioaddr + 0xB0);
1071 tp->mc_filter[0] = mc_filter[0];
1072 tp->mc_filter[1] = mc_filter[1];
1075 unsigned long flags;
1076 u32 tx_flags = 0x08000000 | 192;
1078 /* Note that only the low-address shortword of setup_frame is valid!
1079 The values are doubled for big-endian architectures. */
1080 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1081 build_setup_frame_hash(tp->setup_frame, dev);
1082 tx_flags = 0x08400000 | 192;
1084 build_setup_frame_perfect(tp->setup_frame, dev);
1087 spin_lock_irqsave(&tp->lock, flags);
1089 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1090 /* Same setup recently queued, we need not add it. */
1095 /* Now add this frame to the Tx list. */
1097 entry = tp->cur_tx++ % TX_RING_SIZE;
1100 /* Avoid a chip errata by prefixing a dummy entry. */
1101 tp->tx_buffers[entry].skb = NULL;
1102 tp->tx_buffers[entry].mapping = 0;
1103 tp->tx_ring[entry].length =
1104 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1105 tp->tx_ring[entry].buffer1 = 0;
1106 /* Must set DescOwned later to avoid race with chip */
1108 entry = tp->cur_tx++ % TX_RING_SIZE;
1112 tp->tx_buffers[entry].skb = NULL;
1113 tp->tx_buffers[entry].mapping =
1114 pci_map_single(tp->pdev, tp->setup_frame,
1115 sizeof(tp->setup_frame),
1117 /* Put the setup frame on the Tx list. */
1118 if (entry == TX_RING_SIZE-1)
1119 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1120 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1121 tp->tx_ring[entry].buffer1 =
1122 cpu_to_le32(tp->tx_buffers[entry].mapping);
1123 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1125 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1126 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1127 netif_stop_queue(dev);
1129 /* Trigger an immediate transmit demand. */
1130 iowrite32(0, ioaddr + CSR1);
1133 spin_unlock_irqrestore(&tp->lock, flags);
1136 iowrite32(csr6, ioaddr + CSR6);
1139 #ifdef CONFIG_TULIP_MWI
1140 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1141 struct net_device *dev)
1143 struct tulip_private *tp = netdev_priv(dev);
1148 if (tulip_debug > 3)
1149 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1151 tp->csr0 = csr0 = 0;
1153 /* if we have any cache line size at all, we can do MRM and MWI */
1156 /* Enable MWI in the standard PCI command bit.
1157 * Check for the case where MWI is desired but not available
1159 pci_try_set_mwi(pdev);
1161 /* read result from hardware (in case bit refused to enable) */
1162 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1163 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1166 /* if cache line size hardwired to zero, no MWI */
1167 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1168 if ((csr0 & MWI) && (cache == 0)) {
1170 pci_clear_mwi(pdev);
1173 /* assign per-cacheline-size cache alignment and
1174 * burst length values
1178 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1181 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1184 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1191 /* if we have a good cache line size, we by now have a good
1192 * csr0, so save it and exit
1197 /* we don't have a good csr0 or cache line size, disable MWI */
1199 pci_clear_mwi(pdev);
1203 /* sane defaults for burst length and cache alignment
1204 * originally from de4x5 driver
1206 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1210 if (tulip_debug > 2)
1211 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1212 pci_name(pdev), cache, csr0);
1217 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1218 * is the DM910X and the on chip ULi devices
1221 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1223 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1228 static const struct net_device_ops tulip_netdev_ops = {
1229 .ndo_open = tulip_open,
1230 .ndo_start_xmit = tulip_start_xmit,
1231 .ndo_tx_timeout = tulip_tx_timeout,
1232 .ndo_stop = tulip_close,
1233 .ndo_get_stats = tulip_get_stats,
1234 .ndo_do_ioctl = private_ioctl,
1235 .ndo_set_multicast_list = set_rx_mode,
1236 .ndo_change_mtu = eth_change_mtu,
1237 .ndo_set_mac_address = eth_mac_addr,
1238 .ndo_validate_addr = eth_validate_addr,
1239 #ifdef CONFIG_NET_POLL_CONTROLLER
1240 .ndo_poll_controller = poll_tulip,
1244 static int __devinit tulip_init_one (struct pci_dev *pdev,
1245 const struct pci_device_id *ent)
1247 struct tulip_private *tp;
1248 /* See note below on the multiport cards. */
1249 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1250 static struct pci_device_id early_486_chipsets[] = {
1251 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1252 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1255 static int last_irq;
1256 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1259 unsigned char *ee_data;
1260 struct net_device *dev;
1261 void __iomem *ioaddr;
1262 static int board_idx = -1;
1263 int chip_idx = ent->driver_data;
1264 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1265 unsigned int eeprom_missing = 0;
1266 unsigned int force_csr0 = 0;
1269 static int did_version; /* Already printed version info. */
1270 if (tulip_debug > 0 && did_version++ == 0)
1271 printk (KERN_INFO "%s", version);
1277 * Lan media wire a tulip chip to a wan interface. Needs a very
1278 * different driver (lmc driver)
1281 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1282 printk (KERN_ERR PFX "skipping LMC card.\n");
1287 * Early DM9100's need software CRC and the DMFE driver
1290 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1292 /* Read Chip revision */
1293 if (pdev->revision < 0x30)
1295 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1301 * Looks for early PCI chipsets where people report hangs
1302 * without the workarounds being on.
1305 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1306 aligned. Aries might need this too. The Saturn errata are not
1307 pretty reading but thankfully it's an old 486 chipset.
1309 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1313 if (pci_dev_present(early_486_chipsets)) {
1314 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1318 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1319 if (chip_idx == AX88140) {
1320 if ((csr0 & 0x3f00) == 0)
1324 /* PNIC doesn't have MWI/MRL/MRM... */
1325 if (chip_idx == LC82C168)
1326 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1328 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1329 if (tulip_uli_dm_quirk(pdev)) {
1330 csr0 &= ~0x01f100ff;
1331 #if defined(CONFIG_SPARC)
1332 csr0 = (csr0 & ~0xff00) | 0xe000;
1336 * And back to business
1339 i = pci_enable_device(pdev);
1341 printk (KERN_ERR PFX
1342 "Cannot enable tulip board #%d, aborting\n",
1349 /* alloc_etherdev ensures aligned and zeroed private structures */
1350 dev = alloc_etherdev (sizeof (*tp));
1352 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1356 SET_NETDEV_DEV(dev, &pdev->dev);
1357 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1358 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1359 "aborting\n", pci_name(pdev),
1360 (unsigned long long)pci_resource_len (pdev, 0),
1361 (unsigned long long)pci_resource_start (pdev, 0));
1362 goto err_out_free_netdev;
1365 /* grab all resources from both PIO and MMIO regions, as we
1366 * don't want anyone else messing around with our hardware */
1367 if (pci_request_regions (pdev, "tulip"))
1368 goto err_out_free_netdev;
1370 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1373 goto err_out_free_res;
1376 * initialize private data structure 'tp'
1377 * it is zeroed and aligned in alloc_etherdev
1379 tp = netdev_priv(dev);
1382 tp->rx_ring = pci_alloc_consistent(pdev,
1383 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1384 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1387 goto err_out_mtable;
1388 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1389 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1391 tp->chip_id = chip_idx;
1392 tp->flags = tulip_tbl[chip_idx].flags;
1394 tp->base_addr = ioaddr;
1395 tp->revision = pdev->revision;
1397 spin_lock_init(&tp->lock);
1398 spin_lock_init(&tp->mii_lock);
1399 init_timer(&tp->timer);
1400 tp->timer.data = (unsigned long)dev;
1401 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1403 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1405 dev->base_addr = (unsigned long)ioaddr;
1407 #ifdef CONFIG_TULIP_MWI
1408 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1409 tulip_mwi_config (pdev, dev);
1412 /* Stop the chip's Tx and Rx processes. */
1413 tulip_stop_rxtx(tp);
1415 pci_set_master(pdev);
1418 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1419 switch (pdev->subsystem_device) {
1428 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1429 chip_name = "GSC DS21140 Tulip";
1434 /* Clear the missed-packet counter. */
1435 ioread32(ioaddr + CSR8);
1437 /* The station address ROM is read byte serially. The register must
1438 be polled, waiting for the value to be read bit serially from the
1441 ee_data = tp->eeprom;
1442 memset(ee_data, 0, sizeof(tp->eeprom));
1444 if (chip_idx == LC82C168) {
1445 for (i = 0; i < 3; i++) {
1446 int value, boguscnt = 100000;
1447 iowrite32(0x600 | i, ioaddr + 0x98);
1449 value = ioread32(ioaddr + CSR9);
1450 } while (value < 0 && --boguscnt > 0);
1451 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1452 sum += value & 0xffff;
1454 } else if (chip_idx == COMET) {
1455 /* No need to read the EEPROM. */
1456 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1457 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1458 for (i = 0; i < 6; i ++)
1459 sum += dev->dev_addr[i];
1461 /* A serial EEPROM interface, we read now and sort it out later. */
1463 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1464 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1466 if (ee_max_addr > sizeof(tp->eeprom))
1467 ee_max_addr = sizeof(tp->eeprom);
1469 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1470 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1471 ee_data[i] = data & 0xff;
1472 ee_data[i + 1] = data >> 8;
1475 /* DEC now has a specification (see Notes) but early board makers
1476 just put the address in the first EEPROM locations. */
1477 /* This does memcmp(ee_data, ee_data+16, 8) */
1478 for (i = 0; i < 8; i ++)
1479 if (ee_data[i] != ee_data[16+i])
1481 if (chip_idx == CONEXANT) {
1482 /* Check that the tuple type and length is correct. */
1483 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1485 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1487 sa_offset = 2; /* Grrr, damn Matrox boards. */
1490 #ifdef CONFIG_MIPS_COBALT
1491 if ((pdev->bus->number == 0) &&
1492 ((PCI_SLOT(pdev->devfn) == 7) ||
1493 (PCI_SLOT(pdev->devfn) == 12))) {
1494 /* Cobalt MAC address in first EEPROM locations. */
1496 /* Ensure our media table fixup get's applied */
1497 memcpy(ee_data + 16, ee_data, 8);
1501 /* Check to see if we have a broken srom */
1502 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1503 /* pci_vendor_id and subsystem_id are swapped */
1504 ee_data[0] = ee_data[2];
1505 ee_data[1] = ee_data[3];
1509 /* HSC-PCI boards need to be byte-swaped and shifted
1510 * up 1 word. This shift needs to happen at the end
1511 * of the MAC first because of the 2 byte overlap.
1513 for (i = 4; i >= 0; i -= 2) {
1514 ee_data[17 + i + 3] = ee_data[17 + i];
1515 ee_data[16 + i + 5] = ee_data[16 + i];
1520 for (i = 0; i < 6; i ++) {
1521 dev->dev_addr[i] = ee_data[i + sa_offset];
1522 sum += ee_data[i + sa_offset];
1525 /* Lite-On boards have the address byte-swapped. */
1526 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1527 && dev->dev_addr[1] == 0x00)
1528 for (i = 0; i < 6; i+=2) {
1529 char tmp = dev->dev_addr[i];
1530 dev->dev_addr[i] = dev->dev_addr[i+1];
1531 dev->dev_addr[i+1] = tmp;
1533 /* On the Zynx 315 Etherarray and other multiport boards only the
1534 first Tulip has an EEPROM.
1535 On Sparc systems the mac address is held in the OBP property
1536 "local-mac-address".
1537 The addresses of the subsequent ports are derived from the first.
1538 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1539 that here as well. */
1540 if (sum == 0 || sum == 6*0xff) {
1541 #if defined(CONFIG_SPARC)
1542 struct device_node *dp = pci_device_to_OF_node(pdev);
1543 const unsigned char *addr;
1547 for (i = 0; i < 5; i++)
1548 dev->dev_addr[i] = last_phys_addr[i];
1549 dev->dev_addr[i] = last_phys_addr[i] + 1;
1550 #if defined(CONFIG_SPARC)
1551 addr = of_get_property(dp, "local-mac-address", &len);
1552 if (addr && len == 6)
1553 memcpy(dev->dev_addr, addr, 6);
1555 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1561 for (i = 0; i < 6; i++)
1562 last_phys_addr[i] = dev->dev_addr[i];
1566 /* The lower four bits are the media type. */
1567 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1568 if (options[board_idx] & MEDIA_MASK)
1569 tp->default_port = options[board_idx] & MEDIA_MASK;
1570 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1571 tp->full_duplex = 1;
1572 if (mtu[board_idx] > 0)
1573 dev->mtu = mtu[board_idx];
1575 if (dev->mem_start & MEDIA_MASK)
1576 tp->default_port = dev->mem_start & MEDIA_MASK;
1577 if (tp->default_port) {
1578 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1579 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1581 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1582 tp->full_duplex = 1;
1584 if (tp->full_duplex)
1585 tp->full_duplex_lock = 1;
1587 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1588 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1589 tp->mii_advertise = media2advert[tp->default_port - 9];
1590 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1593 if (tp->flags & HAS_MEDIA_TABLE) {
1594 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1595 tulip_parse_eeprom(dev);
1596 strcpy(dev->name, "eth%d"); /* un-hack */
1599 if ((tp->flags & ALWAYS_CHECK_MII) ||
1600 (tp->mtable && tp->mtable->has_mii) ||
1601 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1602 if (tp->mtable && tp->mtable->has_mii) {
1603 for (i = 0; i < tp->mtable->leafcount; i++)
1604 if (tp->mtable->mleaf[i].media == 11) {
1606 tp->saved_if_port = dev->if_port;
1607 tulip_select_media(dev, 2);
1608 dev->if_port = tp->saved_if_port;
1613 /* Find the connected MII xcvrs.
1614 Doing this in open() would allow detecting external xcvrs
1615 later, but takes much time. */
1616 tulip_find_mii (dev, board_idx);
1619 /* The Tulip-specific entries in the device structure. */
1620 dev->netdev_ops = &tulip_netdev_ops;
1621 dev->watchdog_timeo = TX_TIMEOUT;
1622 #ifdef CONFIG_TULIP_NAPI
1623 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1625 SET_ETHTOOL_OPS(dev, &ops);
1627 if (register_netdev(dev))
1628 goto err_out_free_ring;
1630 printk(KERN_INFO "%s: %s rev %d at "
1631 #ifdef CONFIG_TULIP_MMIO
1636 " %#llx,", dev->name, chip_name, pdev->revision,
1637 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1638 pci_set_drvdata(pdev, dev);
1641 printk(" EEPROM not present,");
1642 printk(" %pM", dev->dev_addr);
1643 printk(", IRQ %d.\n", irq);
1645 if (tp->chip_id == PNIC2)
1646 tp->link_change = pnic2_lnk_change;
1647 else if (tp->flags & HAS_NWAY)
1648 tp->link_change = t21142_lnk_change;
1649 else if (tp->flags & HAS_PNICNWAY)
1650 tp->link_change = pnic_lnk_change;
1652 /* Reset the xcvr interface and turn on heartbeat. */
1658 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1661 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1662 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1663 iowrite32(0x0000, ioaddr + CSR13);
1664 iowrite32(0x0000, ioaddr + CSR14);
1665 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1667 t21142_start_nway(dev);
1670 /* just do a reset for sanity sake */
1671 iowrite32(0x0000, ioaddr + CSR13);
1672 iowrite32(0x0000, ioaddr + CSR14);
1675 if ( ! tp->mii_cnt) {
1678 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1679 iowrite32(0x30, ioaddr + CSR12);
1680 iowrite32(0x0001F078, ioaddr + CSR6);
1681 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1686 iowrite32(0x00000000, ioaddr + CSR6);
1687 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1688 iowrite32(0x00000001, ioaddr + CSR13);
1692 iowrite32(0x01a80000, ioaddr + CSR6);
1693 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1694 iowrite32(0x00001000, ioaddr + CSR12);
1697 /* No initialization necessary. */
1701 /* put the chip in snooze mode until opened */
1702 tulip_set_power_state (tp, 0, 1);
1707 pci_free_consistent (pdev,
1708 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1709 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1710 tp->rx_ring, tp->rx_ring_dma);
1714 pci_iounmap(pdev, ioaddr);
1717 pci_release_regions (pdev);
1719 err_out_free_netdev:
1727 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1729 struct net_device *dev = pci_get_drvdata(pdev);
1734 if (!netif_running(dev))
1739 netif_device_detach(dev);
1740 free_irq(dev->irq, dev);
1743 pci_save_state(pdev);
1744 pci_disable_device(pdev);
1745 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1751 static int tulip_resume(struct pci_dev *pdev)
1753 struct net_device *dev = pci_get_drvdata(pdev);
1759 pci_set_power_state(pdev, PCI_D0);
1760 pci_restore_state(pdev);
1762 if (!netif_running(dev))
1765 if ((retval = pci_enable_device(pdev))) {
1766 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1770 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1771 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1775 netif_device_attach(dev);
1777 if (netif_running(dev))
1783 #endif /* CONFIG_PM */
1786 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1788 struct net_device *dev = pci_get_drvdata (pdev);
1789 struct tulip_private *tp;
1794 tp = netdev_priv(dev);
1795 unregister_netdev(dev);
1796 pci_free_consistent (pdev,
1797 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1798 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1799 tp->rx_ring, tp->rx_ring_dma);
1801 pci_iounmap(pdev, tp->base_addr);
1803 pci_release_regions (pdev);
1804 pci_set_drvdata (pdev, NULL);
1806 /* pci_power_off (pdev, -1); */
1809 #ifdef CONFIG_NET_POLL_CONTROLLER
1811 * Polling 'interrupt' - used by things like netconsole to send skbs
1812 * without having to re-enable interrupts. It's not called while
1813 * the interrupt routine is executing.
1816 static void poll_tulip (struct net_device *dev)
1818 /* disable_irq here is not very nice, but with the lockless
1819 interrupt handler we have no other choice. */
1820 disable_irq(dev->irq);
1821 tulip_interrupt (dev->irq, dev);
1822 enable_irq(dev->irq);
1826 static struct pci_driver tulip_driver = {
1828 .id_table = tulip_pci_tbl,
1829 .probe = tulip_init_one,
1830 .remove = __devexit_p(tulip_remove_one),
1832 .suspend = tulip_suspend,
1833 .resume = tulip_resume,
1834 #endif /* CONFIG_PM */
1838 static int __init tulip_init (void)
1841 printk (KERN_INFO "%s", version);
1844 /* copy module parms into globals */
1845 tulip_rx_copybreak = rx_copybreak;
1846 tulip_max_interrupt_work = max_interrupt_work;
1848 /* probe for and init boards */
1849 return pci_register_driver(&tulip_driver);
1853 static void __exit tulip_cleanup (void)
1855 pci_unregister_driver (&tulip_driver);
1859 module_init(tulip_init);
1860 module_exit(tulip_cleanup);