1 /* gf128mul.c - GF(2^128) multiplication functions
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://fp.gladman.plus.com/cryptography_technology/index.htm
8 * See the original copyright notice below.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
47 This file provides fast multiplication in GF(128) as required by several
48 cryptographic authentication modes
51 #include <crypto/gf128mul.h>
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/slab.h>
56 #define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
91 /* Given the value i in 0..255 as the byte overflow when a field element
92 in GHASH is multipled by x^8, this function will return the values that
93 are generated in the lo 16-bit word of the field value by applying the
94 modular polynomial. The values lo_byte and hi_byte are returned via the
95 macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
96 memory as required by a suitable definition of this macro operating on
100 #define xx(p, q) 0x##p##q
102 #define xda_bbe(i) ( \
103 (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
104 (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
105 (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
106 (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
109 #define xda_lle(i) ( \
110 (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
111 (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
112 (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
113 (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
116 static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
117 static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
119 /* These functions multiply a field element by x, by x^4 and by x^8
120 * in the polynomial field representation. It uses 32-bit word operations
121 * to gain speed but compensates for machine endianess and hence works
122 * correctly on both styles of machine.
125 static void gf128mul_x_lle(be128 *r, const be128 *x)
127 u64 a = be64_to_cpu(x->a);
128 u64 b = be64_to_cpu(x->b);
129 u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
131 r->b = cpu_to_be64((b >> 1) | (a << 63));
132 r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
135 static void gf128mul_x_bbe(be128 *r, const be128 *x)
137 u64 a = be64_to_cpu(x->a);
138 u64 b = be64_to_cpu(x->b);
139 u64 _tt = gf128mul_table_bbe[a >> 63];
141 r->a = cpu_to_be64((a << 1) | (b >> 63));
142 r->b = cpu_to_be64((b << 1) ^ _tt);
145 static void gf128mul_x8_lle(be128 *x)
147 u64 a = be64_to_cpu(x->a);
148 u64 b = be64_to_cpu(x->b);
149 u64 _tt = gf128mul_table_lle[b & 0xff];
151 x->b = cpu_to_be64((b >> 8) | (a << 56));
152 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
155 static void gf128mul_x8_bbe(be128 *x)
157 u64 a = be64_to_cpu(x->a);
158 u64 b = be64_to_cpu(x->b);
159 u64 _tt = gf128mul_table_bbe[a >> 56];
161 x->a = cpu_to_be64((a << 8) | (b >> 56));
162 x->b = cpu_to_be64((b << 8) ^ _tt);
165 void gf128mul_lle(be128 *r, const be128 *b)
171 for (i = 0; i < 7; ++i)
172 gf128mul_x_lle(&p[i + 1], &p[i]);
174 memset(r, 0, sizeof(r));
176 u8 ch = ((u8 *)b)[15 - i];
179 be128_xor(r, r, &p[0]);
181 be128_xor(r, r, &p[1]);
183 be128_xor(r, r, &p[2]);
185 be128_xor(r, r, &p[3]);
187 be128_xor(r, r, &p[4]);
189 be128_xor(r, r, &p[5]);
191 be128_xor(r, r, &p[6]);
193 be128_xor(r, r, &p[7]);
201 EXPORT_SYMBOL(gf128mul_lle);
203 void gf128mul_bbe(be128 *r, const be128 *b)
209 for (i = 0; i < 7; ++i)
210 gf128mul_x_bbe(&p[i + 1], &p[i]);
212 memset(r, 0, sizeof(r));
214 u8 ch = ((u8 *)b)[i];
217 be128_xor(r, r, &p[7]);
219 be128_xor(r, r, &p[6]);
221 be128_xor(r, r, &p[5]);
223 be128_xor(r, r, &p[4]);
225 be128_xor(r, r, &p[3]);
227 be128_xor(r, r, &p[2]);
229 be128_xor(r, r, &p[1]);
231 be128_xor(r, r, &p[0]);
239 EXPORT_SYMBOL(gf128mul_bbe);
241 /* This version uses 64k bytes of table space.
242 A 16 byte buffer has to be multiplied by a 16 byte key
243 value in GF(128). If we consider a GF(128) value in
244 the buffer's lowest byte, we can construct a table of
245 the 256 16 byte values that result from the 256 values
246 of this byte. This requires 4096 bytes. But we also
247 need tables for each of the 16 higher bytes in the
248 buffer as well, which makes 64 kbytes in total.
250 /* additional explanation
251 * t[0][BYTE] contains g*BYTE
252 * t[1][BYTE] contains g*x^8*BYTE
254 * t[15][BYTE] contains g*x^120*BYTE */
255 struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g)
257 struct gf128mul_64k *t;
260 t = kzalloc(sizeof(*t), GFP_KERNEL);
264 for (i = 0; i < 16; i++) {
265 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
267 gf128mul_free_64k(t);
273 t->t[0]->t[128] = *g;
274 for (j = 64; j > 0; j >>= 1)
275 gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]);
278 for (j = 2; j < 256; j += j)
279 for (k = 1; k < j; ++k)
280 be128_xor(&t->t[i]->t[j + k],
281 &t->t[i]->t[j], &t->t[i]->t[k]);
286 for (j = 128; j > 0; j >>= 1) {
287 t->t[i]->t[j] = t->t[i - 1]->t[j];
288 gf128mul_x8_lle(&t->t[i]->t[j]);
295 EXPORT_SYMBOL(gf128mul_init_64k_lle);
297 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
299 struct gf128mul_64k *t;
302 t = kzalloc(sizeof(*t), GFP_KERNEL);
306 for (i = 0; i < 16; i++) {
307 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
309 gf128mul_free_64k(t);
316 for (j = 1; j <= 64; j <<= 1)
317 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
320 for (j = 2; j < 256; j += j)
321 for (k = 1; k < j; ++k)
322 be128_xor(&t->t[i]->t[j + k],
323 &t->t[i]->t[j], &t->t[i]->t[k]);
328 for (j = 128; j > 0; j >>= 1) {
329 t->t[i]->t[j] = t->t[i - 1]->t[j];
330 gf128mul_x8_bbe(&t->t[i]->t[j]);
337 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
339 void gf128mul_free_64k(struct gf128mul_64k *t)
343 for (i = 0; i < 16; i++)
347 EXPORT_SYMBOL(gf128mul_free_64k);
349 void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t)
355 *r = t->t[0]->t[ap[0]];
356 for (i = 1; i < 16; ++i)
357 be128_xor(r, r, &t->t[i]->t[ap[i]]);
360 EXPORT_SYMBOL(gf128mul_64k_lle);
362 void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
368 *r = t->t[0]->t[ap[15]];
369 for (i = 1; i < 16; ++i)
370 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
373 EXPORT_SYMBOL(gf128mul_64k_bbe);
375 /* This version uses 4k bytes of table space.
376 A 16 byte buffer has to be multiplied by a 16 byte key
377 value in GF(128). If we consider a GF(128) value in a
378 single byte, we can construct a table of the 256 16 byte
379 values that result from the 256 values of this byte.
380 This requires 4096 bytes. If we take the highest byte in
381 the buffer and use this table to get the result, we then
382 have to multiply by x^120 to get the final value. For the
383 next highest byte the result has to be multiplied by x^112
384 and so on. But we can do this by accumulating the result
385 in an accumulator starting with the result for the top
386 byte. We repeatedly multiply the accumulator value by
387 x^8 and then add in (i.e. xor) the 16 bytes of the next
388 lower byte in the buffer, stopping when we reach the
389 lowest byte. This requires a 4096 byte table.
391 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
393 struct gf128mul_4k *t;
396 t = kzalloc(sizeof(*t), GFP_KERNEL);
401 for (j = 64; j > 0; j >>= 1)
402 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
404 for (j = 2; j < 256; j += j)
405 for (k = 1; k < j; ++k)
406 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
411 EXPORT_SYMBOL(gf128mul_init_4k_lle);
413 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
415 struct gf128mul_4k *t;
418 t = kzalloc(sizeof(*t), GFP_KERNEL);
423 for (j = 1; j <= 64; j <<= 1)
424 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
426 for (j = 2; j < 256; j += j)
427 for (k = 1; k < j; ++k)
428 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
433 EXPORT_SYMBOL(gf128mul_init_4k_bbe);
435 void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
444 be128_xor(r, r, &t->t[ap[i]]);
448 EXPORT_SYMBOL(gf128mul_4k_lle);
450 void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
459 be128_xor(r, r, &t->t[ap[i]]);
463 EXPORT_SYMBOL(gf128mul_4k_bbe);
465 MODULE_LICENSE("GPL");
466 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");