4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
125 void remove_from_page_cache(struct page *page)
127 struct address_space *mapping = page->mapping;
129 BUG_ON(!PageLocked(page));
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
136 static int sync_page(void *word)
138 struct address_space *mapping;
141 page = container_of((unsigned long *)word, struct page, flags);
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
198 if (!mapping_cap_writeback_dirty(mapping))
201 ret = do_writepages(mapping, &wbc);
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 int filemap_fdatawrite(struct address_space *mapping)
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 EXPORT_SYMBOL(filemap_fdatawrite);
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
230 int filemap_flush(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 EXPORT_SYMBOL(filemap_flush);
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
242 * Wait for writeback to complete against pages indexed by start->end
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
256 pagevec_init(&pvec, 0);
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
271 wait_on_page_writeback(page);
275 pagevec_release(&pvec);
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
318 ret = wait_on_page_writeback_range(mapping, start, end);
321 EXPORT_SYMBOL(sync_page_range);
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 ret = wait_on_page_writeback_range(mapping, start, end);
350 EXPORT_SYMBOL(sync_page_range_nolock);
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
359 int filemap_fdatawait(struct address_space *mapping)
361 loff_t i_size = i_size_read(mapping->host);
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 EXPORT_SYMBOL(filemap_fdatawait);
371 int filemap_write_and_wait(struct address_space *mapping)
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
384 int err2 = filemap_fdatawait(mapping);
391 EXPORT_SYMBOL(filemap_write_and_wait);
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
399 * Write out and wait upon file offsets lstart->lend, inclusive.
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 /* See comment of filemap_write_and_wait() */
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
425 * add_to_page_cache - add newly allocated pagecache pages
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
435 * This function does not add the page to the LRU. The caller must do that.
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 page_cache_get(page);
448 page->mapping = mapping;
449 page->index = offset;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
458 EXPORT_SYMBOL(add_to_page_cache);
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
470 struct page *__page_cache_alloc(gfp_t gfp)
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, gfp, 0);
476 return alloc_pages(gfp, 0);
478 EXPORT_SYMBOL(__page_cache_alloc);
481 static int __sleep_on_page_lock(void *word)
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
497 static wait_queue_head_t *page_waitqueue(struct page *page)
499 const struct zone *zone = page_zone(page);
501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 static inline void wake_up_page(struct page *page, int bit)
506 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 if (test_bit(bit_nr, &page->flags))
514 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 TASK_UNINTERRUPTIBLE);
517 EXPORT_SYMBOL(wait_on_page_bit);
520 * unlock_page - unlock a locked page
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
533 void fastcall unlock_page(struct page *page)
535 smp_mb__before_clear_bit();
536 if (!TestClearPageLocked(page))
538 smp_mb__after_clear_bit();
539 wake_up_page(page, PG_locked);
541 EXPORT_SYMBOL(unlock_page);
544 * end_page_writeback - end writeback against a page
547 void end_page_writeback(struct page *page)
549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 if (!test_clear_page_writeback(page))
553 smp_mb__after_clear_bit();
554 wake_up_page(page, PG_writeback);
556 EXPORT_SYMBOL(end_page_writeback);
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 void fastcall __lock_page(struct page *page)
569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 TASK_UNINTERRUPTIBLE);
574 EXPORT_SYMBOL(__lock_page);
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
580 void fastcall __lock_page_nosync(struct page *page)
582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 TASK_UNINTERRUPTIBLE);
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
599 read_lock_irq(&mapping->tree_lock);
600 page = radix_tree_lookup(&mapping->page_tree, offset);
602 page_cache_get(page);
603 read_unlock_irq(&mapping->tree_lock);
606 EXPORT_SYMBOL(find_get_page);
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
616 * Returns zero if the page was not present. find_lock_page() may sleep.
618 struct page *find_lock_page(struct address_space *mapping,
619 unsigned long offset)
623 read_lock_irq(&mapping->tree_lock);
625 page = radix_tree_lookup(&mapping->page_tree, offset);
627 page_cache_get(page);
628 if (TestSetPageLocked(page)) {
629 read_unlock_irq(&mapping->tree_lock);
631 read_lock_irq(&mapping->tree_lock);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping ||
635 page->index != offset)) {
637 page_cache_release(page);
642 read_unlock_irq(&mapping->tree_lock);
645 EXPORT_SYMBOL(find_lock_page);
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
653 * Locates a page in the pagecache. If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list. The returned page is locked and has its reference count
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
661 * find_or_create_page() returns the desired page's address, or zero on
664 struct page *find_or_create_page(struct address_space *mapping,
665 unsigned long index, gfp_t gfp_mask)
667 struct page *page, *cached_page = NULL;
670 page = find_lock_page(mapping, index);
673 cached_page = alloc_page(gfp_mask);
677 err = add_to_page_cache_lru(cached_page, mapping,
682 } else if (err == -EEXIST)
686 page_cache_release(cached_page);
689 EXPORT_SYMBOL(find_or_create_page);
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
705 * find_get_pages() returns the number of pages which were found.
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 unsigned int nr_pages, struct page **pages)
713 read_lock_irq(&mapping->tree_lock);
714 ret = radix_tree_gang_lookup(&mapping->page_tree,
715 (void **)pages, start, nr_pages);
716 for (i = 0; i < ret; i++)
717 page_cache_get(pages[i]);
718 read_unlock_irq(&mapping->tree_lock);
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
732 * find_get_pages_contig() returns the number of pages which were found.
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 unsigned int nr_pages, struct page **pages)
740 read_lock_irq(&mapping->tree_lock);
741 ret = radix_tree_gang_lookup(&mapping->page_tree,
742 (void **)pages, index, nr_pages);
743 for (i = 0; i < ret; i++) {
744 if (pages[i]->mapping == NULL || pages[i]->index != index)
747 page_cache_get(pages[i]);
750 read_unlock_irq(&mapping->tree_lock);
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping: the address_space to search
757 * @index: the starting page index
758 * @tag: the tag index
759 * @nr_pages: the maximum number of pages
760 * @pages: where the resulting pages are placed
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag. We update @index to index the next page for the traversal.
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 int tag, unsigned int nr_pages, struct page **pages)
771 read_lock_irq(&mapping->tree_lock);
772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 (void **)pages, *index, nr_pages, tag);
774 for (i = 0; i < ret; i++)
775 page_cache_get(pages[i]);
777 *index = pages[ret - 1]->index + 1;
778 read_unlock_irq(&mapping->tree_lock);
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
798 struct page *page = find_get_page(mapping, index);
801 if (!TestSetPageLocked(page))
803 page_cache_release(page);
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
813 EXPORT_SYMBOL(grab_cache_page_nowait);
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828 * It is going insane. Fix it by quickly scaling down the readahead size.
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
854 * Note the struct file* is only passed for the use of readpage.
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *_ra,
861 read_descriptor_t *desc,
864 struct inode *inode = mapping->host;
866 unsigned long end_index;
867 unsigned long offset;
868 unsigned long last_index;
869 unsigned long next_index;
870 unsigned long prev_index;
872 struct page *cached_page;
874 struct file_ra_state ra = *_ra;
877 index = *ppos >> PAGE_CACHE_SHIFT;
879 prev_index = ra.prev_page;
880 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
881 offset = *ppos & ~PAGE_CACHE_MASK;
883 isize = i_size_read(inode);
887 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
890 unsigned long nr, ret;
892 /* nr is the maximum number of bytes to copy from this page */
893 nr = PAGE_CACHE_SIZE;
894 if (index >= end_index) {
895 if (index > end_index)
897 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
905 if (index == next_index)
906 next_index = page_cache_readahead(mapping, &ra, filp,
907 index, last_index - index);
910 page = find_get_page(mapping, index);
911 if (unlikely(page == NULL)) {
912 handle_ra_miss(mapping, &ra, index);
915 if (!PageUptodate(page))
916 goto page_not_up_to_date;
919 /* If users can be writing to this page using arbitrary
920 * virtual addresses, take care about potential aliasing
921 * before reading the page on the kernel side.
923 if (mapping_writably_mapped(mapping))
924 flush_dcache_page(page);
927 * When (part of) the same page is read multiple times
928 * in succession, only mark it as accessed the first time.
930 if (prev_index != index)
931 mark_page_accessed(page);
935 * Ok, we have the page, and it's up-to-date, so
936 * now we can copy it to user space...
938 * The actor routine returns how many bytes were actually used..
939 * NOTE! This may not be the same as how much of a user buffer
940 * we filled up (we may be padding etc), so we can only update
941 * "pos" here (the actor routine has to update the user buffer
942 * pointers and the remaining count).
944 ret = actor(desc, page, offset, nr);
946 index += offset >> PAGE_CACHE_SHIFT;
947 offset &= ~PAGE_CACHE_MASK;
949 page_cache_release(page);
950 if (ret == nr && desc->count)
955 /* Get exclusive access to the page ... */
958 /* Did it get truncated before we got the lock? */
959 if (!page->mapping) {
961 page_cache_release(page);
965 /* Did somebody else fill it already? */
966 if (PageUptodate(page)) {
972 /* Start the actual read. The read will unlock the page. */
973 error = mapping->a_ops->readpage(filp, page);
975 if (unlikely(error)) {
976 if (error == AOP_TRUNCATED_PAGE) {
977 page_cache_release(page);
983 if (!PageUptodate(page)) {
985 if (!PageUptodate(page)) {
986 if (page->mapping == NULL) {
988 * invalidate_inode_pages got it
991 page_cache_release(page);
996 shrink_readahead_size_eio(filp, &ra);
1003 * i_size must be checked after we have done ->readpage.
1005 * Checking i_size after the readpage allows us to calculate
1006 * the correct value for "nr", which means the zero-filled
1007 * part of the page is not copied back to userspace (unless
1008 * another truncate extends the file - this is desired though).
1010 isize = i_size_read(inode);
1011 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1012 if (unlikely(!isize || index > end_index)) {
1013 page_cache_release(page);
1017 /* nr is the maximum number of bytes to copy from this page */
1018 nr = PAGE_CACHE_SIZE;
1019 if (index == end_index) {
1020 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1022 page_cache_release(page);
1030 /* UHHUH! A synchronous read error occurred. Report it */
1031 desc->error = error;
1032 page_cache_release(page);
1037 * Ok, it wasn't cached, so we need to create a new
1041 cached_page = page_cache_alloc_cold(mapping);
1043 desc->error = -ENOMEM;
1047 error = add_to_page_cache_lru(cached_page, mapping,
1050 if (error == -EEXIST)
1052 desc->error = error;
1063 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1065 page_cache_release(cached_page);
1067 file_accessed(filp);
1069 EXPORT_SYMBOL(do_generic_mapping_read);
1071 int file_read_actor(read_descriptor_t *desc, struct page *page,
1072 unsigned long offset, unsigned long size)
1075 unsigned long left, count = desc->count;
1081 * Faults on the destination of a read are common, so do it before
1084 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1085 kaddr = kmap_atomic(page, KM_USER0);
1086 left = __copy_to_user_inatomic(desc->arg.buf,
1087 kaddr + offset, size);
1088 kunmap_atomic(kaddr, KM_USER0);
1093 /* Do it the slow way */
1095 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1100 desc->error = -EFAULT;
1103 desc->count = count - size;
1104 desc->written += size;
1105 desc->arg.buf += size;
1110 * generic_file_aio_read - generic filesystem read routine
1111 * @iocb: kernel I/O control block
1112 * @iov: io vector request
1113 * @nr_segs: number of segments in the iovec
1114 * @pos: current file position
1116 * This is the "read()" routine for all filesystems
1117 * that can use the page cache directly.
1120 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1121 unsigned long nr_segs, loff_t pos)
1123 struct file *filp = iocb->ki_filp;
1127 loff_t *ppos = &iocb->ki_pos;
1130 for (seg = 0; seg < nr_segs; seg++) {
1131 const struct iovec *iv = &iov[seg];
1134 * If any segment has a negative length, or the cumulative
1135 * length ever wraps negative then return -EINVAL.
1137 count += iv->iov_len;
1138 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1140 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1145 count -= iv->iov_len; /* This segment is no good */
1149 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1150 if (filp->f_flags & O_DIRECT) {
1152 struct address_space *mapping;
1153 struct inode *inode;
1155 mapping = filp->f_mapping;
1156 inode = mapping->host;
1159 goto out; /* skip atime */
1160 size = i_size_read(inode);
1162 retval = generic_file_direct_IO(READ, iocb,
1165 *ppos = pos + retval;
1167 if (likely(retval != 0)) {
1168 file_accessed(filp);
1175 for (seg = 0; seg < nr_segs; seg++) {
1176 read_descriptor_t desc;
1179 desc.arg.buf = iov[seg].iov_base;
1180 desc.count = iov[seg].iov_len;
1181 if (desc.count == 0)
1184 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1185 retval += desc.written;
1187 retval = retval ?: desc.error;
1195 EXPORT_SYMBOL(generic_file_aio_read);
1197 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1200 unsigned long count = desc->count;
1201 struct file *file = desc->arg.data;
1206 written = file->f_op->sendpage(file, page, offset,
1207 size, &file->f_pos, size<count);
1209 desc->error = written;
1212 desc->count = count - written;
1213 desc->written += written;
1217 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1218 size_t count, read_actor_t actor, void *target)
1220 read_descriptor_t desc;
1227 desc.arg.data = target;
1230 do_generic_file_read(in_file, ppos, &desc, actor);
1232 return desc.written;
1235 EXPORT_SYMBOL(generic_file_sendfile);
1238 do_readahead(struct address_space *mapping, struct file *filp,
1239 unsigned long index, unsigned long nr)
1241 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1244 force_page_cache_readahead(mapping, filp, index,
1245 max_sane_readahead(nr));
1249 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257 if (file->f_mode & FMODE_READ) {
1258 struct address_space *mapping = file->f_mapping;
1259 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1260 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1261 unsigned long len = end - start + 1;
1262 ret = do_readahead(mapping, file, start, len);
1270 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file: file to read
1274 * @offset: page index
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1279 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1281 struct address_space *mapping = file->f_mapping;
1286 page = page_cache_alloc_cold(mapping);
1290 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1292 ret = mapping->a_ops->readpage(file, page);
1293 else if (ret == -EEXIST)
1294 ret = 0; /* losing race to add is OK */
1296 page_cache_release(page);
1298 } while (ret == AOP_TRUNCATED_PAGE);
1303 #define MMAP_LOTSAMISS (100)
1306 * filemap_nopage - read in file data for page fault handling
1307 * @area: the applicable vm_area
1308 * @address: target address to read in
1309 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1311 * filemap_nopage() is invoked via the vma operations vector for a
1312 * mapped memory region to read in file data during a page fault.
1314 * The goto's are kind of ugly, but this streamlines the normal case of having
1315 * it in the page cache, and handles the special cases reasonably without
1316 * having a lot of duplicated code.
1318 struct page *filemap_nopage(struct vm_area_struct *area,
1319 unsigned long address, int *type)
1322 struct file *file = area->vm_file;
1323 struct address_space *mapping = file->f_mapping;
1324 struct file_ra_state *ra = &file->f_ra;
1325 struct inode *inode = mapping->host;
1327 unsigned long size, pgoff;
1328 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1330 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1333 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1335 goto outside_data_content;
1337 /* If we don't want any read-ahead, don't bother */
1338 if (VM_RandomReadHint(area))
1339 goto no_cached_page;
1342 * The readahead code wants to be told about each and every page
1343 * so it can build and shrink its windows appropriately
1345 * For sequential accesses, we use the generic readahead logic.
1347 if (VM_SequentialReadHint(area))
1348 page_cache_readahead(mapping, ra, file, pgoff, 1);
1351 * Do we have something in the page cache already?
1354 page = find_get_page(mapping, pgoff);
1356 unsigned long ra_pages;
1358 if (VM_SequentialReadHint(area)) {
1359 handle_ra_miss(mapping, ra, pgoff);
1360 goto no_cached_page;
1365 * Do we miss much more than hit in this file? If so,
1366 * stop bothering with read-ahead. It will only hurt.
1368 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1369 goto no_cached_page;
1372 * To keep the pgmajfault counter straight, we need to
1373 * check did_readaround, as this is an inner loop.
1375 if (!did_readaround) {
1376 majmin = VM_FAULT_MAJOR;
1377 count_vm_event(PGMAJFAULT);
1380 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1384 if (pgoff > ra_pages / 2)
1385 start = pgoff - ra_pages / 2;
1386 do_page_cache_readahead(mapping, file, start, ra_pages);
1388 page = find_get_page(mapping, pgoff);
1390 goto no_cached_page;
1393 if (!did_readaround)
1397 * Ok, found a page in the page cache, now we need to check
1398 * that it's up-to-date.
1400 if (!PageUptodate(page))
1401 goto page_not_uptodate;
1405 * Found the page and have a reference on it.
1407 mark_page_accessed(page);
1412 outside_data_content:
1414 * An external ptracer can access pages that normally aren't
1417 if (area->vm_mm == current->mm)
1418 return NOPAGE_SIGBUS;
1419 /* Fall through to the non-read-ahead case */
1422 * We're only likely to ever get here if MADV_RANDOM is in
1425 error = page_cache_read(file, pgoff);
1428 * The page we want has now been added to the page cache.
1429 * In the unlikely event that someone removed it in the
1430 * meantime, we'll just come back here and read it again.
1436 * An error return from page_cache_read can result if the
1437 * system is low on memory, or a problem occurs while trying
1440 if (error == -ENOMEM)
1442 return NOPAGE_SIGBUS;
1445 if (!did_readaround) {
1446 majmin = VM_FAULT_MAJOR;
1447 count_vm_event(PGMAJFAULT);
1451 /* Did it get unhashed while we waited for it? */
1452 if (!page->mapping) {
1454 page_cache_release(page);
1458 /* Did somebody else get it up-to-date? */
1459 if (PageUptodate(page)) {
1464 error = mapping->a_ops->readpage(file, page);
1466 wait_on_page_locked(page);
1467 if (PageUptodate(page))
1469 } else if (error == AOP_TRUNCATED_PAGE) {
1470 page_cache_release(page);
1475 * Umm, take care of errors if the page isn't up-to-date.
1476 * Try to re-read it _once_. We do this synchronously,
1477 * because there really aren't any performance issues here
1478 * and we need to check for errors.
1482 /* Somebody truncated the page on us? */
1483 if (!page->mapping) {
1485 page_cache_release(page);
1489 /* Somebody else successfully read it in? */
1490 if (PageUptodate(page)) {
1494 ClearPageError(page);
1495 error = mapping->a_ops->readpage(file, page);
1497 wait_on_page_locked(page);
1498 if (PageUptodate(page))
1500 } else if (error == AOP_TRUNCATED_PAGE) {
1501 page_cache_release(page);
1506 * Things didn't work out. Return zero to tell the
1507 * mm layer so, possibly freeing the page cache page first.
1509 shrink_readahead_size_eio(file, ra);
1510 page_cache_release(page);
1511 return NOPAGE_SIGBUS;
1513 EXPORT_SYMBOL(filemap_nopage);
1515 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1518 struct address_space *mapping = file->f_mapping;
1523 * Do we have something in the page cache already?
1526 page = find_get_page(mapping, pgoff);
1530 goto no_cached_page;
1534 * Ok, found a page in the page cache, now we need to check
1535 * that it's up-to-date.
1537 if (!PageUptodate(page)) {
1539 page_cache_release(page);
1542 goto page_not_uptodate;
1547 * Found the page and have a reference on it.
1549 mark_page_accessed(page);
1553 error = page_cache_read(file, pgoff);
1556 * The page we want has now been added to the page cache.
1557 * In the unlikely event that someone removed it in the
1558 * meantime, we'll just come back here and read it again.
1564 * An error return from page_cache_read can result if the
1565 * system is low on memory, or a problem occurs while trying
1573 /* Did it get truncated while we waited for it? */
1574 if (!page->mapping) {
1579 /* Did somebody else get it up-to-date? */
1580 if (PageUptodate(page)) {
1585 error = mapping->a_ops->readpage(file, page);
1587 wait_on_page_locked(page);
1588 if (PageUptodate(page))
1590 } else if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
1596 * Umm, take care of errors if the page isn't up-to-date.
1597 * Try to re-read it _once_. We do this synchronously,
1598 * because there really aren't any performance issues here
1599 * and we need to check for errors.
1603 /* Somebody truncated the page on us? */
1604 if (!page->mapping) {
1608 /* Somebody else successfully read it in? */
1609 if (PageUptodate(page)) {
1614 ClearPageError(page);
1615 error = mapping->a_ops->readpage(file, page);
1617 wait_on_page_locked(page);
1618 if (PageUptodate(page))
1620 } else if (error == AOP_TRUNCATED_PAGE) {
1621 page_cache_release(page);
1626 * Things didn't work out. Return zero to tell the
1627 * mm layer so, possibly freeing the page cache page first.
1630 page_cache_release(page);
1635 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1636 unsigned long len, pgprot_t prot, unsigned long pgoff,
1639 struct file *file = vma->vm_file;
1640 struct address_space *mapping = file->f_mapping;
1641 struct inode *inode = mapping->host;
1643 struct mm_struct *mm = vma->vm_mm;
1648 force_page_cache_readahead(mapping, vma->vm_file,
1649 pgoff, len >> PAGE_CACHE_SHIFT);
1652 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1653 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1656 page = filemap_getpage(file, pgoff, nonblock);
1658 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1659 * done in shmem_populate calling shmem_getpage */
1660 if (!page && !nonblock)
1664 err = install_page(mm, vma, addr, page, prot);
1666 page_cache_release(page);
1669 } else if (vma->vm_flags & VM_NONLINEAR) {
1670 /* No page was found just because we can't read it in now (being
1671 * here implies nonblock != 0), but the page may exist, so set
1672 * the PTE to fault it in later. */
1673 err = install_file_pte(mm, vma, addr, pgoff, prot);
1686 EXPORT_SYMBOL(filemap_populate);
1688 struct vm_operations_struct generic_file_vm_ops = {
1689 .nopage = filemap_nopage,
1690 .populate = filemap_populate,
1693 /* This is used for a general mmap of a disk file */
1695 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1697 struct address_space *mapping = file->f_mapping;
1699 if (!mapping->a_ops->readpage)
1701 file_accessed(file);
1702 vma->vm_ops = &generic_file_vm_ops;
1707 * This is for filesystems which do not implement ->writepage.
1709 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1711 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1713 return generic_file_mmap(file, vma);
1716 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1720 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1724 #endif /* CONFIG_MMU */
1726 EXPORT_SYMBOL(generic_file_mmap);
1727 EXPORT_SYMBOL(generic_file_readonly_mmap);
1729 static inline struct page *__read_cache_page(struct address_space *mapping,
1730 unsigned long index,
1731 int (*filler)(void *,struct page*),
1734 struct page *page, *cached_page = NULL;
1737 page = find_get_page(mapping, index);
1740 cached_page = page_cache_alloc_cold(mapping);
1742 return ERR_PTR(-ENOMEM);
1744 err = add_to_page_cache_lru(cached_page, mapping,
1749 /* Presumably ENOMEM for radix tree node */
1750 page_cache_release(cached_page);
1751 return ERR_PTR(err);
1755 err = filler(data, page);
1757 page_cache_release(page);
1758 page = ERR_PTR(err);
1762 page_cache_release(cached_page);
1767 * read_cache_page - read into page cache, fill it if needed
1768 * @mapping: the page's address_space
1769 * @index: the page index
1770 * @filler: function to perform the read
1771 * @data: destination for read data
1773 * Read into the page cache. If a page already exists,
1774 * and PageUptodate() is not set, try to fill the page.
1776 struct page *read_cache_page(struct address_space *mapping,
1777 unsigned long index,
1778 int (*filler)(void *,struct page*),
1785 page = __read_cache_page(mapping, index, filler, data);
1788 mark_page_accessed(page);
1789 if (PageUptodate(page))
1793 if (!page->mapping) {
1795 page_cache_release(page);
1798 if (PageUptodate(page)) {
1802 err = filler(data, page);
1804 page_cache_release(page);
1805 page = ERR_PTR(err);
1810 EXPORT_SYMBOL(read_cache_page);
1813 * If the page was newly created, increment its refcount and add it to the
1814 * caller's lru-buffering pagevec. This function is specifically for
1815 * generic_file_write().
1817 static inline struct page *
1818 __grab_cache_page(struct address_space *mapping, unsigned long index,
1819 struct page **cached_page, struct pagevec *lru_pvec)
1824 page = find_lock_page(mapping, index);
1826 if (!*cached_page) {
1827 *cached_page = page_cache_alloc(mapping);
1831 err = add_to_page_cache(*cached_page, mapping,
1836 page = *cached_page;
1837 page_cache_get(page);
1838 if (!pagevec_add(lru_pvec, page))
1839 __pagevec_lru_add(lru_pvec);
1840 *cached_page = NULL;
1847 * The logic we want is
1849 * if suid or (sgid and xgrp)
1852 int should_remove_suid(struct dentry *dentry)
1854 mode_t mode = dentry->d_inode->i_mode;
1857 /* suid always must be killed */
1858 if (unlikely(mode & S_ISUID))
1859 kill = ATTR_KILL_SUID;
1862 * sgid without any exec bits is just a mandatory locking mark; leave
1863 * it alone. If some exec bits are set, it's a real sgid; kill it.
1865 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866 kill |= ATTR_KILL_SGID;
1868 if (unlikely(kill && !capable(CAP_FSETID)))
1873 EXPORT_SYMBOL(should_remove_suid);
1875 int __remove_suid(struct dentry *dentry, int kill)
1877 struct iattr newattrs;
1879 newattrs.ia_valid = ATTR_FORCE | kill;
1880 return notify_change(dentry, &newattrs);
1883 int remove_suid(struct dentry *dentry)
1885 int kill = should_remove_suid(dentry);
1888 return __remove_suid(dentry, kill);
1892 EXPORT_SYMBOL(remove_suid);
1895 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1896 const struct iovec *iov, size_t base, size_t bytes)
1898 size_t copied = 0, left = 0;
1901 char __user *buf = iov->iov_base + base;
1902 int copy = min(bytes, iov->iov_len - base);
1905 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1914 return copied - left;
1918 * Performs necessary checks before doing a write
1920 * Can adjust writing position or amount of bytes to write.
1921 * Returns appropriate error code that caller should return or
1922 * zero in case that write should be allowed.
1924 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1926 struct inode *inode = file->f_mapping->host;
1927 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1929 if (unlikely(*pos < 0))
1933 /* FIXME: this is for backwards compatibility with 2.4 */
1934 if (file->f_flags & O_APPEND)
1935 *pos = i_size_read(inode);
1937 if (limit != RLIM_INFINITY) {
1938 if (*pos >= limit) {
1939 send_sig(SIGXFSZ, current, 0);
1942 if (*count > limit - (typeof(limit))*pos) {
1943 *count = limit - (typeof(limit))*pos;
1951 if (unlikely(*pos + *count > MAX_NON_LFS &&
1952 !(file->f_flags & O_LARGEFILE))) {
1953 if (*pos >= MAX_NON_LFS) {
1954 send_sig(SIGXFSZ, current, 0);
1957 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1958 *count = MAX_NON_LFS - (unsigned long)*pos;
1963 * Are we about to exceed the fs block limit ?
1965 * If we have written data it becomes a short write. If we have
1966 * exceeded without writing data we send a signal and return EFBIG.
1967 * Linus frestrict idea will clean these up nicely..
1969 if (likely(!isblk)) {
1970 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1971 if (*count || *pos > inode->i_sb->s_maxbytes) {
1972 send_sig(SIGXFSZ, current, 0);
1975 /* zero-length writes at ->s_maxbytes are OK */
1978 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1979 *count = inode->i_sb->s_maxbytes - *pos;
1983 if (bdev_read_only(I_BDEV(inode)))
1985 isize = i_size_read(inode);
1986 if (*pos >= isize) {
1987 if (*count || *pos > isize)
1991 if (*pos + *count > isize)
1992 *count = isize - *pos;
1999 EXPORT_SYMBOL(generic_write_checks);
2002 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2003 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2004 size_t count, size_t ocount)
2006 struct file *file = iocb->ki_filp;
2007 struct address_space *mapping = file->f_mapping;
2008 struct inode *inode = mapping->host;
2011 if (count != ocount)
2012 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2014 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2016 loff_t end = pos + written;
2017 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2018 i_size_write(inode, end);
2019 mark_inode_dirty(inode);
2025 * Sync the fs metadata but not the minor inode changes and
2026 * of course not the data as we did direct DMA for the IO.
2027 * i_mutex is held, which protects generic_osync_inode() from
2028 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2030 if ((written >= 0 || written == -EIOCBQUEUED) &&
2031 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2032 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2038 EXPORT_SYMBOL(generic_file_direct_write);
2041 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2042 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2043 size_t count, ssize_t written)
2045 struct file *file = iocb->ki_filp;
2046 struct address_space * mapping = file->f_mapping;
2047 const struct address_space_operations *a_ops = mapping->a_ops;
2048 struct inode *inode = mapping->host;
2051 struct page *cached_page = NULL;
2053 struct pagevec lru_pvec;
2054 const struct iovec *cur_iov = iov; /* current iovec */
2055 size_t iov_base = 0; /* offset in the current iovec */
2058 pagevec_init(&lru_pvec, 0);
2061 * handle partial DIO write. Adjust cur_iov if needed.
2063 if (likely(nr_segs == 1))
2064 buf = iov->iov_base + written;
2066 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2067 buf = cur_iov->iov_base + iov_base;
2071 unsigned long index;
2072 unsigned long offset;
2075 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2076 index = pos >> PAGE_CACHE_SHIFT;
2077 bytes = PAGE_CACHE_SIZE - offset;
2079 /* Limit the size of the copy to the caller's write size */
2080 bytes = min(bytes, count);
2082 /* We only need to worry about prefaulting when writes are from
2083 * user-space. NFSd uses vfs_writev with several non-aligned
2084 * segments in the vector, and limiting to one segment a time is
2085 * a noticeable performance for re-write
2087 if (!segment_eq(get_fs(), KERNEL_DS)) {
2089 * Limit the size of the copy to that of the current
2090 * segment, because fault_in_pages_readable() doesn't
2091 * know how to walk segments.
2093 bytes = min(bytes, cur_iov->iov_len - iov_base);
2096 * Bring in the user page that we will copy from
2097 * _first_. Otherwise there's a nasty deadlock on
2098 * copying from the same page as we're writing to,
2099 * without it being marked up-to-date.
2101 fault_in_pages_readable(buf, bytes);
2103 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2109 if (unlikely(bytes == 0)) {
2112 goto zero_length_segment;
2115 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2116 if (unlikely(status)) {
2117 loff_t isize = i_size_read(inode);
2119 if (status != AOP_TRUNCATED_PAGE)
2121 page_cache_release(page);
2122 if (status == AOP_TRUNCATED_PAGE)
2125 * prepare_write() may have instantiated a few blocks
2126 * outside i_size. Trim these off again.
2128 if (pos + bytes > isize)
2129 vmtruncate(inode, isize);
2132 if (likely(nr_segs == 1))
2133 copied = filemap_copy_from_user(page, offset,
2136 copied = filemap_copy_from_user_iovec(page, offset,
2137 cur_iov, iov_base, bytes);
2138 flush_dcache_page(page);
2139 status = a_ops->commit_write(file, page, offset, offset+bytes);
2140 if (status == AOP_TRUNCATED_PAGE) {
2141 page_cache_release(page);
2144 zero_length_segment:
2145 if (likely(copied >= 0)) {
2154 if (unlikely(nr_segs > 1)) {
2155 filemap_set_next_iovec(&cur_iov,
2158 buf = cur_iov->iov_base +
2165 if (unlikely(copied != bytes))
2169 mark_page_accessed(page);
2170 page_cache_release(page);
2173 balance_dirty_pages_ratelimited(mapping);
2179 page_cache_release(cached_page);
2182 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2184 if (likely(status >= 0)) {
2185 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2186 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2187 status = generic_osync_inode(inode, mapping,
2188 OSYNC_METADATA|OSYNC_DATA);
2193 * If we get here for O_DIRECT writes then we must have fallen through
2194 * to buffered writes (block instantiation inside i_size). So we sync
2195 * the file data here, to try to honour O_DIRECT expectations.
2197 if (unlikely(file->f_flags & O_DIRECT) && written)
2198 status = filemap_write_and_wait(mapping);
2200 pagevec_lru_add(&lru_pvec);
2201 return written ? written : status;
2203 EXPORT_SYMBOL(generic_file_buffered_write);
2206 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2207 unsigned long nr_segs, loff_t *ppos)
2209 struct file *file = iocb->ki_filp;
2210 struct address_space * mapping = file->f_mapping;
2211 size_t ocount; /* original count */
2212 size_t count; /* after file limit checks */
2213 struct inode *inode = mapping->host;
2220 for (seg = 0; seg < nr_segs; seg++) {
2221 const struct iovec *iv = &iov[seg];
2224 * If any segment has a negative length, or the cumulative
2225 * length ever wraps negative then return -EINVAL.
2227 ocount += iv->iov_len;
2228 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2230 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2235 ocount -= iv->iov_len; /* This segment is no good */
2242 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2244 /* We can write back this queue in page reclaim */
2245 current->backing_dev_info = mapping->backing_dev_info;
2248 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2255 err = remove_suid(file->f_path.dentry);
2259 file_update_time(file);
2261 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2262 if (unlikely(file->f_flags & O_DIRECT)) {
2264 ssize_t written_buffered;
2266 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2267 ppos, count, ocount);
2268 if (written < 0 || written == count)
2271 * direct-io write to a hole: fall through to buffered I/O
2272 * for completing the rest of the request.
2276 written_buffered = generic_file_buffered_write(iocb, iov,
2277 nr_segs, pos, ppos, count,
2280 * If generic_file_buffered_write() retuned a synchronous error
2281 * then we want to return the number of bytes which were
2282 * direct-written, or the error code if that was zero. Note
2283 * that this differs from normal direct-io semantics, which
2284 * will return -EFOO even if some bytes were written.
2286 if (written_buffered < 0) {
2287 err = written_buffered;
2292 * We need to ensure that the page cache pages are written to
2293 * disk and invalidated to preserve the expected O_DIRECT
2296 endbyte = pos + written_buffered - written - 1;
2297 err = do_sync_file_range(file, pos, endbyte,
2298 SYNC_FILE_RANGE_WAIT_BEFORE|
2299 SYNC_FILE_RANGE_WRITE|
2300 SYNC_FILE_RANGE_WAIT_AFTER);
2302 written = written_buffered;
2303 invalidate_mapping_pages(mapping,
2304 pos >> PAGE_CACHE_SHIFT,
2305 endbyte >> PAGE_CACHE_SHIFT);
2308 * We don't know how much we wrote, so just return
2309 * the number of bytes which were direct-written
2313 written = generic_file_buffered_write(iocb, iov, nr_segs,
2314 pos, ppos, count, written);
2317 current->backing_dev_info = NULL;
2318 return written ? written : err;
2321 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2322 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2324 struct file *file = iocb->ki_filp;
2325 struct address_space *mapping = file->f_mapping;
2326 struct inode *inode = mapping->host;
2329 BUG_ON(iocb->ki_pos != pos);
2331 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2334 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2337 err = sync_page_range_nolock(inode, mapping, pos, ret);
2343 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2345 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2346 unsigned long nr_segs, loff_t pos)
2348 struct file *file = iocb->ki_filp;
2349 struct address_space *mapping = file->f_mapping;
2350 struct inode *inode = mapping->host;
2353 BUG_ON(iocb->ki_pos != pos);
2355 mutex_lock(&inode->i_mutex);
2356 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2358 mutex_unlock(&inode->i_mutex);
2360 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2363 err = sync_page_range(inode, mapping, pos, ret);
2369 EXPORT_SYMBOL(generic_file_aio_write);
2372 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2373 * went wrong during pagecache shootdown.
2376 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2377 loff_t offset, unsigned long nr_segs)
2379 struct file *file = iocb->ki_filp;
2380 struct address_space *mapping = file->f_mapping;
2383 pgoff_t end = 0; /* silence gcc */
2386 * If it's a write, unmap all mmappings of the file up-front. This
2387 * will cause any pte dirty bits to be propagated into the pageframes
2388 * for the subsequent filemap_write_and_wait().
2391 write_len = iov_length(iov, nr_segs);
2392 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2393 if (mapping_mapped(mapping))
2394 unmap_mapping_range(mapping, offset, write_len, 0);
2397 retval = filemap_write_and_wait(mapping);
2402 * After a write we want buffered reads to be sure to go to disk to get
2403 * the new data. We invalidate clean cached page from the region we're
2404 * about to write. We do this *before* the write so that we can return
2405 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2407 if (rw == WRITE && mapping->nrpages) {
2408 retval = invalidate_inode_pages2_range(mapping,
2409 offset >> PAGE_CACHE_SHIFT, end);
2414 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2419 * Finally, try again to invalidate clean pages which might have been
2420 * faulted in by get_user_pages() if the source of the write was an
2421 * mmap()ed region of the file we're writing. That's a pretty crazy
2422 * thing to do, so we don't support it 100%. If this invalidation
2423 * fails and we have -EIOCBQUEUED we ignore the failure.
2425 if (rw == WRITE && mapping->nrpages) {
2426 int err = invalidate_inode_pages2_range(mapping,
2427 offset >> PAGE_CACHE_SHIFT, end);
2428 if (err && retval >= 0)
2436 * try_to_release_page() - release old fs-specific metadata on a page
2438 * @page: the page which the kernel is trying to free
2439 * @gfp_mask: memory allocation flags (and I/O mode)
2441 * The address_space is to try to release any data against the page
2442 * (presumably at page->private). If the release was successful, return `1'.
2443 * Otherwise return zero.
2445 * The @gfp_mask argument specifies whether I/O may be performed to release
2446 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2448 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2450 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2452 struct address_space * const mapping = page->mapping;
2454 BUG_ON(!PageLocked(page));
2455 if (PageWriteback(page))
2458 if (mapping && mapping->a_ops->releasepage)
2459 return mapping->a_ops->releasepage(page, gfp_mask);
2460 return try_to_free_buffers(page);
2463 EXPORT_SYMBOL(try_to_release_page);