Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / ppp_generic.c
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/netdevice.h>
31 #include <linux/poll.h>
32 #include <linux/ppp_defs.h>
33 #include <linux/filter.h>
34 #include <linux/if_ppp.h>
35 #include <linux/ppp_channel.h>
36 #include <linux/ppp-comp.h>
37 #include <linux/skbuff.h>
38 #include <linux/rtnetlink.h>
39 #include <linux/if_arp.h>
40 #include <linux/ip.h>
41 #include <linux/tcp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <net/slhc_vj.h>
49 #include <asm/atomic.h>
50
51 #define PPP_VERSION     "2.4.2"
52
53 /*
54  * Network protocols we support.
55  */
56 #define NP_IP   0               /* Internet Protocol V4 */
57 #define NP_IPV6 1               /* Internet Protocol V6 */
58 #define NP_IPX  2               /* IPX protocol */
59 #define NP_AT   3               /* Appletalk protocol */
60 #define NP_MPLS_UC 4            /* MPLS unicast */
61 #define NP_MPLS_MC 5            /* MPLS multicast */
62 #define NUM_NP  6               /* Number of NPs. */
63
64 #define MPHDRLEN        6       /* multilink protocol header length */
65 #define MPHDRLEN_SSN    4       /* ditto with short sequence numbers */
66 #define MIN_FRAG_SIZE   64
67
68 /*
69  * An instance of /dev/ppp can be associated with either a ppp
70  * interface unit or a ppp channel.  In both cases, file->private_data
71  * points to one of these.
72  */
73 struct ppp_file {
74         enum {
75                 INTERFACE=1, CHANNEL
76         }               kind;
77         struct sk_buff_head xq;         /* pppd transmit queue */
78         struct sk_buff_head rq;         /* receive queue for pppd */
79         wait_queue_head_t rwait;        /* for poll on reading /dev/ppp */
80         atomic_t        refcnt;         /* # refs (incl /dev/ppp attached) */
81         int             hdrlen;         /* space to leave for headers */
82         int             index;          /* interface unit / channel number */
83         int             dead;           /* unit/channel has been shut down */
84 };
85
86 #define PF_TO_X(pf, X)          container_of(pf, X, file)
87
88 #define PF_TO_PPP(pf)           PF_TO_X(pf, struct ppp)
89 #define PF_TO_CHANNEL(pf)       PF_TO_X(pf, struct channel)
90
91 /*
92  * Data structure describing one ppp unit.
93  * A ppp unit corresponds to a ppp network interface device
94  * and represents a multilink bundle.
95  * It can have 0 or more ppp channels connected to it.
96  */
97 struct ppp {
98         struct ppp_file file;           /* stuff for read/write/poll 0 */
99         struct file     *owner;         /* file that owns this unit 48 */
100         struct list_head channels;      /* list of attached channels 4c */
101         int             n_channels;     /* how many channels are attached 54 */
102         spinlock_t      rlock;          /* lock for receive side 58 */
103         spinlock_t      wlock;          /* lock for transmit side 5c */
104         int             mru;            /* max receive unit 60 */
105         unsigned int    flags;          /* control bits 64 */
106         unsigned int    xstate;         /* transmit state bits 68 */
107         unsigned int    rstate;         /* receive state bits 6c */
108         int             debug;          /* debug flags 70 */
109         struct slcompress *vj;          /* state for VJ header compression */
110         enum NPmode     npmode[NUM_NP]; /* what to do with each net proto 78 */
111         struct sk_buff  *xmit_pending;  /* a packet ready to go out 88 */
112         struct compressor *xcomp;       /* transmit packet compressor 8c */
113         void            *xc_state;      /* its internal state 90 */
114         struct compressor *rcomp;       /* receive decompressor 94 */
115         void            *rc_state;      /* its internal state 98 */
116         unsigned long   last_xmit;      /* jiffies when last pkt sent 9c */
117         unsigned long   last_recv;      /* jiffies when last pkt rcvd a0 */
118         struct net_device *dev;         /* network interface device a4 */
119 #ifdef CONFIG_PPP_MULTILINK
120         int             nxchan;         /* next channel to send something on */
121         u32             nxseq;          /* next sequence number to send */
122         int             mrru;           /* MP: max reconst. receive unit */
123         u32             nextseq;        /* MP: seq no of next packet */
124         u32             minseq;         /* MP: min of most recent seqnos */
125         struct sk_buff_head mrq;        /* MP: receive reconstruction queue */
126 #endif /* CONFIG_PPP_MULTILINK */
127 #ifdef CONFIG_PPP_FILTER
128         struct sock_filter *pass_filter;        /* filter for packets to pass */
129         struct sock_filter *active_filter;/* filter for pkts to reset idle */
130         unsigned pass_len, active_len;
131 #endif /* CONFIG_PPP_FILTER */
132 };
133
134 /*
135  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
136  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
137  * SC_MUST_COMP
138  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
139  * Bits in xstate: SC_COMP_RUN
140  */
141 #define SC_FLAG_BITS    (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
142                          |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
143                          |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
144
145 /*
146  * Private data structure for each channel.
147  * This includes the data structure used for multilink.
148  */
149 struct channel {
150         struct ppp_file file;           /* stuff for read/write/poll */
151         struct list_head list;          /* link in all/new_channels list */
152         struct ppp_channel *chan;       /* public channel data structure */
153         struct rw_semaphore chan_sem;   /* protects `chan' during chan ioctl */
154         spinlock_t      downl;          /* protects `chan', file.xq dequeue */
155         struct ppp      *ppp;           /* ppp unit we're connected to */
156         struct list_head clist;         /* link in list of channels per unit */
157         rwlock_t        upl;            /* protects `ppp' */
158 #ifdef CONFIG_PPP_MULTILINK
159         u8              avail;          /* flag used in multilink stuff */
160         u8              had_frag;       /* >= 1 fragments have been sent */
161         u32             lastseq;        /* MP: last sequence # received */
162 #endif /* CONFIG_PPP_MULTILINK */
163 };
164
165 /*
166  * SMP locking issues:
167  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
168  * list and the ppp.n_channels field, you need to take both locks
169  * before you modify them.
170  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
171  * channel.downl.
172  */
173
174 /*
175  * A cardmap represents a mapping from unsigned integers to pointers,
176  * and provides a fast "find lowest unused number" operation.
177  * It uses a broad (32-way) tree with a bitmap at each level.
178  * It is designed to be space-efficient for small numbers of entries
179  * and time-efficient for large numbers of entries.
180  */
181 #define CARDMAP_ORDER   5
182 #define CARDMAP_WIDTH   (1U << CARDMAP_ORDER)
183 #define CARDMAP_MASK    (CARDMAP_WIDTH - 1)
184
185 struct cardmap {
186         int shift;
187         unsigned long inuse;
188         struct cardmap *parent;
189         void *ptr[CARDMAP_WIDTH];
190 };
191 static void *cardmap_get(struct cardmap *map, unsigned int nr);
192 static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr);
193 static unsigned int cardmap_find_first_free(struct cardmap *map);
194 static void cardmap_destroy(struct cardmap **map);
195
196 /*
197  * all_ppp_mutex protects the all_ppp_units mapping.
198  * It also ensures that finding a ppp unit in the all_ppp_units map
199  * and updating its file.refcnt field is atomic.
200  */
201 static DEFINE_MUTEX(all_ppp_mutex);
202 static struct cardmap *all_ppp_units;
203 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
204
205 /*
206  * all_channels_lock protects all_channels and last_channel_index,
207  * and the atomicity of find a channel and updating its file.refcnt
208  * field.
209  */
210 static DEFINE_SPINLOCK(all_channels_lock);
211 static LIST_HEAD(all_channels);
212 static LIST_HEAD(new_channels);
213 static int last_channel_index;
214 static atomic_t channel_count = ATOMIC_INIT(0);
215
216 /* Get the PPP protocol number from a skb */
217 #define PPP_PROTO(skb)  (((skb)->data[0] << 8) + (skb)->data[1])
218
219 /* We limit the length of ppp->file.rq to this (arbitrary) value */
220 #define PPP_MAX_RQLEN   32
221
222 /*
223  * Maximum number of multilink fragments queued up.
224  * This has to be large enough to cope with the maximum latency of
225  * the slowest channel relative to the others.  Strictly it should
226  * depend on the number of channels and their characteristics.
227  */
228 #define PPP_MP_MAX_QLEN 128
229
230 /* Multilink header bits. */
231 #define B       0x80            /* this fragment begins a packet */
232 #define E       0x40            /* this fragment ends a packet */
233
234 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
235 #define seq_before(a, b)        ((s32)((a) - (b)) < 0)
236 #define seq_after(a, b)         ((s32)((a) - (b)) > 0)
237
238 /* Prototypes. */
239 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
240                                 unsigned int cmd, unsigned long arg);
241 static void ppp_xmit_process(struct ppp *ppp);
242 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
243 static void ppp_push(struct ppp *ppp);
244 static void ppp_channel_push(struct channel *pch);
245 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
246                               struct channel *pch);
247 static void ppp_receive_error(struct ppp *ppp);
248 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
249 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
250                                             struct sk_buff *skb);
251 #ifdef CONFIG_PPP_MULTILINK
252 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
253                                 struct channel *pch);
254 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
255 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
256 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
257 #endif /* CONFIG_PPP_MULTILINK */
258 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
259 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
260 static void ppp_ccp_closed(struct ppp *ppp);
261 static struct compressor *find_compressor(int type);
262 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
263 static struct ppp *ppp_create_interface(int unit, int *retp);
264 static void init_ppp_file(struct ppp_file *pf, int kind);
265 static void ppp_shutdown_interface(struct ppp *ppp);
266 static void ppp_destroy_interface(struct ppp *ppp);
267 static struct ppp *ppp_find_unit(int unit);
268 static struct channel *ppp_find_channel(int unit);
269 static int ppp_connect_channel(struct channel *pch, int unit);
270 static int ppp_disconnect_channel(struct channel *pch);
271 static void ppp_destroy_channel(struct channel *pch);
272
273 static struct class *ppp_class;
274
275 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
276 static inline int proto_to_npindex(int proto)
277 {
278         switch (proto) {
279         case PPP_IP:
280                 return NP_IP;
281         case PPP_IPV6:
282                 return NP_IPV6;
283         case PPP_IPX:
284                 return NP_IPX;
285         case PPP_AT:
286                 return NP_AT;
287         case PPP_MPLS_UC:
288                 return NP_MPLS_UC;
289         case PPP_MPLS_MC:
290                 return NP_MPLS_MC;
291         }
292         return -EINVAL;
293 }
294
295 /* Translates an NP index into a PPP protocol number */
296 static const int npindex_to_proto[NUM_NP] = {
297         PPP_IP,
298         PPP_IPV6,
299         PPP_IPX,
300         PPP_AT,
301         PPP_MPLS_UC,
302         PPP_MPLS_MC,
303 };
304
305 /* Translates an ethertype into an NP index */
306 static inline int ethertype_to_npindex(int ethertype)
307 {
308         switch (ethertype) {
309         case ETH_P_IP:
310                 return NP_IP;
311         case ETH_P_IPV6:
312                 return NP_IPV6;
313         case ETH_P_IPX:
314                 return NP_IPX;
315         case ETH_P_PPPTALK:
316         case ETH_P_ATALK:
317                 return NP_AT;
318         case ETH_P_MPLS_UC:
319                 return NP_MPLS_UC;
320         case ETH_P_MPLS_MC:
321                 return NP_MPLS_MC;
322         }
323         return -1;
324 }
325
326 /* Translates an NP index into an ethertype */
327 static const int npindex_to_ethertype[NUM_NP] = {
328         ETH_P_IP,
329         ETH_P_IPV6,
330         ETH_P_IPX,
331         ETH_P_PPPTALK,
332         ETH_P_MPLS_UC,
333         ETH_P_MPLS_MC,
334 };
335
336 /*
337  * Locking shorthand.
338  */
339 #define ppp_xmit_lock(ppp)      spin_lock_bh(&(ppp)->wlock)
340 #define ppp_xmit_unlock(ppp)    spin_unlock_bh(&(ppp)->wlock)
341 #define ppp_recv_lock(ppp)      spin_lock_bh(&(ppp)->rlock)
342 #define ppp_recv_unlock(ppp)    spin_unlock_bh(&(ppp)->rlock)
343 #define ppp_lock(ppp)           do { ppp_xmit_lock(ppp); \
344                                      ppp_recv_lock(ppp); } while (0)
345 #define ppp_unlock(ppp)         do { ppp_recv_unlock(ppp); \
346                                      ppp_xmit_unlock(ppp); } while (0)
347
348 /*
349  * /dev/ppp device routines.
350  * The /dev/ppp device is used by pppd to control the ppp unit.
351  * It supports the read, write, ioctl and poll functions.
352  * Open instances of /dev/ppp can be in one of three states:
353  * unattached, attached to a ppp unit, or attached to a ppp channel.
354  */
355 static int ppp_open(struct inode *inode, struct file *file)
356 {
357         cycle_kernel_lock();
358         /*
359          * This could (should?) be enforced by the permissions on /dev/ppp.
360          */
361         if (!capable(CAP_NET_ADMIN))
362                 return -EPERM;
363         return 0;
364 }
365
366 static int ppp_release(struct inode *unused, struct file *file)
367 {
368         struct ppp_file *pf = file->private_data;
369         struct ppp *ppp;
370
371         if (pf) {
372                 file->private_data = NULL;
373                 if (pf->kind == INTERFACE) {
374                         ppp = PF_TO_PPP(pf);
375                         if (file == ppp->owner)
376                                 ppp_shutdown_interface(ppp);
377                 }
378                 if (atomic_dec_and_test(&pf->refcnt)) {
379                         switch (pf->kind) {
380                         case INTERFACE:
381                                 ppp_destroy_interface(PF_TO_PPP(pf));
382                                 break;
383                         case CHANNEL:
384                                 ppp_destroy_channel(PF_TO_CHANNEL(pf));
385                                 break;
386                         }
387                 }
388         }
389         return 0;
390 }
391
392 static ssize_t ppp_read(struct file *file, char __user *buf,
393                         size_t count, loff_t *ppos)
394 {
395         struct ppp_file *pf = file->private_data;
396         DECLARE_WAITQUEUE(wait, current);
397         ssize_t ret;
398         struct sk_buff *skb = NULL;
399
400         ret = count;
401
402         if (!pf)
403                 return -ENXIO;
404         add_wait_queue(&pf->rwait, &wait);
405         for (;;) {
406                 set_current_state(TASK_INTERRUPTIBLE);
407                 skb = skb_dequeue(&pf->rq);
408                 if (skb)
409                         break;
410                 ret = 0;
411                 if (pf->dead)
412                         break;
413                 if (pf->kind == INTERFACE) {
414                         /*
415                          * Return 0 (EOF) on an interface that has no
416                          * channels connected, unless it is looping
417                          * network traffic (demand mode).
418                          */
419                         struct ppp *ppp = PF_TO_PPP(pf);
420                         if (ppp->n_channels == 0
421                             && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
422                                 break;
423                 }
424                 ret = -EAGAIN;
425                 if (file->f_flags & O_NONBLOCK)
426                         break;
427                 ret = -ERESTARTSYS;
428                 if (signal_pending(current))
429                         break;
430                 schedule();
431         }
432         set_current_state(TASK_RUNNING);
433         remove_wait_queue(&pf->rwait, &wait);
434
435         if (!skb)
436                 goto out;
437
438         ret = -EOVERFLOW;
439         if (skb->len > count)
440                 goto outf;
441         ret = -EFAULT;
442         if (copy_to_user(buf, skb->data, skb->len))
443                 goto outf;
444         ret = skb->len;
445
446  outf:
447         kfree_skb(skb);
448  out:
449         return ret;
450 }
451
452 static ssize_t ppp_write(struct file *file, const char __user *buf,
453                          size_t count, loff_t *ppos)
454 {
455         struct ppp_file *pf = file->private_data;
456         struct sk_buff *skb;
457         ssize_t ret;
458
459         if (!pf)
460                 return -ENXIO;
461         ret = -ENOMEM;
462         skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
463         if (!skb)
464                 goto out;
465         skb_reserve(skb, pf->hdrlen);
466         ret = -EFAULT;
467         if (copy_from_user(skb_put(skb, count), buf, count)) {
468                 kfree_skb(skb);
469                 goto out;
470         }
471
472         skb_queue_tail(&pf->xq, skb);
473
474         switch (pf->kind) {
475         case INTERFACE:
476                 ppp_xmit_process(PF_TO_PPP(pf));
477                 break;
478         case CHANNEL:
479                 ppp_channel_push(PF_TO_CHANNEL(pf));
480                 break;
481         }
482
483         ret = count;
484
485  out:
486         return ret;
487 }
488
489 /* No kernel lock - fine */
490 static unsigned int ppp_poll(struct file *file, poll_table *wait)
491 {
492         struct ppp_file *pf = file->private_data;
493         unsigned int mask;
494
495         if (!pf)
496                 return 0;
497         poll_wait(file, &pf->rwait, wait);
498         mask = POLLOUT | POLLWRNORM;
499         if (skb_peek(&pf->rq))
500                 mask |= POLLIN | POLLRDNORM;
501         if (pf->dead)
502                 mask |= POLLHUP;
503         else if (pf->kind == INTERFACE) {
504                 /* see comment in ppp_read */
505                 struct ppp *ppp = PF_TO_PPP(pf);
506                 if (ppp->n_channels == 0
507                     && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
508                         mask |= POLLIN | POLLRDNORM;
509         }
510
511         return mask;
512 }
513
514 #ifdef CONFIG_PPP_FILTER
515 static int get_filter(void __user *arg, struct sock_filter **p)
516 {
517         struct sock_fprog uprog;
518         struct sock_filter *code = NULL;
519         int len, err;
520
521         if (copy_from_user(&uprog, arg, sizeof(uprog)))
522                 return -EFAULT;
523
524         if (!uprog.len) {
525                 *p = NULL;
526                 return 0;
527         }
528
529         len = uprog.len * sizeof(struct sock_filter);
530         code = kmalloc(len, GFP_KERNEL);
531         if (code == NULL)
532                 return -ENOMEM;
533
534         if (copy_from_user(code, uprog.filter, len)) {
535                 kfree(code);
536                 return -EFAULT;
537         }
538
539         err = sk_chk_filter(code, uprog.len);
540         if (err) {
541                 kfree(code);
542                 return err;
543         }
544
545         *p = code;
546         return uprog.len;
547 }
548 #endif /* CONFIG_PPP_FILTER */
549
550 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
551 {
552         struct ppp_file *pf = file->private_data;
553         struct ppp *ppp;
554         int err = -EFAULT, val, val2, i;
555         struct ppp_idle idle;
556         struct npioctl npi;
557         int unit, cflags;
558         struct slcompress *vj;
559         void __user *argp = (void __user *)arg;
560         int __user *p = argp;
561
562         if (!pf)
563                 return ppp_unattached_ioctl(pf, file, cmd, arg);
564
565         if (cmd == PPPIOCDETACH) {
566                 /*
567                  * We have to be careful here... if the file descriptor
568                  * has been dup'd, we could have another process in the
569                  * middle of a poll using the same file *, so we had
570                  * better not free the interface data structures -
571                  * instead we fail the ioctl.  Even in this case, we
572                  * shut down the interface if we are the owner of it.
573                  * Actually, we should get rid of PPPIOCDETACH, userland
574                  * (i.e. pppd) could achieve the same effect by closing
575                  * this fd and reopening /dev/ppp.
576                  */
577                 err = -EINVAL;
578                 lock_kernel();
579                 if (pf->kind == INTERFACE) {
580                         ppp = PF_TO_PPP(pf);
581                         if (file == ppp->owner)
582                                 ppp_shutdown_interface(ppp);
583                 }
584                 if (atomic_long_read(&file->f_count) <= 2) {
585                         ppp_release(NULL, file);
586                         err = 0;
587                 } else
588                         printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%ld\n",
589                                atomic_long_read(&file->f_count));
590                 unlock_kernel();
591                 return err;
592         }
593
594         if (pf->kind == CHANNEL) {
595                 struct channel *pch;
596                 struct ppp_channel *chan;
597
598                 lock_kernel();
599                 pch = PF_TO_CHANNEL(pf);
600
601                 switch (cmd) {
602                 case PPPIOCCONNECT:
603                         if (get_user(unit, p))
604                                 break;
605                         err = ppp_connect_channel(pch, unit);
606                         break;
607
608                 case PPPIOCDISCONN:
609                         err = ppp_disconnect_channel(pch);
610                         break;
611
612                 default:
613                         down_read(&pch->chan_sem);
614                         chan = pch->chan;
615                         err = -ENOTTY;
616                         if (chan && chan->ops->ioctl)
617                                 err = chan->ops->ioctl(chan, cmd, arg);
618                         up_read(&pch->chan_sem);
619                 }
620                 unlock_kernel();
621                 return err;
622         }
623
624         if (pf->kind != INTERFACE) {
625                 /* can't happen */
626                 printk(KERN_ERR "PPP: not interface or channel??\n");
627                 return -EINVAL;
628         }
629
630         lock_kernel();
631         ppp = PF_TO_PPP(pf);
632         switch (cmd) {
633         case PPPIOCSMRU:
634                 if (get_user(val, p))
635                         break;
636                 ppp->mru = val;
637                 err = 0;
638                 break;
639
640         case PPPIOCSFLAGS:
641                 if (get_user(val, p))
642                         break;
643                 ppp_lock(ppp);
644                 cflags = ppp->flags & ~val;
645                 ppp->flags = val & SC_FLAG_BITS;
646                 ppp_unlock(ppp);
647                 if (cflags & SC_CCP_OPEN)
648                         ppp_ccp_closed(ppp);
649                 err = 0;
650                 break;
651
652         case PPPIOCGFLAGS:
653                 val = ppp->flags | ppp->xstate | ppp->rstate;
654                 if (put_user(val, p))
655                         break;
656                 err = 0;
657                 break;
658
659         case PPPIOCSCOMPRESS:
660                 err = ppp_set_compress(ppp, arg);
661                 break;
662
663         case PPPIOCGUNIT:
664                 if (put_user(ppp->file.index, p))
665                         break;
666                 err = 0;
667                 break;
668
669         case PPPIOCSDEBUG:
670                 if (get_user(val, p))
671                         break;
672                 ppp->debug = val;
673                 err = 0;
674                 break;
675
676         case PPPIOCGDEBUG:
677                 if (put_user(ppp->debug, p))
678                         break;
679                 err = 0;
680                 break;
681
682         case PPPIOCGIDLE:
683                 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
684                 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
685                 if (copy_to_user(argp, &idle, sizeof(idle)))
686                         break;
687                 err = 0;
688                 break;
689
690         case PPPIOCSMAXCID:
691                 if (get_user(val, p))
692                         break;
693                 val2 = 15;
694                 if ((val >> 16) != 0) {
695                         val2 = val >> 16;
696                         val &= 0xffff;
697                 }
698                 vj = slhc_init(val2+1, val+1);
699                 if (!vj) {
700                         printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
701                         err = -ENOMEM;
702                         break;
703                 }
704                 ppp_lock(ppp);
705                 if (ppp->vj)
706                         slhc_free(ppp->vj);
707                 ppp->vj = vj;
708                 ppp_unlock(ppp);
709                 err = 0;
710                 break;
711
712         case PPPIOCGNPMODE:
713         case PPPIOCSNPMODE:
714                 if (copy_from_user(&npi, argp, sizeof(npi)))
715                         break;
716                 err = proto_to_npindex(npi.protocol);
717                 if (err < 0)
718                         break;
719                 i = err;
720                 if (cmd == PPPIOCGNPMODE) {
721                         err = -EFAULT;
722                         npi.mode = ppp->npmode[i];
723                         if (copy_to_user(argp, &npi, sizeof(npi)))
724                                 break;
725                 } else {
726                         ppp->npmode[i] = npi.mode;
727                         /* we may be able to transmit more packets now (??) */
728                         netif_wake_queue(ppp->dev);
729                 }
730                 err = 0;
731                 break;
732
733 #ifdef CONFIG_PPP_FILTER
734         case PPPIOCSPASS:
735         {
736                 struct sock_filter *code;
737                 err = get_filter(argp, &code);
738                 if (err >= 0) {
739                         ppp_lock(ppp);
740                         kfree(ppp->pass_filter);
741                         ppp->pass_filter = code;
742                         ppp->pass_len = err;
743                         ppp_unlock(ppp);
744                         err = 0;
745                 }
746                 break;
747         }
748         case PPPIOCSACTIVE:
749         {
750                 struct sock_filter *code;
751                 err = get_filter(argp, &code);
752                 if (err >= 0) {
753                         ppp_lock(ppp);
754                         kfree(ppp->active_filter);
755                         ppp->active_filter = code;
756                         ppp->active_len = err;
757                         ppp_unlock(ppp);
758                         err = 0;
759                 }
760                 break;
761         }
762 #endif /* CONFIG_PPP_FILTER */
763
764 #ifdef CONFIG_PPP_MULTILINK
765         case PPPIOCSMRRU:
766                 if (get_user(val, p))
767                         break;
768                 ppp_recv_lock(ppp);
769                 ppp->mrru = val;
770                 ppp_recv_unlock(ppp);
771                 err = 0;
772                 break;
773 #endif /* CONFIG_PPP_MULTILINK */
774
775         default:
776                 err = -ENOTTY;
777         }
778         unlock_kernel();
779         return err;
780 }
781
782 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
783                                 unsigned int cmd, unsigned long arg)
784 {
785         int unit, err = -EFAULT;
786         struct ppp *ppp;
787         struct channel *chan;
788         int __user *p = (int __user *)arg;
789
790         lock_kernel();
791         switch (cmd) {
792         case PPPIOCNEWUNIT:
793                 /* Create a new ppp unit */
794                 if (get_user(unit, p))
795                         break;
796                 ppp = ppp_create_interface(unit, &err);
797                 if (!ppp)
798                         break;
799                 file->private_data = &ppp->file;
800                 ppp->owner = file;
801                 err = -EFAULT;
802                 if (put_user(ppp->file.index, p))
803                         break;
804                 err = 0;
805                 break;
806
807         case PPPIOCATTACH:
808                 /* Attach to an existing ppp unit */
809                 if (get_user(unit, p))
810                         break;
811                 mutex_lock(&all_ppp_mutex);
812                 err = -ENXIO;
813                 ppp = ppp_find_unit(unit);
814                 if (ppp) {
815                         atomic_inc(&ppp->file.refcnt);
816                         file->private_data = &ppp->file;
817                         err = 0;
818                 }
819                 mutex_unlock(&all_ppp_mutex);
820                 break;
821
822         case PPPIOCATTCHAN:
823                 if (get_user(unit, p))
824                         break;
825                 spin_lock_bh(&all_channels_lock);
826                 err = -ENXIO;
827                 chan = ppp_find_channel(unit);
828                 if (chan) {
829                         atomic_inc(&chan->file.refcnt);
830                         file->private_data = &chan->file;
831                         err = 0;
832                 }
833                 spin_unlock_bh(&all_channels_lock);
834                 break;
835
836         default:
837                 err = -ENOTTY;
838         }
839         unlock_kernel();
840         return err;
841 }
842
843 static const struct file_operations ppp_device_fops = {
844         .owner          = THIS_MODULE,
845         .read           = ppp_read,
846         .write          = ppp_write,
847         .poll           = ppp_poll,
848         .unlocked_ioctl = ppp_ioctl,
849         .open           = ppp_open,
850         .release        = ppp_release
851 };
852
853 #define PPP_MAJOR       108
854
855 /* Called at boot time if ppp is compiled into the kernel,
856    or at module load time (from init_module) if compiled as a module. */
857 static int __init ppp_init(void)
858 {
859         int err;
860
861         printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
862         err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
863         if (!err) {
864                 ppp_class = class_create(THIS_MODULE, "ppp");
865                 if (IS_ERR(ppp_class)) {
866                         err = PTR_ERR(ppp_class);
867                         goto out_chrdev;
868                 }
869                 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL,
870                               "ppp");
871         }
872
873 out:
874         if (err)
875                 printk(KERN_ERR "failed to register PPP device (%d)\n", err);
876         return err;
877
878 out_chrdev:
879         unregister_chrdev(PPP_MAJOR, "ppp");
880         goto out;
881 }
882
883 /*
884  * Network interface unit routines.
885  */
886 static int
887 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
888 {
889         struct ppp *ppp = netdev_priv(dev);
890         int npi, proto;
891         unsigned char *pp;
892
893         npi = ethertype_to_npindex(ntohs(skb->protocol));
894         if (npi < 0)
895                 goto outf;
896
897         /* Drop, accept or reject the packet */
898         switch (ppp->npmode[npi]) {
899         case NPMODE_PASS:
900                 break;
901         case NPMODE_QUEUE:
902                 /* it would be nice to have a way to tell the network
903                    system to queue this one up for later. */
904                 goto outf;
905         case NPMODE_DROP:
906         case NPMODE_ERROR:
907                 goto outf;
908         }
909
910         /* Put the 2-byte PPP protocol number on the front,
911            making sure there is room for the address and control fields. */
912         if (skb_cow_head(skb, PPP_HDRLEN))
913                 goto outf;
914
915         pp = skb_push(skb, 2);
916         proto = npindex_to_proto[npi];
917         pp[0] = proto >> 8;
918         pp[1] = proto;
919
920         netif_stop_queue(dev);
921         skb_queue_tail(&ppp->file.xq, skb);
922         ppp_xmit_process(ppp);
923         return 0;
924
925  outf:
926         kfree_skb(skb);
927         ++ppp->dev->stats.tx_dropped;
928         return 0;
929 }
930
931 static int
932 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
933 {
934         struct ppp *ppp = netdev_priv(dev);
935         int err = -EFAULT;
936         void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
937         struct ppp_stats stats;
938         struct ppp_comp_stats cstats;
939         char *vers;
940
941         switch (cmd) {
942         case SIOCGPPPSTATS:
943                 ppp_get_stats(ppp, &stats);
944                 if (copy_to_user(addr, &stats, sizeof(stats)))
945                         break;
946                 err = 0;
947                 break;
948
949         case SIOCGPPPCSTATS:
950                 memset(&cstats, 0, sizeof(cstats));
951                 if (ppp->xc_state)
952                         ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
953                 if (ppp->rc_state)
954                         ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
955                 if (copy_to_user(addr, &cstats, sizeof(cstats)))
956                         break;
957                 err = 0;
958                 break;
959
960         case SIOCGPPPVER:
961                 vers = PPP_VERSION;
962                 if (copy_to_user(addr, vers, strlen(vers) + 1))
963                         break;
964                 err = 0;
965                 break;
966
967         default:
968                 err = -EINVAL;
969         }
970
971         return err;
972 }
973
974 static const struct net_device_ops ppp_netdev_ops = {
975         .ndo_start_xmit = ppp_start_xmit,
976         .ndo_do_ioctl   = ppp_net_ioctl,
977 };
978
979 static void ppp_setup(struct net_device *dev)
980 {
981         dev->netdev_ops = &ppp_netdev_ops;
982         dev->hard_header_len = PPP_HDRLEN;
983         dev->mtu = PPP_MTU;
984         dev->addr_len = 0;
985         dev->tx_queue_len = 3;
986         dev->type = ARPHRD_PPP;
987         dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
988 }
989
990 /*
991  * Transmit-side routines.
992  */
993
994 /*
995  * Called to do any work queued up on the transmit side
996  * that can now be done.
997  */
998 static void
999 ppp_xmit_process(struct ppp *ppp)
1000 {
1001         struct sk_buff *skb;
1002
1003         ppp_xmit_lock(ppp);
1004         if (ppp->dev) {
1005                 ppp_push(ppp);
1006                 while (!ppp->xmit_pending
1007                        && (skb = skb_dequeue(&ppp->file.xq)))
1008                         ppp_send_frame(ppp, skb);
1009                 /* If there's no work left to do, tell the core net
1010                    code that we can accept some more. */
1011                 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1012                         netif_wake_queue(ppp->dev);
1013         }
1014         ppp_xmit_unlock(ppp);
1015 }
1016
1017 static inline struct sk_buff *
1018 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1019 {
1020         struct sk_buff *new_skb;
1021         int len;
1022         int new_skb_size = ppp->dev->mtu +
1023                 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1024         int compressor_skb_size = ppp->dev->mtu +
1025                 ppp->xcomp->comp_extra + PPP_HDRLEN;
1026         new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1027         if (!new_skb) {
1028                 if (net_ratelimit())
1029                         printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1030                 return NULL;
1031         }
1032         if (ppp->dev->hard_header_len > PPP_HDRLEN)
1033                 skb_reserve(new_skb,
1034                             ppp->dev->hard_header_len - PPP_HDRLEN);
1035
1036         /* compressor still expects A/C bytes in hdr */
1037         len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1038                                    new_skb->data, skb->len + 2,
1039                                    compressor_skb_size);
1040         if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1041                 kfree_skb(skb);
1042                 skb = new_skb;
1043                 skb_put(skb, len);
1044                 skb_pull(skb, 2);       /* pull off A/C bytes */
1045         } else if (len == 0) {
1046                 /* didn't compress, or CCP not up yet */
1047                 kfree_skb(new_skb);
1048                 new_skb = skb;
1049         } else {
1050                 /*
1051                  * (len < 0)
1052                  * MPPE requires that we do not send unencrypted
1053                  * frames.  The compressor will return -1 if we
1054                  * should drop the frame.  We cannot simply test
1055                  * the compress_proto because MPPE and MPPC share
1056                  * the same number.
1057                  */
1058                 if (net_ratelimit())
1059                         printk(KERN_ERR "ppp: compressor dropped pkt\n");
1060                 kfree_skb(skb);
1061                 kfree_skb(new_skb);
1062                 new_skb = NULL;
1063         }
1064         return new_skb;
1065 }
1066
1067 /*
1068  * Compress and send a frame.
1069  * The caller should have locked the xmit path,
1070  * and xmit_pending should be 0.
1071  */
1072 static void
1073 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1074 {
1075         int proto = PPP_PROTO(skb);
1076         struct sk_buff *new_skb;
1077         int len;
1078         unsigned char *cp;
1079
1080         if (proto < 0x8000) {
1081 #ifdef CONFIG_PPP_FILTER
1082                 /* check if we should pass this packet */
1083                 /* the filter instructions are constructed assuming
1084                    a four-byte PPP header on each packet */
1085                 *skb_push(skb, 2) = 1;
1086                 if (ppp->pass_filter
1087                     && sk_run_filter(skb, ppp->pass_filter,
1088                                      ppp->pass_len) == 0) {
1089                         if (ppp->debug & 1)
1090                                 printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1091                         kfree_skb(skb);
1092                         return;
1093                 }
1094                 /* if this packet passes the active filter, record the time */
1095                 if (!(ppp->active_filter
1096                       && sk_run_filter(skb, ppp->active_filter,
1097                                        ppp->active_len) == 0))
1098                         ppp->last_xmit = jiffies;
1099                 skb_pull(skb, 2);
1100 #else
1101                 /* for data packets, record the time */
1102                 ppp->last_xmit = jiffies;
1103 #endif /* CONFIG_PPP_FILTER */
1104         }
1105
1106         ++ppp->dev->stats.tx_packets;
1107         ppp->dev->stats.tx_bytes += skb->len - 2;
1108
1109         switch (proto) {
1110         case PPP_IP:
1111                 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1112                         break;
1113                 /* try to do VJ TCP header compression */
1114                 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1115                                     GFP_ATOMIC);
1116                 if (!new_skb) {
1117                         printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1118                         goto drop;
1119                 }
1120                 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1121                 cp = skb->data + 2;
1122                 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1123                                     new_skb->data + 2, &cp,
1124                                     !(ppp->flags & SC_NO_TCP_CCID));
1125                 if (cp == skb->data + 2) {
1126                         /* didn't compress */
1127                         kfree_skb(new_skb);
1128                 } else {
1129                         if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1130                                 proto = PPP_VJC_COMP;
1131                                 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1132                         } else {
1133                                 proto = PPP_VJC_UNCOMP;
1134                                 cp[0] = skb->data[2];
1135                         }
1136                         kfree_skb(skb);
1137                         skb = new_skb;
1138                         cp = skb_put(skb, len + 2);
1139                         cp[0] = 0;
1140                         cp[1] = proto;
1141                 }
1142                 break;
1143
1144         case PPP_CCP:
1145                 /* peek at outbound CCP frames */
1146                 ppp_ccp_peek(ppp, skb, 0);
1147                 break;
1148         }
1149
1150         /* try to do packet compression */
1151         if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state
1152             && proto != PPP_LCP && proto != PPP_CCP) {
1153                 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1154                         if (net_ratelimit())
1155                                 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n");
1156                         goto drop;
1157                 }
1158                 skb = pad_compress_skb(ppp, skb);
1159                 if (!skb)
1160                         goto drop;
1161         }
1162
1163         /*
1164          * If we are waiting for traffic (demand dialling),
1165          * queue it up for pppd to receive.
1166          */
1167         if (ppp->flags & SC_LOOP_TRAFFIC) {
1168                 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1169                         goto drop;
1170                 skb_queue_tail(&ppp->file.rq, skb);
1171                 wake_up_interruptible(&ppp->file.rwait);
1172                 return;
1173         }
1174
1175         ppp->xmit_pending = skb;
1176         ppp_push(ppp);
1177         return;
1178
1179  drop:
1180         if (skb)
1181                 kfree_skb(skb);
1182         ++ppp->dev->stats.tx_errors;
1183 }
1184
1185 /*
1186  * Try to send the frame in xmit_pending.
1187  * The caller should have the xmit path locked.
1188  */
1189 static void
1190 ppp_push(struct ppp *ppp)
1191 {
1192         struct list_head *list;
1193         struct channel *pch;
1194         struct sk_buff *skb = ppp->xmit_pending;
1195
1196         if (!skb)
1197                 return;
1198
1199         list = &ppp->channels;
1200         if (list_empty(list)) {
1201                 /* nowhere to send the packet, just drop it */
1202                 ppp->xmit_pending = NULL;
1203                 kfree_skb(skb);
1204                 return;
1205         }
1206
1207         if ((ppp->flags & SC_MULTILINK) == 0) {
1208                 /* not doing multilink: send it down the first channel */
1209                 list = list->next;
1210                 pch = list_entry(list, struct channel, clist);
1211
1212                 spin_lock_bh(&pch->downl);
1213                 if (pch->chan) {
1214                         if (pch->chan->ops->start_xmit(pch->chan, skb))
1215                                 ppp->xmit_pending = NULL;
1216                 } else {
1217                         /* channel got unregistered */
1218                         kfree_skb(skb);
1219                         ppp->xmit_pending = NULL;
1220                 }
1221                 spin_unlock_bh(&pch->downl);
1222                 return;
1223         }
1224
1225 #ifdef CONFIG_PPP_MULTILINK
1226         /* Multilink: fragment the packet over as many links
1227            as can take the packet at the moment. */
1228         if (!ppp_mp_explode(ppp, skb))
1229                 return;
1230 #endif /* CONFIG_PPP_MULTILINK */
1231
1232         ppp->xmit_pending = NULL;
1233         kfree_skb(skb);
1234 }
1235
1236 #ifdef CONFIG_PPP_MULTILINK
1237 /*
1238  * Divide a packet to be transmitted into fragments and
1239  * send them out the individual links.
1240  */
1241 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1242 {
1243         int len, fragsize;
1244         int i, bits, hdrlen, mtu;
1245         int flen;
1246         int navail, nfree;
1247         int nbigger;
1248         unsigned char *p, *q;
1249         struct list_head *list;
1250         struct channel *pch;
1251         struct sk_buff *frag;
1252         struct ppp_channel *chan;
1253
1254         nfree = 0;      /* # channels which have no packet already queued */
1255         navail = 0;     /* total # of usable channels (not deregistered) */
1256         hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1257         i = 0;
1258         list_for_each_entry(pch, &ppp->channels, clist) {
1259                 navail += pch->avail = (pch->chan != NULL);
1260                 if (pch->avail) {
1261                         if (skb_queue_empty(&pch->file.xq) ||
1262                             !pch->had_frag) {
1263                                 pch->avail = 2;
1264                                 ++nfree;
1265                         }
1266                         if (!pch->had_frag && i < ppp->nxchan)
1267                                 ppp->nxchan = i;
1268                 }
1269                 ++i;
1270         }
1271
1272         /*
1273          * Don't start sending this packet unless at least half of
1274          * the channels are free.  This gives much better TCP
1275          * performance if we have a lot of channels.
1276          */
1277         if (nfree == 0 || nfree < navail / 2)
1278                 return 0;       /* can't take now, leave it in xmit_pending */
1279
1280         /* Do protocol field compression (XXX this should be optional) */
1281         p = skb->data;
1282         len = skb->len;
1283         if (*p == 0) {
1284                 ++p;
1285                 --len;
1286         }
1287
1288         /*
1289          * Decide on fragment size.
1290          * We create a fragment for each free channel regardless of
1291          * how small they are (i.e. even 0 length) in order to minimize
1292          * the time that it will take to detect when a channel drops
1293          * a fragment.
1294          */
1295         fragsize = len;
1296         if (nfree > 1)
1297                 fragsize = DIV_ROUND_UP(fragsize, nfree);
1298         /* nbigger channels get fragsize bytes, the rest get fragsize-1,
1299            except if nbigger==0, then they all get fragsize. */
1300         nbigger = len % nfree;
1301
1302         /* skip to the channel after the one we last used
1303            and start at that one */
1304         list = &ppp->channels;
1305         for (i = 0; i < ppp->nxchan; ++i) {
1306                 list = list->next;
1307                 if (list == &ppp->channels) {
1308                         i = 0;
1309                         break;
1310                 }
1311         }
1312
1313         /* create a fragment for each channel */
1314         bits = B;
1315         while (nfree > 0 || len > 0) {
1316                 list = list->next;
1317                 if (list == &ppp->channels) {
1318                         i = 0;
1319                         continue;
1320                 }
1321                 pch = list_entry(list, struct channel, clist);
1322                 ++i;
1323                 if (!pch->avail)
1324                         continue;
1325
1326                 /*
1327                  * Skip this channel if it has a fragment pending already and
1328                  * we haven't given a fragment to all of the free channels.
1329                  */
1330                 if (pch->avail == 1) {
1331                         if (nfree > 0)
1332                                 continue;
1333                 } else {
1334                         --nfree;
1335                         pch->avail = 1;
1336                 }
1337
1338                 /* check the channel's mtu and whether it is still attached. */
1339                 spin_lock_bh(&pch->downl);
1340                 if (pch->chan == NULL) {
1341                         /* can't use this channel, it's being deregistered */
1342                         spin_unlock_bh(&pch->downl);
1343                         pch->avail = 0;
1344                         if (--navail == 0)
1345                                 break;
1346                         continue;
1347                 }
1348
1349                 /*
1350                  * Create a fragment for this channel of
1351                  * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes.
1352                  * If mtu+2-hdrlen < 4, that is a ridiculously small
1353                  * MTU, so we use mtu = 2 + hdrlen.
1354                  */
1355                 if (fragsize > len)
1356                         fragsize = len;
1357                 flen = fragsize;
1358                 mtu = pch->chan->mtu + 2 - hdrlen;
1359                 if (mtu < 4)
1360                         mtu = 4;
1361                 if (flen > mtu)
1362                         flen = mtu;
1363                 if (flen == len && nfree == 0)
1364                         bits |= E;
1365                 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1366                 if (!frag)
1367                         goto noskb;
1368                 q = skb_put(frag, flen + hdrlen);
1369
1370                 /* make the MP header */
1371                 q[0] = PPP_MP >> 8;
1372                 q[1] = PPP_MP;
1373                 if (ppp->flags & SC_MP_XSHORTSEQ) {
1374                         q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1375                         q[3] = ppp->nxseq;
1376                 } else {
1377                         q[2] = bits;
1378                         q[3] = ppp->nxseq >> 16;
1379                         q[4] = ppp->nxseq >> 8;
1380                         q[5] = ppp->nxseq;
1381                 }
1382
1383                 /*
1384                  * Copy the data in.
1385                  * Unfortunately there is a bug in older versions of
1386                  * the Linux PPP multilink reconstruction code where it
1387                  * drops 0-length fragments.  Therefore we make sure the
1388                  * fragment has at least one byte of data.  Any bytes
1389                  * we add in this situation will end up as padding on the
1390                  * end of the reconstructed packet.
1391                  */
1392                 if (flen == 0)
1393                         *skb_put(frag, 1) = 0;
1394                 else
1395                         memcpy(q + hdrlen, p, flen);
1396
1397                 /* try to send it down the channel */
1398                 chan = pch->chan;
1399                 if (!skb_queue_empty(&pch->file.xq) ||
1400                     !chan->ops->start_xmit(chan, frag))
1401                         skb_queue_tail(&pch->file.xq, frag);
1402                 pch->had_frag = 1;
1403                 p += flen;
1404                 len -= flen;
1405                 ++ppp->nxseq;
1406                 bits = 0;
1407                 spin_unlock_bh(&pch->downl);
1408
1409                 if (--nbigger == 0 && fragsize > 0)
1410                         --fragsize;
1411         }
1412         ppp->nxchan = i;
1413
1414         return 1;
1415
1416  noskb:
1417         spin_unlock_bh(&pch->downl);
1418         if (ppp->debug & 1)
1419                 printk(KERN_ERR "PPP: no memory (fragment)\n");
1420         ++ppp->dev->stats.tx_errors;
1421         ++ppp->nxseq;
1422         return 1;       /* abandon the frame */
1423 }
1424 #endif /* CONFIG_PPP_MULTILINK */
1425
1426 /*
1427  * Try to send data out on a channel.
1428  */
1429 static void
1430 ppp_channel_push(struct channel *pch)
1431 {
1432         struct sk_buff *skb;
1433         struct ppp *ppp;
1434
1435         spin_lock_bh(&pch->downl);
1436         if (pch->chan) {
1437                 while (!skb_queue_empty(&pch->file.xq)) {
1438                         skb = skb_dequeue(&pch->file.xq);
1439                         if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1440                                 /* put the packet back and try again later */
1441                                 skb_queue_head(&pch->file.xq, skb);
1442                                 break;
1443                         }
1444                 }
1445         } else {
1446                 /* channel got deregistered */
1447                 skb_queue_purge(&pch->file.xq);
1448         }
1449         spin_unlock_bh(&pch->downl);
1450         /* see if there is anything from the attached unit to be sent */
1451         if (skb_queue_empty(&pch->file.xq)) {
1452                 read_lock_bh(&pch->upl);
1453                 ppp = pch->ppp;
1454                 if (ppp)
1455                         ppp_xmit_process(ppp);
1456                 read_unlock_bh(&pch->upl);
1457         }
1458 }
1459
1460 /*
1461  * Receive-side routines.
1462  */
1463
1464 /* misuse a few fields of the skb for MP reconstruction */
1465 #define sequence        priority
1466 #define BEbits          cb[0]
1467
1468 static inline void
1469 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1470 {
1471         ppp_recv_lock(ppp);
1472         /* ppp->dev == 0 means interface is closing down */
1473         if (ppp->dev)
1474                 ppp_receive_frame(ppp, skb, pch);
1475         else
1476                 kfree_skb(skb);
1477         ppp_recv_unlock(ppp);
1478 }
1479
1480 void
1481 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1482 {
1483         struct channel *pch = chan->ppp;
1484         int proto;
1485
1486         if (!pch || skb->len == 0) {
1487                 kfree_skb(skb);
1488                 return;
1489         }
1490
1491         proto = PPP_PROTO(skb);
1492         read_lock_bh(&pch->upl);
1493         if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1494                 /* put it on the channel queue */
1495                 skb_queue_tail(&pch->file.rq, skb);
1496                 /* drop old frames if queue too long */
1497                 while (pch->file.rq.qlen > PPP_MAX_RQLEN
1498                        && (skb = skb_dequeue(&pch->file.rq)))
1499                         kfree_skb(skb);
1500                 wake_up_interruptible(&pch->file.rwait);
1501         } else {
1502                 ppp_do_recv(pch->ppp, skb, pch);
1503         }
1504         read_unlock_bh(&pch->upl);
1505 }
1506
1507 /* Put a 0-length skb in the receive queue as an error indication */
1508 void
1509 ppp_input_error(struct ppp_channel *chan, int code)
1510 {
1511         struct channel *pch = chan->ppp;
1512         struct sk_buff *skb;
1513
1514         if (!pch)
1515                 return;
1516
1517         read_lock_bh(&pch->upl);
1518         if (pch->ppp) {
1519                 skb = alloc_skb(0, GFP_ATOMIC);
1520                 if (skb) {
1521                         skb->len = 0;           /* probably unnecessary */
1522                         skb->cb[0] = code;
1523                         ppp_do_recv(pch->ppp, skb, pch);
1524                 }
1525         }
1526         read_unlock_bh(&pch->upl);
1527 }
1528
1529 /*
1530  * We come in here to process a received frame.
1531  * The receive side of the ppp unit is locked.
1532  */
1533 static void
1534 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1535 {
1536         if (pskb_may_pull(skb, 2)) {
1537 #ifdef CONFIG_PPP_MULTILINK
1538                 /* XXX do channel-level decompression here */
1539                 if (PPP_PROTO(skb) == PPP_MP)
1540                         ppp_receive_mp_frame(ppp, skb, pch);
1541                 else
1542 #endif /* CONFIG_PPP_MULTILINK */
1543                         ppp_receive_nonmp_frame(ppp, skb);
1544                 return;
1545         }
1546
1547         if (skb->len > 0)
1548                 /* note: a 0-length skb is used as an error indication */
1549                 ++ppp->dev->stats.rx_length_errors;
1550
1551         kfree_skb(skb);
1552         ppp_receive_error(ppp);
1553 }
1554
1555 static void
1556 ppp_receive_error(struct ppp *ppp)
1557 {
1558         ++ppp->dev->stats.rx_errors;
1559         if (ppp->vj)
1560                 slhc_toss(ppp->vj);
1561 }
1562
1563 static void
1564 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1565 {
1566         struct sk_buff *ns;
1567         int proto, len, npi;
1568
1569         /*
1570          * Decompress the frame, if compressed.
1571          * Note that some decompressors need to see uncompressed frames
1572          * that come in as well as compressed frames.
1573          */
1574         if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)
1575             && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1576                 skb = ppp_decompress_frame(ppp, skb);
1577
1578         if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1579                 goto err;
1580
1581         proto = PPP_PROTO(skb);
1582         switch (proto) {
1583         case PPP_VJC_COMP:
1584                 /* decompress VJ compressed packets */
1585                 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1586                         goto err;
1587
1588                 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1589                         /* copy to a new sk_buff with more tailroom */
1590                         ns = dev_alloc_skb(skb->len + 128);
1591                         if (!ns) {
1592                                 printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1593                                 goto err;
1594                         }
1595                         skb_reserve(ns, 2);
1596                         skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1597                         kfree_skb(skb);
1598                         skb = ns;
1599                 }
1600                 else
1601                         skb->ip_summed = CHECKSUM_NONE;
1602
1603                 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1604                 if (len <= 0) {
1605                         printk(KERN_DEBUG "PPP: VJ decompression error\n");
1606                         goto err;
1607                 }
1608                 len += 2;
1609                 if (len > skb->len)
1610                         skb_put(skb, len - skb->len);
1611                 else if (len < skb->len)
1612                         skb_trim(skb, len);
1613                 proto = PPP_IP;
1614                 break;
1615
1616         case PPP_VJC_UNCOMP:
1617                 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1618                         goto err;
1619
1620                 /* Until we fix the decompressor need to make sure
1621                  * data portion is linear.
1622                  */
1623                 if (!pskb_may_pull(skb, skb->len))
1624                         goto err;
1625
1626                 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1627                         printk(KERN_ERR "PPP: VJ uncompressed error\n");
1628                         goto err;
1629                 }
1630                 proto = PPP_IP;
1631                 break;
1632
1633         case PPP_CCP:
1634                 ppp_ccp_peek(ppp, skb, 1);
1635                 break;
1636         }
1637
1638         ++ppp->dev->stats.rx_packets;
1639         ppp->dev->stats.rx_bytes += skb->len - 2;
1640
1641         npi = proto_to_npindex(proto);
1642         if (npi < 0) {
1643                 /* control or unknown frame - pass it to pppd */
1644                 skb_queue_tail(&ppp->file.rq, skb);
1645                 /* limit queue length by dropping old frames */
1646                 while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1647                        && (skb = skb_dequeue(&ppp->file.rq)))
1648                         kfree_skb(skb);
1649                 /* wake up any process polling or blocking on read */
1650                 wake_up_interruptible(&ppp->file.rwait);
1651
1652         } else {
1653                 /* network protocol frame - give it to the kernel */
1654
1655 #ifdef CONFIG_PPP_FILTER
1656                 /* check if the packet passes the pass and active filters */
1657                 /* the filter instructions are constructed assuming
1658                    a four-byte PPP header on each packet */
1659                 if (ppp->pass_filter || ppp->active_filter) {
1660                         if (skb_cloned(skb) &&
1661                             pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1662                                 goto err;
1663
1664                         *skb_push(skb, 2) = 0;
1665                         if (ppp->pass_filter
1666                             && sk_run_filter(skb, ppp->pass_filter,
1667                                              ppp->pass_len) == 0) {
1668                                 if (ppp->debug & 1)
1669                                         printk(KERN_DEBUG "PPP: inbound frame "
1670                                                "not passed\n");
1671                                 kfree_skb(skb);
1672                                 return;
1673                         }
1674                         if (!(ppp->active_filter
1675                               && sk_run_filter(skb, ppp->active_filter,
1676                                                ppp->active_len) == 0))
1677                                 ppp->last_recv = jiffies;
1678                         __skb_pull(skb, 2);
1679                 } else
1680 #endif /* CONFIG_PPP_FILTER */
1681                         ppp->last_recv = jiffies;
1682
1683                 if ((ppp->dev->flags & IFF_UP) == 0
1684                     || ppp->npmode[npi] != NPMODE_PASS) {
1685                         kfree_skb(skb);
1686                 } else {
1687                         /* chop off protocol */
1688                         skb_pull_rcsum(skb, 2);
1689                         skb->dev = ppp->dev;
1690                         skb->protocol = htons(npindex_to_ethertype[npi]);
1691                         skb_reset_mac_header(skb);
1692                         netif_rx(skb);
1693                 }
1694         }
1695         return;
1696
1697  err:
1698         kfree_skb(skb);
1699         ppp_receive_error(ppp);
1700 }
1701
1702 static struct sk_buff *
1703 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1704 {
1705         int proto = PPP_PROTO(skb);
1706         struct sk_buff *ns;
1707         int len;
1708
1709         /* Until we fix all the decompressor's need to make sure
1710          * data portion is linear.
1711          */
1712         if (!pskb_may_pull(skb, skb->len))
1713                 goto err;
1714
1715         if (proto == PPP_COMP) {
1716                 int obuff_size;
1717
1718                 switch(ppp->rcomp->compress_proto) {
1719                 case CI_MPPE:
1720                         obuff_size = ppp->mru + PPP_HDRLEN + 1;
1721                         break;
1722                 default:
1723                         obuff_size = ppp->mru + PPP_HDRLEN;
1724                         break;
1725                 }
1726
1727                 ns = dev_alloc_skb(obuff_size);
1728                 if (!ns) {
1729                         printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1730                         goto err;
1731                 }
1732                 /* the decompressor still expects the A/C bytes in the hdr */
1733                 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1734                                 skb->len + 2, ns->data, obuff_size);
1735                 if (len < 0) {
1736                         /* Pass the compressed frame to pppd as an
1737                            error indication. */
1738                         if (len == DECOMP_FATALERROR)
1739                                 ppp->rstate |= SC_DC_FERROR;
1740                         kfree_skb(ns);
1741                         goto err;
1742                 }
1743
1744                 kfree_skb(skb);
1745                 skb = ns;
1746                 skb_put(skb, len);
1747                 skb_pull(skb, 2);       /* pull off the A/C bytes */
1748
1749         } else {
1750                 /* Uncompressed frame - pass to decompressor so it
1751                    can update its dictionary if necessary. */
1752                 if (ppp->rcomp->incomp)
1753                         ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1754                                            skb->len + 2);
1755         }
1756
1757         return skb;
1758
1759  err:
1760         ppp->rstate |= SC_DC_ERROR;
1761         ppp_receive_error(ppp);
1762         return skb;
1763 }
1764
1765 #ifdef CONFIG_PPP_MULTILINK
1766 /*
1767  * Receive a multilink frame.
1768  * We put it on the reconstruction queue and then pull off
1769  * as many completed frames as we can.
1770  */
1771 static void
1772 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1773 {
1774         u32 mask, seq;
1775         struct channel *ch;
1776         int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1777
1778         if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1779                 goto err;               /* no good, throw it away */
1780
1781         /* Decode sequence number and begin/end bits */
1782         if (ppp->flags & SC_MP_SHORTSEQ) {
1783                 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1784                 mask = 0xfff;
1785         } else {
1786                 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1787                 mask = 0xffffff;
1788         }
1789         skb->BEbits = skb->data[2];
1790         skb_pull(skb, mphdrlen);        /* pull off PPP and MP headers */
1791
1792         /*
1793          * Do protocol ID decompression on the first fragment of each packet.
1794          */
1795         if ((skb->BEbits & B) && (skb->data[0] & 1))
1796                 *skb_push(skb, 1) = 0;
1797
1798         /*
1799          * Expand sequence number to 32 bits, making it as close
1800          * as possible to ppp->minseq.
1801          */
1802         seq |= ppp->minseq & ~mask;
1803         if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1804                 seq += mask + 1;
1805         else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1806                 seq -= mask + 1;        /* should never happen */
1807         skb->sequence = seq;
1808         pch->lastseq = seq;
1809
1810         /*
1811          * If this packet comes before the next one we were expecting,
1812          * drop it.
1813          */
1814         if (seq_before(seq, ppp->nextseq)) {
1815                 kfree_skb(skb);
1816                 ++ppp->dev->stats.rx_dropped;
1817                 ppp_receive_error(ppp);
1818                 return;
1819         }
1820
1821         /*
1822          * Reevaluate minseq, the minimum over all channels of the
1823          * last sequence number received on each channel.  Because of
1824          * the increasing sequence number rule, we know that any fragment
1825          * before `minseq' which hasn't arrived is never going to arrive.
1826          * The list of channels can't change because we have the receive
1827          * side of the ppp unit locked.
1828          */
1829         list_for_each_entry(ch, &ppp->channels, clist) {
1830                 if (seq_before(ch->lastseq, seq))
1831                         seq = ch->lastseq;
1832         }
1833         if (seq_before(ppp->minseq, seq))
1834                 ppp->minseq = seq;
1835
1836         /* Put the fragment on the reconstruction queue */
1837         ppp_mp_insert(ppp, skb);
1838
1839         /* If the queue is getting long, don't wait any longer for packets
1840            before the start of the queue. */
1841         if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1842                 struct sk_buff *skb = skb_peek(&ppp->mrq);
1843                 if (seq_before(ppp->minseq, skb->sequence))
1844                         ppp->minseq = skb->sequence;
1845         }
1846
1847         /* Pull completed packets off the queue and receive them. */
1848         while ((skb = ppp_mp_reconstruct(ppp)))
1849                 ppp_receive_nonmp_frame(ppp, skb);
1850
1851         return;
1852
1853  err:
1854         kfree_skb(skb);
1855         ppp_receive_error(ppp);
1856 }
1857
1858 /*
1859  * Insert a fragment on the MP reconstruction queue.
1860  * The queue is ordered by increasing sequence number.
1861  */
1862 static void
1863 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1864 {
1865         struct sk_buff *p;
1866         struct sk_buff_head *list = &ppp->mrq;
1867         u32 seq = skb->sequence;
1868
1869         /* N.B. we don't need to lock the list lock because we have the
1870            ppp unit receive-side lock. */
1871         skb_queue_walk(list, p) {
1872                 if (seq_before(seq, p->sequence))
1873                         break;
1874         }
1875         __skb_queue_before(list, p, skb);
1876 }
1877
1878 /*
1879  * Reconstruct a packet from the MP fragment queue.
1880  * We go through increasing sequence numbers until we find a
1881  * complete packet, or we get to the sequence number for a fragment
1882  * which hasn't arrived but might still do so.
1883  */
1884 static struct sk_buff *
1885 ppp_mp_reconstruct(struct ppp *ppp)
1886 {
1887         u32 seq = ppp->nextseq;
1888         u32 minseq = ppp->minseq;
1889         struct sk_buff_head *list = &ppp->mrq;
1890         struct sk_buff *p, *next;
1891         struct sk_buff *head, *tail;
1892         struct sk_buff *skb = NULL;
1893         int lost = 0, len = 0;
1894
1895         if (ppp->mrru == 0)     /* do nothing until mrru is set */
1896                 return NULL;
1897         head = list->next;
1898         tail = NULL;
1899         for (p = head; p != (struct sk_buff *) list; p = next) {
1900                 next = p->next;
1901                 if (seq_before(p->sequence, seq)) {
1902                         /* this can't happen, anyway ignore the skb */
1903                         printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1904                                p->sequence, seq);
1905                         head = next;
1906                         continue;
1907                 }
1908                 if (p->sequence != seq) {
1909                         /* Fragment `seq' is missing.  If it is after
1910                            minseq, it might arrive later, so stop here. */
1911                         if (seq_after(seq, minseq))
1912                                 break;
1913                         /* Fragment `seq' is lost, keep going. */
1914                         lost = 1;
1915                         seq = seq_before(minseq, p->sequence)?
1916                                 minseq + 1: p->sequence;
1917                         next = p;
1918                         continue;
1919                 }
1920
1921                 /*
1922                  * At this point we know that all the fragments from
1923                  * ppp->nextseq to seq are either present or lost.
1924                  * Also, there are no complete packets in the queue
1925                  * that have no missing fragments and end before this
1926                  * fragment.
1927                  */
1928
1929                 /* B bit set indicates this fragment starts a packet */
1930                 if (p->BEbits & B) {
1931                         head = p;
1932                         lost = 0;
1933                         len = 0;
1934                 }
1935
1936                 len += p->len;
1937
1938                 /* Got a complete packet yet? */
1939                 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1940                         if (len > ppp->mrru + 2) {
1941                                 ++ppp->dev->stats.rx_length_errors;
1942                                 printk(KERN_DEBUG "PPP: reconstructed packet"
1943                                        " is too long (%d)\n", len);
1944                         } else if (p == head) {
1945                                 /* fragment is complete packet - reuse skb */
1946                                 tail = p;
1947                                 skb = skb_get(p);
1948                                 break;
1949                         } else if ((skb = dev_alloc_skb(len)) == NULL) {
1950                                 ++ppp->dev->stats.rx_missed_errors;
1951                                 printk(KERN_DEBUG "PPP: no memory for "
1952                                        "reconstructed packet");
1953                         } else {
1954                                 tail = p;
1955                                 break;
1956                         }
1957                         ppp->nextseq = seq + 1;
1958                 }
1959
1960                 /*
1961                  * If this is the ending fragment of a packet,
1962                  * and we haven't found a complete valid packet yet,
1963                  * we can discard up to and including this fragment.
1964                  */
1965                 if (p->BEbits & E)
1966                         head = next;
1967
1968                 ++seq;
1969         }
1970
1971         /* If we have a complete packet, copy it all into one skb. */
1972         if (tail != NULL) {
1973                 /* If we have discarded any fragments,
1974                    signal a receive error. */
1975                 if (head->sequence != ppp->nextseq) {
1976                         if (ppp->debug & 1)
1977                                 printk(KERN_DEBUG "  missed pkts %u..%u\n",
1978                                        ppp->nextseq, head->sequence-1);
1979                         ++ppp->dev->stats.rx_dropped;
1980                         ppp_receive_error(ppp);
1981                 }
1982
1983                 if (head != tail)
1984                         /* copy to a single skb */
1985                         for (p = head; p != tail->next; p = p->next)
1986                                 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1987                 ppp->nextseq = tail->sequence + 1;
1988                 head = tail->next;
1989         }
1990
1991         /* Discard all the skbuffs that we have copied the data out of
1992            or that we can't use. */
1993         while ((p = list->next) != head) {
1994                 __skb_unlink(p, list);
1995                 kfree_skb(p);
1996         }
1997
1998         return skb;
1999 }
2000 #endif /* CONFIG_PPP_MULTILINK */
2001
2002 /*
2003  * Channel interface.
2004  */
2005
2006 /*
2007  * Create a new, unattached ppp channel.
2008  */
2009 int
2010 ppp_register_channel(struct ppp_channel *chan)
2011 {
2012         struct channel *pch;
2013
2014         pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2015         if (!pch)
2016                 return -ENOMEM;
2017         pch->ppp = NULL;
2018         pch->chan = chan;
2019         chan->ppp = pch;
2020         init_ppp_file(&pch->file, CHANNEL);
2021         pch->file.hdrlen = chan->hdrlen;
2022 #ifdef CONFIG_PPP_MULTILINK
2023         pch->lastseq = -1;
2024 #endif /* CONFIG_PPP_MULTILINK */
2025         init_rwsem(&pch->chan_sem);
2026         spin_lock_init(&pch->downl);
2027         rwlock_init(&pch->upl);
2028         spin_lock_bh(&all_channels_lock);
2029         pch->file.index = ++last_channel_index;
2030         list_add(&pch->list, &new_channels);
2031         atomic_inc(&channel_count);
2032         spin_unlock_bh(&all_channels_lock);
2033         return 0;
2034 }
2035
2036 /*
2037  * Return the index of a channel.
2038  */
2039 int ppp_channel_index(struct ppp_channel *chan)
2040 {
2041         struct channel *pch = chan->ppp;
2042
2043         if (pch)
2044                 return pch->file.index;
2045         return -1;
2046 }
2047
2048 /*
2049  * Return the PPP unit number to which a channel is connected.
2050  */
2051 int ppp_unit_number(struct ppp_channel *chan)
2052 {
2053         struct channel *pch = chan->ppp;
2054         int unit = -1;
2055
2056         if (pch) {
2057                 read_lock_bh(&pch->upl);
2058                 if (pch->ppp)
2059                         unit = pch->ppp->file.index;
2060                 read_unlock_bh(&pch->upl);
2061         }
2062         return unit;
2063 }
2064
2065 /*
2066  * Disconnect a channel from the generic layer.
2067  * This must be called in process context.
2068  */
2069 void
2070 ppp_unregister_channel(struct ppp_channel *chan)
2071 {
2072         struct channel *pch = chan->ppp;
2073
2074         if (!pch)
2075                 return;         /* should never happen */
2076         chan->ppp = NULL;
2077
2078         /*
2079          * This ensures that we have returned from any calls into the
2080          * the channel's start_xmit or ioctl routine before we proceed.
2081          */
2082         down_write(&pch->chan_sem);
2083         spin_lock_bh(&pch->downl);
2084         pch->chan = NULL;
2085         spin_unlock_bh(&pch->downl);
2086         up_write(&pch->chan_sem);
2087         ppp_disconnect_channel(pch);
2088         spin_lock_bh(&all_channels_lock);
2089         list_del(&pch->list);
2090         spin_unlock_bh(&all_channels_lock);
2091         pch->file.dead = 1;
2092         wake_up_interruptible(&pch->file.rwait);
2093         if (atomic_dec_and_test(&pch->file.refcnt))
2094                 ppp_destroy_channel(pch);
2095 }
2096
2097 /*
2098  * Callback from a channel when it can accept more to transmit.
2099  * This should be called at BH/softirq level, not interrupt level.
2100  */
2101 void
2102 ppp_output_wakeup(struct ppp_channel *chan)
2103 {
2104         struct channel *pch = chan->ppp;
2105
2106         if (!pch)
2107                 return;
2108         ppp_channel_push(pch);
2109 }
2110
2111 /*
2112  * Compression control.
2113  */
2114
2115 /* Process the PPPIOCSCOMPRESS ioctl. */
2116 static int
2117 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2118 {
2119         int err;
2120         struct compressor *cp, *ocomp;
2121         struct ppp_option_data data;
2122         void *state, *ostate;
2123         unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2124
2125         err = -EFAULT;
2126         if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2127             || (data.length <= CCP_MAX_OPTION_LENGTH
2128                 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2129                 goto out;
2130         err = -EINVAL;
2131         if (data.length > CCP_MAX_OPTION_LENGTH
2132             || ccp_option[1] < 2 || ccp_option[1] > data.length)
2133                 goto out;
2134
2135         cp = try_then_request_module(
2136                 find_compressor(ccp_option[0]),
2137                 "ppp-compress-%d", ccp_option[0]);
2138         if (!cp)
2139                 goto out;
2140
2141         err = -ENOBUFS;
2142         if (data.transmit) {
2143                 state = cp->comp_alloc(ccp_option, data.length);
2144                 if (state) {
2145                         ppp_xmit_lock(ppp);
2146                         ppp->xstate &= ~SC_COMP_RUN;
2147                         ocomp = ppp->xcomp;
2148                         ostate = ppp->xc_state;
2149                         ppp->xcomp = cp;
2150                         ppp->xc_state = state;
2151                         ppp_xmit_unlock(ppp);
2152                         if (ostate) {
2153                                 ocomp->comp_free(ostate);
2154                                 module_put(ocomp->owner);
2155                         }
2156                         err = 0;
2157                 } else
2158                         module_put(cp->owner);
2159
2160         } else {
2161                 state = cp->decomp_alloc(ccp_option, data.length);
2162                 if (state) {
2163                         ppp_recv_lock(ppp);
2164                         ppp->rstate &= ~SC_DECOMP_RUN;
2165                         ocomp = ppp->rcomp;
2166                         ostate = ppp->rc_state;
2167                         ppp->rcomp = cp;
2168                         ppp->rc_state = state;
2169                         ppp_recv_unlock(ppp);
2170                         if (ostate) {
2171                                 ocomp->decomp_free(ostate);
2172                                 module_put(ocomp->owner);
2173                         }
2174                         err = 0;
2175                 } else
2176                         module_put(cp->owner);
2177         }
2178
2179  out:
2180         return err;
2181 }
2182
2183 /*
2184  * Look at a CCP packet and update our state accordingly.
2185  * We assume the caller has the xmit or recv path locked.
2186  */
2187 static void
2188 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2189 {
2190         unsigned char *dp;
2191         int len;
2192
2193         if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2194                 return; /* no header */
2195         dp = skb->data + 2;
2196
2197         switch (CCP_CODE(dp)) {
2198         case CCP_CONFREQ:
2199
2200                 /* A ConfReq starts negotiation of compression
2201                  * in one direction of transmission,
2202                  * and hence brings it down...but which way?
2203                  *
2204                  * Remember:
2205                  * A ConfReq indicates what the sender would like to receive
2206                  */
2207                 if(inbound)
2208                         /* He is proposing what I should send */
2209                         ppp->xstate &= ~SC_COMP_RUN;
2210                 else
2211                         /* I am proposing to what he should send */
2212                         ppp->rstate &= ~SC_DECOMP_RUN;
2213
2214                 break;
2215
2216         case CCP_TERMREQ:
2217         case CCP_TERMACK:
2218                 /*
2219                  * CCP is going down, both directions of transmission
2220                  */
2221                 ppp->rstate &= ~SC_DECOMP_RUN;
2222                 ppp->xstate &= ~SC_COMP_RUN;
2223                 break;
2224
2225         case CCP_CONFACK:
2226                 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2227                         break;
2228                 len = CCP_LENGTH(dp);
2229                 if (!pskb_may_pull(skb, len + 2))
2230                         return;         /* too short */
2231                 dp += CCP_HDRLEN;
2232                 len -= CCP_HDRLEN;
2233                 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2234                         break;
2235                 if (inbound) {
2236                         /* we will start receiving compressed packets */
2237                         if (!ppp->rc_state)
2238                                 break;
2239                         if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2240                                         ppp->file.index, 0, ppp->mru, ppp->debug)) {
2241                                 ppp->rstate |= SC_DECOMP_RUN;
2242                                 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2243                         }
2244                 } else {
2245                         /* we will soon start sending compressed packets */
2246                         if (!ppp->xc_state)
2247                                 break;
2248                         if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2249                                         ppp->file.index, 0, ppp->debug))
2250                                 ppp->xstate |= SC_COMP_RUN;
2251                 }
2252                 break;
2253
2254         case CCP_RESETACK:
2255                 /* reset the [de]compressor */
2256                 if ((ppp->flags & SC_CCP_UP) == 0)
2257                         break;
2258                 if (inbound) {
2259                         if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2260                                 ppp->rcomp->decomp_reset(ppp->rc_state);
2261                                 ppp->rstate &= ~SC_DC_ERROR;
2262                         }
2263                 } else {
2264                         if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2265                                 ppp->xcomp->comp_reset(ppp->xc_state);
2266                 }
2267                 break;
2268         }
2269 }
2270
2271 /* Free up compression resources. */
2272 static void
2273 ppp_ccp_closed(struct ppp *ppp)
2274 {
2275         void *xstate, *rstate;
2276         struct compressor *xcomp, *rcomp;
2277
2278         ppp_lock(ppp);
2279         ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2280         ppp->xstate = 0;
2281         xcomp = ppp->xcomp;
2282         xstate = ppp->xc_state;
2283         ppp->xc_state = NULL;
2284         ppp->rstate = 0;
2285         rcomp = ppp->rcomp;
2286         rstate = ppp->rc_state;
2287         ppp->rc_state = NULL;
2288         ppp_unlock(ppp);
2289
2290         if (xstate) {
2291                 xcomp->comp_free(xstate);
2292                 module_put(xcomp->owner);
2293         }
2294         if (rstate) {
2295                 rcomp->decomp_free(rstate);
2296                 module_put(rcomp->owner);
2297         }
2298 }
2299
2300 /* List of compressors. */
2301 static LIST_HEAD(compressor_list);
2302 static DEFINE_SPINLOCK(compressor_list_lock);
2303
2304 struct compressor_entry {
2305         struct list_head list;
2306         struct compressor *comp;
2307 };
2308
2309 static struct compressor_entry *
2310 find_comp_entry(int proto)
2311 {
2312         struct compressor_entry *ce;
2313
2314         list_for_each_entry(ce, &compressor_list, list) {
2315                 if (ce->comp->compress_proto == proto)
2316                         return ce;
2317         }
2318         return NULL;
2319 }
2320
2321 /* Register a compressor */
2322 int
2323 ppp_register_compressor(struct compressor *cp)
2324 {
2325         struct compressor_entry *ce;
2326         int ret;
2327         spin_lock(&compressor_list_lock);
2328         ret = -EEXIST;
2329         if (find_comp_entry(cp->compress_proto))
2330                 goto out;
2331         ret = -ENOMEM;
2332         ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2333         if (!ce)
2334                 goto out;
2335         ret = 0;
2336         ce->comp = cp;
2337         list_add(&ce->list, &compressor_list);
2338  out:
2339         spin_unlock(&compressor_list_lock);
2340         return ret;
2341 }
2342
2343 /* Unregister a compressor */
2344 void
2345 ppp_unregister_compressor(struct compressor *cp)
2346 {
2347         struct compressor_entry *ce;
2348
2349         spin_lock(&compressor_list_lock);
2350         ce = find_comp_entry(cp->compress_proto);
2351         if (ce && ce->comp == cp) {
2352                 list_del(&ce->list);
2353                 kfree(ce);
2354         }
2355         spin_unlock(&compressor_list_lock);
2356 }
2357
2358 /* Find a compressor. */
2359 static struct compressor *
2360 find_compressor(int type)
2361 {
2362         struct compressor_entry *ce;
2363         struct compressor *cp = NULL;
2364
2365         spin_lock(&compressor_list_lock);
2366         ce = find_comp_entry(type);
2367         if (ce) {
2368                 cp = ce->comp;
2369                 if (!try_module_get(cp->owner))
2370                         cp = NULL;
2371         }
2372         spin_unlock(&compressor_list_lock);
2373         return cp;
2374 }
2375
2376 /*
2377  * Miscelleneous stuff.
2378  */
2379
2380 static void
2381 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2382 {
2383         struct slcompress *vj = ppp->vj;
2384
2385         memset(st, 0, sizeof(*st));
2386         st->p.ppp_ipackets = ppp->dev->stats.rx_packets;
2387         st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2388         st->p.ppp_ibytes = ppp->dev->stats.rx_bytes;
2389         st->p.ppp_opackets = ppp->dev->stats.tx_packets;
2390         st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2391         st->p.ppp_obytes = ppp->dev->stats.tx_bytes;
2392         if (!vj)
2393                 return;
2394         st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2395         st->vj.vjs_compressed = vj->sls_o_compressed;
2396         st->vj.vjs_searches = vj->sls_o_searches;
2397         st->vj.vjs_misses = vj->sls_o_misses;
2398         st->vj.vjs_errorin = vj->sls_i_error;
2399         st->vj.vjs_tossed = vj->sls_i_tossed;
2400         st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2401         st->vj.vjs_compressedin = vj->sls_i_compressed;
2402 }
2403
2404 /*
2405  * Stuff for handling the lists of ppp units and channels
2406  * and for initialization.
2407  */
2408
2409 /*
2410  * Create a new ppp interface unit.  Fails if it can't allocate memory
2411  * or if there is already a unit with the requested number.
2412  * unit == -1 means allocate a new number.
2413  */
2414 static struct ppp *
2415 ppp_create_interface(int unit, int *retp)
2416 {
2417         struct ppp *ppp;
2418         struct net_device *dev = NULL;
2419         int ret = -ENOMEM;
2420         int i;
2421
2422         dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2423         if (!dev)
2424                 goto out1;
2425
2426         ppp = netdev_priv(dev);
2427         ppp->dev = dev;
2428         ppp->mru = PPP_MRU;
2429         init_ppp_file(&ppp->file, INTERFACE);
2430         ppp->file.hdrlen = PPP_HDRLEN - 2;      /* don't count proto bytes */
2431         for (i = 0; i < NUM_NP; ++i)
2432                 ppp->npmode[i] = NPMODE_PASS;
2433         INIT_LIST_HEAD(&ppp->channels);
2434         spin_lock_init(&ppp->rlock);
2435         spin_lock_init(&ppp->wlock);
2436 #ifdef CONFIG_PPP_MULTILINK
2437         ppp->minseq = -1;
2438         skb_queue_head_init(&ppp->mrq);
2439 #endif /* CONFIG_PPP_MULTILINK */
2440
2441         ret = -EEXIST;
2442         mutex_lock(&all_ppp_mutex);
2443         if (unit < 0)
2444                 unit = cardmap_find_first_free(all_ppp_units);
2445         else if (cardmap_get(all_ppp_units, unit) != NULL)
2446                 goto out2;      /* unit already exists */
2447
2448         /* Initialize the new ppp unit */
2449         ppp->file.index = unit;
2450         sprintf(dev->name, "ppp%d", unit);
2451
2452         ret = register_netdev(dev);
2453         if (ret != 0) {
2454                 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2455                        dev->name, ret);
2456                 goto out2;
2457         }
2458
2459         atomic_inc(&ppp_unit_count);
2460         ret = cardmap_set(&all_ppp_units, unit, ppp);
2461         if (ret != 0)
2462                 goto out3;
2463
2464         mutex_unlock(&all_ppp_mutex);
2465         *retp = 0;
2466         return ppp;
2467
2468 out3:
2469         atomic_dec(&ppp_unit_count);
2470         unregister_netdev(dev);
2471 out2:
2472         mutex_unlock(&all_ppp_mutex);
2473         free_netdev(dev);
2474 out1:
2475         *retp = ret;
2476         return NULL;
2477 }
2478
2479 /*
2480  * Initialize a ppp_file structure.
2481  */
2482 static void
2483 init_ppp_file(struct ppp_file *pf, int kind)
2484 {
2485         pf->kind = kind;
2486         skb_queue_head_init(&pf->xq);
2487         skb_queue_head_init(&pf->rq);
2488         atomic_set(&pf->refcnt, 1);
2489         init_waitqueue_head(&pf->rwait);
2490 }
2491
2492 /*
2493  * Take down a ppp interface unit - called when the owning file
2494  * (the one that created the unit) is closed or detached.
2495  */
2496 static void ppp_shutdown_interface(struct ppp *ppp)
2497 {
2498         struct net_device *dev;
2499
2500         mutex_lock(&all_ppp_mutex);
2501         ppp_lock(ppp);
2502         dev = ppp->dev;
2503         ppp->dev = NULL;
2504         ppp_unlock(ppp);
2505         /* This will call dev_close() for us. */
2506         if (dev) {
2507                 unregister_netdev(dev);
2508                 free_netdev(dev);
2509         }
2510         cardmap_set(&all_ppp_units, ppp->file.index, NULL);
2511         ppp->file.dead = 1;
2512         ppp->owner = NULL;
2513         wake_up_interruptible(&ppp->file.rwait);
2514         mutex_unlock(&all_ppp_mutex);
2515 }
2516
2517 /*
2518  * Free the memory used by a ppp unit.  This is only called once
2519  * there are no channels connected to the unit and no file structs
2520  * that reference the unit.
2521  */
2522 static void ppp_destroy_interface(struct ppp *ppp)
2523 {
2524         atomic_dec(&ppp_unit_count);
2525
2526         if (!ppp->file.dead || ppp->n_channels) {
2527                 /* "can't happen" */
2528                 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2529                        "n_channels=%d !\n", ppp, ppp->file.dead,
2530                        ppp->n_channels);
2531                 return;
2532         }
2533
2534         ppp_ccp_closed(ppp);
2535         if (ppp->vj) {
2536                 slhc_free(ppp->vj);
2537                 ppp->vj = NULL;
2538         }
2539         skb_queue_purge(&ppp->file.xq);
2540         skb_queue_purge(&ppp->file.rq);
2541 #ifdef CONFIG_PPP_MULTILINK
2542         skb_queue_purge(&ppp->mrq);
2543 #endif /* CONFIG_PPP_MULTILINK */
2544 #ifdef CONFIG_PPP_FILTER
2545         kfree(ppp->pass_filter);
2546         ppp->pass_filter = NULL;
2547         kfree(ppp->active_filter);
2548         ppp->active_filter = NULL;
2549 #endif /* CONFIG_PPP_FILTER */
2550
2551         if (ppp->xmit_pending)
2552                 kfree_skb(ppp->xmit_pending);
2553
2554         kfree(ppp);
2555 }
2556
2557 /*
2558  * Locate an existing ppp unit.
2559  * The caller should have locked the all_ppp_mutex.
2560  */
2561 static struct ppp *
2562 ppp_find_unit(int unit)
2563 {
2564         return cardmap_get(all_ppp_units, unit);
2565 }
2566
2567 /*
2568  * Locate an existing ppp channel.
2569  * The caller should have locked the all_channels_lock.
2570  * First we look in the new_channels list, then in the
2571  * all_channels list.  If found in the new_channels list,
2572  * we move it to the all_channels list.  This is for speed
2573  * when we have a lot of channels in use.
2574  */
2575 static struct channel *
2576 ppp_find_channel(int unit)
2577 {
2578         struct channel *pch;
2579
2580         list_for_each_entry(pch, &new_channels, list) {
2581                 if (pch->file.index == unit) {
2582                         list_move(&pch->list, &all_channels);
2583                         return pch;
2584                 }
2585         }
2586         list_for_each_entry(pch, &all_channels, list) {
2587                 if (pch->file.index == unit)
2588                         return pch;
2589         }
2590         return NULL;
2591 }
2592
2593 /*
2594  * Connect a PPP channel to a PPP interface unit.
2595  */
2596 static int
2597 ppp_connect_channel(struct channel *pch, int unit)
2598 {
2599         struct ppp *ppp;
2600         int ret = -ENXIO;
2601         int hdrlen;
2602
2603         mutex_lock(&all_ppp_mutex);
2604         ppp = ppp_find_unit(unit);
2605         if (!ppp)
2606                 goto out;
2607         write_lock_bh(&pch->upl);
2608         ret = -EINVAL;
2609         if (pch->ppp)
2610                 goto outl;
2611
2612         ppp_lock(ppp);
2613         if (pch->file.hdrlen > ppp->file.hdrlen)
2614                 ppp->file.hdrlen = pch->file.hdrlen;
2615         hdrlen = pch->file.hdrlen + 2;  /* for protocol bytes */
2616         if (ppp->dev && hdrlen > ppp->dev->hard_header_len)
2617                 ppp->dev->hard_header_len = hdrlen;
2618         list_add_tail(&pch->clist, &ppp->channels);
2619         ++ppp->n_channels;
2620         pch->ppp = ppp;
2621         atomic_inc(&ppp->file.refcnt);
2622         ppp_unlock(ppp);
2623         ret = 0;
2624
2625  outl:
2626         write_unlock_bh(&pch->upl);
2627  out:
2628         mutex_unlock(&all_ppp_mutex);
2629         return ret;
2630 }
2631
2632 /*
2633  * Disconnect a channel from its ppp unit.
2634  */
2635 static int
2636 ppp_disconnect_channel(struct channel *pch)
2637 {
2638         struct ppp *ppp;
2639         int err = -EINVAL;
2640
2641         write_lock_bh(&pch->upl);
2642         ppp = pch->ppp;
2643         pch->ppp = NULL;
2644         write_unlock_bh(&pch->upl);
2645         if (ppp) {
2646                 /* remove it from the ppp unit's list */
2647                 ppp_lock(ppp);
2648                 list_del(&pch->clist);
2649                 if (--ppp->n_channels == 0)
2650                         wake_up_interruptible(&ppp->file.rwait);
2651                 ppp_unlock(ppp);
2652                 if (atomic_dec_and_test(&ppp->file.refcnt))
2653                         ppp_destroy_interface(ppp);
2654                 err = 0;
2655         }
2656         return err;
2657 }
2658
2659 /*
2660  * Free up the resources used by a ppp channel.
2661  */
2662 static void ppp_destroy_channel(struct channel *pch)
2663 {
2664         atomic_dec(&channel_count);
2665
2666         if (!pch->file.dead) {
2667                 /* "can't happen" */
2668                 printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2669                        pch);
2670                 return;
2671         }
2672         skb_queue_purge(&pch->file.xq);
2673         skb_queue_purge(&pch->file.rq);
2674         kfree(pch);
2675 }
2676
2677 static void __exit ppp_cleanup(void)
2678 {
2679         /* should never happen */
2680         if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2681                 printk(KERN_ERR "PPP: removing module but units remain!\n");
2682         cardmap_destroy(&all_ppp_units);
2683         unregister_chrdev(PPP_MAJOR, "ppp");
2684         device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2685         class_destroy(ppp_class);
2686 }
2687
2688 /*
2689  * Cardmap implementation.
2690  */
2691 static void *cardmap_get(struct cardmap *map, unsigned int nr)
2692 {
2693         struct cardmap *p;
2694         int i;
2695
2696         for (p = map; p != NULL; ) {
2697                 if ((i = nr >> p->shift) >= CARDMAP_WIDTH)
2698                         return NULL;
2699                 if (p->shift == 0)
2700                         return p->ptr[i];
2701                 nr &= ~(CARDMAP_MASK << p->shift);
2702                 p = p->ptr[i];
2703         }
2704         return NULL;
2705 }
2706
2707 static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr)
2708 {
2709         struct cardmap *p;
2710         int i;
2711
2712         p = *pmap;
2713         if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) {
2714                 do {
2715                         /* need a new top level */
2716                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2717                         if (!np)
2718                                 goto enomem;
2719                         np->ptr[0] = p;
2720                         if (p != NULL) {
2721                                 np->shift = p->shift + CARDMAP_ORDER;
2722                                 p->parent = np;
2723                         } else
2724                                 np->shift = 0;
2725                         p = np;
2726                 } while ((nr >> p->shift) >= CARDMAP_WIDTH);
2727                 *pmap = p;
2728         }
2729         while (p->shift > 0) {
2730                 i = (nr >> p->shift) & CARDMAP_MASK;
2731                 if (p->ptr[i] == NULL) {
2732                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2733                         if (!np)
2734                                 goto enomem;
2735                         np->shift = p->shift - CARDMAP_ORDER;
2736                         np->parent = p;
2737                         p->ptr[i] = np;
2738                 }
2739                 if (ptr == NULL)
2740                         clear_bit(i, &p->inuse);
2741                 p = p->ptr[i];
2742         }
2743         i = nr & CARDMAP_MASK;
2744         p->ptr[i] = ptr;
2745         if (ptr != NULL)
2746                 set_bit(i, &p->inuse);
2747         else
2748                 clear_bit(i, &p->inuse);
2749         return 0;
2750  enomem:
2751         return -ENOMEM;
2752 }
2753
2754 static unsigned int cardmap_find_first_free(struct cardmap *map)
2755 {
2756         struct cardmap *p;
2757         unsigned int nr = 0;
2758         int i;
2759
2760         if ((p = map) == NULL)
2761                 return 0;
2762         for (;;) {
2763                 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH);
2764                 if (i >= CARDMAP_WIDTH) {
2765                         if (p->parent == NULL)
2766                                 return CARDMAP_WIDTH << p->shift;
2767                         p = p->parent;
2768                         i = (nr >> p->shift) & CARDMAP_MASK;
2769                         set_bit(i, &p->inuse);
2770                         continue;
2771                 }
2772                 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift);
2773                 if (p->shift == 0 || p->ptr[i] == NULL)
2774                         return nr;
2775                 p = p->ptr[i];
2776         }
2777 }
2778
2779 static void cardmap_destroy(struct cardmap **pmap)
2780 {
2781         struct cardmap *p, *np;
2782         int i;
2783
2784         for (p = *pmap; p != NULL; p = np) {
2785                 if (p->shift != 0) {
2786                         for (i = 0; i < CARDMAP_WIDTH; ++i)
2787                                 if (p->ptr[i] != NULL)
2788                                         break;
2789                         if (i < CARDMAP_WIDTH) {
2790                                 np = p->ptr[i];
2791                                 p->ptr[i] = NULL;
2792                                 continue;
2793                         }
2794                 }
2795                 np = p->parent;
2796                 kfree(p);
2797         }
2798         *pmap = NULL;
2799 }
2800
2801 /* Module/initialization stuff */
2802
2803 module_init(ppp_init);
2804 module_exit(ppp_cleanup);
2805
2806 EXPORT_SYMBOL(ppp_register_channel);
2807 EXPORT_SYMBOL(ppp_unregister_channel);
2808 EXPORT_SYMBOL(ppp_channel_index);
2809 EXPORT_SYMBOL(ppp_unit_number);
2810 EXPORT_SYMBOL(ppp_input);
2811 EXPORT_SYMBOL(ppp_input_error);
2812 EXPORT_SYMBOL(ppp_output_wakeup);
2813 EXPORT_SYMBOL(ppp_register_compressor);
2814 EXPORT_SYMBOL(ppp_unregister_compressor);
2815 MODULE_LICENSE("GPL");
2816 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2817 MODULE_ALIAS("/dev/ppp");