2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
21 #define ATH_PCI_VERSION "0.1"
23 static char *dev_info = "ath9k";
25 MODULE_AUTHOR("Atheros Communications");
26 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
27 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
28 MODULE_LICENSE("Dual BSD/GPL");
30 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
31 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
32 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
33 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
34 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
39 static void ath_detach(struct ath_softc *sc);
41 /* return bus cachesize in 4B word units */
43 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
47 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
51 * This check was put in to avoid "unplesant" consequences if
52 * the bootrom has not fully initialized all PCI devices.
53 * Sometimes the cache line size register is not set
57 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
60 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
62 sc->sc_curmode = mode;
64 * All protection frames are transmited at 2Mb/s for
65 * 11g, otherwise at 1Mb/s.
66 * XXX select protection rate index from rate table.
68 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
71 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
73 if (chan->chanmode == CHANNEL_A)
74 return ATH9K_MODE_11A;
75 else if (chan->chanmode == CHANNEL_G)
76 return ATH9K_MODE_11G;
77 else if (chan->chanmode == CHANNEL_B)
78 return ATH9K_MODE_11B;
79 else if (chan->chanmode == CHANNEL_A_HT20)
80 return ATH9K_MODE_11NA_HT20;
81 else if (chan->chanmode == CHANNEL_G_HT20)
82 return ATH9K_MODE_11NG_HT20;
83 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
84 return ATH9K_MODE_11NA_HT40PLUS;
85 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
86 return ATH9K_MODE_11NA_HT40MINUS;
87 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
88 return ATH9K_MODE_11NG_HT40PLUS;
89 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
90 return ATH9K_MODE_11NG_HT40MINUS;
92 WARN_ON(1); /* should not get here */
94 return ATH9K_MODE_11B;
97 static void ath_update_txpow(struct ath_softc *sc)
99 struct ath_hal *ah = sc->sc_ah;
102 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
103 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
104 /* read back in case value is clamped */
105 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
106 sc->sc_curtxpow = txpow;
110 static u8 parse_mpdudensity(u8 mpdudensity)
113 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
114 * 0 for no restriction
123 switch (mpdudensity) {
129 /* Our lower layer calculations limit our precision to
145 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
147 struct ath_rate_table *rate_table = NULL;
148 struct ieee80211_supported_band *sband;
149 struct ieee80211_rate *rate;
153 case IEEE80211_BAND_2GHZ:
154 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
156 case IEEE80211_BAND_5GHZ:
157 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
163 if (rate_table == NULL)
166 sband = &sc->sbands[band];
167 rate = sc->rates[band];
169 if (rate_table->rate_cnt > ATH_RATE_MAX)
170 maxrates = ATH_RATE_MAX;
172 maxrates = rate_table->rate_cnt;
174 for (i = 0; i < maxrates; i++) {
175 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
176 rate[i].hw_value = rate_table->info[i].ratecode;
178 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Rate: %2dMbps, ratecode: %2d\n",
179 __func__, rate[i].bitrate / 10, rate[i].hw_value);
183 static int ath_setup_channels(struct ath_softc *sc)
185 struct ath_hal *ah = sc->sc_ah;
186 int nchan, i, a = 0, b = 0;
187 u8 regclassids[ATH_REGCLASSIDS_MAX];
189 struct ieee80211_supported_band *band_2ghz;
190 struct ieee80211_supported_band *band_5ghz;
191 struct ieee80211_channel *chan_2ghz;
192 struct ieee80211_channel *chan_5ghz;
193 struct ath9k_channel *c;
195 /* Fill in ah->ah_channels */
196 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
197 regclassids, ATH_REGCLASSIDS_MAX,
198 &nregclass, CTRY_DEFAULT, false, 1)) {
199 u32 rd = ah->ah_currentRD;
200 DPRINTF(sc, ATH_DBG_FATAL,
201 "%s: unable to collect channel list; "
202 "regdomain likely %u country code %u\n",
203 __func__, rd, CTRY_DEFAULT);
207 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
208 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
209 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
210 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
212 for (i = 0; i < nchan; i++) {
213 c = &ah->ah_channels[i];
214 if (IS_CHAN_2GHZ(c)) {
215 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
216 chan_2ghz[a].center_freq = c->channel;
217 chan_2ghz[a].max_power = c->maxTxPower;
219 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
220 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
221 if (c->channelFlags & CHANNEL_PASSIVE)
222 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
224 band_2ghz->n_channels = ++a;
226 DPRINTF(sc, ATH_DBG_CONFIG, "%s: 2MHz channel: %d, "
227 "channelFlags: 0x%x\n",
228 __func__, c->channel, c->channelFlags);
229 } else if (IS_CHAN_5GHZ(c)) {
230 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
231 chan_5ghz[b].center_freq = c->channel;
232 chan_5ghz[b].max_power = c->maxTxPower;
234 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
235 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
236 if (c->channelFlags & CHANNEL_PASSIVE)
237 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
239 band_5ghz->n_channels = ++b;
241 DPRINTF(sc, ATH_DBG_CONFIG, "%s: 5MHz channel: %d, "
242 "channelFlags: 0x%x\n",
243 __func__, c->channel, c->channelFlags);
251 * Set/change channels. If the channel is really being changed, it's done
252 * by reseting the chip. To accomplish this we must first cleanup any pending
253 * DMA, then restart stuff.
255 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
257 struct ath_hal *ah = sc->sc_ah;
258 bool fastcc = true, stopped;
260 if (sc->sc_flags & SC_OP_INVALID)
263 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
264 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
265 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
266 (sc->sc_flags & SC_OP_FULL_RESET)) {
269 * This is only performed if the channel settings have
272 * To switch channels clear any pending DMA operations;
273 * wait long enough for the RX fifo to drain, reset the
274 * hardware at the new frequency, and then re-enable
275 * the relevant bits of the h/w.
277 ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
278 ath_draintxq(sc, false); /* clear pending tx frames */
279 stopped = ath_stoprecv(sc); /* turn off frame recv */
281 /* XXX: do not flush receive queue here. We don't want
282 * to flush data frames already in queue because of
283 * changing channel. */
285 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
288 DPRINTF(sc, ATH_DBG_CONFIG,
289 "%s: (%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
291 sc->sc_ah->ah_curchan->channel,
292 hchan->channel, hchan->channelFlags, sc->tx_chan_width);
294 spin_lock_bh(&sc->sc_resetlock);
295 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
296 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
297 sc->sc_ht_extprotspacing, fastcc, &status)) {
298 DPRINTF(sc, ATH_DBG_FATAL,
299 "%s: unable to reset channel %u (%uMhz) "
300 "flags 0x%x hal status %u\n", __func__,
301 ath9k_hw_mhz2ieee(ah, hchan->channel,
302 hchan->channelFlags),
303 hchan->channel, hchan->channelFlags, status);
304 spin_unlock_bh(&sc->sc_resetlock);
307 spin_unlock_bh(&sc->sc_resetlock);
309 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
310 sc->sc_flags &= ~SC_OP_FULL_RESET;
312 if (ath_startrecv(sc) != 0) {
313 DPRINTF(sc, ATH_DBG_FATAL,
314 "%s: unable to restart recv logic\n", __func__);
318 ath_setcurmode(sc, ath_chan2mode(hchan));
319 ath_update_txpow(sc);
320 ath9k_hw_set_interrupts(ah, sc->sc_imask);
326 * This routine performs the periodic noise floor calibration function
327 * that is used to adjust and optimize the chip performance. This
328 * takes environmental changes (location, temperature) into account.
329 * When the task is complete, it reschedules itself depending on the
330 * appropriate interval that was calculated.
332 static void ath_ani_calibrate(unsigned long data)
334 struct ath_softc *sc;
336 bool longcal = false;
337 bool shortcal = false;
338 bool aniflag = false;
339 unsigned int timestamp = jiffies_to_msecs(jiffies);
342 sc = (struct ath_softc *)data;
346 * don't calibrate when we're scanning.
347 * we are most likely not on our home channel.
349 if (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)
352 /* Long calibration runs independently of short calibration. */
353 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 DPRINTF(sc, ATH_DBG_ANI, "%s: longcal @%lu\n",
357 sc->sc_ani.sc_longcal_timer = timestamp;
360 /* Short calibration applies only while sc_caldone is false */
361 if (!sc->sc_ani.sc_caldone) {
362 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363 ATH_SHORT_CALINTERVAL) {
365 DPRINTF(sc, ATH_DBG_ANI, "%s: shortcal @%lu\n",
367 sc->sc_ani.sc_shortcal_timer = timestamp;
368 sc->sc_ani.sc_resetcal_timer = timestamp;
371 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
372 ATH_RESTART_CALINTERVAL) {
373 ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
374 &sc->sc_ani.sc_caldone);
375 if (sc->sc_ani.sc_caldone)
376 sc->sc_ani.sc_resetcal_timer = timestamp;
380 /* Verify whether we must check ANI */
381 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
382 ATH_ANI_POLLINTERVAL) {
384 sc->sc_ani.sc_checkani_timer = timestamp;
387 /* Skip all processing if there's nothing to do. */
388 if (longcal || shortcal || aniflag) {
389 /* Call ANI routine if necessary */
391 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
394 /* Perform calibration if necessary */
395 if (longcal || shortcal) {
396 bool iscaldone = false;
398 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
399 sc->sc_rx_chainmask, longcal,
402 sc->sc_ani.sc_noise_floor =
403 ath9k_hw_getchan_noise(ah,
406 DPRINTF(sc, ATH_DBG_ANI,
407 "%s: calibrate chan %u/%x nf: %d\n",
409 ah->ah_curchan->channel,
410 ah->ah_curchan->channelFlags,
411 sc->sc_ani.sc_noise_floor);
413 DPRINTF(sc, ATH_DBG_ANY,
414 "%s: calibrate chan %u/%x failed\n",
416 ah->ah_curchan->channel,
417 ah->ah_curchan->channelFlags);
419 sc->sc_ani.sc_caldone = iscaldone;
424 * Set timer interval based on previous results.
425 * The interval must be the shortest necessary to satisfy ANI,
426 * short calibration and long calibration.
429 cal_interval = ATH_ANI_POLLINTERVAL;
430 if (!sc->sc_ani.sc_caldone)
431 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
433 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
437 * Update tx/rx chainmask. For legacy association,
438 * hard code chainmask to 1x1, for 11n association, use
439 * the chainmask configuration.
441 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
443 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
445 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
446 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
448 sc->sc_tx_chainmask = 1;
449 sc->sc_rx_chainmask = 1;
452 DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
453 __func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
456 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
460 an = (struct ath_node *)sta->drv_priv;
462 if (sc->sc_flags & SC_OP_TXAGGR)
463 ath_tx_node_init(sc, an);
465 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
466 sta->ht_cap.ampdu_factor);
467 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
478 static void ath9k_tasklet(unsigned long data)
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->sc_intrstatus;
483 if (status & ATH9K_INT_FATAL) {
484 /* need a chip reset */
485 ath_reset(sc, false);
490 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
491 spin_lock_bh(&sc->sc_rxflushlock);
492 ath_rx_tasklet(sc, 0);
493 spin_unlock_bh(&sc->sc_rxflushlock);
495 /* XXX: optimize this */
496 if (status & ATH9K_INT_TX)
500 /* re-enable hardware interrupt */
501 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
504 static irqreturn_t ath_isr(int irq, void *dev)
506 struct ath_softc *sc = dev;
507 struct ath_hal *ah = sc->sc_ah;
508 enum ath9k_int status;
512 if (sc->sc_flags & SC_OP_INVALID) {
514 * The hardware is not ready/present, don't
515 * touch anything. Note this can happen early
516 * on if the IRQ is shared.
520 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
525 * Figure out the reason(s) for the interrupt. Note
526 * that the hal returns a pseudo-ISR that may include
527 * bits we haven't explicitly enabled so we mask the
528 * value to insure we only process bits we requested.
530 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
532 status &= sc->sc_imask; /* discard unasked-for bits */
535 * If there are no status bits set, then this interrupt was not
536 * for me (should have been caught above).
541 sc->sc_intrstatus = status;
543 if (status & ATH9K_INT_FATAL) {
544 /* need a chip reset */
546 } else if (status & ATH9K_INT_RXORN) {
547 /* need a chip reset */
550 if (status & ATH9K_INT_SWBA) {
551 /* schedule a tasklet for beacon handling */
552 tasklet_schedule(&sc->bcon_tasklet);
554 if (status & ATH9K_INT_RXEOL) {
556 * NB: the hardware should re-read the link when
557 * RXE bit is written, but it doesn't work
558 * at least on older hardware revs.
563 if (status & ATH9K_INT_TXURN)
564 /* bump tx trigger level */
565 ath9k_hw_updatetxtriglevel(ah, true);
566 /* XXX: optimize this */
567 if (status & ATH9K_INT_RX)
569 if (status & ATH9K_INT_TX)
571 if (status & ATH9K_INT_BMISS)
573 /* carrier sense timeout */
574 if (status & ATH9K_INT_CST)
576 if (status & ATH9K_INT_MIB) {
578 * Disable interrupts until we service the MIB
579 * interrupt; otherwise it will continue to
582 ath9k_hw_set_interrupts(ah, 0);
584 * Let the hal handle the event. We assume
585 * it will clear whatever condition caused
588 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
589 ath9k_hw_set_interrupts(ah, sc->sc_imask);
591 if (status & ATH9K_INT_TIM_TIMER) {
592 if (!(ah->ah_caps.hw_caps &
593 ATH9K_HW_CAP_AUTOSLEEP)) {
594 /* Clear RxAbort bit so that we can
596 ath9k_hw_setrxabort(ah, 0);
604 /* turn off every interrupt except SWBA */
605 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606 tasklet_schedule(&sc->intr_tq);
612 static int ath_get_channel(struct ath_softc *sc,
613 struct ieee80211_channel *chan)
617 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 struct ieee80211_bss_conf *bss_conf)
630 u8 ext_chan_offset = bss_conf->ht.secondary_channel_offset;
631 enum ath9k_ht_macmode tx_chan_width = (bss_conf->ht.width_40_ok) ?
632 ATH9K_HT_MACMODE_2040 : ATH9K_HT_MACMODE_20;
634 switch (chan->band) {
635 case IEEE80211_BAND_2GHZ:
636 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_NONE) &&
637 (tx_chan_width == ATH9K_HT_MACMODE_20))
638 chanmode = CHANNEL_G_HT20;
639 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) &&
640 (tx_chan_width == ATH9K_HT_MACMODE_2040))
641 chanmode = CHANNEL_G_HT40PLUS;
642 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) &&
643 (tx_chan_width == ATH9K_HT_MACMODE_2040))
644 chanmode = CHANNEL_G_HT40MINUS;
646 case IEEE80211_BAND_5GHZ:
647 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_NONE) &&
648 (tx_chan_width == ATH9K_HT_MACMODE_20))
649 chanmode = CHANNEL_A_HT20;
650 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) &&
651 (tx_chan_width == ATH9K_HT_MACMODE_2040))
652 chanmode = CHANNEL_A_HT40PLUS;
653 if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) &&
654 (tx_chan_width == ATH9K_HT_MACMODE_2040))
655 chanmode = CHANNEL_A_HT40MINUS;
664 static void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
666 ath9k_hw_keyreset(sc->sc_ah, keyix);
668 clear_bit(keyix, sc->sc_keymap);
671 static int ath_keyset(struct ath_softc *sc, u16 keyix,
672 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
676 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
677 keyix, hk, mac, false);
679 return status != false;
682 static int ath_setkey_tkip(struct ath_softc *sc,
683 struct ieee80211_key_conf *key,
684 struct ath9k_keyval *hk,
687 u8 *key_rxmic = NULL;
688 u8 *key_txmic = NULL;
690 key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
691 key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
694 /* Group key installation */
695 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
696 return ath_keyset(sc, key->keyidx, hk, addr);
698 if (!sc->sc_splitmic) {
700 * data key goes at first index,
701 * the hal handles the MIC keys at index+64.
703 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
704 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
705 return ath_keyset(sc, key->keyidx, hk, addr);
708 * TX key goes at first index, RX key at +32.
709 * The hal handles the MIC keys at index+64.
711 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
712 if (!ath_keyset(sc, key->keyidx, hk, NULL)) {
713 /* Txmic entry failed. No need to proceed further */
714 DPRINTF(sc, ATH_DBG_KEYCACHE,
715 "%s Setting TX MIC Key Failed\n", __func__);
719 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
720 /* XXX delete tx key on failure? */
721 return ath_keyset(sc, key->keyidx+32, hk, addr);
724 static int ath_key_config(struct ath_softc *sc,
726 struct ieee80211_key_conf *key)
728 struct ieee80211_vif *vif;
729 struct ath9k_keyval hk;
730 const u8 *mac = NULL;
732 enum nl80211_iftype opmode;
734 memset(&hk, 0, sizeof(hk));
738 hk.kv_type = ATH9K_CIPHER_WEP;
741 hk.kv_type = ATH9K_CIPHER_TKIP;
744 hk.kv_type = ATH9K_CIPHER_AES_CCM;
750 hk.kv_len = key->keylen;
751 memcpy(hk.kv_val, key->key, key->keylen);
756 vif = sc->sc_vaps[0];
761 * For _M_STA mc tx, we will not setup a key at all since we never
763 * _M_STA mc rx, we will use the keyID.
764 * for _M_IBSS mc tx, we will use the keyID, and no macaddr.
765 * for _M_IBSS mc rx, we will alloc a slot and plumb the mac of the
766 * peer node. BUT we will plumb a cleartext key so that we can do
767 * perSta default key table lookup in software.
769 if (is_broadcast_ether_addr(addr)) {
771 case NL80211_IFTYPE_STATION:
772 /* default key: could be group WPA key
773 * or could be static WEP key */
776 case NL80211_IFTYPE_ADHOC:
778 case NL80211_IFTYPE_AP:
788 if (key->alg == ALG_TKIP)
789 ret = ath_setkey_tkip(sc, key, &hk, mac);
791 ret = ath_keyset(sc, key->keyidx, &hk, mac);
799 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
803 freeslot = (key->keyidx >= 4) ? 1 : 0;
804 ath_key_reset(sc, key->keyidx, freeslot);
807 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
809 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
810 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
812 ht_info->ht_supported = true;
813 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
814 IEEE80211_HT_CAP_SM_PS |
815 IEEE80211_HT_CAP_SGI_40 |
816 IEEE80211_HT_CAP_DSSSCCK40;
818 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
819 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
820 /* set up supported mcs set */
821 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
822 ht_info->mcs.rx_mask[0] = 0xff;
823 ht_info->mcs.rx_mask[1] = 0xff;
824 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
827 static void ath9k_ht_conf(struct ath_softc *sc,
828 struct ieee80211_bss_conf *bss_conf)
830 if (sc->hw->conf.ht.enabled) {
831 if (bss_conf->ht.width_40_ok)
832 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
834 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
836 ath9k_hw_set11nmac2040(sc->sc_ah, sc->tx_chan_width);
838 DPRINTF(sc, ATH_DBG_CONFIG,
839 "%s: BSS Changed HT, chanwidth: %d\n",
840 __func__, sc->tx_chan_width);
844 static void ath9k_bss_assoc_info(struct ath_softc *sc,
845 struct ieee80211_vif *vif,
846 struct ieee80211_bss_conf *bss_conf)
848 struct ieee80211_hw *hw = sc->hw;
849 struct ieee80211_channel *curchan = hw->conf.channel;
850 struct ath_vap *avp = (void *)vif->drv_priv;
853 if (bss_conf->assoc) {
854 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info ASSOC %d\n",
858 /* New association, store aid */
859 if (avp->av_opmode == ATH9K_M_STA) {
860 sc->sc_curaid = bss_conf->aid;
861 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
865 /* Configure the beacon */
866 ath_beacon_config(sc, 0);
867 sc->sc_flags |= SC_OP_BEACONS;
869 /* Reset rssi stats */
870 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
871 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
872 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
873 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
875 /* Update chainmask */
876 ath_update_chainmask(sc, hw->conf.ht.enabled);
878 DPRINTF(sc, ATH_DBG_CONFIG,
879 "%s: bssid %pM aid 0x%x\n",
881 sc->sc_curbssid, sc->sc_curaid);
883 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
885 curchan->center_freq);
887 pos = ath_get_channel(sc, curchan);
889 DPRINTF(sc, ATH_DBG_FATAL,
890 "%s: Invalid channel\n", __func__);
894 if (hw->conf.ht.enabled) {
895 sc->sc_ah->ah_channels[pos].chanmode =
896 ath_get_extchanmode(sc, curchan, bss_conf);
898 if (bss_conf->ht.width_40_ok)
899 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
901 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
903 sc->sc_ah->ah_channels[pos].chanmode =
904 (curchan->band == IEEE80211_BAND_2GHZ) ?
905 CHANNEL_G : CHANNEL_A;
908 /* set h/w channel */
909 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
910 DPRINTF(sc, ATH_DBG_FATAL,
911 "%s: Unable to set channel\n", __func__);
913 mod_timer(&sc->sc_ani.timer,
914 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
917 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info DISSOC\n", __func__);
922 /********************************/
924 /********************************/
926 static void ath_led_brightness(struct led_classdev *led_cdev,
927 enum led_brightness brightness)
929 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
930 struct ath_softc *sc = led->sc;
932 switch (brightness) {
934 if (led->led_type == ATH_LED_ASSOC ||
935 led->led_type == ATH_LED_RADIO)
936 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
937 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
938 (led->led_type == ATH_LED_RADIO) ? 1 :
939 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
942 if (led->led_type == ATH_LED_ASSOC)
943 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
944 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
951 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
957 led->led_cdev.name = led->name;
958 led->led_cdev.default_trigger = trigger;
959 led->led_cdev.brightness_set = ath_led_brightness;
961 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
963 DPRINTF(sc, ATH_DBG_FATAL,
964 "Failed to register led:%s", led->name);
970 static void ath_unregister_led(struct ath_led *led)
972 if (led->registered) {
973 led_classdev_unregister(&led->led_cdev);
978 static void ath_deinit_leds(struct ath_softc *sc)
980 ath_unregister_led(&sc->assoc_led);
981 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
982 ath_unregister_led(&sc->tx_led);
983 ath_unregister_led(&sc->rx_led);
984 ath_unregister_led(&sc->radio_led);
985 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
988 static void ath_init_leds(struct ath_softc *sc)
993 /* Configure gpio 1 for output */
994 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
995 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
996 /* LED off, active low */
997 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
999 trigger = ieee80211_get_radio_led_name(sc->hw);
1000 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1001 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1002 ret = ath_register_led(sc, &sc->radio_led, trigger);
1003 sc->radio_led.led_type = ATH_LED_RADIO;
1007 trigger = ieee80211_get_assoc_led_name(sc->hw);
1008 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1009 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1010 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1011 sc->assoc_led.led_type = ATH_LED_ASSOC;
1015 trigger = ieee80211_get_tx_led_name(sc->hw);
1016 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1017 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1018 ret = ath_register_led(sc, &sc->tx_led, trigger);
1019 sc->tx_led.led_type = ATH_LED_TX;
1023 trigger = ieee80211_get_rx_led_name(sc->hw);
1024 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1025 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1026 ret = ath_register_led(sc, &sc->rx_led, trigger);
1027 sc->rx_led.led_type = ATH_LED_RX;
1034 ath_deinit_leds(sc);
1037 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1039 /*******************/
1041 /*******************/
1043 static void ath_radio_enable(struct ath_softc *sc)
1045 struct ath_hal *ah = sc->sc_ah;
1048 spin_lock_bh(&sc->sc_resetlock);
1049 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1051 sc->sc_tx_chainmask,
1052 sc->sc_rx_chainmask,
1053 sc->sc_ht_extprotspacing,
1055 DPRINTF(sc, ATH_DBG_FATAL,
1056 "%s: unable to reset channel %u (%uMhz) "
1057 "flags 0x%x hal status %u\n", __func__,
1058 ath9k_hw_mhz2ieee(ah,
1059 ah->ah_curchan->channel,
1060 ah->ah_curchan->channelFlags),
1061 ah->ah_curchan->channel,
1062 ah->ah_curchan->channelFlags, status);
1064 spin_unlock_bh(&sc->sc_resetlock);
1066 ath_update_txpow(sc);
1067 if (ath_startrecv(sc) != 0) {
1068 DPRINTF(sc, ATH_DBG_FATAL,
1069 "%s: unable to restart recv logic\n", __func__);
1073 if (sc->sc_flags & SC_OP_BEACONS)
1074 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1076 /* Re-Enable interrupts */
1077 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1080 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1081 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1082 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1084 ieee80211_wake_queues(sc->hw);
1087 static void ath_radio_disable(struct ath_softc *sc)
1089 struct ath_hal *ah = sc->sc_ah;
1093 ieee80211_stop_queues(sc->hw);
1096 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1097 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1099 /* Disable interrupts */
1100 ath9k_hw_set_interrupts(ah, 0);
1102 ath_draintxq(sc, false); /* clear pending tx frames */
1103 ath_stoprecv(sc); /* turn off frame recv */
1104 ath_flushrecv(sc); /* flush recv queue */
1106 spin_lock_bh(&sc->sc_resetlock);
1107 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1109 sc->sc_tx_chainmask,
1110 sc->sc_rx_chainmask,
1111 sc->sc_ht_extprotspacing,
1113 DPRINTF(sc, ATH_DBG_FATAL,
1114 "%s: unable to reset channel %u (%uMhz) "
1115 "flags 0x%x hal status %u\n", __func__,
1116 ath9k_hw_mhz2ieee(ah,
1117 ah->ah_curchan->channel,
1118 ah->ah_curchan->channelFlags),
1119 ah->ah_curchan->channel,
1120 ah->ah_curchan->channelFlags, status);
1122 spin_unlock_bh(&sc->sc_resetlock);
1124 ath9k_hw_phy_disable(ah);
1125 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1128 static bool ath_is_rfkill_set(struct ath_softc *sc)
1130 struct ath_hal *ah = sc->sc_ah;
1132 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1133 ah->ah_rfkill_polarity;
1136 /* h/w rfkill poll function */
1137 static void ath_rfkill_poll(struct work_struct *work)
1139 struct ath_softc *sc = container_of(work, struct ath_softc,
1140 rf_kill.rfkill_poll.work);
1143 if (sc->sc_flags & SC_OP_INVALID)
1146 radio_on = !ath_is_rfkill_set(sc);
1149 * enable/disable radio only when there is a
1150 * state change in RF switch
1152 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1153 enum rfkill_state state;
1155 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1156 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1157 : RFKILL_STATE_HARD_BLOCKED;
1158 } else if (radio_on) {
1159 ath_radio_enable(sc);
1160 state = RFKILL_STATE_UNBLOCKED;
1162 ath_radio_disable(sc);
1163 state = RFKILL_STATE_HARD_BLOCKED;
1166 if (state == RFKILL_STATE_HARD_BLOCKED)
1167 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1169 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1171 rfkill_force_state(sc->rf_kill.rfkill, state);
1174 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1175 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1178 /* s/w rfkill handler */
1179 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1181 struct ath_softc *sc = data;
1184 case RFKILL_STATE_SOFT_BLOCKED:
1185 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1186 SC_OP_RFKILL_SW_BLOCKED)))
1187 ath_radio_disable(sc);
1188 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1190 case RFKILL_STATE_UNBLOCKED:
1191 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1192 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1193 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1194 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1195 "radio as it is disabled by h/w \n");
1198 ath_radio_enable(sc);
1206 /* Init s/w rfkill */
1207 static int ath_init_sw_rfkill(struct ath_softc *sc)
1209 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1211 if (!sc->rf_kill.rfkill) {
1212 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1216 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1217 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1218 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1219 sc->rf_kill.rfkill->data = sc;
1220 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1221 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1222 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1227 /* Deinitialize rfkill */
1228 static void ath_deinit_rfkill(struct ath_softc *sc)
1230 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1231 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1233 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1234 rfkill_unregister(sc->rf_kill.rfkill);
1235 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1236 sc->rf_kill.rfkill = NULL;
1240 static int ath_start_rfkill_poll(struct ath_softc *sc)
1242 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1243 queue_delayed_work(sc->hw->workqueue,
1244 &sc->rf_kill.rfkill_poll, 0);
1246 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1247 if (rfkill_register(sc->rf_kill.rfkill)) {
1248 DPRINTF(sc, ATH_DBG_FATAL,
1249 "Unable to register rfkill\n");
1250 rfkill_free(sc->rf_kill.rfkill);
1252 /* Deinitialize the device */
1255 free_irq(sc->pdev->irq, sc);
1256 pci_iounmap(sc->pdev, sc->mem);
1257 pci_release_region(sc->pdev, 0);
1258 pci_disable_device(sc->pdev);
1259 ieee80211_free_hw(sc->hw);
1262 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1268 #endif /* CONFIG_RFKILL */
1270 static void ath_detach(struct ath_softc *sc)
1272 struct ieee80211_hw *hw = sc->hw;
1275 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach ATH hw\n", __func__);
1277 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1278 ath_deinit_rfkill(sc);
1280 ath_deinit_leds(sc);
1282 ieee80211_unregister_hw(hw);
1284 ath_rate_control_unregister();
1289 tasklet_kill(&sc->intr_tq);
1290 tasklet_kill(&sc->bcon_tasklet);
1292 if (!(sc->sc_flags & SC_OP_INVALID))
1293 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1295 /* cleanup tx queues */
1296 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1297 if (ATH_TXQ_SETUP(sc, i))
1298 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
1300 ath9k_hw_detach(sc->sc_ah);
1303 static int ath_init(u16 devid, struct ath_softc *sc)
1305 struct ath_hal *ah = NULL;
1310 /* XXX: hardware will not be ready until ath_open() being called */
1311 sc->sc_flags |= SC_OP_INVALID;
1312 sc->sc_debug = DBG_DEFAULT;
1314 spin_lock_init(&sc->sc_resetlock);
1315 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1316 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1320 * Cache line size is used to size and align various
1321 * structures used to communicate with the hardware.
1323 bus_read_cachesize(sc, &csz);
1324 /* XXX assert csz is non-zero */
1325 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1327 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1329 DPRINTF(sc, ATH_DBG_FATAL,
1330 "%s: unable to attach hardware; HAL status %u\n",
1337 /* Get the hardware key cache size. */
1338 sc->sc_keymax = ah->ah_caps.keycache_size;
1339 if (sc->sc_keymax > ATH_KEYMAX) {
1340 DPRINTF(sc, ATH_DBG_KEYCACHE,
1341 "%s: Warning, using only %u entries in %u key cache\n",
1342 __func__, ATH_KEYMAX, sc->sc_keymax);
1343 sc->sc_keymax = ATH_KEYMAX;
1347 * Reset the key cache since some parts do not
1348 * reset the contents on initial power up.
1350 for (i = 0; i < sc->sc_keymax; i++)
1351 ath9k_hw_keyreset(ah, (u16) i);
1353 * Mark key cache slots associated with global keys
1354 * as in use. If we knew TKIP was not to be used we
1355 * could leave the +32, +64, and +32+64 slots free.
1356 * XXX only for splitmic.
1358 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1359 set_bit(i, sc->sc_keymap);
1360 set_bit(i + 32, sc->sc_keymap);
1361 set_bit(i + 64, sc->sc_keymap);
1362 set_bit(i + 32 + 64, sc->sc_keymap);
1365 /* Collect the channel list using the default country code */
1367 error = ath_setup_channels(sc);
1371 /* default to MONITOR mode */
1372 sc->sc_ah->ah_opmode = ATH9K_M_MONITOR;
1374 /* Setup rate tables */
1376 ath_rate_attach(sc);
1377 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1378 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1381 * Allocate hardware transmit queues: one queue for
1382 * beacon frames and one data queue for each QoS
1383 * priority. Note that the hal handles reseting
1384 * these queues at the needed time.
1386 sc->sc_bhalq = ath_beaconq_setup(ah);
1387 if (sc->sc_bhalq == -1) {
1388 DPRINTF(sc, ATH_DBG_FATAL,
1389 "%s: unable to setup a beacon xmit queue\n", __func__);
1393 sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1394 if (sc->sc_cabq == NULL) {
1395 DPRINTF(sc, ATH_DBG_FATAL,
1396 "%s: unable to setup CAB xmit queue\n", __func__);
1401 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1402 ath_cabq_update(sc);
1404 for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
1405 sc->sc_haltype2q[i] = -1;
1407 /* Setup data queues */
1408 /* NB: ensure BK queue is the lowest priority h/w queue */
1409 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1410 DPRINTF(sc, ATH_DBG_FATAL,
1411 "%s: unable to setup xmit queue for BK traffic\n",
1417 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1418 DPRINTF(sc, ATH_DBG_FATAL,
1419 "%s: unable to setup xmit queue for BE traffic\n",
1424 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1425 DPRINTF(sc, ATH_DBG_FATAL,
1426 "%s: unable to setup xmit queue for VI traffic\n",
1431 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1432 DPRINTF(sc, ATH_DBG_FATAL,
1433 "%s: unable to setup xmit queue for VO traffic\n",
1439 /* Initializes the noise floor to a reasonable default value.
1440 * Later on this will be updated during ANI processing. */
1442 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1443 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1445 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1446 ATH9K_CIPHER_TKIP, NULL)) {
1448 * Whether we should enable h/w TKIP MIC.
1449 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1450 * report WMM capable, so it's always safe to turn on
1451 * TKIP MIC in this case.
1453 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1458 * Check whether the separate key cache entries
1459 * are required to handle both tx+rx MIC keys.
1460 * With split mic keys the number of stations is limited
1461 * to 27 otherwise 59.
1463 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1464 ATH9K_CIPHER_TKIP, NULL)
1465 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1466 ATH9K_CIPHER_MIC, NULL)
1467 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1469 sc->sc_splitmic = 1;
1471 /* turn on mcast key search if possible */
1472 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1473 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1476 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1477 sc->sc_config.txpowlimit_override = 0;
1479 /* 11n Capabilities */
1480 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1481 sc->sc_flags |= SC_OP_TXAGGR;
1482 sc->sc_flags |= SC_OP_RXAGGR;
1485 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1486 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1488 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1489 sc->sc_defant = ath9k_hw_getdefantenna(ah);
1491 ath9k_hw_getmac(ah, sc->sc_myaddr);
1492 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1493 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1494 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1495 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1498 sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1500 /* initialize beacon slots */
1501 for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
1502 sc->sc_bslot[i] = ATH_IF_ID_ANY;
1504 /* save MISC configurations */
1505 sc->sc_config.swBeaconProcess = 1;
1507 #ifdef CONFIG_SLOW_ANT_DIV
1508 /* range is 40 - 255, we use something in the middle */
1509 ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
1512 /* setup channels and rates */
1514 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1515 sc->channels[IEEE80211_BAND_2GHZ];
1516 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1517 sc->rates[IEEE80211_BAND_2GHZ];
1518 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1520 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1521 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1522 sc->channels[IEEE80211_BAND_5GHZ];
1523 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1524 sc->rates[IEEE80211_BAND_5GHZ];
1525 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1530 /* cleanup tx queues */
1531 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1532 if (ATH_TXQ_SETUP(sc, i))
1533 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
1536 ath9k_hw_detach(ah);
1541 static int ath_attach(u16 devid, struct ath_softc *sc)
1543 struct ieee80211_hw *hw = sc->hw;
1546 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach ATH hw\n", __func__);
1548 error = ath_init(devid, sc);
1552 /* get mac address from hardware and set in mac80211 */
1554 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1556 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1557 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1558 IEEE80211_HW_SIGNAL_DBM |
1559 IEEE80211_HW_AMPDU_AGGREGATION;
1561 hw->wiphy->interface_modes =
1562 BIT(NL80211_IFTYPE_AP) |
1563 BIT(NL80211_IFTYPE_STATION) |
1564 BIT(NL80211_IFTYPE_ADHOC);
1568 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1569 hw->sta_data_size = sizeof(struct ath_node);
1570 hw->vif_data_size = sizeof(struct ath_vap);
1572 /* Register rate control */
1573 hw->rate_control_algorithm = "ath9k_rate_control";
1574 error = ath_rate_control_register();
1576 DPRINTF(sc, ATH_DBG_FATAL,
1577 "%s: Unable to register rate control "
1578 "algorithm:%d\n", __func__, error);
1579 ath_rate_control_unregister();
1583 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1584 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1585 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1586 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1589 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1590 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1591 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1592 &sc->sbands[IEEE80211_BAND_5GHZ];
1594 /* initialize tx/rx engine */
1595 error = ath_tx_init(sc, ATH_TXBUF);
1599 error = ath_rx_init(sc, ATH_RXBUF);
1603 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1604 /* Initialze h/w Rfkill */
1605 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1606 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1608 /* Initialize s/w rfkill */
1609 if (ath_init_sw_rfkill(sc))
1613 error = ieee80211_register_hw(hw);
1615 ath_rate_control_unregister();
1619 /* Initialize LED control */
1629 int ath_reset(struct ath_softc *sc, bool retry_tx)
1631 struct ath_hal *ah = sc->sc_ah;
1635 ath9k_hw_set_interrupts(ah, 0);
1636 ath_draintxq(sc, retry_tx);
1640 spin_lock_bh(&sc->sc_resetlock);
1641 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1643 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1644 sc->sc_ht_extprotspacing, false, &status)) {
1645 DPRINTF(sc, ATH_DBG_FATAL,
1646 "%s: unable to reset hardware; hal status %u\n",
1650 spin_unlock_bh(&sc->sc_resetlock);
1652 if (ath_startrecv(sc) != 0)
1653 DPRINTF(sc, ATH_DBG_FATAL,
1654 "%s: unable to start recv logic\n", __func__);
1657 * We may be doing a reset in response to a request
1658 * that changes the channel so update any state that
1659 * might change as a result.
1661 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1663 ath_update_txpow(sc);
1665 if (sc->sc_flags & SC_OP_BEACONS)
1666 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1668 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1672 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1673 if (ATH_TXQ_SETUP(sc, i)) {
1674 spin_lock_bh(&sc->sc_txq[i].axq_lock);
1675 ath_txq_schedule(sc, &sc->sc_txq[i]);
1676 spin_unlock_bh(&sc->sc_txq[i].axq_lock);
1685 * This function will allocate both the DMA descriptor structure, and the
1686 * buffers it contains. These are used to contain the descriptors used
1689 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1690 struct list_head *head, const char *name,
1691 int nbuf, int ndesc)
1693 #define DS2PHYS(_dd, _ds) \
1694 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1695 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1696 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1698 struct ath_desc *ds;
1700 int i, bsize, error;
1702 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
1703 __func__, name, nbuf, ndesc);
1705 /* ath_desc must be a multiple of DWORDs */
1706 if ((sizeof(struct ath_desc) % 4) != 0) {
1707 DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
1709 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1715 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1718 * Need additional DMA memory because we can't use
1719 * descriptors that cross the 4K page boundary. Assume
1720 * one skipped descriptor per 4K page.
1722 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1724 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1727 while (ndesc_skipped) {
1728 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1729 dd->dd_desc_len += dma_len;
1731 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1735 /* allocate descriptors */
1736 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1738 &dd->dd_desc_paddr);
1739 if (dd->dd_desc == NULL) {
1744 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
1745 __func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
1746 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1748 /* allocate buffers */
1749 bsize = sizeof(struct ath_buf) * nbuf;
1750 bf = kmalloc(bsize, GFP_KERNEL);
1755 memset(bf, 0, bsize);
1758 INIT_LIST_HEAD(head);
1759 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1761 bf->bf_daddr = DS2PHYS(dd, ds);
1763 if (!(sc->sc_ah->ah_caps.hw_caps &
1764 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1766 * Skip descriptor addresses which can cause 4KB
1767 * boundary crossing (addr + length) with a 32 dword
1770 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1771 ASSERT((caddr_t) bf->bf_desc <
1772 ((caddr_t) dd->dd_desc +
1777 bf->bf_daddr = DS2PHYS(dd, ds);
1780 list_add_tail(&bf->list, head);
1784 pci_free_consistent(sc->pdev,
1785 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1787 memset(dd, 0, sizeof(*dd));
1789 #undef ATH_DESC_4KB_BOUND_CHECK
1790 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1794 void ath_descdma_cleanup(struct ath_softc *sc,
1795 struct ath_descdma *dd,
1796 struct list_head *head)
1798 pci_free_consistent(sc->pdev,
1799 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1801 INIT_LIST_HEAD(head);
1802 kfree(dd->dd_bufptr);
1803 memset(dd, 0, sizeof(*dd));
1806 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1812 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
1815 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
1818 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1821 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
1824 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1831 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1836 case ATH9K_WME_AC_VO:
1839 case ATH9K_WME_AC_VI:
1842 case ATH9K_WME_AC_BE:
1845 case ATH9K_WME_AC_BK:
1856 /**********************/
1857 /* mac80211 callbacks */
1858 /**********************/
1860 static int ath9k_start(struct ieee80211_hw *hw)
1862 struct ath_softc *sc = hw->priv;
1863 struct ieee80211_channel *curchan = hw->conf.channel;
1864 struct ath9k_channel *init_channel;
1865 int error = 0, pos, status;
1867 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with "
1868 "initial channel: %d MHz\n", __func__, curchan->center_freq);
1870 /* setup initial channel */
1872 pos = ath_get_channel(sc, curchan);
1874 DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
1879 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1880 sc->sc_ah->ah_channels[pos].chanmode =
1881 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1882 init_channel = &sc->sc_ah->ah_channels[pos];
1884 /* Reset SERDES registers */
1885 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1888 * The basic interface to setting the hardware in a good
1889 * state is ``reset''. On return the hardware is known to
1890 * be powered up and with interrupts disabled. This must
1891 * be followed by initialization of the appropriate bits
1892 * and then setup of the interrupt mask.
1894 spin_lock_bh(&sc->sc_resetlock);
1895 if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1897 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1898 sc->sc_ht_extprotspacing, false, &status)) {
1899 DPRINTF(sc, ATH_DBG_FATAL,
1900 "%s: unable to reset hardware; hal status %u "
1901 "(freq %u flags 0x%x)\n", __func__, status,
1902 init_channel->channel, init_channel->channelFlags);
1904 spin_unlock_bh(&sc->sc_resetlock);
1907 spin_unlock_bh(&sc->sc_resetlock);
1910 * This is needed only to setup initial state
1911 * but it's best done after a reset.
1913 ath_update_txpow(sc);
1916 * Setup the hardware after reset:
1917 * The receive engine is set going.
1918 * Frame transmit is handled entirely
1919 * in the frame output path; there's nothing to do
1920 * here except setup the interrupt mask.
1922 if (ath_startrecv(sc) != 0) {
1923 DPRINTF(sc, ATH_DBG_FATAL,
1924 "%s: unable to start recv logic\n", __func__);
1929 /* Setup our intr mask. */
1930 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1931 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1932 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1934 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1935 sc->sc_imask |= ATH9K_INT_GTT;
1937 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1938 sc->sc_imask |= ATH9K_INT_CST;
1941 * Enable MIB interrupts when there are hardware phy counters.
1942 * Note we only do this (at the moment) for station mode.
1944 if (ath9k_hw_phycounters(sc->sc_ah) &&
1945 ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
1946 (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)))
1947 sc->sc_imask |= ATH9K_INT_MIB;
1949 * Some hardware processes the TIM IE and fires an
1950 * interrupt when the TIM bit is set. For hardware
1951 * that does, if not overridden by configuration,
1952 * enable the TIM interrupt when operating as station.
1954 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1955 (sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
1956 !sc->sc_config.swBeaconProcess)
1957 sc->sc_imask |= ATH9K_INT_TIM;
1959 ath_setcurmode(sc, ath_chan2mode(init_channel));
1961 sc->sc_flags &= ~SC_OP_INVALID;
1963 /* Disable BMISS interrupt when we're not associated */
1964 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1965 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1967 ieee80211_wake_queues(sc->hw);
1969 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1970 error = ath_start_rfkill_poll(sc);
1977 static int ath9k_tx(struct ieee80211_hw *hw,
1978 struct sk_buff *skb)
1980 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1981 struct ath_softc *sc = hw->priv;
1982 struct ath_tx_control txctl;
1983 int hdrlen, padsize;
1985 memset(&txctl, 0, sizeof(struct ath_tx_control));
1988 * As a temporary workaround, assign seq# here; this will likely need
1989 * to be cleaned up to work better with Beacon transmission and virtual
1992 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1994 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1996 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1997 hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
2000 /* Add the padding after the header if this is not already done */
2001 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2003 padsize = hdrlen % 4;
2004 if (skb_headroom(skb) < padsize)
2006 skb_push(skb, padsize);
2007 memmove(skb->data, skb->data + padsize, hdrlen);
2010 /* Check if a tx queue is available */
2012 txctl.txq = ath_test_get_txq(sc, skb);
2016 DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting packet, skb: %p\n",
2020 if (ath_tx_start(sc, skb, &txctl) != 0) {
2021 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__);
2027 dev_kfree_skb_any(skb);
2031 static void ath9k_stop(struct ieee80211_hw *hw)
2033 struct ath_softc *sc = hw->priv;
2035 if (sc->sc_flags & SC_OP_INVALID) {
2036 DPRINTF(sc, ATH_DBG_ANY, "%s: Device not present\n", __func__);
2040 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Cleaning up\n", __func__);
2042 ieee80211_stop_queues(sc->hw);
2044 /* make sure h/w will not generate any interrupt
2045 * before setting the invalid flag. */
2046 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2048 if (!(sc->sc_flags & SC_OP_INVALID)) {
2049 ath_draintxq(sc, false);
2051 ath9k_hw_phy_disable(sc->sc_ah);
2053 sc->sc_rxlink = NULL;
2055 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2056 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2057 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2059 /* disable HAL and put h/w to sleep */
2060 ath9k_hw_disable(sc->sc_ah);
2061 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2063 sc->sc_flags |= SC_OP_INVALID;
2065 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__);
2068 static int ath9k_add_interface(struct ieee80211_hw *hw,
2069 struct ieee80211_if_init_conf *conf)
2071 struct ath_softc *sc = hw->priv;
2072 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2075 /* Support only vap for now */
2080 switch (conf->type) {
2081 case NL80211_IFTYPE_STATION:
2082 ic_opmode = ATH9K_M_STA;
2084 case NL80211_IFTYPE_ADHOC:
2085 ic_opmode = ATH9K_M_IBSS;
2087 case NL80211_IFTYPE_AP:
2088 ic_opmode = ATH9K_M_HOSTAP;
2091 DPRINTF(sc, ATH_DBG_FATAL,
2092 "%s: Interface type %d not yet supported\n",
2093 __func__, conf->type);
2097 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a VAP of type: %d\n",
2101 /* Set the VAP opmode */
2102 avp->av_opmode = ic_opmode;
2105 if (ic_opmode == ATH9K_M_HOSTAP)
2106 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2108 sc->sc_vaps[0] = conf->vif;
2111 /* Set the device opmode */
2112 sc->sc_ah->ah_opmode = ic_opmode;
2114 if (conf->type == NL80211_IFTYPE_AP) {
2115 /* TODO: is this a suitable place to start ANI for AP mode? */
2117 mod_timer(&sc->sc_ani.timer,
2118 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2124 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2125 struct ieee80211_if_init_conf *conf)
2127 struct ath_softc *sc = hw->priv;
2128 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2130 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach VAP\n", __func__);
2132 #ifdef CONFIG_SLOW_ANT_DIV
2133 ath_slow_ant_div_stop(&sc->sc_antdiv);
2136 del_timer_sync(&sc->sc_ani.timer);
2138 /* Reclaim beacon resources */
2139 if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP ||
2140 sc->sc_ah->ah_opmode == ATH9K_M_IBSS) {
2141 ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2142 ath_beacon_return(sc, avp);
2145 sc->sc_flags &= ~SC_OP_BEACONS;
2147 sc->sc_vaps[0] = NULL;
2151 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2153 struct ath_softc *sc = hw->priv;
2154 struct ieee80211_conf *conf = &hw->conf;
2156 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2157 struct ieee80211_channel *curchan = hw->conf.channel;
2160 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
2161 __func__, curchan->center_freq);
2163 pos = ath_get_channel(sc, curchan);
2165 DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
2169 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2170 sc->sc_ah->ah_channels[pos].chanmode =
2171 (curchan->band == IEEE80211_BAND_2GHZ) ?
2172 CHANNEL_G : CHANNEL_A;
2174 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
2175 DPRINTF(sc, ATH_DBG_FATAL,
2176 "%s: Unable to set channel\n", __func__);
2179 if (changed & IEEE80211_CONF_CHANGE_HT)
2180 ath_update_chainmask(sc, conf->ht.enabled);
2182 if (changed & IEEE80211_CONF_CHANGE_POWER)
2183 sc->sc_config.txpowlimit = 2 * conf->power_level;
2188 static int ath9k_config_interface(struct ieee80211_hw *hw,
2189 struct ieee80211_vif *vif,
2190 struct ieee80211_if_conf *conf)
2192 struct ath_softc *sc = hw->priv;
2193 struct ath_hal *ah = sc->sc_ah;
2194 struct ath_vap *avp = (void *)vif->drv_priv;
2198 /* TODO: Need to decide which hw opmode to use for multi-interface
2200 if (vif->type == NL80211_IFTYPE_AP &&
2201 ah->ah_opmode != ATH9K_M_HOSTAP) {
2202 ah->ah_opmode = ATH9K_M_HOSTAP;
2203 ath9k_hw_setopmode(ah);
2204 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2205 /* Request full reset to get hw opmode changed properly */
2206 sc->sc_flags |= SC_OP_FULL_RESET;
2209 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2210 !is_zero_ether_addr(conf->bssid)) {
2211 switch (vif->type) {
2212 case NL80211_IFTYPE_STATION:
2213 case NL80211_IFTYPE_ADHOC:
2215 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2217 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2220 /* Set aggregation protection mode parameters */
2221 sc->sc_config.ath_aggr_prot = 0;
2223 DPRINTF(sc, ATH_DBG_CONFIG,
2224 "%s: RX filter 0x%x bssid %pM aid 0x%x\n",
2226 sc->sc_curbssid, sc->sc_curaid);
2228 /* need to reconfigure the beacon */
2229 sc->sc_flags &= ~SC_OP_BEACONS ;
2237 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2238 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2239 (vif->type == NL80211_IFTYPE_AP))) {
2241 * Allocate and setup the beacon frame.
2243 * Stop any previous beacon DMA. This may be
2244 * necessary, for example, when an ibss merge
2245 * causes reconfiguration; we may be called
2246 * with beacon transmission active.
2248 ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2250 error = ath_beacon_alloc(sc, 0);
2254 ath_beacon_sync(sc, 0);
2257 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2258 if ((avp->av_opmode != ATH9K_M_STA)) {
2259 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2260 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2261 ath9k_hw_keysetmac(sc->sc_ah,
2266 /* Only legacy IBSS for now */
2267 if (vif->type == NL80211_IFTYPE_ADHOC)
2268 ath_update_chainmask(sc, 0);
2273 #define SUPPORTED_FILTERS \
2274 (FIF_PROMISC_IN_BSS | \
2278 FIF_BCN_PRBRESP_PROMISC | \
2281 /* FIXME: sc->sc_full_reset ? */
2282 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2283 unsigned int changed_flags,
2284 unsigned int *total_flags,
2286 struct dev_mc_list *mclist)
2288 struct ath_softc *sc = hw->priv;
2291 changed_flags &= SUPPORTED_FILTERS;
2292 *total_flags &= SUPPORTED_FILTERS;
2294 sc->rx_filter = *total_flags;
2295 rfilt = ath_calcrxfilter(sc);
2296 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2298 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2299 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2300 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2303 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set HW RX filter: 0x%x\n",
2304 __func__, sc->rx_filter);
2307 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2308 struct ieee80211_vif *vif,
2309 enum sta_notify_cmd cmd,
2310 struct ieee80211_sta *sta)
2312 struct ath_softc *sc = hw->priv;
2315 case STA_NOTIFY_ADD:
2316 ath_node_attach(sc, sta);
2318 case STA_NOTIFY_REMOVE:
2319 ath_node_detach(sc, sta);
2326 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2328 const struct ieee80211_tx_queue_params *params)
2330 struct ath_softc *sc = hw->priv;
2331 struct ath9k_tx_queue_info qi;
2334 if (queue >= WME_NUM_AC)
2337 qi.tqi_aifs = params->aifs;
2338 qi.tqi_cwmin = params->cw_min;
2339 qi.tqi_cwmax = params->cw_max;
2340 qi.tqi_burstTime = params->txop;
2341 qnum = ath_get_hal_qnum(queue, sc);
2343 DPRINTF(sc, ATH_DBG_CONFIG,
2344 "%s: Configure tx [queue/halq] [%d/%d], "
2345 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2354 ret = ath_txq_update(sc, qnum, &qi);
2356 DPRINTF(sc, ATH_DBG_FATAL,
2357 "%s: TXQ Update failed\n", __func__);
2362 static int ath9k_set_key(struct ieee80211_hw *hw,
2363 enum set_key_cmd cmd,
2364 const u8 *local_addr,
2366 struct ieee80211_key_conf *key)
2368 struct ath_softc *sc = hw->priv;
2371 DPRINTF(sc, ATH_DBG_KEYCACHE, " %s: Set HW Key\n", __func__);
2375 ret = ath_key_config(sc, addr, key);
2377 set_bit(key->keyidx, sc->sc_keymap);
2378 key->hw_key_idx = key->keyidx;
2379 /* push IV and Michael MIC generation to stack */
2380 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2381 if (key->alg == ALG_TKIP)
2382 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2386 ath_key_delete(sc, key);
2387 clear_bit(key->keyidx, sc->sc_keymap);
2396 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2397 struct ieee80211_vif *vif,
2398 struct ieee80211_bss_conf *bss_conf,
2401 struct ath_softc *sc = hw->priv;
2403 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2404 DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed PREAMBLE %d\n",
2406 bss_conf->use_short_preamble);
2407 if (bss_conf->use_short_preamble)
2408 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2410 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2413 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2414 DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed CTS PROT %d\n",
2416 bss_conf->use_cts_prot);
2417 if (bss_conf->use_cts_prot &&
2418 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2419 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2421 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2424 if (changed & BSS_CHANGED_HT)
2425 ath9k_ht_conf(sc, bss_conf);
2427 if (changed & BSS_CHANGED_ASSOC) {
2428 DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed ASSOC %d\n",
2431 ath9k_bss_assoc_info(sc, vif, bss_conf);
2435 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2438 struct ath_softc *sc = hw->priv;
2439 struct ath_hal *ah = sc->sc_ah;
2441 tsf = ath9k_hw_gettsf64(ah);
2446 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2448 struct ath_softc *sc = hw->priv;
2449 struct ath_hal *ah = sc->sc_ah;
2451 ath9k_hw_reset_tsf(ah);
2454 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2455 enum ieee80211_ampdu_mlme_action action,
2456 struct ieee80211_sta *sta,
2459 struct ath_softc *sc = hw->priv;
2463 case IEEE80211_AMPDU_RX_START:
2464 if (!(sc->sc_flags & SC_OP_RXAGGR))
2467 case IEEE80211_AMPDU_RX_STOP:
2469 case IEEE80211_AMPDU_TX_START:
2470 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2472 DPRINTF(sc, ATH_DBG_FATAL,
2473 "%s: Unable to start TX aggregation\n",
2476 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2478 case IEEE80211_AMPDU_TX_STOP:
2479 ret = ath_tx_aggr_stop(sc, sta, tid);
2481 DPRINTF(sc, ATH_DBG_FATAL,
2482 "%s: Unable to stop TX aggregation\n",
2485 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2487 case IEEE80211_AMPDU_TX_RESUME:
2488 ath_tx_aggr_resume(sc, sta, tid);
2491 DPRINTF(sc, ATH_DBG_FATAL,
2492 "%s: Unknown AMPDU action\n", __func__);
2498 static int ath9k_no_fragmentation(struct ieee80211_hw *hw, u32 value)
2503 static struct ieee80211_ops ath9k_ops = {
2505 .start = ath9k_start,
2507 .add_interface = ath9k_add_interface,
2508 .remove_interface = ath9k_remove_interface,
2509 .config = ath9k_config,
2510 .config_interface = ath9k_config_interface,
2511 .configure_filter = ath9k_configure_filter,
2512 .sta_notify = ath9k_sta_notify,
2513 .conf_tx = ath9k_conf_tx,
2514 .bss_info_changed = ath9k_bss_info_changed,
2515 .set_key = ath9k_set_key,
2516 .get_tsf = ath9k_get_tsf,
2517 .reset_tsf = ath9k_reset_tsf,
2518 .ampdu_action = ath9k_ampdu_action,
2519 .set_frag_threshold = ath9k_no_fragmentation,
2525 } ath_mac_bb_names[] = {
2526 { AR_SREV_VERSION_5416_PCI, "5416" },
2527 { AR_SREV_VERSION_5416_PCIE, "5418" },
2528 { AR_SREV_VERSION_9100, "9100" },
2529 { AR_SREV_VERSION_9160, "9160" },
2530 { AR_SREV_VERSION_9280, "9280" },
2531 { AR_SREV_VERSION_9285, "9285" }
2537 } ath_rf_names[] = {
2539 { AR_RAD5133_SREV_MAJOR, "5133" },
2540 { AR_RAD5122_SREV_MAJOR, "5122" },
2541 { AR_RAD2133_SREV_MAJOR, "2133" },
2542 { AR_RAD2122_SREV_MAJOR, "2122" }
2546 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2550 ath_mac_bb_name(u32 mac_bb_version)
2554 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2555 if (ath_mac_bb_names[i].version == mac_bb_version) {
2556 return ath_mac_bb_names[i].name;
2564 * Return the RF name. "????" is returned if the RF is unknown.
2568 ath_rf_name(u16 rf_version)
2572 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2573 if (ath_rf_names[i].version == rf_version) {
2574 return ath_rf_names[i].name;
2581 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2584 struct ath_softc *sc;
2585 struct ieee80211_hw *hw;
2591 if (pci_enable_device(pdev))
2594 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2597 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2601 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2604 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2605 "DMA enable faled\n");
2610 * Cache line size is used to size and align various
2611 * structures used to communicate with the hardware.
2613 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2616 * Linux 2.4.18 (at least) writes the cache line size
2617 * register as a 16-bit wide register which is wrong.
2618 * We must have this setup properly for rx buffer
2619 * DMA to work so force a reasonable value here if it
2622 csz = L1_CACHE_BYTES / sizeof(u32);
2623 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2626 * The default setting of latency timer yields poor results,
2627 * set it to the value used by other systems. It may be worth
2628 * tweaking this setting more.
2630 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2632 pci_set_master(pdev);
2635 * Disable the RETRY_TIMEOUT register (0x41) to keep
2636 * PCI Tx retries from interfering with C3 CPU state.
2638 pci_read_config_dword(pdev, 0x40, &val);
2639 if ((val & 0x0000ff00) != 0)
2640 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2642 ret = pci_request_region(pdev, 0, "ath9k");
2644 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2649 mem = pci_iomap(pdev, 0, 0);
2651 printk(KERN_ERR "PCI memory map error\n") ;
2656 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2658 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2662 SET_IEEE80211_DEV(hw, &pdev->dev);
2663 pci_set_drvdata(pdev, hw);
2670 if (ath_attach(id->device, sc) != 0) {
2675 /* setup interrupt service routine */
2677 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2678 printk(KERN_ERR "%s: request_irq failed\n",
2679 wiphy_name(hw->wiphy));
2686 "%s: Atheros AR%s MAC/BB Rev:%x "
2687 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2688 wiphy_name(hw->wiphy),
2689 ath_mac_bb_name(ah->ah_macVersion),
2691 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2693 (unsigned long)mem, pdev->irq);
2699 ieee80211_free_hw(hw);
2701 pci_iounmap(pdev, mem);
2703 pci_release_region(pdev, 0);
2705 pci_disable_device(pdev);
2709 static void ath_pci_remove(struct pci_dev *pdev)
2711 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2712 struct ath_softc *sc = hw->priv;
2716 free_irq(pdev->irq, sc);
2717 pci_iounmap(pdev, sc->mem);
2718 pci_release_region(pdev, 0);
2719 pci_disable_device(pdev);
2720 ieee80211_free_hw(hw);
2725 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2727 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2728 struct ath_softc *sc = hw->priv;
2730 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2732 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2733 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2734 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2737 pci_save_state(pdev);
2738 pci_disable_device(pdev);
2739 pci_set_power_state(pdev, 3);
2744 static int ath_pci_resume(struct pci_dev *pdev)
2746 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2747 struct ath_softc *sc = hw->priv;
2751 err = pci_enable_device(pdev);
2754 pci_restore_state(pdev);
2756 * Suspend/Resume resets the PCI configuration space, so we have to
2757 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2758 * PCI Tx retries from interfering with C3 CPU state
2760 pci_read_config_dword(pdev, 0x40, &val);
2761 if ((val & 0x0000ff00) != 0)
2762 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2765 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2766 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2767 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2769 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2771 * check the h/w rfkill state on resume
2772 * and start the rfkill poll timer
2774 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2775 queue_delayed_work(sc->hw->workqueue,
2776 &sc->rf_kill.rfkill_poll, 0);
2782 #endif /* CONFIG_PM */
2784 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2786 static struct pci_driver ath_pci_driver = {
2788 .id_table = ath_pci_id_table,
2789 .probe = ath_pci_probe,
2790 .remove = ath_pci_remove,
2792 .suspend = ath_pci_suspend,
2793 .resume = ath_pci_resume,
2794 #endif /* CONFIG_PM */
2797 static int __init init_ath_pci(void)
2799 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2801 if (pci_register_driver(&ath_pci_driver) < 0) {
2803 "ath_pci: No devices found, driver not installed.\n");
2804 pci_unregister_driver(&ath_pci_driver);
2810 module_init(init_ath_pci);
2812 static void __exit exit_ath_pci(void)
2814 pci_unregister_driver(&ath_pci_driver);
2815 printk(KERN_INFO "%s: driver unloaded\n", dev_info);
2817 module_exit(exit_ath_pci);