Merge branch 'devel'
[linux-2.6] / net / sunrpc / rpc_pipe.c
1 /*
2  * net/sunrpc/rpc_pipe.c
3  *
4  * Userland/kernel interface for rpcauth_gss.
5  * Code shamelessly plagiarized from fs/nfsd/nfsctl.c
6  * and fs/sysfs/inode.c
7  *
8  * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no>
9  *
10  */
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/pagemap.h>
15 #include <linux/mount.h>
16 #include <linux/namei.h>
17 #include <linux/fsnotify.h>
18 #include <linux/kernel.h>
19
20 #include <asm/ioctls.h>
21 #include <linux/fs.h>
22 #include <linux/poll.h>
23 #include <linux/wait.h>
24 #include <linux/seq_file.h>
25
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/workqueue.h>
28 #include <linux/sunrpc/rpc_pipe_fs.h>
29
30 static struct vfsmount *rpc_mount __read_mostly;
31 static int rpc_mount_count;
32
33 static struct file_system_type rpc_pipe_fs_type;
34
35
36 static struct kmem_cache *rpc_inode_cachep __read_mostly;
37
38 #define RPC_UPCALL_TIMEOUT (30*HZ)
39
40 static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head,
41                 void (*destroy_msg)(struct rpc_pipe_msg *), int err)
42 {
43         struct rpc_pipe_msg *msg;
44
45         if (list_empty(head))
46                 return;
47         do {
48                 msg = list_entry(head->next, struct rpc_pipe_msg, list);
49                 list_del(&msg->list);
50                 msg->errno = err;
51                 destroy_msg(msg);
52         } while (!list_empty(head));
53         wake_up(&rpci->waitq);
54 }
55
56 static void
57 rpc_timeout_upcall_queue(struct work_struct *work)
58 {
59         LIST_HEAD(free_list);
60         struct rpc_inode *rpci =
61                 container_of(work, struct rpc_inode, queue_timeout.work);
62         struct inode *inode = &rpci->vfs_inode;
63         void (*destroy_msg)(struct rpc_pipe_msg *);
64
65         spin_lock(&inode->i_lock);
66         if (rpci->ops == NULL) {
67                 spin_unlock(&inode->i_lock);
68                 return;
69         }
70         destroy_msg = rpci->ops->destroy_msg;
71         if (rpci->nreaders == 0) {
72                 list_splice_init(&rpci->pipe, &free_list);
73                 rpci->pipelen = 0;
74         }
75         spin_unlock(&inode->i_lock);
76         rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT);
77 }
78
79 /**
80  * rpc_queue_upcall
81  * @inode: inode of upcall pipe on which to queue given message
82  * @msg: message to queue
83  *
84  * Call with an @inode created by rpc_mkpipe() to queue an upcall.
85  * A userspace process may then later read the upcall by performing a
86  * read on an open file for this inode.  It is up to the caller to
87  * initialize the fields of @msg (other than @msg->list) appropriately.
88  */
89 int
90 rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg)
91 {
92         struct rpc_inode *rpci = RPC_I(inode);
93         int res = -EPIPE;
94
95         spin_lock(&inode->i_lock);
96         if (rpci->ops == NULL)
97                 goto out;
98         if (rpci->nreaders) {
99                 list_add_tail(&msg->list, &rpci->pipe);
100                 rpci->pipelen += msg->len;
101                 res = 0;
102         } else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) {
103                 if (list_empty(&rpci->pipe))
104                         queue_delayed_work(rpciod_workqueue,
105                                         &rpci->queue_timeout,
106                                         RPC_UPCALL_TIMEOUT);
107                 list_add_tail(&msg->list, &rpci->pipe);
108                 rpci->pipelen += msg->len;
109                 res = 0;
110         }
111 out:
112         spin_unlock(&inode->i_lock);
113         wake_up(&rpci->waitq);
114         return res;
115 }
116 EXPORT_SYMBOL(rpc_queue_upcall);
117
118 static inline void
119 rpc_inode_setowner(struct inode *inode, void *private)
120 {
121         RPC_I(inode)->private = private;
122 }
123
124 static void
125 rpc_close_pipes(struct inode *inode)
126 {
127         struct rpc_inode *rpci = RPC_I(inode);
128         struct rpc_pipe_ops *ops;
129
130         mutex_lock(&inode->i_mutex);
131         ops = rpci->ops;
132         if (ops != NULL) {
133                 LIST_HEAD(free_list);
134
135                 spin_lock(&inode->i_lock);
136                 rpci->nreaders = 0;
137                 list_splice_init(&rpci->in_upcall, &free_list);
138                 list_splice_init(&rpci->pipe, &free_list);
139                 rpci->pipelen = 0;
140                 rpci->ops = NULL;
141                 spin_unlock(&inode->i_lock);
142                 rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE);
143                 rpci->nwriters = 0;
144                 if (ops->release_pipe)
145                         ops->release_pipe(inode);
146                 cancel_delayed_work_sync(&rpci->queue_timeout);
147         }
148         rpc_inode_setowner(inode, NULL);
149         mutex_unlock(&inode->i_mutex);
150 }
151
152 static struct inode *
153 rpc_alloc_inode(struct super_block *sb)
154 {
155         struct rpc_inode *rpci;
156         rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL);
157         if (!rpci)
158                 return NULL;
159         return &rpci->vfs_inode;
160 }
161
162 static void
163 rpc_destroy_inode(struct inode *inode)
164 {
165         kmem_cache_free(rpc_inode_cachep, RPC_I(inode));
166 }
167
168 static int
169 rpc_pipe_open(struct inode *inode, struct file *filp)
170 {
171         struct rpc_inode *rpci = RPC_I(inode);
172         int res = -ENXIO;
173
174         mutex_lock(&inode->i_mutex);
175         if (rpci->ops != NULL) {
176                 if (filp->f_mode & FMODE_READ)
177                         rpci->nreaders ++;
178                 if (filp->f_mode & FMODE_WRITE)
179                         rpci->nwriters ++;
180                 res = 0;
181         }
182         mutex_unlock(&inode->i_mutex);
183         return res;
184 }
185
186 static int
187 rpc_pipe_release(struct inode *inode, struct file *filp)
188 {
189         struct rpc_inode *rpci = RPC_I(inode);
190         struct rpc_pipe_msg *msg;
191
192         mutex_lock(&inode->i_mutex);
193         if (rpci->ops == NULL)
194                 goto out;
195         msg = (struct rpc_pipe_msg *)filp->private_data;
196         if (msg != NULL) {
197                 spin_lock(&inode->i_lock);
198                 msg->errno = -EAGAIN;
199                 list_del(&msg->list);
200                 spin_unlock(&inode->i_lock);
201                 rpci->ops->destroy_msg(msg);
202         }
203         if (filp->f_mode & FMODE_WRITE)
204                 rpci->nwriters --;
205         if (filp->f_mode & FMODE_READ) {
206                 rpci->nreaders --;
207                 if (rpci->nreaders == 0) {
208                         LIST_HEAD(free_list);
209                         spin_lock(&inode->i_lock);
210                         list_splice_init(&rpci->pipe, &free_list);
211                         rpci->pipelen = 0;
212                         spin_unlock(&inode->i_lock);
213                         rpc_purge_list(rpci, &free_list,
214                                         rpci->ops->destroy_msg, -EAGAIN);
215                 }
216         }
217         if (rpci->ops->release_pipe)
218                 rpci->ops->release_pipe(inode);
219 out:
220         mutex_unlock(&inode->i_mutex);
221         return 0;
222 }
223
224 static ssize_t
225 rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset)
226 {
227         struct inode *inode = filp->f_path.dentry->d_inode;
228         struct rpc_inode *rpci = RPC_I(inode);
229         struct rpc_pipe_msg *msg;
230         int res = 0;
231
232         mutex_lock(&inode->i_mutex);
233         if (rpci->ops == NULL) {
234                 res = -EPIPE;
235                 goto out_unlock;
236         }
237         msg = filp->private_data;
238         if (msg == NULL) {
239                 spin_lock(&inode->i_lock);
240                 if (!list_empty(&rpci->pipe)) {
241                         msg = list_entry(rpci->pipe.next,
242                                         struct rpc_pipe_msg,
243                                         list);
244                         list_move(&msg->list, &rpci->in_upcall);
245                         rpci->pipelen -= msg->len;
246                         filp->private_data = msg;
247                         msg->copied = 0;
248                 }
249                 spin_unlock(&inode->i_lock);
250                 if (msg == NULL)
251                         goto out_unlock;
252         }
253         /* NOTE: it is up to the callback to update msg->copied */
254         res = rpci->ops->upcall(filp, msg, buf, len);
255         if (res < 0 || msg->len == msg->copied) {
256                 filp->private_data = NULL;
257                 spin_lock(&inode->i_lock);
258                 list_del(&msg->list);
259                 spin_unlock(&inode->i_lock);
260                 rpci->ops->destroy_msg(msg);
261         }
262 out_unlock:
263         mutex_unlock(&inode->i_mutex);
264         return res;
265 }
266
267 static ssize_t
268 rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset)
269 {
270         struct inode *inode = filp->f_path.dentry->d_inode;
271         struct rpc_inode *rpci = RPC_I(inode);
272         int res;
273
274         mutex_lock(&inode->i_mutex);
275         res = -EPIPE;
276         if (rpci->ops != NULL)
277                 res = rpci->ops->downcall(filp, buf, len);
278         mutex_unlock(&inode->i_mutex);
279         return res;
280 }
281
282 static unsigned int
283 rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait)
284 {
285         struct rpc_inode *rpci;
286         unsigned int mask = 0;
287
288         rpci = RPC_I(filp->f_path.dentry->d_inode);
289         poll_wait(filp, &rpci->waitq, wait);
290
291         mask = POLLOUT | POLLWRNORM;
292         if (rpci->ops == NULL)
293                 mask |= POLLERR | POLLHUP;
294         if (filp->private_data || !list_empty(&rpci->pipe))
295                 mask |= POLLIN | POLLRDNORM;
296         return mask;
297 }
298
299 static int
300 rpc_pipe_ioctl(struct inode *ino, struct file *filp,
301                 unsigned int cmd, unsigned long arg)
302 {
303         struct rpc_inode *rpci = RPC_I(filp->f_path.dentry->d_inode);
304         int len;
305
306         switch (cmd) {
307         case FIONREAD:
308                 if (rpci->ops == NULL)
309                         return -EPIPE;
310                 len = rpci->pipelen;
311                 if (filp->private_data) {
312                         struct rpc_pipe_msg *msg;
313                         msg = (struct rpc_pipe_msg *)filp->private_data;
314                         len += msg->len - msg->copied;
315                 }
316                 return put_user(len, (int __user *)arg);
317         default:
318                 return -EINVAL;
319         }
320 }
321
322 static const struct file_operations rpc_pipe_fops = {
323         .owner          = THIS_MODULE,
324         .llseek         = no_llseek,
325         .read           = rpc_pipe_read,
326         .write          = rpc_pipe_write,
327         .poll           = rpc_pipe_poll,
328         .ioctl          = rpc_pipe_ioctl,
329         .open           = rpc_pipe_open,
330         .release        = rpc_pipe_release,
331 };
332
333 static int
334 rpc_show_info(struct seq_file *m, void *v)
335 {
336         struct rpc_clnt *clnt = m->private;
337
338         seq_printf(m, "RPC server: %s\n", clnt->cl_server);
339         seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname,
340                         clnt->cl_prog, clnt->cl_vers);
341         seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR));
342         seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO));
343         seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT));
344         return 0;
345 }
346
347 static int
348 rpc_info_open(struct inode *inode, struct file *file)
349 {
350         struct rpc_clnt *clnt;
351         int ret = single_open(file, rpc_show_info, NULL);
352
353         if (!ret) {
354                 struct seq_file *m = file->private_data;
355                 mutex_lock(&inode->i_mutex);
356                 clnt = RPC_I(inode)->private;
357                 if (clnt) {
358                         kref_get(&clnt->cl_kref);
359                         m->private = clnt;
360                 } else {
361                         single_release(inode, file);
362                         ret = -EINVAL;
363                 }
364                 mutex_unlock(&inode->i_mutex);
365         }
366         return ret;
367 }
368
369 static int
370 rpc_info_release(struct inode *inode, struct file *file)
371 {
372         struct seq_file *m = file->private_data;
373         struct rpc_clnt *clnt = (struct rpc_clnt *)m->private;
374
375         if (clnt)
376                 rpc_release_client(clnt);
377         return single_release(inode, file);
378 }
379
380 static const struct file_operations rpc_info_operations = {
381         .owner          = THIS_MODULE,
382         .open           = rpc_info_open,
383         .read           = seq_read,
384         .llseek         = seq_lseek,
385         .release        = rpc_info_release,
386 };
387
388
389 /*
390  * We have a single directory with 1 node in it.
391  */
392 enum {
393         RPCAUTH_Root = 1,
394         RPCAUTH_lockd,
395         RPCAUTH_mount,
396         RPCAUTH_nfs,
397         RPCAUTH_portmap,
398         RPCAUTH_statd,
399         RPCAUTH_RootEOF
400 };
401
402 /*
403  * Description of fs contents.
404  */
405 struct rpc_filelist {
406         char *name;
407         const struct file_operations *i_fop;
408         int mode;
409 };
410
411 static struct rpc_filelist files[] = {
412         [RPCAUTH_lockd] = {
413                 .name = "lockd",
414                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
415         },
416         [RPCAUTH_mount] = {
417                 .name = "mount",
418                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
419         },
420         [RPCAUTH_nfs] = {
421                 .name = "nfs",
422                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
423         },
424         [RPCAUTH_portmap] = {
425                 .name = "portmap",
426                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
427         },
428         [RPCAUTH_statd] = {
429                 .name = "statd",
430                 .mode = S_IFDIR | S_IRUGO | S_IXUGO,
431         },
432 };
433
434 enum {
435         RPCAUTH_info = 2,
436         RPCAUTH_EOF
437 };
438
439 static struct rpc_filelist authfiles[] = {
440         [RPCAUTH_info] = {
441                 .name = "info",
442                 .i_fop = &rpc_info_operations,
443                 .mode = S_IFREG | S_IRUSR,
444         },
445 };
446
447 struct vfsmount *rpc_get_mount(void)
448 {
449         int err;
450
451         err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mount, &rpc_mount_count);
452         if (err != 0)
453                 return ERR_PTR(err);
454         return rpc_mount;
455 }
456
457 void rpc_put_mount(void)
458 {
459         simple_release_fs(&rpc_mount, &rpc_mount_count);
460 }
461
462 static int rpc_delete_dentry(struct dentry *dentry)
463 {
464         return 1;
465 }
466
467 static struct dentry_operations rpc_dentry_operations = {
468         .d_delete = rpc_delete_dentry,
469 };
470
471 static int
472 rpc_lookup_parent(char *path, struct nameidata *nd)
473 {
474         struct vfsmount *mnt;
475
476         if (path[0] == '\0')
477                 return -ENOENT;
478
479         mnt = rpc_get_mount();
480         if (IS_ERR(mnt)) {
481                 printk(KERN_WARNING "%s: %s failed to mount "
482                                "pseudofilesystem \n", __FILE__, __func__);
483                 return PTR_ERR(mnt);
484         }
485
486         if (vfs_path_lookup(mnt->mnt_root, mnt, path, LOOKUP_PARENT, nd)) {
487                 printk(KERN_WARNING "%s: %s failed to find path %s\n",
488                                 __FILE__, __func__, path);
489                 rpc_put_mount();
490                 return -ENOENT;
491         }
492         return 0;
493 }
494
495 static void
496 rpc_release_path(struct nameidata *nd)
497 {
498         path_put(&nd->path);
499         rpc_put_mount();
500 }
501
502 static struct inode *
503 rpc_get_inode(struct super_block *sb, int mode)
504 {
505         struct inode *inode = new_inode(sb);
506         if (!inode)
507                 return NULL;
508         inode->i_mode = mode;
509         inode->i_uid = inode->i_gid = 0;
510         inode->i_blocks = 0;
511         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
512         switch(mode & S_IFMT) {
513                 case S_IFDIR:
514                         inode->i_fop = &simple_dir_operations;
515                         inode->i_op = &simple_dir_inode_operations;
516                         inc_nlink(inode);
517                 default:
518                         break;
519         }
520         return inode;
521 }
522
523 /*
524  * FIXME: This probably has races.
525  */
526 static void rpc_depopulate(struct dentry *parent,
527                            unsigned long start, unsigned long eof)
528 {
529         struct inode *dir = parent->d_inode;
530         struct list_head *pos, *next;
531         struct dentry *dentry, *dvec[10];
532         int n = 0;
533
534         mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD);
535 repeat:
536         spin_lock(&dcache_lock);
537         list_for_each_safe(pos, next, &parent->d_subdirs) {
538                 dentry = list_entry(pos, struct dentry, d_u.d_child);
539                 if (!dentry->d_inode ||
540                                 dentry->d_inode->i_ino < start ||
541                                 dentry->d_inode->i_ino >= eof)
542                         continue;
543                 spin_lock(&dentry->d_lock);
544                 if (!d_unhashed(dentry)) {
545                         dget_locked(dentry);
546                         __d_drop(dentry);
547                         spin_unlock(&dentry->d_lock);
548                         dvec[n++] = dentry;
549                         if (n == ARRAY_SIZE(dvec))
550                                 break;
551                 } else
552                         spin_unlock(&dentry->d_lock);
553         }
554         spin_unlock(&dcache_lock);
555         if (n) {
556                 do {
557                         dentry = dvec[--n];
558                         if (S_ISREG(dentry->d_inode->i_mode))
559                                 simple_unlink(dir, dentry);
560                         else if (S_ISDIR(dentry->d_inode->i_mode))
561                                 simple_rmdir(dir, dentry);
562                         d_delete(dentry);
563                         dput(dentry);
564                 } while (n);
565                 goto repeat;
566         }
567         mutex_unlock(&dir->i_mutex);
568 }
569
570 static int
571 rpc_populate(struct dentry *parent,
572                 struct rpc_filelist *files,
573                 int start, int eof)
574 {
575         struct inode *inode, *dir = parent->d_inode;
576         void *private = RPC_I(dir)->private;
577         struct dentry *dentry;
578         int mode, i;
579
580         mutex_lock(&dir->i_mutex);
581         for (i = start; i < eof; i++) {
582                 dentry = d_alloc_name(parent, files[i].name);
583                 if (!dentry)
584                         goto out_bad;
585                 dentry->d_op = &rpc_dentry_operations;
586                 mode = files[i].mode;
587                 inode = rpc_get_inode(dir->i_sb, mode);
588                 if (!inode) {
589                         dput(dentry);
590                         goto out_bad;
591                 }
592                 inode->i_ino = i;
593                 if (files[i].i_fop)
594                         inode->i_fop = files[i].i_fop;
595                 if (private)
596                         rpc_inode_setowner(inode, private);
597                 if (S_ISDIR(mode))
598                         inc_nlink(dir);
599                 d_add(dentry, inode);
600                 fsnotify_create(dir, dentry);
601         }
602         mutex_unlock(&dir->i_mutex);
603         return 0;
604 out_bad:
605         mutex_unlock(&dir->i_mutex);
606         printk(KERN_WARNING "%s: %s failed to populate directory %s\n",
607                         __FILE__, __func__, parent->d_name.name);
608         return -ENOMEM;
609 }
610
611 static int
612 __rpc_mkdir(struct inode *dir, struct dentry *dentry)
613 {
614         struct inode *inode;
615
616         inode = rpc_get_inode(dir->i_sb, S_IFDIR | S_IRUGO | S_IXUGO);
617         if (!inode)
618                 goto out_err;
619         inode->i_ino = iunique(dir->i_sb, 100);
620         d_instantiate(dentry, inode);
621         inc_nlink(dir);
622         fsnotify_mkdir(dir, dentry);
623         return 0;
624 out_err:
625         printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n",
626                         __FILE__, __func__, dentry->d_name.name);
627         return -ENOMEM;
628 }
629
630 static int
631 __rpc_rmdir(struct inode *dir, struct dentry *dentry)
632 {
633         int error;
634         error = simple_rmdir(dir, dentry);
635         if (!error)
636                 d_delete(dentry);
637         return error;
638 }
639
640 static struct dentry *
641 rpc_lookup_create(struct dentry *parent, const char *name, int len, int exclusive)
642 {
643         struct inode *dir = parent->d_inode;
644         struct dentry *dentry;
645
646         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
647         dentry = lookup_one_len(name, parent, len);
648         if (IS_ERR(dentry))
649                 goto out_err;
650         if (!dentry->d_inode)
651                 dentry->d_op = &rpc_dentry_operations;
652         else if (exclusive) {
653                 dput(dentry);
654                 dentry = ERR_PTR(-EEXIST);
655                 goto out_err;
656         }
657         return dentry;
658 out_err:
659         mutex_unlock(&dir->i_mutex);
660         return dentry;
661 }
662
663 static struct dentry *
664 rpc_lookup_negative(char *path, struct nameidata *nd)
665 {
666         struct dentry *dentry;
667         int error;
668
669         if ((error = rpc_lookup_parent(path, nd)) != 0)
670                 return ERR_PTR(error);
671         dentry = rpc_lookup_create(nd->path.dentry, nd->last.name, nd->last.len,
672                                    1);
673         if (IS_ERR(dentry))
674                 rpc_release_path(nd);
675         return dentry;
676 }
677
678 /**
679  * rpc_mkdir - Create a new directory in rpc_pipefs
680  * @path: path from the rpc_pipefs root to the new directory
681  * @rpc_client: rpc client to associate with this directory
682  *
683  * This creates a directory at the given @path associated with
684  * @rpc_clnt, which will contain a file named "info" with some basic
685  * information about the client, together with any "pipes" that may
686  * later be created using rpc_mkpipe().
687  */
688 struct dentry *
689 rpc_mkdir(char *path, struct rpc_clnt *rpc_client)
690 {
691         struct nameidata nd;
692         struct dentry *dentry;
693         struct inode *dir;
694         int error;
695
696         dentry = rpc_lookup_negative(path, &nd);
697         if (IS_ERR(dentry))
698                 return dentry;
699         dir = nd.path.dentry->d_inode;
700         if ((error = __rpc_mkdir(dir, dentry)) != 0)
701                 goto err_dput;
702         RPC_I(dentry->d_inode)->private = rpc_client;
703         error = rpc_populate(dentry, authfiles,
704                         RPCAUTH_info, RPCAUTH_EOF);
705         if (error)
706                 goto err_depopulate;
707         dget(dentry);
708 out:
709         mutex_unlock(&dir->i_mutex);
710         rpc_release_path(&nd);
711         return dentry;
712 err_depopulate:
713         rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF);
714         __rpc_rmdir(dir, dentry);
715 err_dput:
716         dput(dentry);
717         printk(KERN_WARNING "%s: %s() failed to create directory %s (errno = %d)\n",
718                         __FILE__, __func__, path, error);
719         dentry = ERR_PTR(error);
720         goto out;
721 }
722
723 /**
724  * rpc_rmdir - Remove a directory created with rpc_mkdir()
725  * @dentry: directory to remove
726  */
727 int
728 rpc_rmdir(struct dentry *dentry)
729 {
730         struct dentry *parent;
731         struct inode *dir;
732         int error;
733
734         parent = dget_parent(dentry);
735         dir = parent->d_inode;
736         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
737         rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF);
738         error = __rpc_rmdir(dir, dentry);
739         dput(dentry);
740         mutex_unlock(&dir->i_mutex);
741         dput(parent);
742         return error;
743 }
744
745 /**
746  * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication
747  * @parent: dentry of directory to create new "pipe" in
748  * @name: name of pipe
749  * @private: private data to associate with the pipe, for the caller's use
750  * @ops: operations defining the behavior of the pipe: upcall, downcall,
751  *      release_pipe, and destroy_msg.
752  * @flags: rpc_inode flags
753  *
754  * Data is made available for userspace to read by calls to
755  * rpc_queue_upcall().  The actual reads will result in calls to
756  * @ops->upcall, which will be called with the file pointer,
757  * message, and userspace buffer to copy to.
758  *
759  * Writes can come at any time, and do not necessarily have to be
760  * responses to upcalls.  They will result in calls to @msg->downcall.
761  *
762  * The @private argument passed here will be available to all these methods
763  * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private.
764  */
765 struct dentry *
766 rpc_mkpipe(struct dentry *parent, const char *name, void *private, struct rpc_pipe_ops *ops, int flags)
767 {
768         struct dentry *dentry;
769         struct inode *dir, *inode;
770         struct rpc_inode *rpci;
771
772         dentry = rpc_lookup_create(parent, name, strlen(name), 0);
773         if (IS_ERR(dentry))
774                 return dentry;
775         dir = parent->d_inode;
776         if (dentry->d_inode) {
777                 rpci = RPC_I(dentry->d_inode);
778                 if (rpci->private != private ||
779                                 rpci->ops != ops ||
780                                 rpci->flags != flags) {
781                         dput (dentry);
782                         dentry = ERR_PTR(-EBUSY);
783                 }
784                 rpci->nkern_readwriters++;
785                 goto out;
786         }
787         inode = rpc_get_inode(dir->i_sb, S_IFIFO | S_IRUSR | S_IWUSR);
788         if (!inode)
789                 goto err_dput;
790         inode->i_ino = iunique(dir->i_sb, 100);
791         inode->i_fop = &rpc_pipe_fops;
792         d_instantiate(dentry, inode);
793         rpci = RPC_I(inode);
794         rpci->private = private;
795         rpci->flags = flags;
796         rpci->ops = ops;
797         rpci->nkern_readwriters = 1;
798         fsnotify_create(dir, dentry);
799         dget(dentry);
800 out:
801         mutex_unlock(&dir->i_mutex);
802         return dentry;
803 err_dput:
804         dput(dentry);
805         dentry = ERR_PTR(-ENOMEM);
806         printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n",
807                         __FILE__, __func__, parent->d_name.name, name,
808                         -ENOMEM);
809         goto out;
810 }
811 EXPORT_SYMBOL(rpc_mkpipe);
812
813 /**
814  * rpc_unlink - remove a pipe
815  * @dentry: dentry for the pipe, as returned from rpc_mkpipe
816  *
817  * After this call, lookups will no longer find the pipe, and any
818  * attempts to read or write using preexisting opens of the pipe will
819  * return -EPIPE.
820  */
821 int
822 rpc_unlink(struct dentry *dentry)
823 {
824         struct dentry *parent;
825         struct inode *dir;
826         int error = 0;
827
828         parent = dget_parent(dentry);
829         dir = parent->d_inode;
830         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
831         if (--RPC_I(dentry->d_inode)->nkern_readwriters == 0) {
832                 rpc_close_pipes(dentry->d_inode);
833                 error = simple_unlink(dir, dentry);
834                 if (!error)
835                         d_delete(dentry);
836         }
837         dput(dentry);
838         mutex_unlock(&dir->i_mutex);
839         dput(parent);
840         return error;
841 }
842 EXPORT_SYMBOL(rpc_unlink);
843
844 /*
845  * populate the filesystem
846  */
847 static struct super_operations s_ops = {
848         .alloc_inode    = rpc_alloc_inode,
849         .destroy_inode  = rpc_destroy_inode,
850         .statfs         = simple_statfs,
851 };
852
853 #define RPCAUTH_GSSMAGIC 0x67596969
854
855 static int
856 rpc_fill_super(struct super_block *sb, void *data, int silent)
857 {
858         struct inode *inode;
859         struct dentry *root;
860
861         sb->s_blocksize = PAGE_CACHE_SIZE;
862         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
863         sb->s_magic = RPCAUTH_GSSMAGIC;
864         sb->s_op = &s_ops;
865         sb->s_time_gran = 1;
866
867         inode = rpc_get_inode(sb, S_IFDIR | 0755);
868         if (!inode)
869                 return -ENOMEM;
870         root = d_alloc_root(inode);
871         if (!root) {
872                 iput(inode);
873                 return -ENOMEM;
874         }
875         if (rpc_populate(root, files, RPCAUTH_Root + 1, RPCAUTH_RootEOF))
876                 goto out;
877         sb->s_root = root;
878         return 0;
879 out:
880         d_genocide(root);
881         dput(root);
882         return -ENOMEM;
883 }
884
885 static int
886 rpc_get_sb(struct file_system_type *fs_type,
887                 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
888 {
889         return get_sb_single(fs_type, flags, data, rpc_fill_super, mnt);
890 }
891
892 static struct file_system_type rpc_pipe_fs_type = {
893         .owner          = THIS_MODULE,
894         .name           = "rpc_pipefs",
895         .get_sb         = rpc_get_sb,
896         .kill_sb        = kill_litter_super,
897 };
898
899 static void
900 init_once(struct kmem_cache * cachep, void *foo)
901 {
902         struct rpc_inode *rpci = (struct rpc_inode *) foo;
903
904         inode_init_once(&rpci->vfs_inode);
905         rpci->private = NULL;
906         rpci->nreaders = 0;
907         rpci->nwriters = 0;
908         INIT_LIST_HEAD(&rpci->in_upcall);
909         INIT_LIST_HEAD(&rpci->in_downcall);
910         INIT_LIST_HEAD(&rpci->pipe);
911         rpci->pipelen = 0;
912         init_waitqueue_head(&rpci->waitq);
913         INIT_DELAYED_WORK(&rpci->queue_timeout,
914                             rpc_timeout_upcall_queue);
915         rpci->ops = NULL;
916 }
917
918 int register_rpc_pipefs(void)
919 {
920         int err;
921
922         rpc_inode_cachep = kmem_cache_create("rpc_inode_cache",
923                                 sizeof(struct rpc_inode),
924                                 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
925                                                 SLAB_MEM_SPREAD),
926                                 init_once);
927         if (!rpc_inode_cachep)
928                 return -ENOMEM;
929         err = register_filesystem(&rpc_pipe_fs_type);
930         if (err) {
931                 kmem_cache_destroy(rpc_inode_cachep);
932                 return err;
933         }
934
935         return 0;
936 }
937
938 void unregister_rpc_pipefs(void)
939 {
940         kmem_cache_destroy(rpc_inode_cachep);
941         unregister_filesystem(&rpc_pipe_fs_type);
942 }