Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  */
42
43 #include <linux/netdevice.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46
47 #include "e1000.h"
48
49 #define ID_LED_RESERVED_F746 0xF746
50 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
51                               (ID_LED_OFF1_ON2  <<  8) | \
52                               (ID_LED_DEF1_DEF2 <<  4) | \
53                               (ID_LED_DEF1_DEF2))
54
55 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
56
57 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
58 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
60 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
61                                       u16 words, u16 *data);
62 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
63 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
65 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
66
67 /**
68  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
69  *  @hw: pointer to the HW structure
70  *
71  *  This is a function pointer entry point called by the api module.
72  **/
73 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
74 {
75         struct e1000_phy_info *phy = &hw->phy;
76         s32 ret_val;
77
78         if (hw->phy.media_type != e1000_media_type_copper) {
79                 phy->type = e1000_phy_none;
80                 return 0;
81         }
82
83         phy->addr                        = 1;
84         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
85         phy->reset_delay_us              = 100;
86
87         switch (hw->mac.type) {
88         case e1000_82571:
89         case e1000_82572:
90                 phy->type                = e1000_phy_igp_2;
91                 break;
92         case e1000_82573:
93                 phy->type                = e1000_phy_m88;
94                 break;
95         default:
96                 return -E1000_ERR_PHY;
97                 break;
98         }
99
100         /* This can only be done after all function pointers are setup. */
101         ret_val = e1000_get_phy_id_82571(hw);
102
103         /* Verify phy id */
104         switch (hw->mac.type) {
105         case e1000_82571:
106         case e1000_82572:
107                 if (phy->id != IGP01E1000_I_PHY_ID)
108                         return -E1000_ERR_PHY;
109                 break;
110         case e1000_82573:
111                 if (phy->id != M88E1111_I_PHY_ID)
112                         return -E1000_ERR_PHY;
113                 break;
114         default:
115                 return -E1000_ERR_PHY;
116                 break;
117         }
118
119         return 0;
120 }
121
122 /**
123  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
124  *  @hw: pointer to the HW structure
125  *
126  *  This is a function pointer entry point called by the api module.
127  **/
128 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
129 {
130         struct e1000_nvm_info *nvm = &hw->nvm;
131         u32 eecd = er32(EECD);
132         u16 size;
133
134         nvm->opcode_bits = 8;
135         nvm->delay_usec = 1;
136         switch (nvm->override) {
137         case e1000_nvm_override_spi_large:
138                 nvm->page_size = 32;
139                 nvm->address_bits = 16;
140                 break;
141         case e1000_nvm_override_spi_small:
142                 nvm->page_size = 8;
143                 nvm->address_bits = 8;
144                 break;
145         default:
146                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
147                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
148                 break;
149         }
150
151         switch (hw->mac.type) {
152         case e1000_82573:
153                 if (((eecd >> 15) & 0x3) == 0x3) {
154                         nvm->type = e1000_nvm_flash_hw;
155                         nvm->word_size = 2048;
156                         /*
157                          * Autonomous Flash update bit must be cleared due
158                          * to Flash update issue.
159                          */
160                         eecd &= ~E1000_EECD_AUPDEN;
161                         ew32(EECD, eecd);
162                         break;
163                 }
164                 /* Fall Through */
165         default:
166                 nvm->type = e1000_nvm_eeprom_spi;
167                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
168                                   E1000_EECD_SIZE_EX_SHIFT);
169                 /*
170                  * Added to a constant, "size" becomes the left-shift value
171                  * for setting word_size.
172                  */
173                 size += NVM_WORD_SIZE_BASE_SHIFT;
174
175                 /* EEPROM access above 16k is unsupported */
176                 if (size > 14)
177                         size = 14;
178                 nvm->word_size  = 1 << size;
179                 break;
180         }
181
182         return 0;
183 }
184
185 /**
186  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
187  *  @hw: pointer to the HW structure
188  *
189  *  This is a function pointer entry point called by the api module.
190  **/
191 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
192 {
193         struct e1000_hw *hw = &adapter->hw;
194         struct e1000_mac_info *mac = &hw->mac;
195         struct e1000_mac_operations *func = &mac->ops;
196
197         /* Set media type */
198         switch (adapter->pdev->device) {
199         case E1000_DEV_ID_82571EB_FIBER:
200         case E1000_DEV_ID_82572EI_FIBER:
201         case E1000_DEV_ID_82571EB_QUAD_FIBER:
202                 hw->phy.media_type = e1000_media_type_fiber;
203                 break;
204         case E1000_DEV_ID_82571EB_SERDES:
205         case E1000_DEV_ID_82572EI_SERDES:
206         case E1000_DEV_ID_82571EB_SERDES_DUAL:
207         case E1000_DEV_ID_82571EB_SERDES_QUAD:
208                 hw->phy.media_type = e1000_media_type_internal_serdes;
209                 break;
210         default:
211                 hw->phy.media_type = e1000_media_type_copper;
212                 break;
213         }
214
215         /* Set mta register count */
216         mac->mta_reg_count = 128;
217         /* Set rar entry count */
218         mac->rar_entry_count = E1000_RAR_ENTRIES;
219         /* Set if manageability features are enabled. */
220         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
221
222         /* check for link */
223         switch (hw->phy.media_type) {
224         case e1000_media_type_copper:
225                 func->setup_physical_interface = e1000_setup_copper_link_82571;
226                 func->check_for_link = e1000e_check_for_copper_link;
227                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
228                 break;
229         case e1000_media_type_fiber:
230                 func->setup_physical_interface =
231                         e1000_setup_fiber_serdes_link_82571;
232                 func->check_for_link = e1000e_check_for_fiber_link;
233                 func->get_link_up_info =
234                         e1000e_get_speed_and_duplex_fiber_serdes;
235                 break;
236         case e1000_media_type_internal_serdes:
237                 func->setup_physical_interface =
238                         e1000_setup_fiber_serdes_link_82571;
239                 func->check_for_link = e1000e_check_for_serdes_link;
240                 func->get_link_up_info =
241                         e1000e_get_speed_and_duplex_fiber_serdes;
242                 break;
243         default:
244                 return -E1000_ERR_CONFIG;
245                 break;
246         }
247
248         return 0;
249 }
250
251 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
252 {
253         struct e1000_hw *hw = &adapter->hw;
254         static int global_quad_port_a; /* global port a indication */
255         struct pci_dev *pdev = adapter->pdev;
256         u16 eeprom_data = 0;
257         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
258         s32 rc;
259
260         rc = e1000_init_mac_params_82571(adapter);
261         if (rc)
262                 return rc;
263
264         rc = e1000_init_nvm_params_82571(hw);
265         if (rc)
266                 return rc;
267
268         rc = e1000_init_phy_params_82571(hw);
269         if (rc)
270                 return rc;
271
272         /* tag quad port adapters first, it's used below */
273         switch (pdev->device) {
274         case E1000_DEV_ID_82571EB_QUAD_COPPER:
275         case E1000_DEV_ID_82571EB_QUAD_FIBER:
276         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
277         case E1000_DEV_ID_82571PT_QUAD_COPPER:
278                 adapter->flags |= FLAG_IS_QUAD_PORT;
279                 /* mark the first port */
280                 if (global_quad_port_a == 0)
281                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
282                 /* Reset for multiple quad port adapters */
283                 global_quad_port_a++;
284                 if (global_quad_port_a == 4)
285                         global_quad_port_a = 0;
286                 break;
287         default:
288                 break;
289         }
290
291         switch (adapter->hw.mac.type) {
292         case e1000_82571:
293                 /* these dual ports don't have WoL on port B at all */
294                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
295                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
296                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
297                     (is_port_b))
298                         adapter->flags &= ~FLAG_HAS_WOL;
299                 /* quad ports only support WoL on port A */
300                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
301                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
302                         adapter->flags &= ~FLAG_HAS_WOL;
303                 /* Does not support WoL on any port */
304                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
305                         adapter->flags &= ~FLAG_HAS_WOL;
306                 break;
307
308         case e1000_82573:
309                 if (pdev->device == E1000_DEV_ID_82573L) {
310                         e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
311                                        &eeprom_data);
312                         if (eeprom_data & NVM_WORD1A_ASPM_MASK)
313                                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
314                 }
315                 break;
316         default:
317                 break;
318         }
319
320         return 0;
321 }
322
323 /**
324  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
325  *  @hw: pointer to the HW structure
326  *
327  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
328  *  revision in the hardware structure.
329  **/
330 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
331 {
332         struct e1000_phy_info *phy = &hw->phy;
333
334         switch (hw->mac.type) {
335         case e1000_82571:
336         case e1000_82572:
337                 /*
338                  * The 82571 firmware may still be configuring the PHY.
339                  * In this case, we cannot access the PHY until the
340                  * configuration is done.  So we explicitly set the
341                  * PHY ID.
342                  */
343                 phy->id = IGP01E1000_I_PHY_ID;
344                 break;
345         case e1000_82573:
346                 return e1000e_get_phy_id(hw);
347                 break;
348         default:
349                 return -E1000_ERR_PHY;
350                 break;
351         }
352
353         return 0;
354 }
355
356 /**
357  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
358  *  @hw: pointer to the HW structure
359  *
360  *  Acquire the HW semaphore to access the PHY or NVM
361  **/
362 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
363 {
364         u32 swsm;
365         s32 timeout = hw->nvm.word_size + 1;
366         s32 i = 0;
367
368         /* Get the FW semaphore. */
369         for (i = 0; i < timeout; i++) {
370                 swsm = er32(SWSM);
371                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
372
373                 /* Semaphore acquired if bit latched */
374                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
375                         break;
376
377                 udelay(50);
378         }
379
380         if (i == timeout) {
381                 /* Release semaphores */
382                 e1000e_put_hw_semaphore(hw);
383                 hw_dbg(hw, "Driver can't access the NVM\n");
384                 return -E1000_ERR_NVM;
385         }
386
387         return 0;
388 }
389
390 /**
391  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
392  *  @hw: pointer to the HW structure
393  *
394  *  Release hardware semaphore used to access the PHY or NVM
395  **/
396 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
397 {
398         u32 swsm;
399
400         swsm = er32(SWSM);
401
402         swsm &= ~E1000_SWSM_SWESMBI;
403
404         ew32(SWSM, swsm);
405 }
406
407 /**
408  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
409  *  @hw: pointer to the HW structure
410  *
411  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
412  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
413  *  for EEPROM access grant bit.  If the access grant bit is not set, release
414  *  hardware semaphore.
415  **/
416 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
417 {
418         s32 ret_val;
419
420         ret_val = e1000_get_hw_semaphore_82571(hw);
421         if (ret_val)
422                 return ret_val;
423
424         if (hw->mac.type != e1000_82573)
425                 ret_val = e1000e_acquire_nvm(hw);
426
427         if (ret_val)
428                 e1000_put_hw_semaphore_82571(hw);
429
430         return ret_val;
431 }
432
433 /**
434  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
435  *  @hw: pointer to the HW structure
436  *
437  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
438  **/
439 static void e1000_release_nvm_82571(struct e1000_hw *hw)
440 {
441         e1000e_release_nvm(hw);
442         e1000_put_hw_semaphore_82571(hw);
443 }
444
445 /**
446  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
447  *  @hw: pointer to the HW structure
448  *  @offset: offset within the EEPROM to be written to
449  *  @words: number of words to write
450  *  @data: 16 bit word(s) to be written to the EEPROM
451  *
452  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
453  *
454  *  If e1000e_update_nvm_checksum is not called after this function, the
455  *  EEPROM will most likely contain an invalid checksum.
456  **/
457 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
458                                  u16 *data)
459 {
460         s32 ret_val;
461
462         switch (hw->mac.type) {
463         case e1000_82573:
464                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
465                 break;
466         case e1000_82571:
467         case e1000_82572:
468                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
469                 break;
470         default:
471                 ret_val = -E1000_ERR_NVM;
472                 break;
473         }
474
475         return ret_val;
476 }
477
478 /**
479  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
480  *  @hw: pointer to the HW structure
481  *
482  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
483  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
484  *  value to the EEPROM.
485  **/
486 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
487 {
488         u32 eecd;
489         s32 ret_val;
490         u16 i;
491
492         ret_val = e1000e_update_nvm_checksum_generic(hw);
493         if (ret_val)
494                 return ret_val;
495
496         /*
497          * If our nvm is an EEPROM, then we're done
498          * otherwise, commit the checksum to the flash NVM.
499          */
500         if (hw->nvm.type != e1000_nvm_flash_hw)
501                 return ret_val;
502
503         /* Check for pending operations. */
504         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
505                 msleep(1);
506                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
507                         break;
508         }
509
510         if (i == E1000_FLASH_UPDATES)
511                 return -E1000_ERR_NVM;
512
513         /* Reset the firmware if using STM opcode. */
514         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
515                 /*
516                  * The enabling of and the actual reset must be done
517                  * in two write cycles.
518                  */
519                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
520                 e1e_flush();
521                 ew32(HICR, E1000_HICR_FW_RESET);
522         }
523
524         /* Commit the write to flash */
525         eecd = er32(EECD) | E1000_EECD_FLUPD;
526         ew32(EECD, eecd);
527
528         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
529                 msleep(1);
530                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
531                         break;
532         }
533
534         if (i == E1000_FLASH_UPDATES)
535                 return -E1000_ERR_NVM;
536
537         return 0;
538 }
539
540 /**
541  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
542  *  @hw: pointer to the HW structure
543  *
544  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
545  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
546  **/
547 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
548 {
549         if (hw->nvm.type == e1000_nvm_flash_hw)
550                 e1000_fix_nvm_checksum_82571(hw);
551
552         return e1000e_validate_nvm_checksum_generic(hw);
553 }
554
555 /**
556  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
557  *  @hw: pointer to the HW structure
558  *  @offset: offset within the EEPROM to be written to
559  *  @words: number of words to write
560  *  @data: 16 bit word(s) to be written to the EEPROM
561  *
562  *  After checking for invalid values, poll the EEPROM to ensure the previous
563  *  command has completed before trying to write the next word.  After write
564  *  poll for completion.
565  *
566  *  If e1000e_update_nvm_checksum is not called after this function, the
567  *  EEPROM will most likely contain an invalid checksum.
568  **/
569 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
570                                       u16 words, u16 *data)
571 {
572         struct e1000_nvm_info *nvm = &hw->nvm;
573         u32 i;
574         u32 eewr = 0;
575         s32 ret_val = 0;
576
577         /*
578          * A check for invalid values:  offset too large, too many words,
579          * and not enough words.
580          */
581         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
582             (words == 0)) {
583                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
584                 return -E1000_ERR_NVM;
585         }
586
587         for (i = 0; i < words; i++) {
588                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
589                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
590                        E1000_NVM_RW_REG_START;
591
592                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
593                 if (ret_val)
594                         break;
595
596                 ew32(EEWR, eewr);
597
598                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
599                 if (ret_val)
600                         break;
601         }
602
603         return ret_val;
604 }
605
606 /**
607  *  e1000_get_cfg_done_82571 - Poll for configuration done
608  *  @hw: pointer to the HW structure
609  *
610  *  Reads the management control register for the config done bit to be set.
611  **/
612 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
613 {
614         s32 timeout = PHY_CFG_TIMEOUT;
615
616         while (timeout) {
617                 if (er32(EEMNGCTL) &
618                     E1000_NVM_CFG_DONE_PORT_0)
619                         break;
620                 msleep(1);
621                 timeout--;
622         }
623         if (!timeout) {
624                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
625                 return -E1000_ERR_RESET;
626         }
627
628         return 0;
629 }
630
631 /**
632  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
633  *  @hw: pointer to the HW structure
634  *  @active: TRUE to enable LPLU, FALSE to disable
635  *
636  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
637  *  this function also disables smart speed and vice versa.  LPLU will not be
638  *  activated unless the device autonegotiation advertisement meets standards
639  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
640  *  pointer entry point only called by PHY setup routines.
641  **/
642 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
643 {
644         struct e1000_phy_info *phy = &hw->phy;
645         s32 ret_val;
646         u16 data;
647
648         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
649         if (ret_val)
650                 return ret_val;
651
652         if (active) {
653                 data |= IGP02E1000_PM_D0_LPLU;
654                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
655                 if (ret_val)
656                         return ret_val;
657
658                 /* When LPLU is enabled, we should disable SmartSpeed */
659                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
660                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
661                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
662                 if (ret_val)
663                         return ret_val;
664         } else {
665                 data &= ~IGP02E1000_PM_D0_LPLU;
666                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
667                 /*
668                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
669                  * during Dx states where the power conservation is most
670                  * important.  During driver activity we should enable
671                  * SmartSpeed, so performance is maintained.
672                  */
673                 if (phy->smart_speed == e1000_smart_speed_on) {
674                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
675                                            &data);
676                         if (ret_val)
677                                 return ret_val;
678
679                         data |= IGP01E1000_PSCFR_SMART_SPEED;
680                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
681                                            data);
682                         if (ret_val)
683                                 return ret_val;
684                 } else if (phy->smart_speed == e1000_smart_speed_off) {
685                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
686                                            &data);
687                         if (ret_val)
688                                 return ret_val;
689
690                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
691                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
692                                            data);
693                         if (ret_val)
694                                 return ret_val;
695                 }
696         }
697
698         return 0;
699 }
700
701 /**
702  *  e1000_reset_hw_82571 - Reset hardware
703  *  @hw: pointer to the HW structure
704  *
705  *  This resets the hardware into a known state.  This is a
706  *  function pointer entry point called by the api module.
707  **/
708 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
709 {
710         u32 ctrl;
711         u32 extcnf_ctrl;
712         u32 ctrl_ext;
713         u32 icr;
714         s32 ret_val;
715         u16 i = 0;
716
717         /*
718          * Prevent the PCI-E bus from sticking if there is no TLP connection
719          * on the last TLP read/write transaction when MAC is reset.
720          */
721         ret_val = e1000e_disable_pcie_master(hw);
722         if (ret_val)
723                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
724
725         hw_dbg(hw, "Masking off all interrupts\n");
726         ew32(IMC, 0xffffffff);
727
728         ew32(RCTL, 0);
729         ew32(TCTL, E1000_TCTL_PSP);
730         e1e_flush();
731
732         msleep(10);
733
734         /*
735          * Must acquire the MDIO ownership before MAC reset.
736          * Ownership defaults to firmware after a reset.
737          */
738         if (hw->mac.type == e1000_82573) {
739                 extcnf_ctrl = er32(EXTCNF_CTRL);
740                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
741
742                 do {
743                         ew32(EXTCNF_CTRL, extcnf_ctrl);
744                         extcnf_ctrl = er32(EXTCNF_CTRL);
745
746                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
747                                 break;
748
749                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
750
751                         msleep(2);
752                         i++;
753                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
754         }
755
756         ctrl = er32(CTRL);
757
758         hw_dbg(hw, "Issuing a global reset to MAC\n");
759         ew32(CTRL, ctrl | E1000_CTRL_RST);
760
761         if (hw->nvm.type == e1000_nvm_flash_hw) {
762                 udelay(10);
763                 ctrl_ext = er32(CTRL_EXT);
764                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
765                 ew32(CTRL_EXT, ctrl_ext);
766                 e1e_flush();
767         }
768
769         ret_val = e1000e_get_auto_rd_done(hw);
770         if (ret_val)
771                 /* We don't want to continue accessing MAC registers. */
772                 return ret_val;
773
774         /*
775          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
776          * Need to wait for Phy configuration completion before accessing
777          * NVM and Phy.
778          */
779         if (hw->mac.type == e1000_82573)
780                 msleep(25);
781
782         /* Clear any pending interrupt events. */
783         ew32(IMC, 0xffffffff);
784         icr = er32(ICR);
785
786         if (hw->mac.type == e1000_82571 &&
787                 hw->dev_spec.e82571.alt_mac_addr_is_present)
788                         e1000e_set_laa_state_82571(hw, true);
789
790         return 0;
791 }
792
793 /**
794  *  e1000_init_hw_82571 - Initialize hardware
795  *  @hw: pointer to the HW structure
796  *
797  *  This inits the hardware readying it for operation.
798  **/
799 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
800 {
801         struct e1000_mac_info *mac = &hw->mac;
802         u32 reg_data;
803         s32 ret_val;
804         u16 i;
805         u16 rar_count = mac->rar_entry_count;
806
807         e1000_initialize_hw_bits_82571(hw);
808
809         /* Initialize identification LED */
810         ret_val = e1000e_id_led_init(hw);
811         if (ret_val) {
812                 hw_dbg(hw, "Error initializing identification LED\n");
813                 return ret_val;
814         }
815
816         /* Disabling VLAN filtering */
817         hw_dbg(hw, "Initializing the IEEE VLAN\n");
818         e1000e_clear_vfta(hw);
819
820         /* Setup the receive address. */
821         /*
822          * If, however, a locally administered address was assigned to the
823          * 82571, we must reserve a RAR for it to work around an issue where
824          * resetting one port will reload the MAC on the other port.
825          */
826         if (e1000e_get_laa_state_82571(hw))
827                 rar_count--;
828         e1000e_init_rx_addrs(hw, rar_count);
829
830         /* Zero out the Multicast HASH table */
831         hw_dbg(hw, "Zeroing the MTA\n");
832         for (i = 0; i < mac->mta_reg_count; i++)
833                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
834
835         /* Setup link and flow control */
836         ret_val = e1000_setup_link_82571(hw);
837
838         /* Set the transmit descriptor write-back policy */
839         reg_data = er32(TXDCTL(0));
840         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
841                    E1000_TXDCTL_FULL_TX_DESC_WB |
842                    E1000_TXDCTL_COUNT_DESC;
843         ew32(TXDCTL(0), reg_data);
844
845         /* ...for both queues. */
846         if (mac->type != e1000_82573) {
847                 reg_data = er32(TXDCTL(1));
848                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
849                            E1000_TXDCTL_FULL_TX_DESC_WB |
850                            E1000_TXDCTL_COUNT_DESC;
851                 ew32(TXDCTL(1), reg_data);
852         } else {
853                 e1000e_enable_tx_pkt_filtering(hw);
854                 reg_data = er32(GCR);
855                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
856                 ew32(GCR, reg_data);
857         }
858
859         /*
860          * Clear all of the statistics registers (clear on read).  It is
861          * important that we do this after we have tried to establish link
862          * because the symbol error count will increment wildly if there
863          * is no link.
864          */
865         e1000_clear_hw_cntrs_82571(hw);
866
867         return ret_val;
868 }
869
870 /**
871  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
872  *  @hw: pointer to the HW structure
873  *
874  *  Initializes required hardware-dependent bits needed for normal operation.
875  **/
876 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
877 {
878         u32 reg;
879
880         /* Transmit Descriptor Control 0 */
881         reg = er32(TXDCTL(0));
882         reg |= (1 << 22);
883         ew32(TXDCTL(0), reg);
884
885         /* Transmit Descriptor Control 1 */
886         reg = er32(TXDCTL(1));
887         reg |= (1 << 22);
888         ew32(TXDCTL(1), reg);
889
890         /* Transmit Arbitration Control 0 */
891         reg = er32(TARC(0));
892         reg &= ~(0xF << 27); /* 30:27 */
893         switch (hw->mac.type) {
894         case e1000_82571:
895         case e1000_82572:
896                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
897                 break;
898         default:
899                 break;
900         }
901         ew32(TARC(0), reg);
902
903         /* Transmit Arbitration Control 1 */
904         reg = er32(TARC(1));
905         switch (hw->mac.type) {
906         case e1000_82571:
907         case e1000_82572:
908                 reg &= ~((1 << 29) | (1 << 30));
909                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
910                 if (er32(TCTL) & E1000_TCTL_MULR)
911                         reg &= ~(1 << 28);
912                 else
913                         reg |= (1 << 28);
914                 ew32(TARC(1), reg);
915                 break;
916         default:
917                 break;
918         }
919
920         /* Device Control */
921         if (hw->mac.type == e1000_82573) {
922                 reg = er32(CTRL);
923                 reg &= ~(1 << 29);
924                 ew32(CTRL, reg);
925         }
926
927         /* Extended Device Control */
928         if (hw->mac.type == e1000_82573) {
929                 reg = er32(CTRL_EXT);
930                 reg &= ~(1 << 23);
931                 reg |= (1 << 22);
932                 ew32(CTRL_EXT, reg);
933         }
934 }
935
936 /**
937  *  e1000e_clear_vfta - Clear VLAN filter table
938  *  @hw: pointer to the HW structure
939  *
940  *  Clears the register array which contains the VLAN filter table by
941  *  setting all the values to 0.
942  **/
943 void e1000e_clear_vfta(struct e1000_hw *hw)
944 {
945         u32 offset;
946         u32 vfta_value = 0;
947         u32 vfta_offset = 0;
948         u32 vfta_bit_in_reg = 0;
949
950         if (hw->mac.type == e1000_82573) {
951                 if (hw->mng_cookie.vlan_id != 0) {
952                         /*
953                          * The VFTA is a 4096b bit-field, each identifying
954                          * a single VLAN ID.  The following operations
955                          * determine which 32b entry (i.e. offset) into the
956                          * array we want to set the VLAN ID (i.e. bit) of
957                          * the manageability unit.
958                          */
959                         vfta_offset = (hw->mng_cookie.vlan_id >>
960                                        E1000_VFTA_ENTRY_SHIFT) &
961                                       E1000_VFTA_ENTRY_MASK;
962                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
963                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
964                 }
965         }
966         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
967                 /*
968                  * If the offset we want to clear is the same offset of the
969                  * manageability VLAN ID, then clear all bits except that of
970                  * the manageability unit.
971                  */
972                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
973                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
974                 e1e_flush();
975         }
976 }
977
978 /**
979  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
980  *  @hw: pointer to the HW structure
981  *  @mc_addr_list: array of multicast addresses to program
982  *  @mc_addr_count: number of multicast addresses to program
983  *  @rar_used_count: the first RAR register free to program
984  *  @rar_count: total number of supported Receive Address Registers
985  *
986  *  Updates the Receive Address Registers and Multicast Table Array.
987  *  The caller must have a packed mc_addr_list of multicast addresses.
988  *  The parameter rar_count will usually be hw->mac.rar_entry_count
989  *  unless there are workarounds that change this.
990  **/
991 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
992                                             u8 *mc_addr_list,
993                                             u32 mc_addr_count,
994                                             u32 rar_used_count,
995                                             u32 rar_count)
996 {
997         if (e1000e_get_laa_state_82571(hw))
998                 rar_count--;
999
1000         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1001                                            rar_used_count, rar_count);
1002 }
1003
1004 /**
1005  *  e1000_setup_link_82571 - Setup flow control and link settings
1006  *  @hw: pointer to the HW structure
1007  *
1008  *  Determines which flow control settings to use, then configures flow
1009  *  control.  Calls the appropriate media-specific link configuration
1010  *  function.  Assuming the adapter has a valid link partner, a valid link
1011  *  should be established.  Assumes the hardware has previously been reset
1012  *  and the transmitter and receiver are not enabled.
1013  **/
1014 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1015 {
1016         /*
1017          * 82573 does not have a word in the NVM to determine
1018          * the default flow control setting, so we explicitly
1019          * set it to full.
1020          */
1021         if (hw->mac.type == e1000_82573)
1022                 hw->fc.type = e1000_fc_full;
1023
1024         return e1000e_setup_link(hw);
1025 }
1026
1027 /**
1028  *  e1000_setup_copper_link_82571 - Configure copper link settings
1029  *  @hw: pointer to the HW structure
1030  *
1031  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1032  *  for link, once link is established calls to configure collision distance
1033  *  and flow control are called.
1034  **/
1035 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1036 {
1037         u32 ctrl;
1038         u32 led_ctrl;
1039         s32 ret_val;
1040
1041         ctrl = er32(CTRL);
1042         ctrl |= E1000_CTRL_SLU;
1043         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1044         ew32(CTRL, ctrl);
1045
1046         switch (hw->phy.type) {
1047         case e1000_phy_m88:
1048                 ret_val = e1000e_copper_link_setup_m88(hw);
1049                 break;
1050         case e1000_phy_igp_2:
1051                 ret_val = e1000e_copper_link_setup_igp(hw);
1052                 /* Setup activity LED */
1053                 led_ctrl = er32(LEDCTL);
1054                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1055                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1056                 ew32(LEDCTL, led_ctrl);
1057                 break;
1058         default:
1059                 return -E1000_ERR_PHY;
1060                 break;
1061         }
1062
1063         if (ret_val)
1064                 return ret_val;
1065
1066         ret_val = e1000e_setup_copper_link(hw);
1067
1068         return ret_val;
1069 }
1070
1071 /**
1072  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1073  *  @hw: pointer to the HW structure
1074  *
1075  *  Configures collision distance and flow control for fiber and serdes links.
1076  *  Upon successful setup, poll for link.
1077  **/
1078 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1079 {
1080         switch (hw->mac.type) {
1081         case e1000_82571:
1082         case e1000_82572:
1083                 /*
1084                  * If SerDes loopback mode is entered, there is no form
1085                  * of reset to take the adapter out of that mode.  So we
1086                  * have to explicitly take the adapter out of loopback
1087                  * mode.  This prevents drivers from twiddling their thumbs
1088                  * if another tool failed to take it out of loopback mode.
1089                  */
1090                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1091                 break;
1092         default:
1093                 break;
1094         }
1095
1096         return e1000e_setup_fiber_serdes_link(hw);
1097 }
1098
1099 /**
1100  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1101  *  @hw: pointer to the HW structure
1102  *  @data: pointer to the NVM (EEPROM)
1103  *
1104  *  Read the EEPROM for the current default LED configuration.  If the
1105  *  LED configuration is not valid, set to a valid LED configuration.
1106  **/
1107 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1108 {
1109         s32 ret_val;
1110
1111         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1112         if (ret_val) {
1113                 hw_dbg(hw, "NVM Read Error\n");
1114                 return ret_val;
1115         }
1116
1117         if (hw->mac.type == e1000_82573 &&
1118             *data == ID_LED_RESERVED_F746)
1119                 *data = ID_LED_DEFAULT_82573;
1120         else if (*data == ID_LED_RESERVED_0000 ||
1121                  *data == ID_LED_RESERVED_FFFF)
1122                 *data = ID_LED_DEFAULT;
1123
1124         return 0;
1125 }
1126
1127 /**
1128  *  e1000e_get_laa_state_82571 - Get locally administered address state
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Retrieve and return the current locally administered address state.
1132  **/
1133 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1134 {
1135         if (hw->mac.type != e1000_82571)
1136                 return 0;
1137
1138         return hw->dev_spec.e82571.laa_is_present;
1139 }
1140
1141 /**
1142  *  e1000e_set_laa_state_82571 - Set locally administered address state
1143  *  @hw: pointer to the HW structure
1144  *  @state: enable/disable locally administered address
1145  *
1146  *  Enable/Disable the current locally administers address state.
1147  **/
1148 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1149 {
1150         if (hw->mac.type != e1000_82571)
1151                 return;
1152
1153         hw->dev_spec.e82571.laa_is_present = state;
1154
1155         /* If workaround is activated... */
1156         if (state)
1157                 /*
1158                  * Hold a copy of the LAA in RAR[14] This is done so that
1159                  * between the time RAR[0] gets clobbered and the time it
1160                  * gets fixed, the actual LAA is in one of the RARs and no
1161                  * incoming packets directed to this port are dropped.
1162                  * Eventually the LAA will be in RAR[0] and RAR[14].
1163                  */
1164                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1165 }
1166
1167 /**
1168  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1169  *  @hw: pointer to the HW structure
1170  *
1171  *  Verifies that the EEPROM has completed the update.  After updating the
1172  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1173  *  the checksum fix is not implemented, we need to set the bit and update
1174  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1175  *  we need to return bad checksum.
1176  **/
1177 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1178 {
1179         struct e1000_nvm_info *nvm = &hw->nvm;
1180         s32 ret_val;
1181         u16 data;
1182
1183         if (nvm->type != e1000_nvm_flash_hw)
1184                 return 0;
1185
1186         /*
1187          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1188          * 10h-12h.  Checksum may need to be fixed.
1189          */
1190         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1191         if (ret_val)
1192                 return ret_val;
1193
1194         if (!(data & 0x10)) {
1195                 /*
1196                  * Read 0x23 and check bit 15.  This bit is a 1
1197                  * when the checksum has already been fixed.  If
1198                  * the checksum is still wrong and this bit is a
1199                  * 1, we need to return bad checksum.  Otherwise,
1200                  * we need to set this bit to a 1 and update the
1201                  * checksum.
1202                  */
1203                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1204                 if (ret_val)
1205                         return ret_val;
1206
1207                 if (!(data & 0x8000)) {
1208                         data |= 0x8000;
1209                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1210                         if (ret_val)
1211                                 return ret_val;
1212                         ret_val = e1000e_update_nvm_checksum(hw);
1213                 }
1214         }
1215
1216         return 0;
1217 }
1218
1219 /**
1220  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1221  *  @hw: pointer to the HW structure
1222  *
1223  *  Clears the hardware counters by reading the counter registers.
1224  **/
1225 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1226 {
1227         u32 temp;
1228
1229         e1000e_clear_hw_cntrs_base(hw);
1230
1231         temp = er32(PRC64);
1232         temp = er32(PRC127);
1233         temp = er32(PRC255);
1234         temp = er32(PRC511);
1235         temp = er32(PRC1023);
1236         temp = er32(PRC1522);
1237         temp = er32(PTC64);
1238         temp = er32(PTC127);
1239         temp = er32(PTC255);
1240         temp = er32(PTC511);
1241         temp = er32(PTC1023);
1242         temp = er32(PTC1522);
1243
1244         temp = er32(ALGNERRC);
1245         temp = er32(RXERRC);
1246         temp = er32(TNCRS);
1247         temp = er32(CEXTERR);
1248         temp = er32(TSCTC);
1249         temp = er32(TSCTFC);
1250
1251         temp = er32(MGTPRC);
1252         temp = er32(MGTPDC);
1253         temp = er32(MGTPTC);
1254
1255         temp = er32(IAC);
1256         temp = er32(ICRXOC);
1257
1258         temp = er32(ICRXPTC);
1259         temp = er32(ICRXATC);
1260         temp = er32(ICTXPTC);
1261         temp = er32(ICTXATC);
1262         temp = er32(ICTXQEC);
1263         temp = er32(ICTXQMTC);
1264         temp = er32(ICRXDMTC);
1265 }
1266
1267 static struct e1000_mac_operations e82571_mac_ops = {
1268         .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1269         /* .check_for_link: media type dependent */
1270         .cleanup_led            = e1000e_cleanup_led_generic,
1271         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1272         .get_bus_info           = e1000e_get_bus_info_pcie,
1273         /* .get_link_up_info: media type dependent */
1274         .led_on                 = e1000e_led_on_generic,
1275         .led_off                = e1000e_led_off_generic,
1276         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1277         .reset_hw               = e1000_reset_hw_82571,
1278         .init_hw                = e1000_init_hw_82571,
1279         .setup_link             = e1000_setup_link_82571,
1280         /* .setup_physical_interface: media type dependent */
1281 };
1282
1283 static struct e1000_phy_operations e82_phy_ops_igp = {
1284         .acquire_phy            = e1000_get_hw_semaphore_82571,
1285         .check_reset_block      = e1000e_check_reset_block_generic,
1286         .commit_phy             = NULL,
1287         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1288         .get_cfg_done           = e1000_get_cfg_done_82571,
1289         .get_cable_length       = e1000e_get_cable_length_igp_2,
1290         .get_phy_info           = e1000e_get_phy_info_igp,
1291         .read_phy_reg           = e1000e_read_phy_reg_igp,
1292         .release_phy            = e1000_put_hw_semaphore_82571,
1293         .reset_phy              = e1000e_phy_hw_reset_generic,
1294         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1295         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1296         .write_phy_reg          = e1000e_write_phy_reg_igp,
1297 };
1298
1299 static struct e1000_phy_operations e82_phy_ops_m88 = {
1300         .acquire_phy            = e1000_get_hw_semaphore_82571,
1301         .check_reset_block      = e1000e_check_reset_block_generic,
1302         .commit_phy             = e1000e_phy_sw_reset,
1303         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1304         .get_cfg_done           = e1000e_get_cfg_done,
1305         .get_cable_length       = e1000e_get_cable_length_m88,
1306         .get_phy_info           = e1000e_get_phy_info_m88,
1307         .read_phy_reg           = e1000e_read_phy_reg_m88,
1308         .release_phy            = e1000_put_hw_semaphore_82571,
1309         .reset_phy              = e1000e_phy_hw_reset_generic,
1310         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1311         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1312         .write_phy_reg          = e1000e_write_phy_reg_m88,
1313 };
1314
1315 static struct e1000_nvm_operations e82571_nvm_ops = {
1316         .acquire_nvm            = e1000_acquire_nvm_82571,
1317         .read_nvm               = e1000e_read_nvm_eerd,
1318         .release_nvm            = e1000_release_nvm_82571,
1319         .update_nvm             = e1000_update_nvm_checksum_82571,
1320         .valid_led_default      = e1000_valid_led_default_82571,
1321         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1322         .write_nvm              = e1000_write_nvm_82571,
1323 };
1324
1325 struct e1000_info e1000_82571_info = {
1326         .mac                    = e1000_82571,
1327         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1328                                   | FLAG_HAS_JUMBO_FRAMES
1329                                   | FLAG_HAS_WOL
1330                                   | FLAG_APME_IN_CTRL3
1331                                   | FLAG_RX_CSUM_ENABLED
1332                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1333                                   | FLAG_HAS_SMART_POWER_DOWN
1334                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1335                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1336                                   | FLAG_APME_CHECK_PORT_B,
1337         .pba                    = 38,
1338         .get_variants           = e1000_get_variants_82571,
1339         .mac_ops                = &e82571_mac_ops,
1340         .phy_ops                = &e82_phy_ops_igp,
1341         .nvm_ops                = &e82571_nvm_ops,
1342 };
1343
1344 struct e1000_info e1000_82572_info = {
1345         .mac                    = e1000_82572,
1346         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1347                                   | FLAG_HAS_JUMBO_FRAMES
1348                                   | FLAG_HAS_WOL
1349                                   | FLAG_APME_IN_CTRL3
1350                                   | FLAG_RX_CSUM_ENABLED
1351                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1352                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1353         .pba                    = 38,
1354         .get_variants           = e1000_get_variants_82571,
1355         .mac_ops                = &e82571_mac_ops,
1356         .phy_ops                = &e82_phy_ops_igp,
1357         .nvm_ops                = &e82571_nvm_ops,
1358 };
1359
1360 struct e1000_info e1000_82573_info = {
1361         .mac                    = e1000_82573,
1362         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1363                                   | FLAG_HAS_JUMBO_FRAMES
1364                                   | FLAG_HAS_WOL
1365                                   | FLAG_APME_IN_CTRL3
1366                                   | FLAG_RX_CSUM_ENABLED
1367                                   | FLAG_HAS_SMART_POWER_DOWN
1368                                   | FLAG_HAS_AMT
1369                                   | FLAG_HAS_ERT
1370                                   | FLAG_HAS_SWSM_ON_LOAD,
1371         .pba                    = 20,
1372         .get_variants           = e1000_get_variants_82571,
1373         .mac_ops                = &e82571_mac_ops,
1374         .phy_ops                = &e82_phy_ops_m88,
1375         .nvm_ops                = &e82571_nvm_ops,
1376 };
1377