2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
38 static __init int __attribute__((unused)) r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
44 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
50 static __init int __attribute__((unused)) bcm1250_m3_war(void)
52 return BCM1250_M3_WAR;
55 static __init int __attribute__((unused)) r10000_llsc_war(void)
57 return R10000_LLSC_WAR;
61 * A little micro-assembler, intended for TLB refill handler
62 * synthesizing. It is intentionally kept simple, does only support
63 * a subset of instructions, and does not try to hide pipeline effects
64 * like branch delay slots.
91 #define IMM_MASK 0xffff
93 #define JIMM_MASK 0x3ffffff
95 #define FUNC_MASK 0x2f
102 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
103 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
104 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
105 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
106 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
107 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
108 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
109 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
110 insn_tlbwr, insn_xor, insn_xori
119 /* This macro sets the non-variable bits of an instruction. */
120 #define M(a, b, c, d, e, f) \
128 static __initdata struct insn insn_table[] = {
129 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
130 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
131 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
132 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
133 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
134 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
135 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
136 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
137 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
138 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
139 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
140 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
141 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
142 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
143 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
144 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
145 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
146 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
147 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
148 { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
149 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
150 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
151 { insn_j, M(j_op,0,0,0,0,0), JIMM },
152 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
153 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
154 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
155 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
156 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
157 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
158 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
159 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
160 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
161 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
162 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
163 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
164 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
165 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
166 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
167 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
168 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
169 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
170 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
171 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
172 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
173 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
174 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
175 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
176 { insn_invalid, 0, 0 }
181 static __init u32 build_rs(u32 arg)
184 printk(KERN_WARNING "TLB synthesizer field overflow\n");
186 return (arg & RS_MASK) << RS_SH;
189 static __init u32 build_rt(u32 arg)
192 printk(KERN_WARNING "TLB synthesizer field overflow\n");
194 return (arg & RT_MASK) << RT_SH;
197 static __init u32 build_rd(u32 arg)
200 printk(KERN_WARNING "TLB synthesizer field overflow\n");
202 return (arg & RD_MASK) << RD_SH;
205 static __init u32 build_re(u32 arg)
208 printk(KERN_WARNING "TLB synthesizer field overflow\n");
210 return (arg & RE_MASK) << RE_SH;
213 static __init u32 build_simm(s32 arg)
215 if (arg > 0x7fff || arg < -0x8000)
216 printk(KERN_WARNING "TLB synthesizer field overflow\n");
221 static __init u32 build_uimm(u32 arg)
224 printk(KERN_WARNING "TLB synthesizer field overflow\n");
226 return arg & IMM_MASK;
229 static __init u32 build_bimm(s32 arg)
231 if (arg > 0x1ffff || arg < -0x20000)
232 printk(KERN_WARNING "TLB synthesizer field overflow\n");
235 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
237 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
240 static __init u32 build_jimm(u32 arg)
242 if (arg & ~((JIMM_MASK) << 2))
243 printk(KERN_WARNING "TLB synthesizer field overflow\n");
245 return (arg >> 2) & JIMM_MASK;
248 static __init u32 build_func(u32 arg)
250 if (arg & ~FUNC_MASK)
251 printk(KERN_WARNING "TLB synthesizer field overflow\n");
253 return arg & FUNC_MASK;
256 static __init u32 build_set(u32 arg)
259 printk(KERN_WARNING "TLB synthesizer field overflow\n");
261 return arg & SET_MASK;
265 * The order of opcode arguments is implicitly left to right,
266 * starting with RS and ending with FUNC or IMM.
268 static void __init build_insn(u32 **buf, enum opcode opc, ...)
270 struct insn *ip = NULL;
275 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
276 if (insn_table[i].opcode == opc) {
282 panic("Unsupported TLB synthesizer instruction %d", opc);
286 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
287 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
288 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
289 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
290 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
291 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
292 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
293 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
294 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
295 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
302 #define I_u1u2u3(op) \
303 static inline void __init i##op(u32 **buf, unsigned int a, \
304 unsigned int b, unsigned int c) \
306 build_insn(buf, insn##op, a, b, c); \
309 #define I_u2u1u3(op) \
310 static inline void __init i##op(u32 **buf, unsigned int a, \
311 unsigned int b, unsigned int c) \
313 build_insn(buf, insn##op, b, a, c); \
316 #define I_u3u1u2(op) \
317 static inline void __init i##op(u32 **buf, unsigned int a, \
318 unsigned int b, unsigned int c) \
320 build_insn(buf, insn##op, b, c, a); \
323 #define I_u1u2s3(op) \
324 static inline void __init i##op(u32 **buf, unsigned int a, \
325 unsigned int b, signed int c) \
327 build_insn(buf, insn##op, a, b, c); \
330 #define I_u2s3u1(op) \
331 static inline void __init i##op(u32 **buf, unsigned int a, \
332 signed int b, unsigned int c) \
334 build_insn(buf, insn##op, c, a, b); \
337 #define I_u2u1s3(op) \
338 static inline void __init i##op(u32 **buf, unsigned int a, \
339 unsigned int b, signed int c) \
341 build_insn(buf, insn##op, b, a, c); \
345 static inline void __init i##op(u32 **buf, unsigned int a, \
348 build_insn(buf, insn##op, a, b); \
352 static inline void __init i##op(u32 **buf, unsigned int a, \
355 build_insn(buf, insn##op, a, b); \
359 static inline void __init i##op(u32 **buf, unsigned int a) \
361 build_insn(buf, insn##op, a); \
365 static inline void __init i##op(u32 **buf) \
367 build_insn(buf, insn##op); \
433 label_smp_pgtable_change,
434 label_r3000_write_probe_fail,
442 static __init void build_label(struct label **lab, u32 *addr,
451 static inline void l##lb(struct label **lab, u32 *addr) \
453 build_label(lab, addr, label##lb); \
465 L_LA(_smp_pgtable_change)
466 L_LA(_r3000_write_probe_fail)
468 /* convenience macros for instructions */
470 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
471 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
472 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
473 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
474 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
475 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
476 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
477 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
478 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
479 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
480 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
481 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
483 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
484 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
485 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
486 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
487 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
488 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
489 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
490 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
491 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
492 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
493 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
494 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
497 #define i_b(buf, off) i_beq(buf, 0, 0, off)
498 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
499 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
500 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
501 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
502 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
503 #define i_nop(buf) i_sll(buf, 0, 0, 0)
504 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
505 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
508 static __init int __attribute__((unused)) in_compat_space_p(long addr)
510 /* Is this address in 32bit compat space? */
511 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
514 static __init int __attribute__((unused)) rel_highest(long val)
516 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
519 static __init int __attribute__((unused)) rel_higher(long val)
521 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
525 static __init int rel_hi(long val)
527 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
530 static __init int rel_lo(long val)
532 return ((val & 0xffff) ^ 0x8000) - 0x8000;
535 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
538 if (!in_compat_space_p(addr)) {
539 i_lui(buf, rs, rel_highest(addr));
540 if (rel_higher(addr))
541 i_daddiu(buf, rs, rs, rel_higher(addr));
543 i_dsll(buf, rs, rs, 16);
544 i_daddiu(buf, rs, rs, rel_hi(addr));
545 i_dsll(buf, rs, rs, 16);
547 i_dsll32(buf, rs, rs, 0);
550 i_lui(buf, rs, rel_hi(addr));
553 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
556 i_LA_mostly(buf, rs, addr);
558 i_ADDIU(buf, rs, rs, rel_lo(addr));
571 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
575 (*rel)->type = R_MIPS_PC16;
580 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
582 long laddr = (long)lab->addr;
583 long raddr = (long)rel->addr;
587 *rel->addr |= build_bimm(laddr - (raddr + 4));
591 panic("Unsupported TLB synthesizer relocation %d",
596 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
600 for (; rel->lab != label_invalid; rel++)
601 for (l = lab; l->lab != label_invalid; l++)
602 if (rel->lab == l->lab)
603 __resolve_relocs(rel, l);
606 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
609 for (; rel->lab != label_invalid; rel++)
610 if (rel->addr >= first && rel->addr < end)
614 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
617 for (; lab->lab != label_invalid; lab++)
618 if (lab->addr >= first && lab->addr < end)
622 static __init void copy_handler(struct reloc *rel, struct label *lab,
623 u32 *first, u32 *end, u32 *target)
625 long off = (long)(target - first);
627 memcpy(target, first, (end - first) * sizeof(u32));
629 move_relocs(rel, first, end, off);
630 move_labels(lab, first, end, off);
633 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
636 for (; rel->lab != label_invalid; rel++) {
637 if (rel->addr == addr
638 && (rel->type == R_MIPS_PC16
639 || rel->type == R_MIPS_26))
646 /* convenience functions for labeled branches */
647 static void __init __attribute__((unused))
648 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
650 r_mips_pc16(r, *p, l);
654 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
657 r_mips_pc16(r, *p, l);
661 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
664 r_mips_pc16(r, *p, l);
668 static void __init __attribute__((unused))
669 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
671 r_mips_pc16(r, *p, l);
675 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
678 r_mips_pc16(r, *p, l);
682 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
685 r_mips_pc16(r, *p, l);
689 /* The only general purpose registers allowed in TLB handlers. */
693 /* Some CP0 registers */
694 #define C0_INDEX 0, 0
695 #define C0_ENTRYLO0 2, 0
696 #define C0_TCBIND 2, 2
697 #define C0_ENTRYLO1 3, 0
698 #define C0_CONTEXT 4, 0
699 #define C0_BADVADDR 8, 0
700 #define C0_ENTRYHI 10, 0
702 #define C0_XCONTEXT 20, 0
705 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
707 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
710 /* The worst case length of the handler is around 18 instructions for
711 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
712 * Maximum space available is 32 instructions for R3000 and 64
713 * instructions for R4000.
715 * We deliberately chose a buffer size of 128, so we won't scribble
716 * over anything important on overflow before we panic.
718 static __initdata u32 tlb_handler[128];
720 /* simply assume worst case size for labels and relocs */
721 static __initdata struct label labels[128];
722 static __initdata struct reloc relocs[128];
725 * The R3000 TLB handler is simple.
727 static void __init build_r3000_tlb_refill_handler(void)
729 long pgdc = (long)pgd_current;
733 memset(tlb_handler, 0, sizeof(tlb_handler));
736 i_mfc0(&p, K0, C0_BADVADDR);
737 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
738 i_lw(&p, K1, rel_lo(pgdc), K1);
739 i_srl(&p, K0, K0, 22); /* load delay */
740 i_sll(&p, K0, K0, 2);
741 i_addu(&p, K1, K1, K0);
742 i_mfc0(&p, K0, C0_CONTEXT);
743 i_lw(&p, K1, 0, K1); /* cp0 delay */
744 i_andi(&p, K0, K0, 0xffc); /* load delay */
745 i_addu(&p, K1, K1, K0);
747 i_nop(&p); /* load delay */
748 i_mtc0(&p, K0, C0_ENTRYLO0);
749 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
750 i_tlbwr(&p); /* cp0 delay */
752 i_rfe(&p); /* branch delay */
754 if (p > tlb_handler + 32)
755 panic("TLB refill handler space exceeded");
757 pr_info("Synthesized TLB refill handler (%u instructions).\n",
758 (unsigned int)(p - tlb_handler));
760 pr_debug("\t.set push\n");
761 pr_debug("\t.set noreorder\n");
762 for (i = 0; i < (p - tlb_handler); i++)
763 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
764 pr_debug("\t.set pop\n");
766 memcpy((void *)ebase, tlb_handler, 0x80);
770 * The R4000 TLB handler is much more complicated. We have two
771 * consecutive handler areas with 32 instructions space each.
772 * Since they aren't used at the same time, we can overflow in the
773 * other one.To keep things simple, we first assume linear space,
774 * then we relocate it to the final handler layout as needed.
776 static __initdata u32 final_handler[64];
781 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
782 * 2. A timing hazard exists for the TLBP instruction.
784 * stalling_instruction
787 * The JTLB is being read for the TLBP throughout the stall generated by the
788 * previous instruction. This is not really correct as the stalling instruction
789 * can modify the address used to access the JTLB. The failure symptom is that
790 * the TLBP instruction will use an address created for the stalling instruction
791 * and not the address held in C0_ENHI and thus report the wrong results.
793 * The software work-around is to not allow the instruction preceding the TLBP
794 * to stall - make it an NOP or some other instruction guaranteed not to stall.
796 * Errata 2 will not be fixed. This errata is also on the R5000.
798 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
800 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
802 switch (current_cpu_data.cputype) {
803 /* Found by experiment: R4600 v2.0 needs this, too. */
819 * Write random or indexed TLB entry, and care about the hazards from
820 * the preceeding mtc0 and for the following eret.
822 enum tlb_write_entry { tlb_random, tlb_indexed };
824 static __init void build_tlb_write_entry(u32 **p, struct label **l,
826 enum tlb_write_entry wmode)
828 void(*tlbw)(u32 **) = NULL;
831 case tlb_random: tlbw = i_tlbwr; break;
832 case tlb_indexed: tlbw = i_tlbwi; break;
835 switch (current_cpu_data.cputype) {
843 * This branch uses up a mtc0 hazard nop slot and saves
844 * two nops after the tlbw instruction.
846 il_bgezl(p, r, 0, label_tlbw_hazard);
848 l_tlbw_hazard(l, *p);
887 i_nop(p); /* QED specifies 2 nops hazard */
889 * This branch uses up a mtc0 hazard nop slot and saves
890 * a nop after the tlbw instruction.
892 il_bgezl(p, r, 0, label_tlbw_hazard);
894 l_tlbw_hazard(l, *p);
915 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
916 * use of the JTLB for instructions should not occur for 4
917 * cpu cycles and use for data translations should not occur
952 panic("No TLB refill handler yet (CPU type: %d)",
953 current_cpu_data.cputype);
960 * TMP and PTR are scratch.
961 * TMP will be clobbered, PTR will hold the pmd entry.
964 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
965 unsigned int tmp, unsigned int ptr)
967 long pgdc = (long)pgd_current;
970 * The vmalloc handling is not in the hotpath.
972 i_dmfc0(p, tmp, C0_BADVADDR);
973 il_bltz(p, r, tmp, label_vmalloc);
974 /* No i_nop needed here, since the next insn doesn't touch TMP. */
977 # ifdef CONFIG_MIPS_MT_SMTC
979 * SMTC uses TCBind value as "CPU" index
981 i_mfc0(p, ptr, C0_TCBIND);
982 i_dsrl(p, ptr, ptr, 19);
985 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
988 i_dmfc0(p, ptr, C0_CONTEXT);
989 i_dsrl(p, ptr, ptr, 23);
991 i_LA_mostly(p, tmp, pgdc);
992 i_daddu(p, ptr, ptr, tmp);
993 i_dmfc0(p, tmp, C0_BADVADDR);
994 i_ld(p, ptr, rel_lo(pgdc), ptr);
996 i_LA_mostly(p, ptr, pgdc);
997 i_ld(p, ptr, rel_lo(pgdc), ptr);
1000 l_vmalloc_done(l, *p);
1002 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
1003 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
1005 i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
1007 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1008 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1009 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1010 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1011 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1012 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1013 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1017 * BVADDR is the faulting address, PTR is scratch.
1018 * PTR will hold the pgd for vmalloc.
1021 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1022 unsigned int bvaddr, unsigned int ptr)
1024 long swpd = (long)swapper_pg_dir;
1027 i_LA(p, ptr, VMALLOC_START);
1028 i_dsubu(p, bvaddr, bvaddr, ptr);
1030 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1031 il_b(p, r, label_vmalloc_done);
1032 i_lui(p, ptr, rel_hi(swpd));
1034 i_LA_mostly(p, ptr, swpd);
1035 il_b(p, r, label_vmalloc_done);
1036 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1040 #else /* !CONFIG_64BIT */
1043 * TMP and PTR are scratch.
1044 * TMP will be clobbered, PTR will hold the pgd entry.
1046 static __init void __attribute__((unused))
1047 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1049 long pgdc = (long)pgd_current;
1051 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1053 #ifdef CONFIG_MIPS_MT_SMTC
1055 * SMTC uses TCBind value as "CPU" index
1057 i_mfc0(p, ptr, C0_TCBIND);
1058 i_LA_mostly(p, tmp, pgdc);
1059 i_srl(p, ptr, ptr, 19);
1062 * smp_processor_id() << 3 is stored in CONTEXT.
1064 i_mfc0(p, ptr, C0_CONTEXT);
1065 i_LA_mostly(p, tmp, pgdc);
1066 i_srl(p, ptr, ptr, 23);
1068 i_addu(p, ptr, tmp, ptr);
1070 i_LA_mostly(p, ptr, pgdc);
1072 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1073 i_lw(p, ptr, rel_lo(pgdc), ptr);
1074 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1075 i_sll(p, tmp, tmp, PGD_T_LOG2);
1076 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1079 #endif /* !CONFIG_64BIT */
1081 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1083 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1084 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1086 switch (current_cpu_data.cputype) {
1103 i_SRL(p, ctx, ctx, shift);
1104 i_andi(p, ctx, ctx, mask);
1107 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1110 * Bug workaround for the Nevada. It seems as if under certain
1111 * circumstances the move from cp0_context might produce a
1112 * bogus result when the mfc0 instruction and its consumer are
1113 * in a different cacheline or a load instruction, probably any
1114 * memory reference, is between them.
1116 switch (current_cpu_data.cputype) {
1118 i_LW(p, ptr, 0, ptr);
1119 GET_CONTEXT(p, tmp); /* get context reg */
1123 GET_CONTEXT(p, tmp); /* get context reg */
1124 i_LW(p, ptr, 0, ptr);
1128 build_adjust_context(p, tmp);
1129 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1132 static __init void build_update_entries(u32 **p, unsigned int tmp,
1136 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1137 * Kernel is a special case. Only a few CPUs use it.
1139 #ifdef CONFIG_64BIT_PHYS_ADDR
1140 if (cpu_has_64bits) {
1141 i_ld(p, tmp, 0, ptep); /* get even pte */
1142 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1143 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1144 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1145 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1146 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1148 int pte_off_even = sizeof(pte_t) / 2;
1149 int pte_off_odd = pte_off_even + sizeof(pte_t);
1151 /* The pte entries are pre-shifted */
1152 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1153 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1154 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1155 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1158 i_LW(p, tmp, 0, ptep); /* get even pte */
1159 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1160 if (r45k_bvahwbug())
1161 build_tlb_probe_entry(p);
1162 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1163 if (r4k_250MHZhwbug())
1164 i_mtc0(p, 0, C0_ENTRYLO0);
1165 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1166 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1167 if (r45k_bvahwbug())
1168 i_mfc0(p, tmp, C0_INDEX);
1169 if (r4k_250MHZhwbug())
1170 i_mtc0(p, 0, C0_ENTRYLO1);
1171 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1175 static void __init build_r4000_tlb_refill_handler(void)
1177 u32 *p = tlb_handler;
1178 struct label *l = labels;
1179 struct reloc *r = relocs;
1181 unsigned int final_len;
1184 memset(tlb_handler, 0, sizeof(tlb_handler));
1185 memset(labels, 0, sizeof(labels));
1186 memset(relocs, 0, sizeof(relocs));
1187 memset(final_handler, 0, sizeof(final_handler));
1190 * create the plain linear handler
1192 if (bcm1250_m3_war()) {
1193 i_MFC0(&p, K0, C0_BADVADDR);
1194 i_MFC0(&p, K1, C0_ENTRYHI);
1195 i_xor(&p, K0, K0, K1);
1196 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1197 il_bnez(&p, &r, K0, label_leave);
1198 /* No need for i_nop */
1202 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1204 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1207 build_get_ptep(&p, K0, K1);
1208 build_update_entries(&p, K0, K1);
1209 build_tlb_write_entry(&p, &l, &r, tlb_random);
1211 i_eret(&p); /* return from trap */
1214 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1218 * Overflow check: For the 64bit handler, we need at least one
1219 * free instruction slot for the wrap-around branch. In worst
1220 * case, if the intended insertion point is a delay slot, we
1221 * need three, with the second nop'ed and the third being
1225 if ((p - tlb_handler) > 64)
1226 panic("TLB refill handler space exceeded");
1228 if (((p - tlb_handler) > 63)
1229 || (((p - tlb_handler) > 61)
1230 && insn_has_bdelay(relocs, tlb_handler + 29)))
1231 panic("TLB refill handler space exceeded");
1235 * Now fold the handler in the TLB refill handler space.
1239 /* Simplest case, just copy the handler. */
1240 copy_handler(relocs, labels, tlb_handler, p, f);
1241 final_len = p - tlb_handler;
1242 #else /* CONFIG_64BIT */
1243 f = final_handler + 32;
1244 if ((p - tlb_handler) <= 32) {
1245 /* Just copy the handler. */
1246 copy_handler(relocs, labels, tlb_handler, p, f);
1247 final_len = p - tlb_handler;
1249 u32 *split = tlb_handler + 30;
1252 * Find the split point.
1254 if (insn_has_bdelay(relocs, split - 1))
1257 /* Copy first part of the handler. */
1258 copy_handler(relocs, labels, tlb_handler, split, f);
1259 f += split - tlb_handler;
1261 /* Insert branch. */
1262 l_split(&l, final_handler);
1263 il_b(&f, &r, label_split);
1264 if (insn_has_bdelay(relocs, split))
1267 copy_handler(relocs, labels, split, split + 1, f);
1268 move_labels(labels, f, f + 1, -1);
1273 /* Copy the rest of the handler. */
1274 copy_handler(relocs, labels, split, p, final_handler);
1275 final_len = (f - (final_handler + 32)) + (p - split);
1277 #endif /* CONFIG_64BIT */
1279 resolve_relocs(relocs, labels);
1280 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1288 f = final_handler + 32;
1289 #endif /* CONFIG_64BIT */
1290 pr_debug("\t.set push\n");
1291 pr_debug("\t.set noreorder\n");
1292 for (i = 0; i < final_len; i++)
1293 pr_debug("\t.word 0x%08x\n", f[i]);
1294 pr_debug("\t.set pop\n");
1296 memcpy((void *)ebase, final_handler, 0x100);
1300 * TLB load/store/modify handlers.
1302 * Only the fastpath gets synthesized at runtime, the slowpath for
1303 * do_page_fault remains normal asm.
1305 extern void tlb_do_page_fault_0(void);
1306 extern void tlb_do_page_fault_1(void);
1308 #define __tlb_handler_align \
1309 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1312 * 128 instructions for the fastpath handler is generous and should
1313 * never be exceeded.
1315 #define FASTPATH_SIZE 128
1317 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1318 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1319 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1322 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1325 # ifdef CONFIG_64BIT_PHYS_ADDR
1327 i_lld(p, pte, 0, ptr);
1330 i_LL(p, pte, 0, ptr);
1332 # ifdef CONFIG_64BIT_PHYS_ADDR
1334 i_ld(p, pte, 0, ptr);
1337 i_LW(p, pte, 0, ptr);
1342 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1345 #ifdef CONFIG_64BIT_PHYS_ADDR
1346 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1349 i_ori(p, pte, pte, mode);
1351 # ifdef CONFIG_64BIT_PHYS_ADDR
1353 i_scd(p, pte, 0, ptr);
1356 i_SC(p, pte, 0, ptr);
1358 if (r10000_llsc_war())
1359 il_beqzl(p, r, pte, label_smp_pgtable_change);
1361 il_beqz(p, r, pte, label_smp_pgtable_change);
1363 # ifdef CONFIG_64BIT_PHYS_ADDR
1364 if (!cpu_has_64bits) {
1365 /* no i_nop needed */
1366 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1367 i_ori(p, pte, pte, hwmode);
1368 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1369 il_beqz(p, r, pte, label_smp_pgtable_change);
1370 /* no i_nop needed */
1371 i_lw(p, pte, 0, ptr);
1378 # ifdef CONFIG_64BIT_PHYS_ADDR
1380 i_sd(p, pte, 0, ptr);
1383 i_SW(p, pte, 0, ptr);
1385 # ifdef CONFIG_64BIT_PHYS_ADDR
1386 if (!cpu_has_64bits) {
1387 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1388 i_ori(p, pte, pte, hwmode);
1389 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1390 i_lw(p, pte, 0, ptr);
1397 * Check if PTE is present, if not then jump to LABEL. PTR points to
1398 * the page table where this PTE is located, PTE will be re-loaded
1399 * with it's original value.
1402 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1403 unsigned int pte, unsigned int ptr, enum label_id lid)
1405 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1406 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1407 il_bnez(p, r, pte, lid);
1408 iPTE_LW(p, l, pte, ptr);
1411 /* Make PTE valid, store result in PTR. */
1413 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1416 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1418 iPTE_SW(p, r, pte, ptr, mode);
1422 * Check if PTE can be written to, if not branch to LABEL. Regardless
1423 * restore PTE with value from PTR when done.
1426 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1427 unsigned int pte, unsigned int ptr, enum label_id lid)
1429 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1430 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1431 il_bnez(p, r, pte, lid);
1432 iPTE_LW(p, l, pte, ptr);
1435 /* Make PTE writable, update software status bits as well, then store
1439 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1442 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1445 iPTE_SW(p, r, pte, ptr, mode);
1449 * Check if PTE can be modified, if not branch to LABEL. Regardless
1450 * restore PTE with value from PTR when done.
1453 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1454 unsigned int pte, unsigned int ptr, enum label_id lid)
1456 i_andi(p, pte, pte, _PAGE_WRITE);
1457 il_beqz(p, r, pte, lid);
1458 iPTE_LW(p, l, pte, ptr);
1462 * R3000 style TLB load/store/modify handlers.
1466 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1470 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1472 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1473 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1476 i_rfe(p); /* branch delay */
1480 * This places the pte into ENTRYLO0 and writes it with tlbwi
1481 * or tlbwr as appropriate. This is because the index register
1482 * may have the probe fail bit set as a result of a trap on a
1483 * kseg2 access, i.e. without refill. Then it returns.
1486 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1487 unsigned int pte, unsigned int tmp)
1489 i_mfc0(p, tmp, C0_INDEX);
1490 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1491 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1492 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1493 i_tlbwi(p); /* cp0 delay */
1495 i_rfe(p); /* branch delay */
1496 l_r3000_write_probe_fail(l, *p);
1497 i_tlbwr(p); /* cp0 delay */
1499 i_rfe(p); /* branch delay */
1503 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1506 long pgdc = (long)pgd_current;
1508 i_mfc0(p, pte, C0_BADVADDR);
1509 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1510 i_lw(p, ptr, rel_lo(pgdc), ptr);
1511 i_srl(p, pte, pte, 22); /* load delay */
1512 i_sll(p, pte, pte, 2);
1513 i_addu(p, ptr, ptr, pte);
1514 i_mfc0(p, pte, C0_CONTEXT);
1515 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1516 i_andi(p, pte, pte, 0xffc); /* load delay */
1517 i_addu(p, ptr, ptr, pte);
1518 i_lw(p, pte, 0, ptr);
1519 i_tlbp(p); /* load delay */
1522 static void __init build_r3000_tlb_load_handler(void)
1524 u32 *p = handle_tlbl;
1525 struct label *l = labels;
1526 struct reloc *r = relocs;
1529 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1530 memset(labels, 0, sizeof(labels));
1531 memset(relocs, 0, sizeof(relocs));
1533 build_r3000_tlbchange_handler_head(&p, K0, K1);
1534 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1535 i_nop(&p); /* load delay */
1536 build_make_valid(&p, &r, K0, K1);
1537 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1539 l_nopage_tlbl(&l, p);
1540 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1543 if ((p - handle_tlbl) > FASTPATH_SIZE)
1544 panic("TLB load handler fastpath space exceeded");
1546 resolve_relocs(relocs, labels);
1547 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1548 (unsigned int)(p - handle_tlbl));
1550 pr_debug("\t.set push\n");
1551 pr_debug("\t.set noreorder\n");
1552 for (i = 0; i < (p - handle_tlbl); i++)
1553 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1554 pr_debug("\t.set pop\n");
1557 static void __init build_r3000_tlb_store_handler(void)
1559 u32 *p = handle_tlbs;
1560 struct label *l = labels;
1561 struct reloc *r = relocs;
1564 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1565 memset(labels, 0, sizeof(labels));
1566 memset(relocs, 0, sizeof(relocs));
1568 build_r3000_tlbchange_handler_head(&p, K0, K1);
1569 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1570 i_nop(&p); /* load delay */
1571 build_make_write(&p, &r, K0, K1);
1572 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1574 l_nopage_tlbs(&l, p);
1575 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1578 if ((p - handle_tlbs) > FASTPATH_SIZE)
1579 panic("TLB store handler fastpath space exceeded");
1581 resolve_relocs(relocs, labels);
1582 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1583 (unsigned int)(p - handle_tlbs));
1585 pr_debug("\t.set push\n");
1586 pr_debug("\t.set noreorder\n");
1587 for (i = 0; i < (p - handle_tlbs); i++)
1588 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1589 pr_debug("\t.set pop\n");
1592 static void __init build_r3000_tlb_modify_handler(void)
1594 u32 *p = handle_tlbm;
1595 struct label *l = labels;
1596 struct reloc *r = relocs;
1599 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1600 memset(labels, 0, sizeof(labels));
1601 memset(relocs, 0, sizeof(relocs));
1603 build_r3000_tlbchange_handler_head(&p, K0, K1);
1604 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1605 i_nop(&p); /* load delay */
1606 build_make_write(&p, &r, K0, K1);
1607 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1609 l_nopage_tlbm(&l, p);
1610 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1613 if ((p - handle_tlbm) > FASTPATH_SIZE)
1614 panic("TLB modify handler fastpath space exceeded");
1616 resolve_relocs(relocs, labels);
1617 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1618 (unsigned int)(p - handle_tlbm));
1620 pr_debug("\t.set push\n");
1621 pr_debug("\t.set noreorder\n");
1622 for (i = 0; i < (p - handle_tlbm); i++)
1623 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1624 pr_debug("\t.set pop\n");
1628 * R4000 style TLB load/store/modify handlers.
1631 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1632 struct reloc **r, unsigned int pte,
1636 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1638 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1641 i_MFC0(p, pte, C0_BADVADDR);
1642 i_LW(p, ptr, 0, ptr);
1643 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1644 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1645 i_ADDU(p, ptr, ptr, pte);
1648 l_smp_pgtable_change(l, *p);
1650 iPTE_LW(p, l, pte, ptr); /* get even pte */
1651 build_tlb_probe_entry(p);
1655 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1656 struct reloc **r, unsigned int tmp,
1659 i_ori(p, ptr, ptr, sizeof(pte_t));
1660 i_xori(p, ptr, ptr, sizeof(pte_t));
1661 build_update_entries(p, tmp, ptr);
1662 build_tlb_write_entry(p, l, r, tlb_indexed);
1664 i_eret(p); /* return from trap */
1667 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1671 static void __init build_r4000_tlb_load_handler(void)
1673 u32 *p = handle_tlbl;
1674 struct label *l = labels;
1675 struct reloc *r = relocs;
1678 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1679 memset(labels, 0, sizeof(labels));
1680 memset(relocs, 0, sizeof(relocs));
1682 if (bcm1250_m3_war()) {
1683 i_MFC0(&p, K0, C0_BADVADDR);
1684 i_MFC0(&p, K1, C0_ENTRYHI);
1685 i_xor(&p, K0, K0, K1);
1686 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1687 il_bnez(&p, &r, K0, label_leave);
1688 /* No need for i_nop */
1691 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1692 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1693 build_make_valid(&p, &r, K0, K1);
1694 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1696 l_nopage_tlbl(&l, p);
1697 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1700 if ((p - handle_tlbl) > FASTPATH_SIZE)
1701 panic("TLB load handler fastpath space exceeded");
1703 resolve_relocs(relocs, labels);
1704 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1705 (unsigned int)(p - handle_tlbl));
1707 pr_debug("\t.set push\n");
1708 pr_debug("\t.set noreorder\n");
1709 for (i = 0; i < (p - handle_tlbl); i++)
1710 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1711 pr_debug("\t.set pop\n");
1714 static void __init build_r4000_tlb_store_handler(void)
1716 u32 *p = handle_tlbs;
1717 struct label *l = labels;
1718 struct reloc *r = relocs;
1721 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1722 memset(labels, 0, sizeof(labels));
1723 memset(relocs, 0, sizeof(relocs));
1725 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1726 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1727 build_make_write(&p, &r, K0, K1);
1728 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1730 l_nopage_tlbs(&l, p);
1731 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1734 if ((p - handle_tlbs) > FASTPATH_SIZE)
1735 panic("TLB store handler fastpath space exceeded");
1737 resolve_relocs(relocs, labels);
1738 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1739 (unsigned int)(p - handle_tlbs));
1741 pr_debug("\t.set push\n");
1742 pr_debug("\t.set noreorder\n");
1743 for (i = 0; i < (p - handle_tlbs); i++)
1744 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1745 pr_debug("\t.set pop\n");
1748 static void __init build_r4000_tlb_modify_handler(void)
1750 u32 *p = handle_tlbm;
1751 struct label *l = labels;
1752 struct reloc *r = relocs;
1755 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1756 memset(labels, 0, sizeof(labels));
1757 memset(relocs, 0, sizeof(relocs));
1759 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1760 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1761 /* Present and writable bits set, set accessed and dirty bits. */
1762 build_make_write(&p, &r, K0, K1);
1763 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1765 l_nopage_tlbm(&l, p);
1766 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1769 if ((p - handle_tlbm) > FASTPATH_SIZE)
1770 panic("TLB modify handler fastpath space exceeded");
1772 resolve_relocs(relocs, labels);
1773 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1774 (unsigned int)(p - handle_tlbm));
1776 pr_debug("\t.set push\n");
1777 pr_debug("\t.set noreorder\n");
1778 for (i = 0; i < (p - handle_tlbm); i++)
1779 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1780 pr_debug("\t.set pop\n");
1783 void __init build_tlb_refill_handler(void)
1786 * The refill handler is generated per-CPU, multi-node systems
1787 * may have local storage for it. The other handlers are only
1790 static int run_once = 0;
1792 switch (current_cpu_data.cputype) {
1800 build_r3000_tlb_refill_handler();
1802 build_r3000_tlb_load_handler();
1803 build_r3000_tlb_store_handler();
1804 build_r3000_tlb_modify_handler();
1811 panic("No R6000 TLB refill handler yet");
1815 panic("No R8000 TLB refill handler yet");
1819 build_r4000_tlb_refill_handler();
1821 build_r4000_tlb_load_handler();
1822 build_r4000_tlb_store_handler();
1823 build_r4000_tlb_modify_handler();
1829 void __init flush_tlb_handlers(void)
1831 flush_icache_range((unsigned long)handle_tlbl,
1832 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1833 flush_icache_range((unsigned long)handle_tlbs,
1834 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1835 flush_icache_range((unsigned long)handle_tlbm,
1836 (unsigned long)handle_tlbm + sizeof(handle_tlbm));