1 #ifndef __ASMi386_ELF_H
2 #define __ASMi386_ELF_H
5 * ELF register definitions..
8 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <asm/system.h> /* for savesegment */
13 #include <linux/utsname.h>
21 #define R_386_GLOB_DAT 6
22 #define R_386_JMP_SLOT 7
23 #define R_386_RELATIVE 8
24 #define R_386_GOTOFF 9
25 #define R_386_GOTPC 10
28 typedef unsigned long elf_greg_t;
30 #define ELF_NGREG (sizeof (struct user_regs_struct) / sizeof(elf_greg_t))
31 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
33 typedef struct user_i387_struct elf_fpregset_t;
34 typedef struct user_fxsr_struct elf_fpxregset_t;
37 * This is used to ensure we don't load something for the wrong architecture.
39 #define elf_check_arch(x) \
40 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486))
43 * These are used to set parameters in the core dumps.
45 #define ELF_CLASS ELFCLASS32
46 #define ELF_DATA ELFDATA2LSB
47 #define ELF_ARCH EM_386
49 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx
50 contains a pointer to a function which might be registered using `atexit'.
51 This provides a mean for the dynamic linker to call DT_FINI functions for
52 shared libraries that have been loaded before the code runs.
54 A value of 0 tells we have no such handler.
56 We might as well make sure everything else is cleared too (except for %esp),
57 just to make things more deterministic.
59 #define ELF_PLAT_INIT(_r, load_addr) do { \
60 _r->ebx = 0; _r->ecx = 0; _r->edx = 0; \
61 _r->esi = 0; _r->edi = 0; _r->ebp = 0; \
65 #define USE_ELF_CORE_DUMP
66 #define ELF_EXEC_PAGESIZE 4096
68 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical
69 use of this is to invoke "./ld.so someprog" to test out a new version of
70 the loader. We need to make sure that it is out of the way of the program
71 that it will "exec", and that there is sufficient room for the brk. */
73 #define ELF_ET_DYN_BASE (TASK_SIZE / 3 * 2)
75 /* regs is struct pt_regs, pr_reg is elf_gregset_t (which is
76 now struct_user_regs, they are different) */
78 #define ELF_CORE_COPY_REGS(pr_reg, regs) \
79 pr_reg[0] = regs->ebx; \
80 pr_reg[1] = regs->ecx; \
81 pr_reg[2] = regs->edx; \
82 pr_reg[3] = regs->esi; \
83 pr_reg[4] = regs->edi; \
84 pr_reg[5] = regs->ebp; \
85 pr_reg[6] = regs->eax; \
86 pr_reg[7] = regs->xds; \
87 pr_reg[8] = regs->xes; \
88 savesegment(fs,pr_reg[9]); \
89 savesegment(gs,pr_reg[10]); \
90 pr_reg[11] = regs->orig_eax; \
91 pr_reg[12] = regs->eip; \
92 pr_reg[13] = regs->xcs; \
93 pr_reg[14] = regs->eflags; \
94 pr_reg[15] = regs->esp; \
95 pr_reg[16] = regs->xss;
97 /* This yields a mask that user programs can use to figure out what
98 instruction set this CPU supports. This could be done in user space,
99 but it's not easy, and we've already done it here. */
101 #define ELF_HWCAP (boot_cpu_data.x86_capability[0])
103 /* This yields a string that ld.so will use to load implementation
104 specific libraries for optimization. This is more specific in
105 intent than poking at uname or /proc/cpuinfo.
107 For the moment, we have only optimizations for the Intel generations,
108 but that could change... */
110 #define ELF_PLATFORM (system_utsname.machine)
113 * Architecture-neutral AT_ values in 0-17, leave some room
114 * for more of them, start the x86-specific ones at 32.
116 #define AT_SYSINFO 32
117 #define AT_SYSINFO_EHDR 33
120 #define SET_PERSONALITY(ex, ibcs2) do { } while (0)
123 * An executable for which elf_read_implies_exec() returns TRUE will
124 * have the READ_IMPLIES_EXEC personality flag set automatically.
126 #define elf_read_implies_exec(ex, executable_stack) (executable_stack != EXSTACK_DISABLE_X)
128 extern int dump_task_regs (struct task_struct *, elf_gregset_t *);
129 extern int dump_task_fpu (struct task_struct *, elf_fpregset_t *);
130 extern int dump_task_extended_fpu (struct task_struct *, struct user_fxsr_struct *);
132 #define ELF_CORE_COPY_TASK_REGS(tsk, elf_regs) dump_task_regs(tsk, elf_regs)
133 #define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs)
134 #define ELF_CORE_COPY_XFPREGS(tsk, elf_xfpregs) dump_task_extended_fpu(tsk, elf_xfpregs)
136 #define VSYSCALL_BASE (__fix_to_virt(FIX_VSYSCALL))
137 #define VSYSCALL_EHDR ((const struct elfhdr *) VSYSCALL_BASE)
138 #define VSYSCALL_ENTRY ((unsigned long) &__kernel_vsyscall)
139 extern void __kernel_vsyscall;
141 #define ARCH_DLINFO \
143 NEW_AUX_ENT(AT_SYSINFO, VSYSCALL_ENTRY); \
144 NEW_AUX_ENT(AT_SYSINFO_EHDR, VSYSCALL_BASE); \
148 * These macros parameterize elf_core_dump in fs/binfmt_elf.c to write out
149 * extra segments containing the vsyscall DSO contents. Dumping its
150 * contents makes post-mortem fully interpretable later without matching up
151 * the same kernel and hardware config to see what PC values meant.
152 * Dumping its extra ELF program headers includes all the other information
153 * a debugger needs to easily find how the vsyscall DSO was being used.
155 #define ELF_CORE_EXTRA_PHDRS (VSYSCALL_EHDR->e_phnum)
156 #define ELF_CORE_WRITE_EXTRA_PHDRS \
158 const struct elf_phdr *const vsyscall_phdrs = \
159 (const struct elf_phdr *) (VSYSCALL_BASE \
160 + VSYSCALL_EHDR->e_phoff); \
163 for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \
164 struct elf_phdr phdr = vsyscall_phdrs[i]; \
165 if (phdr.p_type == PT_LOAD) { \
167 ofs = phdr.p_offset = offset; \
168 phdr.p_memsz = PAGE_ALIGN(phdr.p_memsz); \
169 phdr.p_filesz = phdr.p_memsz; \
170 offset += phdr.p_filesz; \
173 phdr.p_offset += ofs; \
174 phdr.p_paddr = 0; /* match other core phdrs */ \
175 DUMP_WRITE(&phdr, sizeof(phdr)); \
178 #define ELF_CORE_WRITE_EXTRA_DATA \
180 const struct elf_phdr *const vsyscall_phdrs = \
181 (const struct elf_phdr *) (VSYSCALL_BASE \
182 + VSYSCALL_EHDR->e_phoff); \
184 for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \
185 if (vsyscall_phdrs[i].p_type == PT_LOAD) \
186 DUMP_WRITE((void *) vsyscall_phdrs[i].p_vaddr, \
187 PAGE_ALIGN(vsyscall_phdrs[i].p_memsz)); \