4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/workqueue.h>
20 #include <linux/device.h>
21 #include <linux/key.h>
22 #include <linux/times.h>
23 #include <linux/posix-timers.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/tty.h>
28 #include <linux/signal.h>
30 #include <linux/compat.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
37 #ifndef SET_UNALIGN_CTL
38 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
40 #ifndef GET_UNALIGN_CTL
41 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
44 # define SET_FPEMU_CTL(a,b) (-EINVAL)
47 # define GET_FPEMU_CTL(a,b) (-EINVAL)
50 # define SET_FPEXC_CTL(a,b) (-EINVAL)
53 # define GET_FPEXC_CTL(a,b) (-EINVAL)
57 * this is where the system-wide overflow UID and GID are defined, for
58 * architectures that now have 32-bit UID/GID but didn't in the past
61 int overflowuid = DEFAULT_OVERFLOWUID;
62 int overflowgid = DEFAULT_OVERFLOWGID;
65 EXPORT_SYMBOL(overflowuid);
66 EXPORT_SYMBOL(overflowgid);
70 * the same as above, but for filesystems which can only store a 16-bit
71 * UID and GID. as such, this is needed on all architectures
74 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
75 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
77 EXPORT_SYMBOL(fs_overflowuid);
78 EXPORT_SYMBOL(fs_overflowgid);
81 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
88 * Notifier list for kernel code which wants to be called
89 * at shutdown. This is used to stop any idling DMA operations
93 static struct notifier_block *reboot_notifier_list;
94 static DEFINE_RWLOCK(notifier_lock);
97 * notifier_chain_register - Add notifier to a notifier chain
98 * @list: Pointer to root list pointer
99 * @n: New entry in notifier chain
101 * Adds a notifier to a notifier chain.
103 * Currently always returns zero.
106 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
108 write_lock(¬ifier_lock);
111 if(n->priority > (*list)->priority)
113 list= &((*list)->next);
117 write_unlock(¬ifier_lock);
121 EXPORT_SYMBOL(notifier_chain_register);
124 * notifier_chain_unregister - Remove notifier from a notifier chain
125 * @nl: Pointer to root list pointer
126 * @n: New entry in notifier chain
128 * Removes a notifier from a notifier chain.
130 * Returns zero on success, or %-ENOENT on failure.
133 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
135 write_lock(¬ifier_lock);
141 write_unlock(¬ifier_lock);
146 write_unlock(¬ifier_lock);
150 EXPORT_SYMBOL(notifier_chain_unregister);
153 * notifier_call_chain - Call functions in a notifier chain
154 * @n: Pointer to root pointer of notifier chain
155 * @val: Value passed unmodified to notifier function
156 * @v: Pointer passed unmodified to notifier function
158 * Calls each function in a notifier chain in turn.
160 * If the return value of the notifier can be and'd
161 * with %NOTIFY_STOP_MASK, then notifier_call_chain
162 * will return immediately, with the return value of
163 * the notifier function which halted execution.
164 * Otherwise, the return value is the return value
165 * of the last notifier function called.
168 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 struct notifier_block *nb = *n;
175 ret=nb->notifier_call(nb,val,v);
176 if(ret&NOTIFY_STOP_MASK)
185 EXPORT_SYMBOL(notifier_call_chain);
188 * register_reboot_notifier - Register function to be called at reboot time
189 * @nb: Info about notifier function to be called
191 * Registers a function with the list of functions
192 * to be called at reboot time.
194 * Currently always returns zero, as notifier_chain_register
195 * always returns zero.
198 int register_reboot_notifier(struct notifier_block * nb)
200 return notifier_chain_register(&reboot_notifier_list, nb);
203 EXPORT_SYMBOL(register_reboot_notifier);
206 * unregister_reboot_notifier - Unregister previously registered reboot notifier
207 * @nb: Hook to be unregistered
209 * Unregisters a previously registered reboot
212 * Returns zero on success, or %-ENOENT on failure.
215 int unregister_reboot_notifier(struct notifier_block * nb)
217 return notifier_chain_unregister(&reboot_notifier_list, nb);
220 EXPORT_SYMBOL(unregister_reboot_notifier);
222 static int set_one_prio(struct task_struct *p, int niceval, int error)
226 if (p->uid != current->euid &&
227 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
231 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
235 no_nice = security_task_setnice(p, niceval);
242 set_user_nice(p, niceval);
247 asmlinkage long sys_setpriority(int which, int who, int niceval)
249 struct task_struct *g, *p;
250 struct user_struct *user;
253 if (which > 2 || which < 0)
256 /* normalize: avoid signed division (rounding problems) */
263 read_lock(&tasklist_lock);
268 p = find_task_by_pid(who);
270 error = set_one_prio(p, niceval, error);
274 who = process_group(current);
275 do_each_task_pid(who, PIDTYPE_PGID, p) {
276 error = set_one_prio(p, niceval, error);
277 } while_each_task_pid(who, PIDTYPE_PGID, p);
280 user = current->user;
284 if ((who != current->uid) && !(user = find_user(who)))
285 goto out_unlock; /* No processes for this user */
289 error = set_one_prio(p, niceval, error);
290 while_each_thread(g, p);
291 if (who != current->uid)
292 free_uid(user); /* For find_user() */
296 read_unlock(&tasklist_lock);
302 * Ugh. To avoid negative return values, "getpriority()" will
303 * not return the normal nice-value, but a negated value that
304 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
305 * to stay compatible.
307 asmlinkage long sys_getpriority(int which, int who)
309 struct task_struct *g, *p;
310 struct user_struct *user;
311 long niceval, retval = -ESRCH;
313 if (which > 2 || which < 0)
316 read_lock(&tasklist_lock);
321 p = find_task_by_pid(who);
323 niceval = 20 - task_nice(p);
324 if (niceval > retval)
330 who = process_group(current);
331 do_each_task_pid(who, PIDTYPE_PGID, p) {
332 niceval = 20 - task_nice(p);
333 if (niceval > retval)
335 } while_each_task_pid(who, PIDTYPE_PGID, p);
338 user = current->user;
342 if ((who != current->uid) && !(user = find_user(who)))
343 goto out_unlock; /* No processes for this user */
347 niceval = 20 - task_nice(p);
348 if (niceval > retval)
351 while_each_thread(g, p);
352 if (who != current->uid)
353 free_uid(user); /* for find_user() */
357 read_unlock(&tasklist_lock);
364 * Reboot system call: for obvious reasons only root may call it,
365 * and even root needs to set up some magic numbers in the registers
366 * so that some mistake won't make this reboot the whole machine.
367 * You can also set the meaning of the ctrl-alt-del-key here.
369 * reboot doesn't sync: do that yourself before calling this.
371 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
375 /* We only trust the superuser with rebooting the system. */
376 if (!capable(CAP_SYS_BOOT))
379 /* For safety, we require "magic" arguments. */
380 if (magic1 != LINUX_REBOOT_MAGIC1 ||
381 (magic2 != LINUX_REBOOT_MAGIC2 &&
382 magic2 != LINUX_REBOOT_MAGIC2A &&
383 magic2 != LINUX_REBOOT_MAGIC2B &&
384 magic2 != LINUX_REBOOT_MAGIC2C))
389 case LINUX_REBOOT_CMD_RESTART:
390 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
391 system_state = SYSTEM_RESTART;
393 printk(KERN_EMERG "Restarting system.\n");
394 machine_restart(NULL);
397 case LINUX_REBOOT_CMD_CAD_ON:
401 case LINUX_REBOOT_CMD_CAD_OFF:
405 case LINUX_REBOOT_CMD_HALT:
406 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
407 system_state = SYSTEM_HALT;
409 printk(KERN_EMERG "System halted.\n");
415 case LINUX_REBOOT_CMD_POWER_OFF:
416 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
417 system_state = SYSTEM_POWER_OFF;
419 printk(KERN_EMERG "Power down.\n");
425 case LINUX_REBOOT_CMD_RESTART2:
426 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
430 buffer[sizeof(buffer) - 1] = '\0';
432 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
433 system_state = SYSTEM_RESTART;
435 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
436 machine_restart(buffer);
439 #ifdef CONFIG_SOFTWARE_SUSPEND
440 case LINUX_REBOOT_CMD_SW_SUSPEND:
442 int ret = software_suspend();
456 static void deferred_cad(void *dummy)
458 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
459 machine_restart(NULL);
463 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
464 * As it's called within an interrupt, it may NOT sync: the only choice
465 * is whether to reboot at once, or just ignore the ctrl-alt-del.
467 void ctrl_alt_del(void)
469 static DECLARE_WORK(cad_work, deferred_cad, NULL);
472 schedule_work(&cad_work);
474 kill_proc(cad_pid, SIGINT, 1);
479 * Unprivileged users may change the real gid to the effective gid
480 * or vice versa. (BSD-style)
482 * If you set the real gid at all, or set the effective gid to a value not
483 * equal to the real gid, then the saved gid is set to the new effective gid.
485 * This makes it possible for a setgid program to completely drop its
486 * privileges, which is often a useful assertion to make when you are doing
487 * a security audit over a program.
489 * The general idea is that a program which uses just setregid() will be
490 * 100% compatible with BSD. A program which uses just setgid() will be
491 * 100% compatible with POSIX with saved IDs.
493 * SMP: There are not races, the GIDs are checked only by filesystem
494 * operations (as far as semantic preservation is concerned).
496 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
498 int old_rgid = current->gid;
499 int old_egid = current->egid;
500 int new_rgid = old_rgid;
501 int new_egid = old_egid;
504 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
508 if (rgid != (gid_t) -1) {
509 if ((old_rgid == rgid) ||
510 (current->egid==rgid) ||
516 if (egid != (gid_t) -1) {
517 if ((old_rgid == egid) ||
518 (current->egid == egid) ||
519 (current->sgid == egid) ||
526 if (new_egid != old_egid)
528 current->mm->dumpable = suid_dumpable;
531 if (rgid != (gid_t) -1 ||
532 (egid != (gid_t) -1 && egid != old_rgid))
533 current->sgid = new_egid;
534 current->fsgid = new_egid;
535 current->egid = new_egid;
536 current->gid = new_rgid;
537 key_fsgid_changed(current);
542 * setgid() is implemented like SysV w/ SAVED_IDS
544 * SMP: Same implicit races as above.
546 asmlinkage long sys_setgid(gid_t gid)
548 int old_egid = current->egid;
551 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
555 if (capable(CAP_SETGID))
559 current->mm->dumpable = suid_dumpable;
562 current->gid = current->egid = current->sgid = current->fsgid = gid;
564 else if ((gid == current->gid) || (gid == current->sgid))
568 current->mm->dumpable = suid_dumpable;
571 current->egid = current->fsgid = gid;
576 key_fsgid_changed(current);
580 static int set_user(uid_t new_ruid, int dumpclear)
582 struct user_struct *new_user;
584 new_user = alloc_uid(new_ruid);
588 if (atomic_read(&new_user->processes) >=
589 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
590 new_user != &root_user) {
595 switch_uid(new_user);
599 current->mm->dumpable = suid_dumpable;
602 current->uid = new_ruid;
607 * Unprivileged users may change the real uid to the effective uid
608 * or vice versa. (BSD-style)
610 * If you set the real uid at all, or set the effective uid to a value not
611 * equal to the real uid, then the saved uid is set to the new effective uid.
613 * This makes it possible for a setuid program to completely drop its
614 * privileges, which is often a useful assertion to make when you are doing
615 * a security audit over a program.
617 * The general idea is that a program which uses just setreuid() will be
618 * 100% compatible with BSD. A program which uses just setuid() will be
619 * 100% compatible with POSIX with saved IDs.
621 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
623 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
626 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
630 new_ruid = old_ruid = current->uid;
631 new_euid = old_euid = current->euid;
632 old_suid = current->suid;
634 if (ruid != (uid_t) -1) {
636 if ((old_ruid != ruid) &&
637 (current->euid != ruid) &&
638 !capable(CAP_SETUID))
642 if (euid != (uid_t) -1) {
644 if ((old_ruid != euid) &&
645 (current->euid != euid) &&
646 (current->suid != euid) &&
647 !capable(CAP_SETUID))
651 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
654 if (new_euid != old_euid)
656 current->mm->dumpable = suid_dumpable;
659 current->fsuid = current->euid = new_euid;
660 if (ruid != (uid_t) -1 ||
661 (euid != (uid_t) -1 && euid != old_ruid))
662 current->suid = current->euid;
663 current->fsuid = current->euid;
665 key_fsuid_changed(current);
667 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
673 * setuid() is implemented like SysV with SAVED_IDS
675 * Note that SAVED_ID's is deficient in that a setuid root program
676 * like sendmail, for example, cannot set its uid to be a normal
677 * user and then switch back, because if you're root, setuid() sets
678 * the saved uid too. If you don't like this, blame the bright people
679 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
680 * will allow a root program to temporarily drop privileges and be able to
681 * regain them by swapping the real and effective uid.
683 asmlinkage long sys_setuid(uid_t uid)
685 int old_euid = current->euid;
686 int old_ruid, old_suid, new_ruid, new_suid;
689 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
693 old_ruid = new_ruid = current->uid;
694 old_suid = current->suid;
697 if (capable(CAP_SETUID)) {
698 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
701 } else if ((uid != current->uid) && (uid != new_suid))
706 current->mm->dumpable = suid_dumpable;
709 current->fsuid = current->euid = uid;
710 current->suid = new_suid;
712 key_fsuid_changed(current);
714 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
719 * This function implements a generic ability to update ruid, euid,
720 * and suid. This allows you to implement the 4.4 compatible seteuid().
722 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
724 int old_ruid = current->uid;
725 int old_euid = current->euid;
726 int old_suid = current->suid;
729 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
733 if (!capable(CAP_SETUID)) {
734 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
735 (ruid != current->euid) && (ruid != current->suid))
737 if ((euid != (uid_t) -1) && (euid != current->uid) &&
738 (euid != current->euid) && (euid != current->suid))
740 if ((suid != (uid_t) -1) && (suid != current->uid) &&
741 (suid != current->euid) && (suid != current->suid))
744 if (ruid != (uid_t) -1) {
745 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
748 if (euid != (uid_t) -1) {
749 if (euid != current->euid)
751 current->mm->dumpable = suid_dumpable;
754 current->euid = euid;
756 current->fsuid = current->euid;
757 if (suid != (uid_t) -1)
758 current->suid = suid;
760 key_fsuid_changed(current);
762 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
765 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
769 if (!(retval = put_user(current->uid, ruid)) &&
770 !(retval = put_user(current->euid, euid)))
771 retval = put_user(current->suid, suid);
777 * Same as above, but for rgid, egid, sgid.
779 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
783 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
787 if (!capable(CAP_SETGID)) {
788 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
789 (rgid != current->egid) && (rgid != current->sgid))
791 if ((egid != (gid_t) -1) && (egid != current->gid) &&
792 (egid != current->egid) && (egid != current->sgid))
794 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
795 (sgid != current->egid) && (sgid != current->sgid))
798 if (egid != (gid_t) -1) {
799 if (egid != current->egid)
801 current->mm->dumpable = suid_dumpable;
804 current->egid = egid;
806 current->fsgid = current->egid;
807 if (rgid != (gid_t) -1)
809 if (sgid != (gid_t) -1)
810 current->sgid = sgid;
812 key_fsgid_changed(current);
816 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
820 if (!(retval = put_user(current->gid, rgid)) &&
821 !(retval = put_user(current->egid, egid)))
822 retval = put_user(current->sgid, sgid);
829 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
830 * is used for "access()" and for the NFS daemon (letting nfsd stay at
831 * whatever uid it wants to). It normally shadows "euid", except when
832 * explicitly set by setfsuid() or for access..
834 asmlinkage long sys_setfsuid(uid_t uid)
838 old_fsuid = current->fsuid;
839 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
842 if (uid == current->uid || uid == current->euid ||
843 uid == current->suid || uid == current->fsuid ||
846 if (uid != old_fsuid)
848 current->mm->dumpable = suid_dumpable;
851 current->fsuid = uid;
854 key_fsuid_changed(current);
856 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
862 * Samma på svenska..
864 asmlinkage long sys_setfsgid(gid_t gid)
868 old_fsgid = current->fsgid;
869 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
872 if (gid == current->gid || gid == current->egid ||
873 gid == current->sgid || gid == current->fsgid ||
876 if (gid != old_fsgid)
878 current->mm->dumpable = suid_dumpable;
881 current->fsgid = gid;
882 key_fsgid_changed(current);
887 asmlinkage long sys_times(struct tms __user * tbuf)
890 * In the SMP world we might just be unlucky and have one of
891 * the times increment as we use it. Since the value is an
892 * atomically safe type this is just fine. Conceptually its
893 * as if the syscall took an instant longer to occur.
897 cputime_t utime, stime, cutime, cstime;
900 if (thread_group_empty(current)) {
902 * Single thread case without the use of any locks.
904 * We may race with release_task if two threads are
905 * executing. However, release task first adds up the
906 * counters (__exit_signal) before removing the task
907 * from the process tasklist (__unhash_process).
908 * __exit_signal also acquires and releases the
909 * siglock which results in the proper memory ordering
910 * so that the list modifications are always visible
911 * after the counters have been updated.
913 * If the counters have been updated by the second thread
914 * but the thread has not yet been removed from the list
915 * then the other branch will be executing which will
916 * block on tasklist_lock until the exit handling of the
917 * other task is finished.
919 * This also implies that the sighand->siglock cannot
920 * be held by another processor. So we can also
921 * skip acquiring that lock.
923 utime = cputime_add(current->signal->utime, current->utime);
924 stime = cputime_add(current->signal->utime, current->stime);
925 cutime = current->signal->cutime;
926 cstime = current->signal->cstime;
931 /* Process with multiple threads */
932 struct task_struct *tsk = current;
933 struct task_struct *t;
935 read_lock(&tasklist_lock);
936 utime = tsk->signal->utime;
937 stime = tsk->signal->stime;
940 utime = cputime_add(utime, t->utime);
941 stime = cputime_add(stime, t->stime);
946 * While we have tasklist_lock read-locked, no dying thread
947 * can be updating current->signal->[us]time. Instead,
948 * we got their counts included in the live thread loop.
949 * However, another thread can come in right now and
950 * do a wait call that updates current->signal->c[us]time.
951 * To make sure we always see that pair updated atomically,
952 * we take the siglock around fetching them.
954 spin_lock_irq(&tsk->sighand->siglock);
955 cutime = tsk->signal->cutime;
956 cstime = tsk->signal->cstime;
957 spin_unlock_irq(&tsk->sighand->siglock);
958 read_unlock(&tasklist_lock);
960 tmp.tms_utime = cputime_to_clock_t(utime);
961 tmp.tms_stime = cputime_to_clock_t(stime);
962 tmp.tms_cutime = cputime_to_clock_t(cutime);
963 tmp.tms_cstime = cputime_to_clock_t(cstime);
964 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
967 return (long) jiffies_64_to_clock_t(get_jiffies_64());
971 * This needs some heavy checking ...
972 * I just haven't the stomach for it. I also don't fully
973 * understand sessions/pgrp etc. Let somebody who does explain it.
975 * OK, I think I have the protection semantics right.... this is really
976 * only important on a multi-user system anyway, to make sure one user
977 * can't send a signal to a process owned by another. -TYT, 12/12/91
979 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
983 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
985 struct task_struct *p;
995 /* From this point forward we keep holding onto the tasklist lock
996 * so that our parent does not change from under us. -DaveM
998 write_lock_irq(&tasklist_lock);
1001 p = find_task_by_pid(pid);
1006 if (!thread_group_leader(p))
1009 if (p->parent == current || p->real_parent == current) {
1011 if (p->signal->session != current->signal->session)
1023 if (p->signal->leader)
1027 struct task_struct *p;
1029 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1030 if (p->signal->session == current->signal->session)
1032 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1037 err = security_task_setpgid(p, pgid);
1041 if (process_group(p) != pgid) {
1042 detach_pid(p, PIDTYPE_PGID);
1043 p->signal->pgrp = pgid;
1044 attach_pid(p, PIDTYPE_PGID, pgid);
1049 /* All paths lead to here, thus we are safe. -DaveM */
1050 write_unlock_irq(&tasklist_lock);
1054 asmlinkage long sys_getpgid(pid_t pid)
1057 return process_group(current);
1060 struct task_struct *p;
1062 read_lock(&tasklist_lock);
1063 p = find_task_by_pid(pid);
1067 retval = security_task_getpgid(p);
1069 retval = process_group(p);
1071 read_unlock(&tasklist_lock);
1076 #ifdef __ARCH_WANT_SYS_GETPGRP
1078 asmlinkage long sys_getpgrp(void)
1080 /* SMP - assuming writes are word atomic this is fine */
1081 return process_group(current);
1086 asmlinkage long sys_getsid(pid_t pid)
1089 return current->signal->session;
1092 struct task_struct *p;
1094 read_lock(&tasklist_lock);
1095 p = find_task_by_pid(pid);
1099 retval = security_task_getsid(p);
1101 retval = p->signal->session;
1103 read_unlock(&tasklist_lock);
1108 asmlinkage long sys_setsid(void)
1113 if (!thread_group_leader(current))
1117 write_lock_irq(&tasklist_lock);
1119 pid = find_pid(PIDTYPE_PGID, current->pid);
1123 current->signal->leader = 1;
1124 __set_special_pids(current->pid, current->pid);
1125 current->signal->tty = NULL;
1126 current->signal->tty_old_pgrp = 0;
1127 err = process_group(current);
1129 write_unlock_irq(&tasklist_lock);
1135 * Supplementary group IDs
1138 /* init to 2 - one for init_task, one to ensure it is never freed */
1139 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1141 struct group_info *groups_alloc(int gidsetsize)
1143 struct group_info *group_info;
1147 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1148 /* Make sure we always allocate at least one indirect block pointer */
1149 nblocks = nblocks ? : 1;
1150 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1153 group_info->ngroups = gidsetsize;
1154 group_info->nblocks = nblocks;
1155 atomic_set(&group_info->usage, 1);
1157 if (gidsetsize <= NGROUPS_SMALL) {
1158 group_info->blocks[0] = group_info->small_block;
1160 for (i = 0; i < nblocks; i++) {
1162 b = (void *)__get_free_page(GFP_USER);
1164 goto out_undo_partial_alloc;
1165 group_info->blocks[i] = b;
1170 out_undo_partial_alloc:
1172 free_page((unsigned long)group_info->blocks[i]);
1178 EXPORT_SYMBOL(groups_alloc);
1180 void groups_free(struct group_info *group_info)
1182 if (group_info->blocks[0] != group_info->small_block) {
1184 for (i = 0; i < group_info->nblocks; i++)
1185 free_page((unsigned long)group_info->blocks[i]);
1190 EXPORT_SYMBOL(groups_free);
1192 /* export the group_info to a user-space array */
1193 static int groups_to_user(gid_t __user *grouplist,
1194 struct group_info *group_info)
1197 int count = group_info->ngroups;
1199 for (i = 0; i < group_info->nblocks; i++) {
1200 int cp_count = min(NGROUPS_PER_BLOCK, count);
1201 int off = i * NGROUPS_PER_BLOCK;
1202 int len = cp_count * sizeof(*grouplist);
1204 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1212 /* fill a group_info from a user-space array - it must be allocated already */
1213 static int groups_from_user(struct group_info *group_info,
1214 gid_t __user *grouplist)
1217 int count = group_info->ngroups;
1219 for (i = 0; i < group_info->nblocks; i++) {
1220 int cp_count = min(NGROUPS_PER_BLOCK, count);
1221 int off = i * NGROUPS_PER_BLOCK;
1222 int len = cp_count * sizeof(*grouplist);
1224 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1232 /* a simple Shell sort */
1233 static void groups_sort(struct group_info *group_info)
1235 int base, max, stride;
1236 int gidsetsize = group_info->ngroups;
1238 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1243 max = gidsetsize - stride;
1244 for (base = 0; base < max; base++) {
1246 int right = left + stride;
1247 gid_t tmp = GROUP_AT(group_info, right);
1249 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1250 GROUP_AT(group_info, right) =
1251 GROUP_AT(group_info, left);
1255 GROUP_AT(group_info, right) = tmp;
1261 /* a simple bsearch */
1262 static int groups_search(struct group_info *group_info, gid_t grp)
1270 right = group_info->ngroups;
1271 while (left < right) {
1272 int mid = (left+right)/2;
1273 int cmp = grp - GROUP_AT(group_info, mid);
1284 /* validate and set current->group_info */
1285 int set_current_groups(struct group_info *group_info)
1288 struct group_info *old_info;
1290 retval = security_task_setgroups(group_info);
1294 groups_sort(group_info);
1295 get_group_info(group_info);
1298 old_info = current->group_info;
1299 current->group_info = group_info;
1300 task_unlock(current);
1302 put_group_info(old_info);
1307 EXPORT_SYMBOL(set_current_groups);
1309 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1314 * SMP: Nobody else can change our grouplist. Thus we are
1321 /* no need to grab task_lock here; it cannot change */
1322 get_group_info(current->group_info);
1323 i = current->group_info->ngroups;
1325 if (i > gidsetsize) {
1329 if (groups_to_user(grouplist, current->group_info)) {
1335 put_group_info(current->group_info);
1340 * SMP: Our groups are copy-on-write. We can set them safely
1341 * without another task interfering.
1344 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1346 struct group_info *group_info;
1349 if (!capable(CAP_SETGID))
1351 if ((unsigned)gidsetsize > NGROUPS_MAX)
1354 group_info = groups_alloc(gidsetsize);
1357 retval = groups_from_user(group_info, grouplist);
1359 put_group_info(group_info);
1363 retval = set_current_groups(group_info);
1364 put_group_info(group_info);
1370 * Check whether we're fsgid/egid or in the supplemental group..
1372 int in_group_p(gid_t grp)
1375 if (grp != current->fsgid) {
1376 get_group_info(current->group_info);
1377 retval = groups_search(current->group_info, grp);
1378 put_group_info(current->group_info);
1383 EXPORT_SYMBOL(in_group_p);
1385 int in_egroup_p(gid_t grp)
1388 if (grp != current->egid) {
1389 get_group_info(current->group_info);
1390 retval = groups_search(current->group_info, grp);
1391 put_group_info(current->group_info);
1396 EXPORT_SYMBOL(in_egroup_p);
1398 DECLARE_RWSEM(uts_sem);
1400 EXPORT_SYMBOL(uts_sem);
1402 asmlinkage long sys_newuname(struct new_utsname __user * name)
1406 down_read(&uts_sem);
1407 if (copy_to_user(name,&system_utsname,sizeof *name))
1413 asmlinkage long sys_sethostname(char __user *name, int len)
1416 char tmp[__NEW_UTS_LEN];
1418 if (!capable(CAP_SYS_ADMIN))
1420 if (len < 0 || len > __NEW_UTS_LEN)
1422 down_write(&uts_sem);
1424 if (!copy_from_user(tmp, name, len)) {
1425 memcpy(system_utsname.nodename, tmp, len);
1426 system_utsname.nodename[len] = 0;
1433 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1435 asmlinkage long sys_gethostname(char __user *name, int len)
1441 down_read(&uts_sem);
1442 i = 1 + strlen(system_utsname.nodename);
1446 if (copy_to_user(name, system_utsname.nodename, i))
1455 * Only setdomainname; getdomainname can be implemented by calling
1458 asmlinkage long sys_setdomainname(char __user *name, int len)
1461 char tmp[__NEW_UTS_LEN];
1463 if (!capable(CAP_SYS_ADMIN))
1465 if (len < 0 || len > __NEW_UTS_LEN)
1468 down_write(&uts_sem);
1470 if (!copy_from_user(tmp, name, len)) {
1471 memcpy(system_utsname.domainname, tmp, len);
1472 system_utsname.domainname[len] = 0;
1479 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1481 if (resource >= RLIM_NLIMITS)
1484 struct rlimit value;
1485 task_lock(current->group_leader);
1486 value = current->signal->rlim[resource];
1487 task_unlock(current->group_leader);
1488 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1492 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1495 * Back compatibility for getrlimit. Needed for some apps.
1498 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1501 if (resource >= RLIM_NLIMITS)
1504 task_lock(current->group_leader);
1505 x = current->signal->rlim[resource];
1506 task_unlock(current->group_leader);
1507 if(x.rlim_cur > 0x7FFFFFFF)
1508 x.rlim_cur = 0x7FFFFFFF;
1509 if(x.rlim_max > 0x7FFFFFFF)
1510 x.rlim_max = 0x7FFFFFFF;
1511 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1516 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1518 struct rlimit new_rlim, *old_rlim;
1521 if (resource >= RLIM_NLIMITS)
1523 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1525 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1527 old_rlim = current->signal->rlim + resource;
1528 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1529 !capable(CAP_SYS_RESOURCE))
1531 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1534 retval = security_task_setrlimit(resource, &new_rlim);
1538 task_lock(current->group_leader);
1539 *old_rlim = new_rlim;
1540 task_unlock(current->group_leader);
1542 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1543 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1544 new_rlim.rlim_cur <= cputime_to_secs(
1545 current->signal->it_prof_expires))) {
1546 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1547 read_lock(&tasklist_lock);
1548 spin_lock_irq(¤t->sighand->siglock);
1549 set_process_cpu_timer(current, CPUCLOCK_PROF,
1551 spin_unlock_irq(¤t->sighand->siglock);
1552 read_unlock(&tasklist_lock);
1559 * It would make sense to put struct rusage in the task_struct,
1560 * except that would make the task_struct be *really big*. After
1561 * task_struct gets moved into malloc'ed memory, it would
1562 * make sense to do this. It will make moving the rest of the information
1563 * a lot simpler! (Which we're not doing right now because we're not
1564 * measuring them yet).
1566 * This expects to be called with tasklist_lock read-locked or better,
1567 * and the siglock not locked. It may momentarily take the siglock.
1569 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1570 * races with threads incrementing their own counters. But since word
1571 * reads are atomic, we either get new values or old values and we don't
1572 * care which for the sums. We always take the siglock to protect reading
1573 * the c* fields from p->signal from races with exit.c updating those
1574 * fields when reaping, so a sample either gets all the additions of a
1575 * given child after it's reaped, or none so this sample is before reaping.
1578 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1580 struct task_struct *t;
1581 unsigned long flags;
1582 cputime_t utime, stime;
1584 memset((char *) r, 0, sizeof *r);
1586 if (unlikely(!p->signal))
1590 case RUSAGE_CHILDREN:
1591 spin_lock_irqsave(&p->sighand->siglock, flags);
1592 utime = p->signal->cutime;
1593 stime = p->signal->cstime;
1594 r->ru_nvcsw = p->signal->cnvcsw;
1595 r->ru_nivcsw = p->signal->cnivcsw;
1596 r->ru_minflt = p->signal->cmin_flt;
1597 r->ru_majflt = p->signal->cmaj_flt;
1598 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1599 cputime_to_timeval(utime, &r->ru_utime);
1600 cputime_to_timeval(stime, &r->ru_stime);
1603 spin_lock_irqsave(&p->sighand->siglock, flags);
1604 utime = stime = cputime_zero;
1607 spin_lock_irqsave(&p->sighand->siglock, flags);
1608 utime = p->signal->cutime;
1609 stime = p->signal->cstime;
1610 r->ru_nvcsw = p->signal->cnvcsw;
1611 r->ru_nivcsw = p->signal->cnivcsw;
1612 r->ru_minflt = p->signal->cmin_flt;
1613 r->ru_majflt = p->signal->cmaj_flt;
1615 utime = cputime_add(utime, p->signal->utime);
1616 stime = cputime_add(stime, p->signal->stime);
1617 r->ru_nvcsw += p->signal->nvcsw;
1618 r->ru_nivcsw += p->signal->nivcsw;
1619 r->ru_minflt += p->signal->min_flt;
1620 r->ru_majflt += p->signal->maj_flt;
1623 utime = cputime_add(utime, t->utime);
1624 stime = cputime_add(stime, t->stime);
1625 r->ru_nvcsw += t->nvcsw;
1626 r->ru_nivcsw += t->nivcsw;
1627 r->ru_minflt += t->min_flt;
1628 r->ru_majflt += t->maj_flt;
1631 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1632 cputime_to_timeval(utime, &r->ru_utime);
1633 cputime_to_timeval(stime, &r->ru_stime);
1640 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1643 read_lock(&tasklist_lock);
1644 k_getrusage(p, who, &r);
1645 read_unlock(&tasklist_lock);
1646 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1649 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1651 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1653 return getrusage(current, who, ru);
1656 asmlinkage long sys_umask(int mask)
1658 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1662 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1663 unsigned long arg4, unsigned long arg5)
1668 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1673 case PR_SET_PDEATHSIG:
1675 if (!valid_signal(sig)) {
1679 current->pdeath_signal = sig;
1681 case PR_GET_PDEATHSIG:
1682 error = put_user(current->pdeath_signal, (int __user *)arg2);
1684 case PR_GET_DUMPABLE:
1685 if (current->mm->dumpable)
1688 case PR_SET_DUMPABLE:
1689 if (arg2 < 0 || arg2 > 2) {
1693 current->mm->dumpable = arg2;
1696 case PR_SET_UNALIGN:
1697 error = SET_UNALIGN_CTL(current, arg2);
1699 case PR_GET_UNALIGN:
1700 error = GET_UNALIGN_CTL(current, arg2);
1703 error = SET_FPEMU_CTL(current, arg2);
1706 error = GET_FPEMU_CTL(current, arg2);
1709 error = SET_FPEXC_CTL(current, arg2);
1712 error = GET_FPEXC_CTL(current, arg2);
1715 error = PR_TIMING_STATISTICAL;
1718 if (arg2 == PR_TIMING_STATISTICAL)
1724 case PR_GET_KEEPCAPS:
1725 if (current->keep_capabilities)
1728 case PR_SET_KEEPCAPS:
1729 if (arg2 != 0 && arg2 != 1) {
1733 current->keep_capabilities = arg2;
1736 struct task_struct *me = current;
1737 unsigned char ncomm[sizeof(me->comm)];
1739 ncomm[sizeof(me->comm)-1] = 0;
1740 if (strncpy_from_user(ncomm, (char __user *)arg2,
1741 sizeof(me->comm)-1) < 0)
1743 set_task_comm(me, ncomm);
1747 struct task_struct *me = current;
1748 unsigned char tcomm[sizeof(me->comm)];
1750 get_task_comm(tcomm, me);
1751 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))