4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
59 #include <linux/kmod.h>
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
66 EXPORT_SYMBOL(suid_dumpable);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static struct linux_binfmt *formats;
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 struct linux_binfmt ** tmp = &formats;
80 write_lock(&binfmt_lock);
83 write_unlock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(register_binfmt);
96 int unregister_binfmt(struct linux_binfmt * fmt)
98 struct linux_binfmt ** tmp = &formats;
100 write_lock(&binfmt_lock);
105 write_unlock(&binfmt_lock);
110 write_unlock(&binfmt_lock);
114 EXPORT_SYMBOL(unregister_binfmt);
116 static inline void put_binfmt(struct linux_binfmt * fmt)
118 module_put(fmt->module);
122 * Note that a shared library must be both readable and executable due to
125 * Also note that we take the address to load from from the file itself.
127 asmlinkage long sys_uselib(const char __user * library)
133 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
138 if (nd.mnt->mnt_flags & MNT_NOEXEC)
141 if (!S_ISREG(nd.dentry->d_inode->i_mode))
144 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
148 file = nameidata_to_filp(&nd, O_RDONLY);
149 error = PTR_ERR(file);
155 struct linux_binfmt * fmt;
157 read_lock(&binfmt_lock);
158 for (fmt = formats ; fmt ; fmt = fmt->next) {
159 if (!fmt->load_shlib)
161 if (!try_module_get(fmt->module))
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
167 if (error != -ENOEXEC)
170 read_unlock(&binfmt_lock);
176 release_open_intent(&nd);
183 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
189 #ifdef CONFIG_STACK_GROWSUP
191 ret = expand_stack_downwards(bprm->vma, pos);
196 ret = get_user_pages(current, bprm->mm, pos,
197 1, write, 1, &page, NULL);
202 struct rlimit *rlim = current->signal->rlim;
203 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
206 * Limit to 1/4-th the stack size for the argv+env strings.
208 * - the remaining binfmt code will not run out of stack space,
209 * - the program will have a reasonable amount of stack left
212 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
221 static void put_arg_page(struct page *page)
226 static void free_arg_page(struct linux_binprm *bprm, int i)
230 static void free_arg_pages(struct linux_binprm *bprm)
234 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 static int __bprm_mm_init(struct linux_binprm *bprm)
243 struct vm_area_struct *vma = NULL;
244 struct mm_struct *mm = bprm->mm;
246 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
250 down_write(&mm->mmap_sem);
254 * Place the stack at the largest stack address the architecture
255 * supports. Later, we'll move this to an appropriate place. We don't
256 * use STACK_TOP because that can depend on attributes which aren't
259 vma->vm_end = STACK_TOP_MAX;
260 vma->vm_start = vma->vm_end - PAGE_SIZE;
262 vma->vm_flags = VM_STACK_FLAGS;
263 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
264 err = insert_vm_struct(mm, vma);
266 up_write(&mm->mmap_sem);
270 mm->stack_vm = mm->total_vm = 1;
271 up_write(&mm->mmap_sem);
273 bprm->p = vma->vm_end - sizeof(void *);
280 kmem_cache_free(vm_area_cachep, vma);
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 return len <= MAX_ARG_STRLEN;
293 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298 page = bprm->page[pos / PAGE_SIZE];
299 if (!page && write) {
300 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
303 bprm->page[pos / PAGE_SIZE] = page;
309 static void put_arg_page(struct page *page)
313 static void free_arg_page(struct linux_binprm *bprm, int i)
316 __free_page(bprm->page[i]);
317 bprm->page[i] = NULL;
321 static void free_arg_pages(struct linux_binprm *bprm)
325 for (i = 0; i < MAX_ARG_PAGES; i++)
326 free_arg_page(bprm, i);
329 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334 static int __bprm_mm_init(struct linux_binprm *bprm)
336 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
340 static bool valid_arg_len(struct linux_binprm *bprm, long len)
342 return len <= bprm->p;
345 #endif /* CONFIG_MMU */
348 * Create a new mm_struct and populate it with a temporary stack
349 * vm_area_struct. We don't have enough context at this point to set the stack
350 * flags, permissions, and offset, so we use temporary values. We'll update
351 * them later in setup_arg_pages().
353 int bprm_mm_init(struct linux_binprm *bprm)
356 struct mm_struct *mm = NULL;
358 bprm->mm = mm = mm_alloc();
363 err = init_new_context(current, mm);
367 err = __bprm_mm_init(bprm);
383 * count() counts the number of strings in array ARGV.
385 static int count(char __user * __user * argv, int max)
393 if (get_user(p, argv))
407 * 'copy_strings()' copies argument/environment strings from the old
408 * processes's memory to the new process's stack. The call to get_user_pages()
409 * ensures the destination page is created and not swapped out.
411 static int copy_strings(int argc, char __user * __user * argv,
412 struct linux_binprm *bprm)
414 struct page *kmapped_page = NULL;
416 unsigned long kpos = 0;
424 if (get_user(str, argv+argc) ||
425 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
430 if (!valid_arg_len(bprm, len)) {
435 /* We're going to work our way backwords. */
441 int offset, bytes_to_copy;
443 offset = pos % PAGE_SIZE;
447 bytes_to_copy = offset;
448 if (bytes_to_copy > len)
451 offset -= bytes_to_copy;
452 pos -= bytes_to_copy;
453 str -= bytes_to_copy;
454 len -= bytes_to_copy;
456 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
459 page = get_arg_page(bprm, pos, 1);
466 flush_kernel_dcache_page(kmapped_page);
467 kunmap(kmapped_page);
468 put_arg_page(kmapped_page);
471 kaddr = kmap(kmapped_page);
472 kpos = pos & PAGE_MASK;
473 flush_arg_page(bprm, kpos, kmapped_page);
475 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
484 flush_kernel_dcache_page(kmapped_page);
485 kunmap(kmapped_page);
486 put_arg_page(kmapped_page);
492 * Like copy_strings, but get argv and its values from kernel memory.
494 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
497 mm_segment_t oldfs = get_fs();
499 r = copy_strings(argc, (char __user * __user *)argv, bprm);
503 EXPORT_SYMBOL(copy_strings_kernel);
508 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
509 * the binfmt code determines where the new stack should reside, we shift it to
510 * its final location. The process proceeds as follows:
512 * 1) Use shift to calculate the new vma endpoints.
513 * 2) Extend vma to cover both the old and new ranges. This ensures the
514 * arguments passed to subsequent functions are consistent.
515 * 3) Move vma's page tables to the new range.
516 * 4) Free up any cleared pgd range.
517 * 5) Shrink the vma to cover only the new range.
519 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
521 struct mm_struct *mm = vma->vm_mm;
522 unsigned long old_start = vma->vm_start;
523 unsigned long old_end = vma->vm_end;
524 unsigned long length = old_end - old_start;
525 unsigned long new_start = old_start - shift;
526 unsigned long new_end = old_end - shift;
527 struct mmu_gather *tlb;
529 BUG_ON(new_start > new_end);
532 * ensure there are no vmas between where we want to go
535 if (vma != find_vma(mm, new_start))
539 * cover the whole range: [new_start, old_end)
541 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
544 * move the page tables downwards, on failure we rely on
545 * process cleanup to remove whatever mess we made.
547 if (length != move_page_tables(vma, old_start,
548 vma, new_start, length))
552 tlb = tlb_gather_mmu(mm, 0);
553 if (new_end > old_start) {
555 * when the old and new regions overlap clear from new_end.
557 free_pgd_range(&tlb, new_end, old_end, new_end,
558 vma->vm_next ? vma->vm_next->vm_start : 0);
561 * otherwise, clean from old_start; this is done to not touch
562 * the address space in [new_end, old_start) some architectures
563 * have constraints on va-space that make this illegal (IA64) -
564 * for the others its just a little faster.
566 free_pgd_range(&tlb, old_start, old_end, new_end,
567 vma->vm_next ? vma->vm_next->vm_start : 0);
569 tlb_finish_mmu(tlb, new_end, old_end);
572 * shrink the vma to just the new range.
574 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
579 #define EXTRA_STACK_VM_PAGES 20 /* random */
582 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
583 * the stack is optionally relocated, and some extra space is added.
585 int setup_arg_pages(struct linux_binprm *bprm,
586 unsigned long stack_top,
587 int executable_stack)
590 unsigned long stack_shift;
591 struct mm_struct *mm = current->mm;
592 struct vm_area_struct *vma = bprm->vma;
593 struct vm_area_struct *prev = NULL;
594 unsigned long vm_flags;
595 unsigned long stack_base;
597 #ifdef CONFIG_STACK_GROWSUP
598 /* Limit stack size to 1GB */
599 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
600 if (stack_base > (1 << 30))
601 stack_base = 1 << 30;
603 /* Make sure we didn't let the argument array grow too large. */
604 if (vma->vm_end - vma->vm_start > stack_base)
607 stack_base = PAGE_ALIGN(stack_top - stack_base);
609 stack_shift = vma->vm_start - stack_base;
610 mm->arg_start = bprm->p - stack_shift;
611 bprm->p = vma->vm_end - stack_shift;
613 stack_top = arch_align_stack(stack_top);
614 stack_top = PAGE_ALIGN(stack_top);
615 stack_shift = vma->vm_end - stack_top;
617 bprm->p -= stack_shift;
618 mm->arg_start = bprm->p;
622 bprm->loader -= stack_shift;
623 bprm->exec -= stack_shift;
625 down_write(&mm->mmap_sem);
626 vm_flags = vma->vm_flags;
629 * Adjust stack execute permissions; explicitly enable for
630 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
631 * (arch default) otherwise.
633 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635 else if (executable_stack == EXSTACK_DISABLE_X)
636 vm_flags &= ~VM_EXEC;
637 vm_flags |= mm->def_flags;
639 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
645 /* Move stack pages down in memory. */
647 ret = shift_arg_pages(vma, stack_shift);
649 up_write(&mm->mmap_sem);
654 #ifdef CONFIG_STACK_GROWSUP
655 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
657 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
659 ret = expand_stack(vma, stack_base);
664 up_write(&mm->mmap_sem);
667 EXPORT_SYMBOL(setup_arg_pages);
669 #endif /* CONFIG_MMU */
671 struct file *open_exec(const char *name)
677 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
681 struct inode *inode = nd.dentry->d_inode;
682 file = ERR_PTR(-EACCES);
683 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
684 S_ISREG(inode->i_mode)) {
685 int err = vfs_permission(&nd, MAY_EXEC);
688 file = nameidata_to_filp(&nd, O_RDONLY);
690 err = deny_write_access(file);
700 release_open_intent(&nd);
706 EXPORT_SYMBOL(open_exec);
708 int kernel_read(struct file *file, unsigned long offset,
709 char *addr, unsigned long count)
717 /* The cast to a user pointer is valid due to the set_fs() */
718 result = vfs_read(file, (void __user *)addr, count, &pos);
723 EXPORT_SYMBOL(kernel_read);
725 static int exec_mmap(struct mm_struct *mm)
727 struct task_struct *tsk;
728 struct mm_struct * old_mm, *active_mm;
730 /* Notify parent that we're no longer interested in the old VM */
732 old_mm = current->mm;
733 mm_release(tsk, old_mm);
737 * Make sure that if there is a core dump in progress
738 * for the old mm, we get out and die instead of going
739 * through with the exec. We must hold mmap_sem around
740 * checking core_waiters and changing tsk->mm. The
741 * core-inducing thread will increment core_waiters for
742 * each thread whose ->mm == old_mm.
744 down_read(&old_mm->mmap_sem);
745 if (unlikely(old_mm->core_waiters)) {
746 up_read(&old_mm->mmap_sem);
751 active_mm = tsk->active_mm;
754 activate_mm(active_mm, mm);
756 arch_pick_mmap_layout(mm);
758 up_read(&old_mm->mmap_sem);
759 BUG_ON(active_mm != old_mm);
768 * This function makes sure the current process has its own signal table,
769 * so that flush_signal_handlers can later reset the handlers without
770 * disturbing other processes. (Other processes might share the signal
771 * table via the CLONE_SIGHAND option to clone().)
773 static int de_thread(struct task_struct *tsk)
775 struct signal_struct *sig = tsk->signal;
776 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
777 spinlock_t *lock = &oldsighand->siglock;
778 struct task_struct *leader = NULL;
782 * If we don't share sighandlers, then we aren't sharing anything
783 * and we can just re-use it all.
785 if (atomic_read(&oldsighand->count) <= 1) {
790 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
794 if (thread_group_empty(tsk))
795 goto no_thread_group;
798 * Kill all other threads in the thread group.
799 * We must hold tasklist_lock to call zap_other_threads.
801 read_lock(&tasklist_lock);
803 if (sig->flags & SIGNAL_GROUP_EXIT) {
805 * Another group action in progress, just
806 * return so that the signal is processed.
808 spin_unlock_irq(lock);
809 read_unlock(&tasklist_lock);
810 kmem_cache_free(sighand_cachep, newsighand);
815 * child_reaper ignores SIGKILL, change it now.
816 * Reparenting needs write_lock on tasklist_lock,
817 * so it is safe to do it under read_lock.
819 if (unlikely(tsk->group_leader == child_reaper(tsk)))
820 tsk->nsproxy->pid_ns->child_reaper = tsk;
822 zap_other_threads(tsk);
823 read_unlock(&tasklist_lock);
826 * Account for the thread group leader hanging around:
829 if (!thread_group_leader(tsk)) {
832 * The SIGALRM timer survives the exec, but needs to point
833 * at us as the new group leader now. We have a race with
834 * a timer firing now getting the old leader, so we need to
835 * synchronize with any firing (by calling del_timer_sync)
836 * before we can safely let the old group leader die.
839 spin_unlock_irq(lock);
840 if (hrtimer_cancel(&sig->real_timer))
841 hrtimer_restart(&sig->real_timer);
844 while (atomic_read(&sig->count) > count) {
845 sig->group_exit_task = tsk;
846 sig->notify_count = count;
847 __set_current_state(TASK_UNINTERRUPTIBLE);
848 spin_unlock_irq(lock);
852 sig->group_exit_task = NULL;
853 sig->notify_count = 0;
854 spin_unlock_irq(lock);
857 * At this point all other threads have exited, all we have to
858 * do is to wait for the thread group leader to become inactive,
859 * and to assume its PID:
861 if (!thread_group_leader(tsk)) {
863 * Wait for the thread group leader to be a zombie.
864 * It should already be zombie at this point, most
867 leader = tsk->group_leader;
868 while (leader->exit_state != EXIT_ZOMBIE)
872 * The only record we have of the real-time age of a
873 * process, regardless of execs it's done, is start_time.
874 * All the past CPU time is accumulated in signal_struct
875 * from sister threads now dead. But in this non-leader
876 * exec, nothing survives from the original leader thread,
877 * whose birth marks the true age of this process now.
878 * When we take on its identity by switching to its PID, we
879 * also take its birthdate (always earlier than our own).
881 tsk->start_time = leader->start_time;
883 write_lock_irq(&tasklist_lock);
885 BUG_ON(leader->tgid != tsk->tgid);
886 BUG_ON(tsk->pid == tsk->tgid);
888 * An exec() starts a new thread group with the
889 * TGID of the previous thread group. Rehash the
890 * two threads with a switched PID, and release
891 * the former thread group leader:
894 /* Become a process group leader with the old leader's pid.
895 * The old leader becomes a thread of the this thread group.
896 * Note: The old leader also uses this pid until release_task
897 * is called. Odd but simple and correct.
899 detach_pid(tsk, PIDTYPE_PID);
900 tsk->pid = leader->pid;
901 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
902 transfer_pid(leader, tsk, PIDTYPE_PGID);
903 transfer_pid(leader, tsk, PIDTYPE_SID);
904 list_replace_rcu(&leader->tasks, &tsk->tasks);
906 tsk->group_leader = tsk;
907 leader->group_leader = tsk;
909 tsk->exit_signal = SIGCHLD;
911 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
912 leader->exit_state = EXIT_DEAD;
914 write_unlock_irq(&tasklist_lock);
918 * There may be one thread left which is just exiting,
919 * but it's safe to stop telling the group to kill themselves.
926 release_task(leader);
928 if (atomic_read(&oldsighand->count) == 1) {
930 * Now that we nuked the rest of the thread group,
931 * it turns out we are not sharing sighand any more either.
932 * So we can just keep it.
934 kmem_cache_free(sighand_cachep, newsighand);
937 * Move our state over to newsighand and switch it in.
939 atomic_set(&newsighand->count, 1);
940 memcpy(newsighand->action, oldsighand->action,
941 sizeof(newsighand->action));
943 write_lock_irq(&tasklist_lock);
944 spin_lock(&oldsighand->siglock);
945 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
947 rcu_assign_pointer(tsk->sighand, newsighand);
950 spin_unlock(&newsighand->siglock);
951 spin_unlock(&oldsighand->siglock);
952 write_unlock_irq(&tasklist_lock);
954 __cleanup_sighand(oldsighand);
957 BUG_ON(!thread_group_leader(tsk));
962 * These functions flushes out all traces of the currently running executable
963 * so that a new one can be started
966 static void flush_old_files(struct files_struct * files)
971 spin_lock(&files->file_lock);
973 unsigned long set, i;
977 fdt = files_fdtable(files);
978 if (i >= fdt->max_fds)
980 set = fdt->close_on_exec->fds_bits[j];
983 fdt->close_on_exec->fds_bits[j] = 0;
984 spin_unlock(&files->file_lock);
985 for ( ; set ; i++,set >>= 1) {
990 spin_lock(&files->file_lock);
993 spin_unlock(&files->file_lock);
996 void get_task_comm(char *buf, struct task_struct *tsk)
998 /* buf must be at least sizeof(tsk->comm) in size */
1000 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004 void set_task_comm(struct task_struct *tsk, char *buf)
1007 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1011 int flush_old_exec(struct linux_binprm * bprm)
1015 struct files_struct *files;
1016 char tcomm[sizeof(current->comm)];
1019 * Make sure we have a private signal table and that
1020 * we are unassociated from the previous thread group.
1022 retval = de_thread(current);
1027 * Make sure we have private file handles. Ask the
1028 * fork helper to do the work for us and the exit
1029 * helper to do the cleanup of the old one.
1031 files = current->files; /* refcounted so safe to hold */
1032 retval = unshare_files();
1036 * Release all of the old mmap stuff
1038 retval = exec_mmap(bprm->mm);
1042 bprm->mm = NULL; /* We're using it now */
1044 /* This is the point of no return */
1045 put_files_struct(files);
1047 current->sas_ss_sp = current->sas_ss_size = 0;
1049 if (current->euid == current->uid && current->egid == current->gid)
1050 set_dumpable(current->mm, 1);
1052 set_dumpable(current->mm, suid_dumpable);
1054 name = bprm->filename;
1056 /* Copies the binary name from after last slash */
1057 for (i=0; (ch = *(name++)) != '\0';) {
1059 i = 0; /* overwrite what we wrote */
1061 if (i < (sizeof(tcomm) - 1))
1065 set_task_comm(current, tcomm);
1067 current->flags &= ~PF_RANDOMIZE;
1070 /* Set the new mm task size. We have to do that late because it may
1071 * depend on TIF_32BIT which is only updated in flush_thread() on
1072 * some architectures like powerpc
1074 current->mm->task_size = TASK_SIZE;
1076 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1078 set_dumpable(current->mm, suid_dumpable);
1079 current->pdeath_signal = 0;
1080 } else if (file_permission(bprm->file, MAY_READ) ||
1081 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1083 set_dumpable(current->mm, suid_dumpable);
1086 /* An exec changes our domain. We are no longer part of the thread
1089 current->self_exec_id++;
1091 flush_signal_handlers(current, 0);
1092 flush_old_files(current->files);
1097 reset_files_struct(current, files);
1102 EXPORT_SYMBOL(flush_old_exec);
1105 * Fill the binprm structure from the inode.
1106 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1108 int prepare_binprm(struct linux_binprm *bprm)
1111 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1114 mode = inode->i_mode;
1115 if (bprm->file->f_op == NULL)
1118 bprm->e_uid = current->euid;
1119 bprm->e_gid = current->egid;
1121 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1123 if (mode & S_ISUID) {
1124 current->personality &= ~PER_CLEAR_ON_SETID;
1125 bprm->e_uid = inode->i_uid;
1130 * If setgid is set but no group execute bit then this
1131 * is a candidate for mandatory locking, not a setgid
1134 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1135 current->personality &= ~PER_CLEAR_ON_SETID;
1136 bprm->e_gid = inode->i_gid;
1140 /* fill in binprm security blob */
1141 retval = security_bprm_set(bprm);
1145 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1146 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1149 EXPORT_SYMBOL(prepare_binprm);
1151 static int unsafe_exec(struct task_struct *p)
1154 if (p->ptrace & PT_PTRACED) {
1155 if (p->ptrace & PT_PTRACE_CAP)
1156 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1158 unsafe |= LSM_UNSAFE_PTRACE;
1160 if (atomic_read(&p->fs->count) > 1 ||
1161 atomic_read(&p->files->count) > 1 ||
1162 atomic_read(&p->sighand->count) > 1)
1163 unsafe |= LSM_UNSAFE_SHARE;
1168 void compute_creds(struct linux_binprm *bprm)
1172 if (bprm->e_uid != current->uid) {
1174 current->pdeath_signal = 0;
1179 unsafe = unsafe_exec(current);
1180 security_bprm_apply_creds(bprm, unsafe);
1181 task_unlock(current);
1182 security_bprm_post_apply_creds(bprm);
1184 EXPORT_SYMBOL(compute_creds);
1187 * Arguments are '\0' separated strings found at the location bprm->p
1188 * points to; chop off the first by relocating brpm->p to right after
1189 * the first '\0' encountered.
1191 int remove_arg_zero(struct linux_binprm *bprm)
1194 unsigned long offset;
1202 offset = bprm->p & ~PAGE_MASK;
1203 page = get_arg_page(bprm, bprm->p, 0);
1208 kaddr = kmap_atomic(page, KM_USER0);
1210 for (; offset < PAGE_SIZE && kaddr[offset];
1211 offset++, bprm->p++)
1214 kunmap_atomic(kaddr, KM_USER0);
1217 if (offset == PAGE_SIZE)
1218 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1219 } while (offset == PAGE_SIZE);
1228 EXPORT_SYMBOL(remove_arg_zero);
1231 * cycle the list of binary formats handler, until one recognizes the image
1233 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1236 struct linux_binfmt *fmt;
1238 /* handle /sbin/loader.. */
1240 struct exec * eh = (struct exec *) bprm->buf;
1242 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1243 (eh->fh.f_flags & 0x3000) == 0x3000)
1246 unsigned long loader;
1248 allow_write_access(bprm->file);
1252 loader = bprm->vma->vm_end - sizeof(void *);
1254 file = open_exec("/sbin/loader");
1255 retval = PTR_ERR(file);
1259 /* Remember if the application is TASO. */
1260 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1263 bprm->loader = loader;
1264 retval = prepare_binprm(bprm);
1267 /* should call search_binary_handler recursively here,
1268 but it does not matter */
1272 retval = security_bprm_check(bprm);
1276 /* kernel module loader fixup */
1277 /* so we don't try to load run modprobe in kernel space. */
1280 retval = audit_bprm(bprm);
1285 for (try=0; try<2; try++) {
1286 read_lock(&binfmt_lock);
1287 for (fmt = formats ; fmt ; fmt = fmt->next) {
1288 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1291 if (!try_module_get(fmt->module))
1293 read_unlock(&binfmt_lock);
1294 retval = fn(bprm, regs);
1297 allow_write_access(bprm->file);
1301 current->did_exec = 1;
1302 proc_exec_connector(current);
1305 read_lock(&binfmt_lock);
1307 if (retval != -ENOEXEC || bprm->mm == NULL)
1310 read_unlock(&binfmt_lock);
1314 read_unlock(&binfmt_lock);
1315 if (retval != -ENOEXEC || bprm->mm == NULL) {
1319 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1320 if (printable(bprm->buf[0]) &&
1321 printable(bprm->buf[1]) &&
1322 printable(bprm->buf[2]) &&
1323 printable(bprm->buf[3]))
1324 break; /* -ENOEXEC */
1325 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1332 EXPORT_SYMBOL(search_binary_handler);
1335 * sys_execve() executes a new program.
1337 int do_execve(char * filename,
1338 char __user *__user *argv,
1339 char __user *__user *envp,
1340 struct pt_regs * regs)
1342 struct linux_binprm *bprm;
1344 unsigned long env_p;
1348 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1352 file = open_exec(filename);
1353 retval = PTR_ERR(file);
1360 bprm->filename = filename;
1361 bprm->interp = filename;
1363 retval = bprm_mm_init(bprm);
1367 bprm->argc = count(argv, MAX_ARG_STRINGS);
1368 if ((retval = bprm->argc) < 0)
1371 bprm->envc = count(envp, MAX_ARG_STRINGS);
1372 if ((retval = bprm->envc) < 0)
1375 retval = security_bprm_alloc(bprm);
1379 retval = prepare_binprm(bprm);
1383 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1387 bprm->exec = bprm->p;
1388 retval = copy_strings(bprm->envc, envp, bprm);
1393 retval = copy_strings(bprm->argc, argv, bprm);
1396 bprm->argv_len = env_p - bprm->p;
1398 retval = search_binary_handler(bprm,regs);
1400 /* execve success */
1401 free_arg_pages(bprm);
1402 security_bprm_free(bprm);
1403 acct_update_integrals(current);
1409 free_arg_pages(bprm);
1411 security_bprm_free(bprm);
1419 allow_write_access(bprm->file);
1429 int set_binfmt(struct linux_binfmt *new)
1431 struct linux_binfmt *old = current->binfmt;
1434 if (!try_module_get(new->module))
1437 current->binfmt = new;
1439 module_put(old->module);
1443 EXPORT_SYMBOL(set_binfmt);
1445 /* format_corename will inspect the pattern parameter, and output a
1446 * name into corename, which must have space for at least
1447 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1449 static int format_corename(char *corename, const char *pattern, long signr)
1451 const char *pat_ptr = pattern;
1452 char *out_ptr = corename;
1453 char *const out_end = corename + CORENAME_MAX_SIZE;
1455 int pid_in_pattern = 0;
1458 if (*pattern == '|')
1461 /* Repeat as long as we have more pattern to process and more output
1464 if (*pat_ptr != '%') {
1465 if (out_ptr == out_end)
1467 *out_ptr++ = *pat_ptr++;
1469 switch (*++pat_ptr) {
1472 /* Double percent, output one percent */
1474 if (out_ptr == out_end)
1481 rc = snprintf(out_ptr, out_end - out_ptr,
1482 "%d", current->tgid);
1483 if (rc > out_end - out_ptr)
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%d", current->uid);
1491 if (rc > out_end - out_ptr)
1497 rc = snprintf(out_ptr, out_end - out_ptr,
1498 "%d", current->gid);
1499 if (rc > out_end - out_ptr)
1503 /* signal that caused the coredump */
1505 rc = snprintf(out_ptr, out_end - out_ptr,
1507 if (rc > out_end - out_ptr)
1511 /* UNIX time of coredump */
1514 do_gettimeofday(&tv);
1515 rc = snprintf(out_ptr, out_end - out_ptr,
1517 if (rc > out_end - out_ptr)
1524 down_read(&uts_sem);
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 "%s", utsname()->nodename);
1528 if (rc > out_end - out_ptr)
1534 rc = snprintf(out_ptr, out_end - out_ptr,
1535 "%s", current->comm);
1536 if (rc > out_end - out_ptr)
1546 /* Backward compatibility with core_uses_pid:
1548 * If core_pattern does not include a %p (as is the default)
1549 * and core_uses_pid is set, then .%pid will be appended to
1550 * the filename. Do not do this for piped commands. */
1551 if (!ispipe && !pid_in_pattern
1552 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1553 rc = snprintf(out_ptr, out_end - out_ptr,
1554 ".%d", current->tgid);
1555 if (rc > out_end - out_ptr)
1564 static void zap_process(struct task_struct *start)
1566 struct task_struct *t;
1568 start->signal->flags = SIGNAL_GROUP_EXIT;
1569 start->signal->group_stop_count = 0;
1573 if (t != current && t->mm) {
1574 t->mm->core_waiters++;
1575 sigaddset(&t->pending.signal, SIGKILL);
1576 signal_wake_up(t, 1);
1578 } while ((t = next_thread(t)) != start);
1581 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1584 struct task_struct *g, *p;
1585 unsigned long flags;
1588 spin_lock_irq(&tsk->sighand->siglock);
1589 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1590 tsk->signal->group_exit_code = exit_code;
1594 spin_unlock_irq(&tsk->sighand->siglock);
1598 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1602 for_each_process(g) {
1603 if (g == tsk->group_leader)
1611 * p->sighand can't disappear, but
1612 * may be changed by de_thread()
1614 lock_task_sighand(p, &flags);
1616 unlock_task_sighand(p, &flags);
1620 } while ((p = next_thread(p)) != g);
1624 return mm->core_waiters;
1627 static int coredump_wait(int exit_code)
1629 struct task_struct *tsk = current;
1630 struct mm_struct *mm = tsk->mm;
1631 struct completion startup_done;
1632 struct completion *vfork_done;
1635 init_completion(&mm->core_done);
1636 init_completion(&startup_done);
1637 mm->core_startup_done = &startup_done;
1639 core_waiters = zap_threads(tsk, mm, exit_code);
1640 up_write(&mm->mmap_sem);
1642 if (unlikely(core_waiters < 0))
1646 * Make sure nobody is waiting for us to release the VM,
1647 * otherwise we can deadlock when we wait on each other
1649 vfork_done = tsk->vfork_done;
1651 tsk->vfork_done = NULL;
1652 complete(vfork_done);
1656 wait_for_completion(&startup_done);
1658 BUG_ON(mm->core_waiters);
1659 return core_waiters;
1663 * set_dumpable converts traditional three-value dumpable to two flags and
1664 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1665 * these bits are not changed atomically. So get_dumpable can observe the
1666 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1667 * return either old dumpable or new one by paying attention to the order of
1668 * modifying the bits.
1670 * dumpable | mm->flags (binary)
1671 * old new | initial interim final
1672 * ---------+-----------------------
1680 * (*) get_dumpable regards interim value of 10 as 11.
1682 void set_dumpable(struct mm_struct *mm, int value)
1686 clear_bit(MMF_DUMPABLE, &mm->flags);
1688 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1691 set_bit(MMF_DUMPABLE, &mm->flags);
1693 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1696 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1698 set_bit(MMF_DUMPABLE, &mm->flags);
1702 EXPORT_SYMBOL_GPL(set_dumpable);
1704 int get_dumpable(struct mm_struct *mm)
1708 ret = mm->flags & 0x3;
1709 return (ret >= 2) ? 2 : ret;
1712 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1714 char corename[CORENAME_MAX_SIZE + 1];
1715 struct mm_struct *mm = current->mm;
1716 struct linux_binfmt * binfmt;
1717 struct inode * inode;
1720 int fsuid = current->fsuid;
1724 audit_core_dumps(signr);
1726 binfmt = current->binfmt;
1727 if (!binfmt || !binfmt->core_dump)
1729 down_write(&mm->mmap_sem);
1730 if (!get_dumpable(mm)) {
1731 up_write(&mm->mmap_sem);
1736 * We cannot trust fsuid as being the "true" uid of the
1737 * process nor do we know its entire history. We only know it
1738 * was tainted so we dump it as root in mode 2.
1740 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1741 flag = O_EXCL; /* Stop rewrite attacks */
1742 current->fsuid = 0; /* Dump root private */
1744 set_dumpable(mm, 0);
1746 retval = coredump_wait(exit_code);
1751 * Clear any false indication of pending signals that might
1752 * be seen by the filesystem code called to write the core file.
1754 clear_thread_flag(TIF_SIGPENDING);
1756 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1760 * lock_kernel() because format_corename() is controlled by sysctl, which
1761 * uses lock_kernel()
1764 ispipe = format_corename(corename, core_pattern, signr);
1767 /* SIGPIPE can happen, but it's just never processed */
1768 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1769 printk(KERN_INFO "Core dump to %s pipe failed\n",
1774 file = filp_open(corename,
1775 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1779 inode = file->f_path.dentry->d_inode;
1780 if (inode->i_nlink > 1)
1781 goto close_fail; /* multiple links - don't dump */
1782 if (!ispipe && d_unhashed(file->f_path.dentry))
1785 /* AK: actually i see no reason to not allow this for named pipes etc.,
1786 but keep the previous behaviour for now. */
1787 if (!ispipe && !S_ISREG(inode->i_mode))
1791 if (!file->f_op->write)
1793 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1796 retval = binfmt->core_dump(signr, regs, file);
1799 current->signal->group_exit_code |= 0x80;
1801 filp_close(file, NULL);
1803 current->fsuid = fsuid;
1804 complete_all(&mm->core_done);