2 * linux/fs/jbd/revoke.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
28 * We can get interactions between revokes and new log data within a
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
50 * Revoke information on buffers is a tri-state value:
52 * RevokeValid clear: no cached revoke status, need to look it up
53 * RevokeValid set, Revoked clear:
54 * buffer has not been revoked, and cancel_revoke
56 * RevokeValid set, Revoked set:
57 * buffer has been revoked.
60 * We keep two hash tables of revoke records. One hashtable belongs to the
61 * running transaction (is pointed to by journal->j_revoke), the other one
62 * belongs to the committing transaction. Accesses to the second hash table
63 * happen only from the kjournald and no other thread touches this table. Also
64 * journal_switch_revoke_table() which switches which hashtable belongs to the
65 * running and which to the committing transaction is called only from
66 * kjournald. Therefore we need no locks when accessing the hashtable belonging
67 * to the committing transaction.
69 * All users operating on the hash table belonging to the running transaction
70 * have a handle to the transaction. Therefore they are safe from kjournald
71 * switching hash tables under them. For operations on the lists of entries in
72 * the hash table j_revoke_lock is used.
74 * Finally, also replay code uses the hash tables but at this moment noone else
75 * can touch them (filesystem isn't mounted yet) and hence no locking is
82 #include <linux/time.h>
84 #include <linux/jbd.h>
85 #include <linux/errno.h>
86 #include <linux/slab.h>
87 #include <linux/list.h>
88 #include <linux/init.h>
90 #include <linux/log2.h>
92 static struct kmem_cache *revoke_record_cache;
93 static struct kmem_cache *revoke_table_cache;
95 /* Each revoke record represents one single revoked block. During
96 journal replay, this involves recording the transaction ID of the
97 last transaction to revoke this block. */
99 struct jbd_revoke_record_s
101 struct list_head hash;
102 tid_t sequence; /* Used for recovery only */
103 unsigned long blocknr;
107 /* The revoke table is just a simple hash table of revoke records. */
108 struct jbd_revoke_table_s
110 /* It is conceivable that we might want a larger hash table
111 * for recovery. Must be a power of two. */
114 struct list_head *hash_table;
119 static void write_one_revoke_record(journal_t *, transaction_t *,
120 struct journal_head **, int *,
121 struct jbd_revoke_record_s *);
122 static void flush_descriptor(journal_t *, struct journal_head *, int);
125 /* Utility functions to maintain the revoke table */
127 /* Borrowed from buffer.c: this is a tried and tested block hash function */
128 static inline int hash(journal_t *journal, unsigned long block)
130 struct jbd_revoke_table_s *table = journal->j_revoke;
131 int hash_shift = table->hash_shift;
133 return ((block << (hash_shift - 6)) ^
135 (block << (hash_shift - 12))) & (table->hash_size - 1);
138 static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
141 struct list_head *hash_list;
142 struct jbd_revoke_record_s *record;
145 record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
149 record->sequence = seq;
150 record->blocknr = blocknr;
151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 spin_lock(&journal->j_revoke_lock);
153 list_add(&record->hash, hash_list);
154 spin_unlock(&journal->j_revoke_lock);
158 if (!journal_oom_retry)
160 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
165 /* Find a revoke record in the journal's hash table. */
167 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
168 unsigned long blocknr)
170 struct list_head *hash_list;
171 struct jbd_revoke_record_s *record;
173 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175 spin_lock(&journal->j_revoke_lock);
176 record = (struct jbd_revoke_record_s *) hash_list->next;
177 while (&(record->hash) != hash_list) {
178 if (record->blocknr == blocknr) {
179 spin_unlock(&journal->j_revoke_lock);
182 record = (struct jbd_revoke_record_s *) record->hash.next;
184 spin_unlock(&journal->j_revoke_lock);
188 void journal_destroy_revoke_caches(void)
190 if (revoke_record_cache) {
191 kmem_cache_destroy(revoke_record_cache);
192 revoke_record_cache = NULL;
194 if (revoke_table_cache) {
195 kmem_cache_destroy(revoke_table_cache);
196 revoke_table_cache = NULL;
200 int __init journal_init_revoke_caches(void)
202 J_ASSERT(!revoke_record_cache);
203 J_ASSERT(!revoke_table_cache);
205 revoke_record_cache = kmem_cache_create("revoke_record",
206 sizeof(struct jbd_revoke_record_s),
208 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
210 if (!revoke_record_cache)
211 goto record_cache_failure;
213 revoke_table_cache = kmem_cache_create("revoke_table",
214 sizeof(struct jbd_revoke_table_s),
215 0, SLAB_TEMPORARY, NULL);
216 if (!revoke_table_cache)
217 goto table_cache_failure;
222 journal_destroy_revoke_caches();
223 record_cache_failure:
227 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
231 struct jbd_revoke_table_s *table;
233 table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
237 while((tmp >>= 1UL) != 0UL)
240 table->hash_size = hash_size;
241 table->hash_shift = shift;
243 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
244 if (!table->hash_table) {
245 kmem_cache_free(revoke_table_cache, table);
250 for (tmp = 0; tmp < hash_size; tmp++)
251 INIT_LIST_HEAD(&table->hash_table[tmp]);
257 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
260 struct list_head *hash_list;
262 for (i = 0; i < table->hash_size; i++) {
263 hash_list = &table->hash_table[i];
264 J_ASSERT(list_empty(hash_list));
267 kfree(table->hash_table);
268 kmem_cache_free(revoke_table_cache, table);
271 /* Initialise the revoke table for a given journal to a given size. */
272 int journal_init_revoke(journal_t *journal, int hash_size)
274 J_ASSERT(journal->j_revoke_table[0] == NULL);
275 J_ASSERT(is_power_of_2(hash_size));
277 journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
278 if (!journal->j_revoke_table[0])
281 journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
282 if (!journal->j_revoke_table[1])
285 journal->j_revoke = journal->j_revoke_table[1];
287 spin_lock_init(&journal->j_revoke_lock);
292 journal_destroy_revoke_table(journal->j_revoke_table[0]);
297 /* Destroy a journal's revoke table. The table must already be empty! */
298 void journal_destroy_revoke(journal_t *journal)
300 journal->j_revoke = NULL;
301 if (journal->j_revoke_table[0])
302 journal_destroy_revoke_table(journal->j_revoke_table[0]);
303 if (journal->j_revoke_table[1])
304 journal_destroy_revoke_table(journal->j_revoke_table[1]);
311 * journal_revoke: revoke a given buffer_head from the journal. This
312 * prevents the block from being replayed during recovery if we take a
313 * crash after this current transaction commits. Any subsequent
314 * metadata writes of the buffer in this transaction cancel the
317 * Note that this call may block --- it is up to the caller to make
318 * sure that there are no further calls to journal_write_metadata
319 * before the revoke is complete. In ext3, this implies calling the
320 * revoke before clearing the block bitmap when we are deleting
323 * Revoke performs a journal_forget on any buffer_head passed in as a
324 * parameter, but does _not_ forget the buffer_head if the bh was only
327 * bh_in may not be a journalled buffer - it may have come off
328 * the hash tables without an attached journal_head.
330 * If bh_in is non-zero, journal_revoke() will decrement its b_count
334 int journal_revoke(handle_t *handle, unsigned long blocknr,
335 struct buffer_head *bh_in)
337 struct buffer_head *bh = NULL;
339 struct block_device *bdev;
344 BUFFER_TRACE(bh_in, "enter");
346 journal = handle->h_transaction->t_journal;
347 if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
348 J_ASSERT (!"Cannot set revoke feature!");
352 bdev = journal->j_fs_dev;
356 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358 BUFFER_TRACE(bh, "found on hash");
360 #ifdef JBD_EXPENSIVE_CHECKING
362 struct buffer_head *bh2;
364 /* If there is a different buffer_head lying around in
365 * memory anywhere... */
366 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368 /* ... and it has RevokeValid status... */
369 if (bh2 != bh && buffer_revokevalid(bh2))
370 /* ...then it better be revoked too,
371 * since it's illegal to create a revoke
372 * record against a buffer_head which is
373 * not marked revoked --- that would
374 * risk missing a subsequent revoke
376 J_ASSERT_BH(bh2, buffer_revoked(bh2));
382 /* We really ought not ever to revoke twice in a row without
383 first having the revoke cancelled: it's illegal to free a
384 block twice without allocating it in between! */
386 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
387 "inconsistent data on disk")) {
392 set_buffer_revoked(bh);
393 set_buffer_revokevalid(bh);
395 BUFFER_TRACE(bh_in, "call journal_forget");
396 journal_forget(handle, bh_in);
398 BUFFER_TRACE(bh, "call brelse");
403 jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
404 err = insert_revoke_hash(journal, blocknr,
405 handle->h_transaction->t_tid);
406 BUFFER_TRACE(bh_in, "exit");
411 * Cancel an outstanding revoke. For use only internally by the
412 * journaling code (called from journal_get_write_access).
414 * We trust buffer_revoked() on the buffer if the buffer is already
415 * being journaled: if there is no revoke pending on the buffer, then we
416 * don't do anything here.
418 * This would break if it were possible for a buffer to be revoked and
419 * discarded, and then reallocated within the same transaction. In such
420 * a case we would have lost the revoked bit, but when we arrived here
421 * the second time we would still have a pending revoke to cancel. So,
422 * do not trust the Revoked bit on buffers unless RevokeValid is also
425 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427 struct jbd_revoke_record_s *record;
428 journal_t *journal = handle->h_transaction->t_journal;
430 int did_revoke = 0; /* akpm: debug */
431 struct buffer_head *bh = jh2bh(jh);
433 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435 /* Is the existing Revoke bit valid? If so, we trust it, and
436 * only perform the full cancel if the revoke bit is set. If
437 * not, we can't trust the revoke bit, and we need to do the
438 * full search for a revoke record. */
439 if (test_set_buffer_revokevalid(bh)) {
440 need_cancel = test_clear_buffer_revoked(bh);
443 clear_buffer_revoked(bh);
447 record = find_revoke_record(journal, bh->b_blocknr);
449 jbd_debug(4, "cancelled existing revoke on "
450 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
451 spin_lock(&journal->j_revoke_lock);
452 list_del(&record->hash);
453 spin_unlock(&journal->j_revoke_lock);
454 kmem_cache_free(revoke_record_cache, record);
459 #ifdef JBD_EXPENSIVE_CHECKING
460 /* There better not be one left behind by now! */
461 record = find_revoke_record(journal, bh->b_blocknr);
462 J_ASSERT_JH(jh, record == NULL);
465 /* Finally, have we just cleared revoke on an unhashed
466 * buffer_head? If so, we'd better make sure we clear the
467 * revoked status on any hashed alias too, otherwise the revoke
468 * state machine will get very upset later on. */
470 struct buffer_head *bh2;
471 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
474 clear_buffer_revoked(bh2);
481 /* journal_switch_revoke table select j_revoke for next transaction
482 * we do not want to suspend any processing until all revokes are
485 void journal_switch_revoke_table(journal_t *journal)
489 if (journal->j_revoke == journal->j_revoke_table[0])
490 journal->j_revoke = journal->j_revoke_table[1];
492 journal->j_revoke = journal->j_revoke_table[0];
494 for (i = 0; i < journal->j_revoke->hash_size; i++)
495 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
499 * Write revoke records to the journal for all entries in the current
500 * revoke hash, deleting the entries as we go.
502 void journal_write_revoke_records(journal_t *journal,
503 transaction_t *transaction)
505 struct journal_head *descriptor;
506 struct jbd_revoke_record_s *record;
507 struct jbd_revoke_table_s *revoke;
508 struct list_head *hash_list;
509 int i, offset, count;
515 /* select revoke table for committing transaction */
516 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
517 journal->j_revoke_table[1] : journal->j_revoke_table[0];
519 for (i = 0; i < revoke->hash_size; i++) {
520 hash_list = &revoke->hash_table[i];
522 while (!list_empty(hash_list)) {
523 record = (struct jbd_revoke_record_s *)
525 write_one_revoke_record(journal, transaction,
526 &descriptor, &offset,
529 list_del(&record->hash);
530 kmem_cache_free(revoke_record_cache, record);
534 flush_descriptor(journal, descriptor, offset);
535 jbd_debug(1, "Wrote %d revoke records\n", count);
539 * Write out one revoke record. We need to create a new descriptor
540 * block if the old one is full or if we have not already created one.
543 static void write_one_revoke_record(journal_t *journal,
544 transaction_t *transaction,
545 struct journal_head **descriptorp,
547 struct jbd_revoke_record_s *record)
549 struct journal_head *descriptor;
551 journal_header_t *header;
553 /* If we are already aborting, this all becomes a noop. We
554 still need to go round the loop in
555 journal_write_revoke_records in order to free all of the
556 revoke records: only the IO to the journal is omitted. */
557 if (is_journal_aborted(journal))
560 descriptor = *descriptorp;
563 /* Make sure we have a descriptor with space left for the record */
565 if (offset == journal->j_blocksize) {
566 flush_descriptor(journal, descriptor, offset);
572 descriptor = journal_get_descriptor_buffer(journal);
575 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
576 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
577 header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
578 header->h_sequence = cpu_to_be32(transaction->t_tid);
580 /* Record it so that we can wait for IO completion later */
581 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
582 journal_file_buffer(descriptor, transaction, BJ_LogCtl);
584 offset = sizeof(journal_revoke_header_t);
585 *descriptorp = descriptor;
588 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
589 cpu_to_be32(record->blocknr);
595 * Flush a revoke descriptor out to the journal. If we are aborting,
596 * this is a noop; otherwise we are generating a buffer which needs to
597 * be waited for during commit, so it has to go onto the appropriate
598 * journal buffer list.
601 static void flush_descriptor(journal_t *journal,
602 struct journal_head *descriptor,
605 journal_revoke_header_t *header;
606 struct buffer_head *bh = jh2bh(descriptor);
608 if (is_journal_aborted(journal)) {
613 header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
614 header->r_count = cpu_to_be32(offset);
615 set_buffer_jwrite(bh);
616 BUFFER_TRACE(bh, "write");
617 set_buffer_dirty(bh);
618 ll_rw_block(SWRITE, 1, &bh);
623 * Revoke support for recovery.
625 * Recovery needs to be able to:
627 * record all revoke records, including the tid of the latest instance
628 * of each revoke in the journal
630 * check whether a given block in a given transaction should be replayed
631 * (ie. has not been revoked by a revoke record in that or a subsequent
634 * empty the revoke table after recovery.
638 * First, setting revoke records. We create a new revoke record for
639 * every block ever revoked in the log as we scan it for recovery, and
640 * we update the existing records if we find multiple revokes for a
644 int journal_set_revoke(journal_t *journal,
645 unsigned long blocknr,
648 struct jbd_revoke_record_s *record;
650 record = find_revoke_record(journal, blocknr);
652 /* If we have multiple occurrences, only record the
653 * latest sequence number in the hashed record */
654 if (tid_gt(sequence, record->sequence))
655 record->sequence = sequence;
658 return insert_revoke_hash(journal, blocknr, sequence);
662 * Test revoke records. For a given block referenced in the log, has
663 * that block been revoked? A revoke record with a given transaction
664 * sequence number revokes all blocks in that transaction and earlier
665 * ones, but later transactions still need replayed.
668 int journal_test_revoke(journal_t *journal,
669 unsigned long blocknr,
672 struct jbd_revoke_record_s *record;
674 record = find_revoke_record(journal, blocknr);
677 if (tid_gt(sequence, record->sequence))
683 * Finally, once recovery is over, we need to clear the revoke table so
684 * that it can be reused by the running filesystem.
687 void journal_clear_revoke(journal_t *journal)
690 struct list_head *hash_list;
691 struct jbd_revoke_record_s *record;
692 struct jbd_revoke_table_s *revoke;
694 revoke = journal->j_revoke;
696 for (i = 0; i < revoke->hash_size; i++) {
697 hash_list = &revoke->hash_table[i];
698 while (!list_empty(hash_list)) {
699 record = (struct jbd_revoke_record_s*) hash_list->next;
700 list_del(&record->hash);
701 kmem_cache_free(revoke_record_cache, record);