2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
52 struct btrfs_iget_args {
54 struct btrfs_root *root;
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
118 u64 blocksize = root->sectorsize;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
125 trans = btrfs_join_transaction(root, 1);
127 btrfs_set_trans_block_group(trans, inode);
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
133 if (alloc_hint == EXTENT_MAP_INLINE)
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, alloc_hint,
150 em = alloc_extent_map(GFP_NOFS);
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1);
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
184 btrfs_end_transaction(trans, root);
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
204 struct btrfs_key found_key;
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
209 trans = btrfs_join_transaction(root, 1);
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
220 if (path->slots[0] == 0)
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
245 if (loops && start != extent_start)
248 if (start < extent_start || start >= extent_end)
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
261 block_group = btrfs_lookup_block_group(root->fs_info,
263 if (!block_group || block_group->ro)
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
275 btrfs_release_path(root, path);
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
296 struct btrfs_root *root = BTRFS_I(inode)->root;
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
303 ret = cow_file_range(inode, start, end);
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
368 if (map_length < length + size) {
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
377 struct btrfs_root *root = BTRFS_I(inode)->root;
380 ret = btrfs_csum_one_bio(root, inode, bio);
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
389 struct btrfs_root *root = BTRFS_I(inode)->root;
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
433 struct btrfs_writepage_fixup {
435 struct btrfs_work work;
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
474 btrfs_start_ordered_extent(inode, ordered, 1);
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
484 page_cache_release(page);
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
510 if (PageChecked(page))
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 struct btrfs_file_extent_item *extent_item;
532 struct btrfs_path *path = NULL;
533 struct extent_buffer *leaf;
535 struct list_head list;
536 struct btrfs_key ins;
539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
543 trans = btrfs_join_transaction(root, 1);
545 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
546 BUG_ON(!ordered_extent);
547 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
550 path = btrfs_alloc_path();
553 lock_extent(io_tree, ordered_extent->file_offset,
554 ordered_extent->file_offset + ordered_extent->len - 1,
557 INIT_LIST_HEAD(&list);
559 mutex_lock(&BTRFS_I(inode)->extent_mutex);
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
565 ordered_extent->file_offset, &alloc_hint);
568 ins.objectid = inode->i_ino;
569 ins.offset = ordered_extent->file_offset;
570 ins.type = BTRFS_EXTENT_DATA_KEY;
571 ret = btrfs_insert_empty_item(trans, root, path, &ins,
572 sizeof(*extent_item));
574 leaf = path->nodes[0];
575 extent_item = btrfs_item_ptr(leaf, path->slots[0],
576 struct btrfs_file_extent_item);
577 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
578 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
579 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
580 ordered_extent->start);
581 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
582 ordered_extent->len);
583 btrfs_set_file_extent_offset(leaf, extent_item, 0);
584 btrfs_set_file_extent_num_bytes(leaf, extent_item,
585 ordered_extent->len);
586 btrfs_mark_buffer_dirty(leaf);
588 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
589 ordered_extent->file_offset +
590 ordered_extent->len - 1);
591 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
593 ins.objectid = ordered_extent->start;
594 ins.offset = ordered_extent->len;
595 ins.type = BTRFS_EXTENT_ITEM_KEY;
596 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
597 root->root_key.objectid,
598 trans->transid, inode->i_ino,
599 ordered_extent->file_offset, &ins);
601 btrfs_release_path(root, path);
603 inode->i_blocks += ordered_extent->len >> 9;
604 unlock_extent(io_tree, ordered_extent->file_offset,
605 ordered_extent->file_offset + ordered_extent->len - 1,
608 add_pending_csums(trans, inode, ordered_extent->file_offset,
609 &ordered_extent->list);
611 mutex_lock(&BTRFS_I(inode)->extent_mutex);
612 btrfs_ordered_update_i_size(inode, ordered_extent);
613 btrfs_update_inode(trans, root, inode);
614 btrfs_remove_ordered_extent(inode, ordered_extent);
615 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
618 btrfs_put_ordered_extent(ordered_extent);
619 /* once for the tree */
620 btrfs_put_ordered_extent(ordered_extent);
622 btrfs_end_transaction(trans, root);
624 btrfs_free_path(path);
628 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
629 struct extent_state *state, int uptodate)
631 return btrfs_finish_ordered_io(page->mapping->host, start, end);
634 struct io_failure_record {
642 int btrfs_io_failed_hook(struct bio *failed_bio,
643 struct page *page, u64 start, u64 end,
644 struct extent_state *state)
646 struct io_failure_record *failrec = NULL;
648 struct extent_map *em;
649 struct inode *inode = page->mapping->host;
650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
651 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
658 ret = get_state_private(failure_tree, start, &private);
660 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
663 failrec->start = start;
664 failrec->len = end - start + 1;
665 failrec->last_mirror = 0;
667 spin_lock(&em_tree->lock);
668 em = lookup_extent_mapping(em_tree, start, failrec->len);
669 if (em->start > start || em->start + em->len < start) {
673 spin_unlock(&em_tree->lock);
675 if (!em || IS_ERR(em)) {
679 logical = start - em->start;
680 logical = em->block_start + logical;
681 failrec->logical = logical;
683 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
684 EXTENT_DIRTY, GFP_NOFS);
685 set_state_private(failure_tree, start,
686 (u64)(unsigned long)failrec);
688 failrec = (struct io_failure_record *)(unsigned long)private;
690 num_copies = btrfs_num_copies(
691 &BTRFS_I(inode)->root->fs_info->mapping_tree,
692 failrec->logical, failrec->len);
693 failrec->last_mirror++;
695 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
696 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
699 if (state && state->start != failrec->start)
701 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
703 if (!state || failrec->last_mirror > num_copies) {
704 set_state_private(failure_tree, failrec->start, 0);
705 clear_extent_bits(failure_tree, failrec->start,
706 failrec->start + failrec->len - 1,
707 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
711 bio = bio_alloc(GFP_NOFS, 1);
712 bio->bi_private = state;
713 bio->bi_end_io = failed_bio->bi_end_io;
714 bio->bi_sector = failrec->logical >> 9;
715 bio->bi_bdev = failed_bio->bi_bdev;
717 bio_add_page(bio, page, failrec->len, start - page_offset(page));
718 if (failed_bio->bi_rw & (1 << BIO_RW))
723 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
724 failrec->last_mirror);
728 int btrfs_clean_io_failures(struct inode *inode, u64 start)
732 struct io_failure_record *failure;
736 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
737 (u64)-1, 1, EXTENT_DIRTY)) {
738 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
739 start, &private_failure);
741 failure = (struct io_failure_record *)(unsigned long)
743 set_state_private(&BTRFS_I(inode)->io_failure_tree,
745 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
747 failure->start + failure->len - 1,
748 EXTENT_DIRTY | EXTENT_LOCKED,
756 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
757 struct extent_state *state)
759 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
760 struct inode *inode = page->mapping->host;
761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
763 u64 private = ~(u32)0;
765 struct btrfs_root *root = BTRFS_I(inode)->root;
769 if (btrfs_test_opt(root, NODATASUM) ||
770 btrfs_test_flag(inode, NODATASUM))
772 if (state && state->start == start) {
773 private = state->private;
776 ret = get_state_private(io_tree, start, &private);
778 local_irq_save(flags);
779 kaddr = kmap_atomic(page, KM_IRQ0);
783 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
784 btrfs_csum_final(csum, (char *)&csum);
785 if (csum != private) {
788 kunmap_atomic(kaddr, KM_IRQ0);
789 local_irq_restore(flags);
791 /* if the io failure tree for this inode is non-empty,
792 * check to see if we've recovered from a failed IO
794 btrfs_clean_io_failures(inode, start);
798 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
799 page->mapping->host->i_ino, (unsigned long long)start, csum,
801 memset(kaddr + offset, 1, end - start + 1);
802 flush_dcache_page(page);
803 kunmap_atomic(kaddr, KM_IRQ0);
804 local_irq_restore(flags);
811 * This creates an orphan entry for the given inode in case something goes
812 * wrong in the middle of an unlink/truncate.
814 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
816 struct btrfs_root *root = BTRFS_I(inode)->root;
819 spin_lock(&root->list_lock);
821 /* already on the orphan list, we're good */
822 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
823 spin_unlock(&root->list_lock);
827 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
829 spin_unlock(&root->list_lock);
832 * insert an orphan item to track this unlinked/truncated file
834 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
840 * We have done the truncate/delete so we can go ahead and remove the orphan
841 * item for this particular inode.
843 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
845 struct btrfs_root *root = BTRFS_I(inode)->root;
848 spin_lock(&root->list_lock);
850 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
851 spin_unlock(&root->list_lock);
855 list_del_init(&BTRFS_I(inode)->i_orphan);
857 spin_unlock(&root->list_lock);
861 spin_unlock(&root->list_lock);
863 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
869 * this cleans up any orphans that may be left on the list from the last use
872 void btrfs_orphan_cleanup(struct btrfs_root *root)
874 struct btrfs_path *path;
875 struct extent_buffer *leaf;
876 struct btrfs_item *item;
877 struct btrfs_key key, found_key;
878 struct btrfs_trans_handle *trans;
880 int ret = 0, nr_unlink = 0, nr_truncate = 0;
882 /* don't do orphan cleanup if the fs is readonly. */
883 if (root->inode->i_sb->s_flags & MS_RDONLY)
886 path = btrfs_alloc_path();
891 key.objectid = BTRFS_ORPHAN_OBJECTID;
892 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
893 key.offset = (u64)-1;
895 trans = btrfs_start_transaction(root, 1);
896 btrfs_set_trans_block_group(trans, root->inode);
899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
901 printk(KERN_ERR "Error searching slot for orphan: %d"
907 * if ret == 0 means we found what we were searching for, which
908 * is weird, but possible, so only screw with path if we didnt
909 * find the key and see if we have stuff that matches
912 if (path->slots[0] == 0)
917 /* pull out the item */
918 leaf = path->nodes[0];
919 item = btrfs_item_nr(leaf, path->slots[0]);
920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
922 /* make sure the item matches what we want */
923 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
925 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
928 /* release the path since we're done with it */
929 btrfs_release_path(root, path);
932 * this is where we are basically btrfs_lookup, without the
933 * crossing root thing. we store the inode number in the
934 * offset of the orphan item.
936 inode = btrfs_iget_locked(root->inode->i_sb,
937 found_key.offset, root);
941 if (inode->i_state & I_NEW) {
942 BTRFS_I(inode)->root = root;
944 /* have to set the location manually */
945 BTRFS_I(inode)->location.objectid = inode->i_ino;
946 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
947 BTRFS_I(inode)->location.offset = 0;
949 btrfs_read_locked_inode(inode);
950 unlock_new_inode(inode);
954 * add this inode to the orphan list so btrfs_orphan_del does
955 * the proper thing when we hit it
957 spin_lock(&root->list_lock);
958 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
959 spin_unlock(&root->list_lock);
962 * if this is a bad inode, means we actually succeeded in
963 * removing the inode, but not the orphan record, which means
964 * we need to manually delete the orphan since iput will just
967 if (is_bad_inode(inode)) {
968 btrfs_orphan_del(trans, inode);
973 /* if we have links, this was a truncate, lets do that */
974 if (inode->i_nlink) {
976 btrfs_truncate(inode);
981 /* this will do delete_inode and everything for us */
986 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
988 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
990 btrfs_free_path(path);
991 btrfs_end_transaction(trans, root);
994 void btrfs_read_locked_inode(struct inode *inode)
996 struct btrfs_path *path;
997 struct extent_buffer *leaf;
998 struct btrfs_inode_item *inode_item;
999 struct btrfs_timespec *tspec;
1000 struct btrfs_root *root = BTRFS_I(inode)->root;
1001 struct btrfs_key location;
1002 u64 alloc_group_block;
1006 path = btrfs_alloc_path();
1008 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1010 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1014 leaf = path->nodes[0];
1015 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1016 struct btrfs_inode_item);
1018 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1019 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1020 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1021 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1022 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1024 tspec = btrfs_inode_atime(inode_item);
1025 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1026 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1028 tspec = btrfs_inode_mtime(inode_item);
1029 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1030 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1032 tspec = btrfs_inode_ctime(inode_item);
1033 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1034 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1036 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1037 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1038 inode->i_generation = BTRFS_I(inode)->generation;
1040 rdev = btrfs_inode_rdev(leaf, inode_item);
1042 BTRFS_I(inode)->index_cnt = (u64)-1;
1044 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1045 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1047 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1048 if (!BTRFS_I(inode)->block_group) {
1049 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1051 BTRFS_BLOCK_GROUP_METADATA, 0);
1053 btrfs_free_path(path);
1056 switch (inode->i_mode & S_IFMT) {
1058 inode->i_mapping->a_ops = &btrfs_aops;
1059 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1060 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1061 inode->i_fop = &btrfs_file_operations;
1062 inode->i_op = &btrfs_file_inode_operations;
1065 inode->i_fop = &btrfs_dir_file_operations;
1066 if (root == root->fs_info->tree_root)
1067 inode->i_op = &btrfs_dir_ro_inode_operations;
1069 inode->i_op = &btrfs_dir_inode_operations;
1072 inode->i_op = &btrfs_symlink_inode_operations;
1073 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1074 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1077 init_special_inode(inode, inode->i_mode, rdev);
1083 btrfs_free_path(path);
1084 make_bad_inode(inode);
1087 static void fill_inode_item(struct btrfs_trans_handle *trans,
1088 struct extent_buffer *leaf,
1089 struct btrfs_inode_item *item,
1090 struct inode *inode)
1092 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1093 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1094 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1095 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1096 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1098 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1099 inode->i_atime.tv_sec);
1100 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1101 inode->i_atime.tv_nsec);
1103 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1104 inode->i_mtime.tv_sec);
1105 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1106 inode->i_mtime.tv_nsec);
1108 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1109 inode->i_ctime.tv_sec);
1110 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1111 inode->i_ctime.tv_nsec);
1113 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1114 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1115 btrfs_set_inode_transid(leaf, item, trans->transid);
1116 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1117 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1118 btrfs_set_inode_block_group(leaf, item,
1119 BTRFS_I(inode)->block_group->key.objectid);
1122 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1123 struct btrfs_root *root,
1124 struct inode *inode)
1126 struct btrfs_inode_item *inode_item;
1127 struct btrfs_path *path;
1128 struct extent_buffer *leaf;
1131 path = btrfs_alloc_path();
1133 ret = btrfs_lookup_inode(trans, root, path,
1134 &BTRFS_I(inode)->location, 1);
1141 leaf = path->nodes[0];
1142 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1143 struct btrfs_inode_item);
1145 fill_inode_item(trans, leaf, inode_item, inode);
1146 btrfs_mark_buffer_dirty(leaf);
1147 btrfs_set_inode_last_trans(trans, inode);
1150 btrfs_free_path(path);
1155 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1156 struct btrfs_root *root,
1157 struct inode *dir, struct inode *inode,
1158 const char *name, int name_len)
1160 struct btrfs_path *path;
1162 struct extent_buffer *leaf;
1163 struct btrfs_dir_item *di;
1164 struct btrfs_key key;
1167 path = btrfs_alloc_path();
1173 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1174 name, name_len, -1);
1183 leaf = path->nodes[0];
1184 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1185 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1188 btrfs_release_path(root, path);
1190 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1192 dir->i_ino, &index);
1194 printk("failed to delete reference to %.*s, "
1195 "inode %lu parent %lu\n", name_len, name,
1196 inode->i_ino, dir->i_ino);
1200 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1201 index, name, name_len, -1);
1210 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1211 btrfs_release_path(root, path);
1213 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1215 BUG_ON(ret != 0 && ret != -ENOENT);
1217 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1219 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1223 btrfs_free_path(path);
1227 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1228 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1229 btrfs_update_inode(trans, root, dir);
1230 btrfs_drop_nlink(inode);
1231 ret = btrfs_update_inode(trans, root, inode);
1232 dir->i_sb->s_dirt = 1;
1237 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1239 struct btrfs_root *root;
1240 struct btrfs_trans_handle *trans;
1241 struct inode *inode = dentry->d_inode;
1243 unsigned long nr = 0;
1245 root = BTRFS_I(dir)->root;
1247 ret = btrfs_check_free_space(root, 1, 1);
1251 trans = btrfs_start_transaction(root, 1);
1253 btrfs_set_trans_block_group(trans, dir);
1254 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1255 dentry->d_name.name, dentry->d_name.len);
1257 if (inode->i_nlink == 0)
1258 ret = btrfs_orphan_add(trans, inode);
1260 nr = trans->blocks_used;
1262 btrfs_end_transaction_throttle(trans, root);
1264 btrfs_btree_balance_dirty(root, nr);
1268 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1270 struct inode *inode = dentry->d_inode;
1273 struct btrfs_root *root = BTRFS_I(dir)->root;
1274 struct btrfs_trans_handle *trans;
1275 unsigned long nr = 0;
1277 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1281 ret = btrfs_check_free_space(root, 1, 1);
1285 trans = btrfs_start_transaction(root, 1);
1286 btrfs_set_trans_block_group(trans, dir);
1288 err = btrfs_orphan_add(trans, inode);
1292 /* now the directory is empty */
1293 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1294 dentry->d_name.name, dentry->d_name.len);
1296 btrfs_i_size_write(inode, 0);
1300 nr = trans->blocks_used;
1301 ret = btrfs_end_transaction_throttle(trans, root);
1303 btrfs_btree_balance_dirty(root, nr);
1311 * this can truncate away extent items, csum items and directory items.
1312 * It starts at a high offset and removes keys until it can't find
1313 * any higher than i_size.
1315 * csum items that cross the new i_size are truncated to the new size
1318 * min_type is the minimum key type to truncate down to. If set to 0, this
1319 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1321 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *root,
1323 struct inode *inode,
1324 u64 new_size, u32 min_type)
1327 struct btrfs_path *path;
1328 struct btrfs_key key;
1329 struct btrfs_key found_key;
1331 struct extent_buffer *leaf;
1332 struct btrfs_file_extent_item *fi;
1333 u64 extent_start = 0;
1334 u64 extent_num_bytes = 0;
1340 int pending_del_nr = 0;
1341 int pending_del_slot = 0;
1342 int extent_type = -1;
1343 u64 mask = root->sectorsize - 1;
1346 btrfs_drop_extent_cache(inode,
1347 new_size & (~mask), (u64)-1);
1348 path = btrfs_alloc_path();
1352 /* FIXME, add redo link to tree so we don't leak on crash */
1353 key.objectid = inode->i_ino;
1354 key.offset = (u64)-1;
1357 btrfs_init_path(path);
1359 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1364 /* there are no items in the tree for us to truncate, we're
1367 if (path->slots[0] == 0) {
1376 leaf = path->nodes[0];
1377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1378 found_type = btrfs_key_type(&found_key);
1380 if (found_key.objectid != inode->i_ino)
1383 if (found_type < min_type)
1386 item_end = found_key.offset;
1387 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1388 fi = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_file_extent_item);
1390 extent_type = btrfs_file_extent_type(leaf, fi);
1391 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1393 btrfs_file_extent_num_bytes(leaf, fi);
1394 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1395 struct btrfs_item *item = btrfs_item_nr(leaf,
1397 item_end += btrfs_file_extent_inline_len(leaf,
1402 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1403 ret = btrfs_csum_truncate(trans, root, path,
1407 if (item_end < new_size) {
1408 if (found_type == BTRFS_DIR_ITEM_KEY) {
1409 found_type = BTRFS_INODE_ITEM_KEY;
1410 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1411 found_type = BTRFS_CSUM_ITEM_KEY;
1412 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1413 found_type = BTRFS_XATTR_ITEM_KEY;
1414 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1415 found_type = BTRFS_INODE_REF_KEY;
1416 } else if (found_type) {
1421 btrfs_set_key_type(&key, found_type);
1424 if (found_key.offset >= new_size)
1430 /* FIXME, shrink the extent if the ref count is only 1 */
1431 if (found_type != BTRFS_EXTENT_DATA_KEY)
1434 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1436 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1438 u64 orig_num_bytes =
1439 btrfs_file_extent_num_bytes(leaf, fi);
1440 extent_num_bytes = new_size -
1441 found_key.offset + root->sectorsize - 1;
1442 extent_num_bytes = extent_num_bytes &
1443 ~((u64)root->sectorsize - 1);
1444 btrfs_set_file_extent_num_bytes(leaf, fi,
1446 num_dec = (orig_num_bytes -
1448 if (root->ref_cows && extent_start != 0)
1449 dec_i_blocks(inode, num_dec);
1450 btrfs_mark_buffer_dirty(leaf);
1453 btrfs_file_extent_disk_num_bytes(leaf,
1455 /* FIXME blocksize != 4096 */
1456 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1457 if (extent_start != 0) {
1460 dec_i_blocks(inode, num_dec);
1462 root_gen = btrfs_header_generation(leaf);
1463 root_owner = btrfs_header_owner(leaf);
1465 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1467 u32 size = new_size - found_key.offset;
1469 if (root->ref_cows) {
1470 dec_i_blocks(inode, item_end + 1 -
1471 found_key.offset - size);
1474 btrfs_file_extent_calc_inline_size(size);
1475 ret = btrfs_truncate_item(trans, root, path,
1478 } else if (root->ref_cows) {
1479 dec_i_blocks(inode, item_end + 1 -
1485 if (!pending_del_nr) {
1486 /* no pending yet, add ourselves */
1487 pending_del_slot = path->slots[0];
1489 } else if (pending_del_nr &&
1490 path->slots[0] + 1 == pending_del_slot) {
1491 /* hop on the pending chunk */
1493 pending_del_slot = path->slots[0];
1495 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1501 ret = btrfs_free_extent(trans, root, extent_start,
1503 leaf->start, root_owner,
1504 root_gen, inode->i_ino,
1505 found_key.offset, 0);
1509 if (path->slots[0] == 0) {
1512 btrfs_release_path(root, path);
1517 if (pending_del_nr &&
1518 path->slots[0] + 1 != pending_del_slot) {
1519 struct btrfs_key debug;
1521 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1523 ret = btrfs_del_items(trans, root, path,
1528 btrfs_release_path(root, path);
1534 if (pending_del_nr) {
1535 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1538 btrfs_free_path(path);
1539 inode->i_sb->s_dirt = 1;
1544 * taken from block_truncate_page, but does cow as it zeros out
1545 * any bytes left in the last page in the file.
1547 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1549 struct inode *inode = mapping->host;
1550 struct btrfs_root *root = BTRFS_I(inode)->root;
1551 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1552 struct btrfs_ordered_extent *ordered;
1554 u32 blocksize = root->sectorsize;
1555 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1556 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1562 if ((offset & (blocksize - 1)) == 0)
1567 page = grab_cache_page(mapping, index);
1571 page_start = page_offset(page);
1572 page_end = page_start + PAGE_CACHE_SIZE - 1;
1574 if (!PageUptodate(page)) {
1575 ret = btrfs_readpage(NULL, page);
1577 if (page->mapping != mapping) {
1579 page_cache_release(page);
1582 if (!PageUptodate(page)) {
1587 wait_on_page_writeback(page);
1589 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1590 set_page_extent_mapped(page);
1592 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1594 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1596 page_cache_release(page);
1597 btrfs_start_ordered_extent(inode, ordered, 1);
1598 btrfs_put_ordered_extent(ordered);
1602 btrfs_set_extent_delalloc(inode, page_start, page_end);
1604 if (offset != PAGE_CACHE_SIZE) {
1606 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1607 flush_dcache_page(page);
1610 ClearPageChecked(page);
1611 set_page_dirty(page);
1612 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1616 page_cache_release(page);
1621 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1623 struct inode *inode = dentry->d_inode;
1626 err = inode_change_ok(inode, attr);
1630 if (S_ISREG(inode->i_mode) &&
1631 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1632 struct btrfs_trans_handle *trans;
1633 struct btrfs_root *root = BTRFS_I(inode)->root;
1634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1636 u64 mask = root->sectorsize - 1;
1637 u64 hole_start = (inode->i_size + mask) & ~mask;
1638 u64 block_end = (attr->ia_size + mask) & ~mask;
1642 if (attr->ia_size <= hole_start)
1645 err = btrfs_check_free_space(root, 1, 0);
1649 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1651 hole_size = block_end - hole_start;
1653 struct btrfs_ordered_extent *ordered;
1654 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1656 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1657 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1659 unlock_extent(io_tree, hole_start,
1660 block_end - 1, GFP_NOFS);
1661 btrfs_put_ordered_extent(ordered);
1667 trans = btrfs_start_transaction(root, 1);
1668 btrfs_set_trans_block_group(trans, inode);
1669 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1670 err = btrfs_drop_extents(trans, root, inode,
1671 hole_start, block_end, hole_start,
1674 if (alloc_hint != EXTENT_MAP_INLINE) {
1675 err = btrfs_insert_file_extent(trans, root,
1679 btrfs_drop_extent_cache(inode, hole_start,
1681 btrfs_check_file(root, inode);
1683 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1684 btrfs_end_transaction(trans, root);
1685 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1690 err = inode_setattr(inode, attr);
1692 if (!err && ((attr->ia_valid & ATTR_MODE)))
1693 err = btrfs_acl_chmod(inode);
1698 void btrfs_delete_inode(struct inode *inode)
1700 struct btrfs_trans_handle *trans;
1701 struct btrfs_root *root = BTRFS_I(inode)->root;
1705 truncate_inode_pages(&inode->i_data, 0);
1706 if (is_bad_inode(inode)) {
1707 btrfs_orphan_del(NULL, inode);
1710 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1712 btrfs_i_size_write(inode, 0);
1713 trans = btrfs_start_transaction(root, 1);
1715 btrfs_set_trans_block_group(trans, inode);
1716 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1718 btrfs_orphan_del(NULL, inode);
1719 goto no_delete_lock;
1722 btrfs_orphan_del(trans, inode);
1724 nr = trans->blocks_used;
1727 btrfs_end_transaction(trans, root);
1728 btrfs_btree_balance_dirty(root, nr);
1732 nr = trans->blocks_used;
1733 btrfs_end_transaction(trans, root);
1734 btrfs_btree_balance_dirty(root, nr);
1740 * this returns the key found in the dir entry in the location pointer.
1741 * If no dir entries were found, location->objectid is 0.
1743 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1744 struct btrfs_key *location)
1746 const char *name = dentry->d_name.name;
1747 int namelen = dentry->d_name.len;
1748 struct btrfs_dir_item *di;
1749 struct btrfs_path *path;
1750 struct btrfs_root *root = BTRFS_I(dir)->root;
1753 path = btrfs_alloc_path();
1756 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1760 if (!di || IS_ERR(di)) {
1763 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1765 btrfs_free_path(path);
1768 location->objectid = 0;
1773 * when we hit a tree root in a directory, the btrfs part of the inode
1774 * needs to be changed to reflect the root directory of the tree root. This
1775 * is kind of like crossing a mount point.
1777 static int fixup_tree_root_location(struct btrfs_root *root,
1778 struct btrfs_key *location,
1779 struct btrfs_root **sub_root,
1780 struct dentry *dentry)
1782 struct btrfs_root_item *ri;
1784 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1786 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1789 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1790 dentry->d_name.name,
1791 dentry->d_name.len);
1792 if (IS_ERR(*sub_root))
1793 return PTR_ERR(*sub_root);
1795 ri = &(*sub_root)->root_item;
1796 location->objectid = btrfs_root_dirid(ri);
1797 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1798 location->offset = 0;
1803 static noinline void init_btrfs_i(struct inode *inode)
1805 struct btrfs_inode *bi = BTRFS_I(inode);
1808 bi->i_default_acl = NULL;
1812 bi->logged_trans = 0;
1813 bi->delalloc_bytes = 0;
1814 bi->disk_i_size = 0;
1816 bi->index_cnt = (u64)-1;
1817 bi->log_dirty_trans = 0;
1818 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1819 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1820 inode->i_mapping, GFP_NOFS);
1821 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1822 inode->i_mapping, GFP_NOFS);
1823 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1824 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1825 mutex_init(&BTRFS_I(inode)->csum_mutex);
1826 mutex_init(&BTRFS_I(inode)->extent_mutex);
1827 mutex_init(&BTRFS_I(inode)->log_mutex);
1830 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1832 struct btrfs_iget_args *args = p;
1833 inode->i_ino = args->ino;
1834 init_btrfs_i(inode);
1835 BTRFS_I(inode)->root = args->root;
1839 static int btrfs_find_actor(struct inode *inode, void *opaque)
1841 struct btrfs_iget_args *args = opaque;
1842 return (args->ino == inode->i_ino &&
1843 args->root == BTRFS_I(inode)->root);
1846 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1847 struct btrfs_root *root)
1849 struct inode *inode;
1850 struct btrfs_iget_args args;
1851 args.ino = objectid;
1854 inode = iget5_locked(s, objectid, btrfs_find_actor,
1855 btrfs_init_locked_inode,
1860 /* Get an inode object given its location and corresponding root.
1861 * Returns in *is_new if the inode was read from disk
1863 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1864 struct btrfs_root *root, int *is_new)
1866 struct inode *inode;
1868 inode = btrfs_iget_locked(s, location->objectid, root);
1870 return ERR_PTR(-EACCES);
1872 if (inode->i_state & I_NEW) {
1873 BTRFS_I(inode)->root = root;
1874 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1875 btrfs_read_locked_inode(inode);
1876 unlock_new_inode(inode);
1887 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1888 struct nameidata *nd)
1890 struct inode * inode;
1891 struct btrfs_inode *bi = BTRFS_I(dir);
1892 struct btrfs_root *root = bi->root;
1893 struct btrfs_root *sub_root = root;
1894 struct btrfs_key location;
1895 int ret, new, do_orphan = 0;
1897 if (dentry->d_name.len > BTRFS_NAME_LEN)
1898 return ERR_PTR(-ENAMETOOLONG);
1900 ret = btrfs_inode_by_name(dir, dentry, &location);
1903 return ERR_PTR(ret);
1906 if (location.objectid) {
1907 ret = fixup_tree_root_location(root, &location, &sub_root,
1910 return ERR_PTR(ret);
1912 return ERR_PTR(-ENOENT);
1913 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1915 return ERR_CAST(inode);
1917 /* the inode and parent dir are two different roots */
1918 if (new && root != sub_root) {
1920 sub_root->inode = inode;
1925 if (unlikely(do_orphan))
1926 btrfs_orphan_cleanup(sub_root);
1928 return d_splice_alias(inode, dentry);
1931 static unsigned char btrfs_filetype_table[] = {
1932 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1935 static int btrfs_real_readdir(struct file *filp, void *dirent,
1938 struct inode *inode = filp->f_dentry->d_inode;
1939 struct btrfs_root *root = BTRFS_I(inode)->root;
1940 struct btrfs_item *item;
1941 struct btrfs_dir_item *di;
1942 struct btrfs_key key;
1943 struct btrfs_key found_key;
1944 struct btrfs_path *path;
1947 struct extent_buffer *leaf;
1950 unsigned char d_type;
1955 int key_type = BTRFS_DIR_INDEX_KEY;
1960 /* FIXME, use a real flag for deciding about the key type */
1961 if (root->fs_info->tree_root == root)
1962 key_type = BTRFS_DIR_ITEM_KEY;
1964 /* special case for "." */
1965 if (filp->f_pos == 0) {
1966 over = filldir(dirent, ".", 1,
1973 /* special case for .., just use the back ref */
1974 if (filp->f_pos == 1) {
1975 u64 pino = parent_ino(filp->f_path.dentry);
1976 over = filldir(dirent, "..", 2,
1983 path = btrfs_alloc_path();
1986 btrfs_set_key_type(&key, key_type);
1987 key.offset = filp->f_pos;
1988 key.objectid = inode->i_ino;
1990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1996 leaf = path->nodes[0];
1997 nritems = btrfs_header_nritems(leaf);
1998 slot = path->slots[0];
1999 if (advance || slot >= nritems) {
2000 if (slot >= nritems - 1) {
2001 ret = btrfs_next_leaf(root, path);
2004 leaf = path->nodes[0];
2005 nritems = btrfs_header_nritems(leaf);
2006 slot = path->slots[0];
2013 item = btrfs_item_nr(leaf, slot);
2014 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2016 if (found_key.objectid != key.objectid)
2018 if (btrfs_key_type(&found_key) != key_type)
2020 if (found_key.offset < filp->f_pos)
2023 filp->f_pos = found_key.offset;
2025 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2027 di_total = btrfs_item_size(leaf, item);
2029 while (di_cur < di_total) {
2030 struct btrfs_key location;
2032 name_len = btrfs_dir_name_len(leaf, di);
2033 if (name_len <= sizeof(tmp_name)) {
2034 name_ptr = tmp_name;
2036 name_ptr = kmalloc(name_len, GFP_NOFS);
2042 read_extent_buffer(leaf, name_ptr,
2043 (unsigned long)(di + 1), name_len);
2045 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2046 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2047 over = filldir(dirent, name_ptr, name_len,
2048 found_key.offset, location.objectid,
2051 if (name_ptr != tmp_name)
2057 di_len = btrfs_dir_name_len(leaf, di) +
2058 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2060 di = (struct btrfs_dir_item *)((char *)di + di_len);
2064 /* Reached end of directory/root. Bump pos past the last item. */
2065 if (key_type == BTRFS_DIR_INDEX_KEY)
2066 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2072 btrfs_free_path(path);
2076 int btrfs_write_inode(struct inode *inode, int wait)
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
2079 struct btrfs_trans_handle *trans;
2082 if (root->fs_info->closing > 1)
2086 trans = btrfs_join_transaction(root, 1);
2087 btrfs_set_trans_block_group(trans, inode);
2088 ret = btrfs_commit_transaction(trans, root);
2094 * This is somewhat expensive, updating the tree every time the
2095 * inode changes. But, it is most likely to find the inode in cache.
2096 * FIXME, needs more benchmarking...there are no reasons other than performance
2097 * to keep or drop this code.
2099 void btrfs_dirty_inode(struct inode *inode)
2101 struct btrfs_root *root = BTRFS_I(inode)->root;
2102 struct btrfs_trans_handle *trans;
2104 trans = btrfs_join_transaction(root, 1);
2105 btrfs_set_trans_block_group(trans, inode);
2106 btrfs_update_inode(trans, root, inode);
2107 btrfs_end_transaction(trans, root);
2110 static int btrfs_set_inode_index_count(struct inode *inode)
2112 struct btrfs_root *root = BTRFS_I(inode)->root;
2113 struct btrfs_key key, found_key;
2114 struct btrfs_path *path;
2115 struct extent_buffer *leaf;
2118 key.objectid = inode->i_ino;
2119 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2120 key.offset = (u64)-1;
2122 path = btrfs_alloc_path();
2126 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2129 /* FIXME: we should be able to handle this */
2135 * MAGIC NUMBER EXPLANATION:
2136 * since we search a directory based on f_pos we have to start at 2
2137 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2138 * else has to start at 2
2140 if (path->slots[0] == 0) {
2141 BTRFS_I(inode)->index_cnt = 2;
2147 leaf = path->nodes[0];
2148 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2150 if (found_key.objectid != inode->i_ino ||
2151 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2152 BTRFS_I(inode)->index_cnt = 2;
2156 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2158 btrfs_free_path(path);
2162 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2167 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2168 ret = btrfs_set_inode_index_count(dir);
2174 *index = BTRFS_I(dir)->index_cnt;
2175 BTRFS_I(dir)->index_cnt++;
2180 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2183 const char *name, int name_len,
2186 struct btrfs_block_group_cache *group,
2187 int mode, u64 *index)
2189 struct inode *inode;
2190 struct btrfs_inode_item *inode_item;
2191 struct btrfs_block_group_cache *new_inode_group;
2192 struct btrfs_key *location;
2193 struct btrfs_path *path;
2194 struct btrfs_inode_ref *ref;
2195 struct btrfs_key key[2];
2201 path = btrfs_alloc_path();
2204 inode = new_inode(root->fs_info->sb);
2206 return ERR_PTR(-ENOMEM);
2209 ret = btrfs_set_inode_index(dir, inode, index);
2211 return ERR_PTR(ret);
2214 * index_cnt is ignored for everything but a dir,
2215 * btrfs_get_inode_index_count has an explanation for the magic
2218 init_btrfs_i(inode);
2219 BTRFS_I(inode)->index_cnt = 2;
2220 BTRFS_I(inode)->root = root;
2221 BTRFS_I(inode)->generation = trans->transid;
2227 new_inode_group = btrfs_find_block_group(root, group, 0,
2228 BTRFS_BLOCK_GROUP_METADATA, owner);
2229 if (!new_inode_group) {
2230 printk("find_block group failed\n");
2231 new_inode_group = group;
2233 BTRFS_I(inode)->block_group = new_inode_group;
2235 key[0].objectid = objectid;
2236 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2239 key[1].objectid = objectid;
2240 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2241 key[1].offset = ref_objectid;
2243 sizes[0] = sizeof(struct btrfs_inode_item);
2244 sizes[1] = name_len + sizeof(*ref);
2246 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2250 if (objectid > root->highest_inode)
2251 root->highest_inode = objectid;
2253 inode->i_uid = current->fsuid;
2254 inode->i_gid = current->fsgid;
2255 inode->i_mode = mode;
2256 inode->i_ino = objectid;
2257 inode->i_blocks = 0;
2258 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2259 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2260 struct btrfs_inode_item);
2261 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2263 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2264 struct btrfs_inode_ref);
2265 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2266 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2267 ptr = (unsigned long)(ref + 1);
2268 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2270 btrfs_mark_buffer_dirty(path->nodes[0]);
2271 btrfs_free_path(path);
2273 location = &BTRFS_I(inode)->location;
2274 location->objectid = objectid;
2275 location->offset = 0;
2276 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2278 insert_inode_hash(inode);
2282 BTRFS_I(dir)->index_cnt--;
2283 btrfs_free_path(path);
2284 return ERR_PTR(ret);
2287 static inline u8 btrfs_inode_type(struct inode *inode)
2289 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2292 int btrfs_add_link(struct btrfs_trans_handle *trans,
2293 struct inode *parent_inode, struct inode *inode,
2294 const char *name, int name_len, int add_backref, u64 index)
2297 struct btrfs_key key;
2298 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2300 key.objectid = inode->i_ino;
2301 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2304 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2305 parent_inode->i_ino,
2306 &key, btrfs_inode_type(inode),
2310 ret = btrfs_insert_inode_ref(trans, root,
2313 parent_inode->i_ino,
2316 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2318 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2319 ret = btrfs_update_inode(trans, root, parent_inode);
2324 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2325 struct dentry *dentry, struct inode *inode,
2326 int backref, u64 index)
2328 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2329 inode, dentry->d_name.name,
2330 dentry->d_name.len, backref, index);
2332 d_instantiate(dentry, inode);
2340 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2341 int mode, dev_t rdev)
2343 struct btrfs_trans_handle *trans;
2344 struct btrfs_root *root = BTRFS_I(dir)->root;
2345 struct inode *inode = NULL;
2349 unsigned long nr = 0;
2352 if (!new_valid_dev(rdev))
2355 err = btrfs_check_free_space(root, 1, 0);
2359 trans = btrfs_start_transaction(root, 1);
2360 btrfs_set_trans_block_group(trans, dir);
2362 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2368 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2370 dentry->d_parent->d_inode->i_ino, objectid,
2371 BTRFS_I(dir)->block_group, mode, &index);
2372 err = PTR_ERR(inode);
2376 err = btrfs_init_acl(inode, dir);
2382 btrfs_set_trans_block_group(trans, inode);
2383 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2387 inode->i_op = &btrfs_special_inode_operations;
2388 init_special_inode(inode, inode->i_mode, rdev);
2389 btrfs_update_inode(trans, root, inode);
2391 dir->i_sb->s_dirt = 1;
2392 btrfs_update_inode_block_group(trans, inode);
2393 btrfs_update_inode_block_group(trans, dir);
2395 nr = trans->blocks_used;
2396 btrfs_end_transaction_throttle(trans, root);
2399 inode_dec_link_count(inode);
2402 btrfs_btree_balance_dirty(root, nr);
2406 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2407 int mode, struct nameidata *nd)
2409 struct btrfs_trans_handle *trans;
2410 struct btrfs_root *root = BTRFS_I(dir)->root;
2411 struct inode *inode = NULL;
2414 unsigned long nr = 0;
2418 err = btrfs_check_free_space(root, 1, 0);
2421 trans = btrfs_start_transaction(root, 1);
2422 btrfs_set_trans_block_group(trans, dir);
2424 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2430 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2432 dentry->d_parent->d_inode->i_ino,
2433 objectid, BTRFS_I(dir)->block_group, mode,
2435 err = PTR_ERR(inode);
2439 err = btrfs_init_acl(inode, dir);
2445 btrfs_set_trans_block_group(trans, inode);
2446 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2450 inode->i_mapping->a_ops = &btrfs_aops;
2451 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2452 inode->i_fop = &btrfs_file_operations;
2453 inode->i_op = &btrfs_file_inode_operations;
2454 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2456 dir->i_sb->s_dirt = 1;
2457 btrfs_update_inode_block_group(trans, inode);
2458 btrfs_update_inode_block_group(trans, dir);
2460 nr = trans->blocks_used;
2461 btrfs_end_transaction_throttle(trans, root);
2464 inode_dec_link_count(inode);
2467 btrfs_btree_balance_dirty(root, nr);
2471 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2472 struct dentry *dentry)
2474 struct btrfs_trans_handle *trans;
2475 struct btrfs_root *root = BTRFS_I(dir)->root;
2476 struct inode *inode = old_dentry->d_inode;
2478 unsigned long nr = 0;
2482 if (inode->i_nlink == 0)
2485 btrfs_inc_nlink(inode);
2486 err = btrfs_check_free_space(root, 1, 0);
2489 err = btrfs_set_inode_index(dir, inode, &index);
2493 trans = btrfs_start_transaction(root, 1);
2495 btrfs_set_trans_block_group(trans, dir);
2496 atomic_inc(&inode->i_count);
2498 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2503 dir->i_sb->s_dirt = 1;
2504 btrfs_update_inode_block_group(trans, dir);
2505 err = btrfs_update_inode(trans, root, inode);
2510 nr = trans->blocks_used;
2511 btrfs_end_transaction_throttle(trans, root);
2514 inode_dec_link_count(inode);
2517 btrfs_btree_balance_dirty(root, nr);
2521 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2523 struct inode *inode = NULL;
2524 struct btrfs_trans_handle *trans;
2525 struct btrfs_root *root = BTRFS_I(dir)->root;
2527 int drop_on_err = 0;
2530 unsigned long nr = 1;
2532 err = btrfs_check_free_space(root, 1, 0);
2536 trans = btrfs_start_transaction(root, 1);
2537 btrfs_set_trans_block_group(trans, dir);
2539 if (IS_ERR(trans)) {
2540 err = PTR_ERR(trans);
2544 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2550 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2552 dentry->d_parent->d_inode->i_ino, objectid,
2553 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2555 if (IS_ERR(inode)) {
2556 err = PTR_ERR(inode);
2562 err = btrfs_init_acl(inode, dir);
2566 inode->i_op = &btrfs_dir_inode_operations;
2567 inode->i_fop = &btrfs_dir_file_operations;
2568 btrfs_set_trans_block_group(trans, inode);
2570 btrfs_i_size_write(inode, 0);
2571 err = btrfs_update_inode(trans, root, inode);
2575 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2576 inode, dentry->d_name.name,
2577 dentry->d_name.len, 0, index);
2581 d_instantiate(dentry, inode);
2583 dir->i_sb->s_dirt = 1;
2584 btrfs_update_inode_block_group(trans, inode);
2585 btrfs_update_inode_block_group(trans, dir);
2588 nr = trans->blocks_used;
2589 btrfs_end_transaction_throttle(trans, root);
2594 btrfs_btree_balance_dirty(root, nr);
2598 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2599 struct extent_map *existing,
2600 struct extent_map *em,
2601 u64 map_start, u64 map_len)
2605 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2606 start_diff = map_start - em->start;
2607 em->start = map_start;
2609 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2610 em->block_start += start_diff;
2611 return add_extent_mapping(em_tree, em);
2614 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2615 size_t pg_offset, u64 start, u64 len,
2621 u64 extent_start = 0;
2623 u64 objectid = inode->i_ino;
2625 struct btrfs_path *path = NULL;
2626 struct btrfs_root *root = BTRFS_I(inode)->root;
2627 struct btrfs_file_extent_item *item;
2628 struct extent_buffer *leaf;
2629 struct btrfs_key found_key;
2630 struct extent_map *em = NULL;
2631 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2632 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2633 struct btrfs_trans_handle *trans = NULL;
2636 spin_lock(&em_tree->lock);
2637 em = lookup_extent_mapping(em_tree, start, len);
2639 em->bdev = root->fs_info->fs_devices->latest_bdev;
2640 spin_unlock(&em_tree->lock);
2643 if (em->start > start || em->start + em->len <= start)
2644 free_extent_map(em);
2645 else if (em->block_start == EXTENT_MAP_INLINE && page)
2646 free_extent_map(em);
2650 em = alloc_extent_map(GFP_NOFS);
2655 em->bdev = root->fs_info->fs_devices->latest_bdev;
2656 em->start = EXTENT_MAP_HOLE;
2660 path = btrfs_alloc_path();
2664 ret = btrfs_lookup_file_extent(trans, root, path,
2665 objectid, start, trans != NULL);
2672 if (path->slots[0] == 0)
2677 leaf = path->nodes[0];
2678 item = btrfs_item_ptr(leaf, path->slots[0],
2679 struct btrfs_file_extent_item);
2680 /* are we inside the extent that was found? */
2681 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2682 found_type = btrfs_key_type(&found_key);
2683 if (found_key.objectid != objectid ||
2684 found_type != BTRFS_EXTENT_DATA_KEY) {
2688 found_type = btrfs_file_extent_type(leaf, item);
2689 extent_start = found_key.offset;
2690 if (found_type == BTRFS_FILE_EXTENT_REG) {
2691 extent_end = extent_start +
2692 btrfs_file_extent_num_bytes(leaf, item);
2694 if (start < extent_start || start >= extent_end) {
2696 if (start < extent_start) {
2697 if (start + len <= extent_start)
2699 em->len = extent_end - extent_start;
2705 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2707 em->start = extent_start;
2708 em->len = extent_end - extent_start;
2709 em->block_start = EXTENT_MAP_HOLE;
2712 bytenr += btrfs_file_extent_offset(leaf, item);
2713 em->block_start = bytenr;
2714 em->start = extent_start;
2715 em->len = extent_end - extent_start;
2717 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2722 size_t extent_offset;
2725 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2727 extent_end = (extent_start + size + root->sectorsize - 1) &
2728 ~((u64)root->sectorsize - 1);
2729 if (start < extent_start || start >= extent_end) {
2731 if (start < extent_start) {
2732 if (start + len <= extent_start)
2734 em->len = extent_end - extent_start;
2740 em->block_start = EXTENT_MAP_INLINE;
2743 em->start = extent_start;
2748 page_start = page_offset(page) + pg_offset;
2749 extent_offset = page_start - extent_start;
2750 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2751 size - extent_offset);
2752 em->start = extent_start + extent_offset;
2753 em->len = (copy_size + root->sectorsize - 1) &
2754 ~((u64)root->sectorsize - 1);
2756 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2757 if (create == 0 && !PageUptodate(page)) {
2758 read_extent_buffer(leaf, map + pg_offset, ptr,
2760 flush_dcache_page(page);
2761 } else if (create && PageUptodate(page)) {
2764 free_extent_map(em);
2766 btrfs_release_path(root, path);
2767 trans = btrfs_join_transaction(root, 1);
2770 write_extent_buffer(leaf, map + pg_offset, ptr,
2772 btrfs_mark_buffer_dirty(leaf);
2775 set_extent_uptodate(io_tree, em->start,
2776 extent_map_end(em) - 1, GFP_NOFS);
2779 printk("unkknown found_type %d\n", found_type);
2786 em->block_start = EXTENT_MAP_HOLE;
2788 btrfs_release_path(root, path);
2789 if (em->start > start || extent_map_end(em) <= start) {
2790 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2796 spin_lock(&em_tree->lock);
2797 ret = add_extent_mapping(em_tree, em);
2798 /* it is possible that someone inserted the extent into the tree
2799 * while we had the lock dropped. It is also possible that
2800 * an overlapping map exists in the tree
2802 if (ret == -EEXIST) {
2803 struct extent_map *existing;
2807 existing = lookup_extent_mapping(em_tree, start, len);
2808 if (existing && (existing->start > start ||
2809 existing->start + existing->len <= start)) {
2810 free_extent_map(existing);
2814 existing = lookup_extent_mapping(em_tree, em->start,
2817 err = merge_extent_mapping(em_tree, existing,
2820 free_extent_map(existing);
2822 free_extent_map(em);
2827 printk("failing to insert %Lu %Lu\n",
2829 free_extent_map(em);
2833 free_extent_map(em);
2838 spin_unlock(&em_tree->lock);
2841 btrfs_free_path(path);
2843 ret = btrfs_end_transaction(trans, root);
2849 free_extent_map(em);
2851 return ERR_PTR(err);
2856 #if 0 /* waiting for O_DIRECT reads */
2857 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2858 struct buffer_head *bh_result, int create)
2860 struct extent_map *em;
2861 u64 start = (u64)iblock << inode->i_blkbits;
2862 struct btrfs_multi_bio *multi = NULL;
2863 struct btrfs_root *root = BTRFS_I(inode)->root;
2869 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2871 if (!em || IS_ERR(em))
2874 if (em->start > start || em->start + em->len <= start) {
2878 if (em->block_start == EXTENT_MAP_INLINE) {
2883 len = em->start + em->len - start;
2884 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2886 if (em->block_start == EXTENT_MAP_HOLE ||
2887 em->block_start == EXTENT_MAP_DELALLOC) {
2888 bh_result->b_size = len;
2892 logical = start - em->start;
2893 logical = em->block_start + logical;
2896 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2897 logical, &map_length, &multi, 0);
2899 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2900 bh_result->b_size = min(map_length, len);
2902 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2903 set_buffer_mapped(bh_result);
2906 free_extent_map(em);
2911 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2912 const struct iovec *iov, loff_t offset,
2913 unsigned long nr_segs)
2917 struct file *file = iocb->ki_filp;
2918 struct inode *inode = file->f_mapping->host;
2923 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2924 offset, nr_segs, btrfs_get_block, NULL);
2928 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2930 return extent_bmap(mapping, iblock, btrfs_get_extent);
2933 int btrfs_readpage(struct file *file, struct page *page)
2935 struct extent_io_tree *tree;
2936 tree = &BTRFS_I(page->mapping->host)->io_tree;
2937 return extent_read_full_page(tree, page, btrfs_get_extent);
2940 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2942 struct extent_io_tree *tree;
2945 if (current->flags & PF_MEMALLOC) {
2946 redirty_page_for_writepage(wbc, page);
2950 tree = &BTRFS_I(page->mapping->host)->io_tree;
2951 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2954 int btrfs_writepages(struct address_space *mapping,
2955 struct writeback_control *wbc)
2957 struct extent_io_tree *tree;
2958 tree = &BTRFS_I(mapping->host)->io_tree;
2959 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2963 btrfs_readpages(struct file *file, struct address_space *mapping,
2964 struct list_head *pages, unsigned nr_pages)
2966 struct extent_io_tree *tree;
2967 tree = &BTRFS_I(mapping->host)->io_tree;
2968 return extent_readpages(tree, mapping, pages, nr_pages,
2971 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2973 struct extent_io_tree *tree;
2974 struct extent_map_tree *map;
2977 tree = &BTRFS_I(page->mapping->host)->io_tree;
2978 map = &BTRFS_I(page->mapping->host)->extent_tree;
2979 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2981 ClearPagePrivate(page);
2982 set_page_private(page, 0);
2983 page_cache_release(page);
2988 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2990 if (PageWriteback(page) || PageDirty(page))
2992 return __btrfs_releasepage(page, gfp_flags);
2995 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
2997 struct extent_io_tree *tree;
2998 struct btrfs_ordered_extent *ordered;
2999 u64 page_start = page_offset(page);
3000 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3002 wait_on_page_writeback(page);
3003 tree = &BTRFS_I(page->mapping->host)->io_tree;
3005 btrfs_releasepage(page, GFP_NOFS);
3009 lock_extent(tree, page_start, page_end, GFP_NOFS);
3010 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3014 * IO on this page will never be started, so we need
3015 * to account for any ordered extents now
3017 clear_extent_bit(tree, page_start, page_end,
3018 EXTENT_DIRTY | EXTENT_DELALLOC |
3019 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3020 btrfs_finish_ordered_io(page->mapping->host,
3021 page_start, page_end);
3022 btrfs_put_ordered_extent(ordered);
3023 lock_extent(tree, page_start, page_end, GFP_NOFS);
3025 clear_extent_bit(tree, page_start, page_end,
3026 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3029 __btrfs_releasepage(page, GFP_NOFS);
3031 ClearPageChecked(page);
3032 if (PagePrivate(page)) {
3033 ClearPagePrivate(page);
3034 set_page_private(page, 0);
3035 page_cache_release(page);
3040 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3041 * called from a page fault handler when a page is first dirtied. Hence we must
3042 * be careful to check for EOF conditions here. We set the page up correctly
3043 * for a written page which means we get ENOSPC checking when writing into
3044 * holes and correct delalloc and unwritten extent mapping on filesystems that
3045 * support these features.
3047 * We are not allowed to take the i_mutex here so we have to play games to
3048 * protect against truncate races as the page could now be beyond EOF. Because
3049 * vmtruncate() writes the inode size before removing pages, once we have the
3050 * page lock we can determine safely if the page is beyond EOF. If it is not
3051 * beyond EOF, then the page is guaranteed safe against truncation until we
3054 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3056 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3057 struct btrfs_root *root = BTRFS_I(inode)->root;
3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3059 struct btrfs_ordered_extent *ordered;
3061 unsigned long zero_start;
3067 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3074 size = i_size_read(inode);
3075 page_start = page_offset(page);
3076 page_end = page_start + PAGE_CACHE_SIZE - 1;
3078 if ((page->mapping != inode->i_mapping) ||
3079 (page_start >= size)) {
3080 /* page got truncated out from underneath us */
3083 wait_on_page_writeback(page);
3085 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3086 set_page_extent_mapped(page);
3089 * we can't set the delalloc bits if there are pending ordered
3090 * extents. Drop our locks and wait for them to finish
3092 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3094 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3096 btrfs_start_ordered_extent(inode, ordered, 1);
3097 btrfs_put_ordered_extent(ordered);
3101 btrfs_set_extent_delalloc(inode, page_start, page_end);
3104 /* page is wholly or partially inside EOF */
3105 if (page_start + PAGE_CACHE_SIZE > size)
3106 zero_start = size & ~PAGE_CACHE_MASK;
3108 zero_start = PAGE_CACHE_SIZE;
3110 if (zero_start != PAGE_CACHE_SIZE) {
3112 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3113 flush_dcache_page(page);
3116 ClearPageChecked(page);
3117 set_page_dirty(page);
3118 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3126 static void btrfs_truncate(struct inode *inode)
3128 struct btrfs_root *root = BTRFS_I(inode)->root;
3130 struct btrfs_trans_handle *trans;
3132 u64 mask = root->sectorsize - 1;
3134 if (!S_ISREG(inode->i_mode))
3136 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3139 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3140 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3142 trans = btrfs_start_transaction(root, 1);
3143 btrfs_set_trans_block_group(trans, inode);
3144 btrfs_i_size_write(inode, inode->i_size);
3146 ret = btrfs_orphan_add(trans, inode);
3149 /* FIXME, add redo link to tree so we don't leak on crash */
3150 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3151 BTRFS_EXTENT_DATA_KEY);
3152 btrfs_update_inode(trans, root, inode);
3154 ret = btrfs_orphan_del(trans, inode);
3158 nr = trans->blocks_used;
3159 ret = btrfs_end_transaction_throttle(trans, root);
3161 btrfs_btree_balance_dirty(root, nr);
3165 * Invalidate a single dcache entry at the root of the filesystem.
3166 * Needed after creation of snapshot or subvolume.
3168 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3171 struct dentry *alias, *entry;
3174 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3178 /* change me if btrfs ever gets a d_hash operation */
3179 qstr.hash = full_name_hash(qstr.name, qstr.len);
3180 entry = d_lookup(alias, &qstr);
3183 d_invalidate(entry);
3189 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3190 struct btrfs_trans_handle *trans, u64 new_dirid,
3191 struct btrfs_block_group_cache *block_group)
3193 struct inode *inode;
3196 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3197 new_dirid, block_group, S_IFDIR | 0700, &index);
3199 return PTR_ERR(inode);
3200 inode->i_op = &btrfs_dir_inode_operations;
3201 inode->i_fop = &btrfs_dir_file_operations;
3202 new_root->inode = inode;
3205 btrfs_i_size_write(inode, 0);
3207 return btrfs_update_inode(trans, new_root, inode);
3210 unsigned long btrfs_force_ra(struct address_space *mapping,
3211 struct file_ra_state *ra, struct file *file,
3212 pgoff_t offset, pgoff_t last_index)
3214 pgoff_t req_size = last_index - offset + 1;
3216 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3217 return offset + req_size;
3220 struct inode *btrfs_alloc_inode(struct super_block *sb)
3222 struct btrfs_inode *ei;
3224 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3228 ei->logged_trans = 0;
3229 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3230 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3231 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3232 INIT_LIST_HEAD(&ei->i_orphan);
3233 return &ei->vfs_inode;
3236 void btrfs_destroy_inode(struct inode *inode)
3238 struct btrfs_ordered_extent *ordered;
3239 WARN_ON(!list_empty(&inode->i_dentry));
3240 WARN_ON(inode->i_data.nrpages);
3242 if (BTRFS_I(inode)->i_acl &&
3243 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3244 posix_acl_release(BTRFS_I(inode)->i_acl);
3245 if (BTRFS_I(inode)->i_default_acl &&
3246 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3247 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3249 spin_lock(&BTRFS_I(inode)->root->list_lock);
3250 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3251 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3252 " list\n", inode->i_ino);
3255 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3258 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3262 printk("found ordered extent %Lu %Lu\n",
3263 ordered->file_offset, ordered->len);
3264 btrfs_remove_ordered_extent(inode, ordered);
3265 btrfs_put_ordered_extent(ordered);
3266 btrfs_put_ordered_extent(ordered);
3269 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3270 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3273 static void init_once(void *foo)
3275 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3277 inode_init_once(&ei->vfs_inode);
3280 void btrfs_destroy_cachep(void)
3282 if (btrfs_inode_cachep)
3283 kmem_cache_destroy(btrfs_inode_cachep);
3284 if (btrfs_trans_handle_cachep)
3285 kmem_cache_destroy(btrfs_trans_handle_cachep);
3286 if (btrfs_transaction_cachep)
3287 kmem_cache_destroy(btrfs_transaction_cachep);
3288 if (btrfs_bit_radix_cachep)
3289 kmem_cache_destroy(btrfs_bit_radix_cachep);
3290 if (btrfs_path_cachep)
3291 kmem_cache_destroy(btrfs_path_cachep);
3294 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3295 unsigned long extra_flags,
3296 void (*ctor)(void *))
3298 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3299 SLAB_MEM_SPREAD | extra_flags), ctor);
3302 int btrfs_init_cachep(void)
3304 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3305 sizeof(struct btrfs_inode),
3307 if (!btrfs_inode_cachep)
3309 btrfs_trans_handle_cachep =
3310 btrfs_cache_create("btrfs_trans_handle_cache",
3311 sizeof(struct btrfs_trans_handle),
3313 if (!btrfs_trans_handle_cachep)
3315 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3316 sizeof(struct btrfs_transaction),
3318 if (!btrfs_transaction_cachep)
3320 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3321 sizeof(struct btrfs_path),
3323 if (!btrfs_path_cachep)
3325 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3326 SLAB_DESTROY_BY_RCU, NULL);
3327 if (!btrfs_bit_radix_cachep)
3331 btrfs_destroy_cachep();
3335 static int btrfs_getattr(struct vfsmount *mnt,
3336 struct dentry *dentry, struct kstat *stat)
3338 struct inode *inode = dentry->d_inode;
3339 generic_fillattr(inode, stat);
3340 stat->blksize = PAGE_CACHE_SIZE;
3341 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3345 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3346 struct inode * new_dir,struct dentry *new_dentry)
3348 struct btrfs_trans_handle *trans;
3349 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3350 struct inode *new_inode = new_dentry->d_inode;
3351 struct inode *old_inode = old_dentry->d_inode;
3352 struct timespec ctime = CURRENT_TIME;
3356 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3357 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3361 ret = btrfs_check_free_space(root, 1, 0);
3365 trans = btrfs_start_transaction(root, 1);
3367 btrfs_set_trans_block_group(trans, new_dir);
3369 btrfs_inc_nlink(old_dentry->d_inode);
3370 old_dir->i_ctime = old_dir->i_mtime = ctime;
3371 new_dir->i_ctime = new_dir->i_mtime = ctime;
3372 old_inode->i_ctime = ctime;
3374 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3375 old_dentry->d_name.name,
3376 old_dentry->d_name.len);
3381 new_inode->i_ctime = CURRENT_TIME;
3382 ret = btrfs_unlink_inode(trans, root, new_dir,
3383 new_dentry->d_inode,
3384 new_dentry->d_name.name,
3385 new_dentry->d_name.len);
3388 if (new_inode->i_nlink == 0) {
3389 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3395 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3399 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3400 old_inode, new_dentry->d_name.name,
3401 new_dentry->d_name.len, 1, index);
3406 btrfs_end_transaction_throttle(trans, root);
3411 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3413 struct list_head *head = &root->fs_info->delalloc_inodes;
3414 struct btrfs_inode *binode;
3415 unsigned long flags;
3417 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3418 while(!list_empty(head)) {
3419 binode = list_entry(head->next, struct btrfs_inode,
3421 atomic_inc(&binode->vfs_inode.i_count);
3422 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3423 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3424 iput(&binode->vfs_inode);
3425 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3427 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3431 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3432 const char *symname)
3434 struct btrfs_trans_handle *trans;
3435 struct btrfs_root *root = BTRFS_I(dir)->root;
3436 struct btrfs_path *path;
3437 struct btrfs_key key;
3438 struct inode *inode = NULL;
3446 struct btrfs_file_extent_item *ei;
3447 struct extent_buffer *leaf;
3448 unsigned long nr = 0;
3450 name_len = strlen(symname) + 1;
3451 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3452 return -ENAMETOOLONG;
3454 err = btrfs_check_free_space(root, 1, 0);
3458 trans = btrfs_start_transaction(root, 1);
3459 btrfs_set_trans_block_group(trans, dir);
3461 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3467 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3469 dentry->d_parent->d_inode->i_ino, objectid,
3470 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3472 err = PTR_ERR(inode);
3476 err = btrfs_init_acl(inode, dir);
3482 btrfs_set_trans_block_group(trans, inode);
3483 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3487 inode->i_mapping->a_ops = &btrfs_aops;
3488 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3489 inode->i_fop = &btrfs_file_operations;
3490 inode->i_op = &btrfs_file_inode_operations;
3491 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3493 dir->i_sb->s_dirt = 1;
3494 btrfs_update_inode_block_group(trans, inode);
3495 btrfs_update_inode_block_group(trans, dir);
3499 path = btrfs_alloc_path();
3501 key.objectid = inode->i_ino;
3503 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3504 datasize = btrfs_file_extent_calc_inline_size(name_len);
3505 err = btrfs_insert_empty_item(trans, root, path, &key,
3511 leaf = path->nodes[0];
3512 ei = btrfs_item_ptr(leaf, path->slots[0],
3513 struct btrfs_file_extent_item);
3514 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3515 btrfs_set_file_extent_type(leaf, ei,
3516 BTRFS_FILE_EXTENT_INLINE);
3517 ptr = btrfs_file_extent_inline_start(ei);
3518 write_extent_buffer(leaf, symname, ptr, name_len);
3519 btrfs_mark_buffer_dirty(leaf);
3520 btrfs_free_path(path);
3522 inode->i_op = &btrfs_symlink_inode_operations;
3523 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3524 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3525 btrfs_i_size_write(inode, name_len - 1);
3526 err = btrfs_update_inode(trans, root, inode);
3531 nr = trans->blocks_used;
3532 btrfs_end_transaction_throttle(trans, root);
3535 inode_dec_link_count(inode);
3538 btrfs_btree_balance_dirty(root, nr);
3542 static int btrfs_set_page_dirty(struct page *page)
3544 return __set_page_dirty_nobuffers(page);
3547 static int btrfs_permission(struct inode *inode, int mask)
3549 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3551 return generic_permission(inode, mask, btrfs_check_acl);
3554 static struct inode_operations btrfs_dir_inode_operations = {
3555 .lookup = btrfs_lookup,
3556 .create = btrfs_create,
3557 .unlink = btrfs_unlink,
3559 .mkdir = btrfs_mkdir,
3560 .rmdir = btrfs_rmdir,
3561 .rename = btrfs_rename,
3562 .symlink = btrfs_symlink,
3563 .setattr = btrfs_setattr,
3564 .mknod = btrfs_mknod,
3565 .setxattr = btrfs_setxattr,
3566 .getxattr = btrfs_getxattr,
3567 .listxattr = btrfs_listxattr,
3568 .removexattr = btrfs_removexattr,
3569 .permission = btrfs_permission,
3571 static struct inode_operations btrfs_dir_ro_inode_operations = {
3572 .lookup = btrfs_lookup,
3573 .permission = btrfs_permission,
3575 static struct file_operations btrfs_dir_file_operations = {
3576 .llseek = generic_file_llseek,
3577 .read = generic_read_dir,
3578 .readdir = btrfs_real_readdir,
3579 .unlocked_ioctl = btrfs_ioctl,
3580 #ifdef CONFIG_COMPAT
3581 .compat_ioctl = btrfs_ioctl,
3583 .release = btrfs_release_file,
3584 .fsync = btrfs_sync_file,
3587 static struct extent_io_ops btrfs_extent_io_ops = {
3588 .fill_delalloc = run_delalloc_range,
3589 .submit_bio_hook = btrfs_submit_bio_hook,
3590 .merge_bio_hook = btrfs_merge_bio_hook,
3591 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3592 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3593 .writepage_start_hook = btrfs_writepage_start_hook,
3594 .readpage_io_failed_hook = btrfs_io_failed_hook,
3595 .set_bit_hook = btrfs_set_bit_hook,
3596 .clear_bit_hook = btrfs_clear_bit_hook,
3599 static struct address_space_operations btrfs_aops = {
3600 .readpage = btrfs_readpage,
3601 .writepage = btrfs_writepage,
3602 .writepages = btrfs_writepages,
3603 .readpages = btrfs_readpages,
3604 .sync_page = block_sync_page,
3606 .direct_IO = btrfs_direct_IO,
3607 .invalidatepage = btrfs_invalidatepage,
3608 .releasepage = btrfs_releasepage,
3609 .set_page_dirty = btrfs_set_page_dirty,
3612 static struct address_space_operations btrfs_symlink_aops = {
3613 .readpage = btrfs_readpage,
3614 .writepage = btrfs_writepage,
3615 .invalidatepage = btrfs_invalidatepage,
3616 .releasepage = btrfs_releasepage,
3619 static struct inode_operations btrfs_file_inode_operations = {
3620 .truncate = btrfs_truncate,
3621 .getattr = btrfs_getattr,
3622 .setattr = btrfs_setattr,
3623 .setxattr = btrfs_setxattr,
3624 .getxattr = btrfs_getxattr,
3625 .listxattr = btrfs_listxattr,
3626 .removexattr = btrfs_removexattr,
3627 .permission = btrfs_permission,
3629 static struct inode_operations btrfs_special_inode_operations = {
3630 .getattr = btrfs_getattr,
3631 .setattr = btrfs_setattr,
3632 .permission = btrfs_permission,
3633 .setxattr = btrfs_setxattr,
3634 .getxattr = btrfs_getxattr,
3635 .listxattr = btrfs_listxattr,
3636 .removexattr = btrfs_removexattr,
3638 static struct inode_operations btrfs_symlink_inode_operations = {
3639 .readlink = generic_readlink,
3640 .follow_link = page_follow_link_light,
3641 .put_link = page_put_link,
3642 .permission = btrfs_permission,