[BNX2]: Add support for ETHTOOL_GPERMADDR.
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala (kumar.gala@freescale.com)
10  *
11  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  *
18  *  Gianfar:  AKA Lambda Draconis, "Dragon"
19  *  RA 11 31 24.2
20  *  Dec +69 19 52
21  *  V 3.84
22  *  B-V +1.62
23  *
24  *  Theory of operation
25  *  This driver is designed for the non-CPM ethernet controllers
26  *  on the 85xx and 83xx family of integrated processors
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.  One assumption the driver currently makes
33  *  is that the PHY is configured in such a way to advertise all
34  *  capabilities.  This is a sensible default, and on certain
35  *  PHYs, changing this default encounters substantial errata
36  *  issues.  Future versions may remove this requirement, but for
37  *  now, it is best for the firmware to ensure this is the case.
38  *
39  *  The Gianfar Ethernet Controller uses a ring of buffer
40  *  descriptors.  The beginning is indicated by a register
41  *  pointing to the physical address of the start of the ring.
42  *  The end is determined by a "wrap" bit being set in the
43  *  last descriptor of the ring.
44  *
45  *  When a packet is received, the RXF bit in the
46  *  IEVENT register is set, triggering an interrupt when the
47  *  corresponding bit in the IMASK register is also set (if
48  *  interrupt coalescing is active, then the interrupt may not
49  *  happen immediately, but will wait until either a set number
50  *  of frames or amount of time have passed.).  In NAPI, the
51  *  interrupt handler will signal there is work to be done, and
52  *  exit.  Without NAPI, the packet(s) will be handled
53  *  immediately.  Both methods will start at the last known empty
54  *  descriptor, and process every subsequent descriptor until there
55  *  are none left with data (NAPI will stop after a set number of
56  *  packets to give time to other tasks, but will eventually
57  *  process all the packets).  The data arrives inside a
58  *  pre-allocated skb, and so after the skb is passed up to the
59  *  stack, a new skb must be allocated, and the address field in
60  *  the buffer descriptor must be updated to indicate this new
61  *  skb.
62  *
63  *  When the kernel requests that a packet be transmitted, the
64  *  driver starts where it left off last time, and points the
65  *  descriptor at the buffer which was passed in.  The driver
66  *  then informs the DMA engine that there are packets ready to
67  *  be transmitted.  Once the controller is finished transmitting
68  *  the packet, an interrupt may be triggered (under the same
69  *  conditions as for reception, but depending on the TXF bit).
70  *  The driver then cleans up the buffer.
71  */
72
73 #include <linux/config.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/string.h>
77 #include <linux/errno.h>
78 #include <linux/slab.h>
79 #include <linux/interrupt.h>
80 #include <linux/init.h>
81 #include <linux/delay.h>
82 #include <linux/netdevice.h>
83 #include <linux/etherdevice.h>
84 #include <linux/skbuff.h>
85 #include <linux/if_vlan.h>
86 #include <linux/spinlock.h>
87 #include <linux/mm.h>
88 #include <linux/device.h>
89 #include <linux/ip.h>
90 #include <linux/tcp.h>
91 #include <linux/udp.h>
92
93 #include <asm/io.h>
94 #include <asm/irq.h>
95 #include <asm/uaccess.h>
96 #include <linux/module.h>
97 #include <linux/version.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100
101 #include "gianfar.h"
102 #include "gianfar_phy.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105 #define SKB_ALLOC_TIMEOUT 1000000
106 #undef BRIEF_GFAR_ERRORS
107 #undef VERBOSE_GFAR_ERRORS
108
109 #ifdef CONFIG_GFAR_NAPI
110 #define RECEIVE(x) netif_receive_skb(x)
111 #else
112 #define RECEIVE(x) netif_rx(x)
113 #endif
114
115 const char gfar_driver_name[] = "Gianfar Ethernet";
116 const char gfar_driver_version[] = "1.1";
117
118 int startup_gfar(struct net_device *dev);
119 static int gfar_enet_open(struct net_device *dev);
120 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
121 static void gfar_timeout(struct net_device *dev);
122 static int gfar_close(struct net_device *dev);
123 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
124 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
125 static int gfar_set_mac_address(struct net_device *dev);
126 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
127 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
128 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
129 static irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
130 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
131 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
132 static void gfar_phy_change(void *data);
133 static void gfar_phy_timer(unsigned long data);
134 static void adjust_link(struct net_device *dev);
135 static void init_registers(struct net_device *dev);
136 static int init_phy(struct net_device *dev);
137 static int gfar_probe(struct device *device);
138 static int gfar_remove(struct device *device);
139 void free_skb_resources(struct gfar_private *priv);
140 static void gfar_set_multi(struct net_device *dev);
141 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
142 #ifdef CONFIG_GFAR_NAPI
143 static int gfar_poll(struct net_device *dev, int *budget);
144 #endif
145 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
146 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
147 static void gfar_phy_startup_timer(unsigned long data);
148 static void gfar_vlan_rx_register(struct net_device *netdev,
149                                 struct vlan_group *grp);
150 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
151
152 extern struct ethtool_ops gfar_ethtool_ops;
153
154 MODULE_AUTHOR("Freescale Semiconductor, Inc");
155 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
156 MODULE_LICENSE("GPL");
157
158 int gfar_uses_fcb(struct gfar_private *priv)
159 {
160         if (priv->vlan_enable || priv->rx_csum_enable)
161                 return 1;
162         else
163                 return 0;
164 }
165 static int gfar_probe(struct device *device)
166 {
167         u32 tempval;
168         struct net_device *dev = NULL;
169         struct gfar_private *priv = NULL;
170         struct platform_device *pdev = to_platform_device(device);
171         struct gianfar_platform_data *einfo;
172         struct resource *r;
173         int idx;
174         int err = 0;
175
176         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
177
178         if (einfo == NULL) {
179                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
180                        pdev->id);
181
182                 return -ENODEV;
183         }
184
185         /* Create an ethernet device instance */
186         dev = alloc_etherdev(sizeof (*priv));
187
188         if (dev == NULL)
189                 return -ENOMEM;
190
191         priv = netdev_priv(dev);
192
193         /* Set the info in the priv to the current info */
194         priv->einfo = einfo;
195
196         /* fill out IRQ fields */
197         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200                 priv->interruptError = platform_get_irq_byname(pdev, "error");
201         } else {
202                 priv->interruptTransmit = platform_get_irq(pdev, 0);
203         }
204
205         /* get a pointer to the register memory */
206         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
207         priv->regs = (struct gfar *)
208                 ioremap(r->start, sizeof (struct gfar));
209
210         if (priv->regs == NULL) {
211                 err = -ENOMEM;
212                 goto regs_fail;
213         }
214
215         /* Set the PHY base address */
216         priv->phyregs = (struct gfar *)
217             ioremap(einfo->phy_reg_addr, sizeof (struct gfar));
218
219         if (priv->phyregs == NULL) {
220                 err = -ENOMEM;
221                 goto phy_regs_fail;
222         }
223
224         spin_lock_init(&priv->lock);
225
226         dev_set_drvdata(device, dev);
227
228         /* Stop the DMA engine now, in case it was running before */
229         /* (The firmware could have used it, and left it running). */
230         /* To do this, we write Graceful Receive Stop and Graceful */
231         /* Transmit Stop, and then wait until the corresponding bits */
232         /* in IEVENT indicate the stops have completed. */
233         tempval = gfar_read(&priv->regs->dmactrl);
234         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
235         gfar_write(&priv->regs->dmactrl, tempval);
236
237         tempval = gfar_read(&priv->regs->dmactrl);
238         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
239         gfar_write(&priv->regs->dmactrl, tempval);
240
241         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
242                 cpu_relax();
243
244         /* Reset MAC layer */
245         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
246
247         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
248         gfar_write(&priv->regs->maccfg1, tempval);
249
250         /* Initialize MACCFG2. */
251         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
252
253         /* Initialize ECNTRL */
254         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
255
256         /* Copy the station address into the dev structure, */
257         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
258
259         /* Set the dev->base_addr to the gfar reg region */
260         dev->base_addr = (unsigned long) (priv->regs);
261
262         SET_MODULE_OWNER(dev);
263         SET_NETDEV_DEV(dev, device);
264
265         /* Fill in the dev structure */
266         dev->open = gfar_enet_open;
267         dev->hard_start_xmit = gfar_start_xmit;
268         dev->tx_timeout = gfar_timeout;
269         dev->watchdog_timeo = TX_TIMEOUT;
270 #ifdef CONFIG_GFAR_NAPI
271         dev->poll = gfar_poll;
272         dev->weight = GFAR_DEV_WEIGHT;
273 #endif
274         dev->stop = gfar_close;
275         dev->get_stats = gfar_get_stats;
276         dev->change_mtu = gfar_change_mtu;
277         dev->mtu = 1500;
278         dev->set_multicast_list = gfar_set_multi;
279
280         dev->ethtool_ops = &gfar_ethtool_ops;
281
282         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
283                 priv->rx_csum_enable = 1;
284                 dev->features |= NETIF_F_IP_CSUM;
285         } else
286                 priv->rx_csum_enable = 0;
287
288         priv->vlgrp = NULL;
289
290         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
291                 dev->vlan_rx_register = gfar_vlan_rx_register;
292                 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
293
294                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
295
296                 priv->vlan_enable = 1;
297         }
298
299         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
300                 priv->extended_hash = 1;
301                 priv->hash_width = 9;
302
303                 priv->hash_regs[0] = &priv->regs->igaddr0;
304                 priv->hash_regs[1] = &priv->regs->igaddr1;
305                 priv->hash_regs[2] = &priv->regs->igaddr2;
306                 priv->hash_regs[3] = &priv->regs->igaddr3;
307                 priv->hash_regs[4] = &priv->regs->igaddr4;
308                 priv->hash_regs[5] = &priv->regs->igaddr5;
309                 priv->hash_regs[6] = &priv->regs->igaddr6;
310                 priv->hash_regs[7] = &priv->regs->igaddr7;
311                 priv->hash_regs[8] = &priv->regs->gaddr0;
312                 priv->hash_regs[9] = &priv->regs->gaddr1;
313                 priv->hash_regs[10] = &priv->regs->gaddr2;
314                 priv->hash_regs[11] = &priv->regs->gaddr3;
315                 priv->hash_regs[12] = &priv->regs->gaddr4;
316                 priv->hash_regs[13] = &priv->regs->gaddr5;
317                 priv->hash_regs[14] = &priv->regs->gaddr6;
318                 priv->hash_regs[15] = &priv->regs->gaddr7;
319
320         } else {
321                 priv->extended_hash = 0;
322                 priv->hash_width = 8;
323
324                 priv->hash_regs[0] = &priv->regs->gaddr0;
325                 priv->hash_regs[1] = &priv->regs->gaddr1;
326                 priv->hash_regs[2] = &priv->regs->gaddr2;
327                 priv->hash_regs[3] = &priv->regs->gaddr3;
328                 priv->hash_regs[4] = &priv->regs->gaddr4;
329                 priv->hash_regs[5] = &priv->regs->gaddr5;
330                 priv->hash_regs[6] = &priv->regs->gaddr6;
331                 priv->hash_regs[7] = &priv->regs->gaddr7;
332         }
333
334         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
335                 priv->padding = DEFAULT_PADDING;
336         else
337                 priv->padding = 0;
338
339         dev->hard_header_len += priv->padding;
340
341         if (dev->features & NETIF_F_IP_CSUM)
342                 dev->hard_header_len += GMAC_FCB_LEN;
343
344         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
345 #ifdef CONFIG_GFAR_BUFSTASH
346         priv->rx_stash_size = STASH_LENGTH;
347 #endif
348         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
349         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
350
351         priv->txcoalescing = DEFAULT_TX_COALESCE;
352         priv->txcount = DEFAULT_TXCOUNT;
353         priv->txtime = DEFAULT_TXTIME;
354         priv->rxcoalescing = DEFAULT_RX_COALESCE;
355         priv->rxcount = DEFAULT_RXCOUNT;
356         priv->rxtime = DEFAULT_RXTIME;
357
358         /* Enable most messages by default */
359         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
360
361         err = register_netdev(dev);
362
363         if (err) {
364                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
365                                 dev->name);
366                 goto register_fail;
367         }
368
369         /* Print out the device info */
370         printk(KERN_INFO DEVICE_NAME, dev->name);
371         for (idx = 0; idx < 6; idx++)
372                 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
373         printk("\n");
374
375         /* Even more device info helps when determining which kernel */
376         /* provided which set of benchmarks.  Since this is global for all */
377         /* devices, we only print it once */
378 #ifdef CONFIG_GFAR_NAPI
379         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
380 #else
381         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
382 #endif
383         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
384                dev->name, priv->rx_ring_size, priv->tx_ring_size);
385
386         return 0;
387
388 register_fail:
389         iounmap((void *) priv->phyregs);
390 phy_regs_fail:
391         iounmap((void *) priv->regs);
392 regs_fail:
393         free_netdev(dev);
394         return -ENOMEM;
395 }
396
397 static int gfar_remove(struct device *device)
398 {
399         struct net_device *dev = dev_get_drvdata(device);
400         struct gfar_private *priv = netdev_priv(dev);
401
402         dev_set_drvdata(device, NULL);
403
404         iounmap((void *) priv->regs);
405         iounmap((void *) priv->phyregs);
406         free_netdev(dev);
407
408         return 0;
409 }
410
411
412 /* Configure the PHY for dev.
413  * returns 0 if success.  -1 if failure
414  */
415 static int init_phy(struct net_device *dev)
416 {
417         struct gfar_private *priv = netdev_priv(dev);
418         struct phy_info *curphy;
419         unsigned int timeout = PHY_INIT_TIMEOUT;
420         struct gfar *phyregs = priv->phyregs;
421         struct gfar_mii_info *mii_info;
422         int err;
423
424         priv->oldlink = 0;
425         priv->oldspeed = 0;
426         priv->oldduplex = -1;
427
428         mii_info = kmalloc(sizeof(struct gfar_mii_info),
429                         GFP_KERNEL);
430
431         if(NULL == mii_info) {
432                 if (netif_msg_ifup(priv))
433                         printk(KERN_ERR "%s: Could not allocate mii_info\n",
434                                         dev->name);
435                 return -ENOMEM;
436         }
437
438         mii_info->speed = SPEED_1000;
439         mii_info->duplex = DUPLEX_FULL;
440         mii_info->pause = 0;
441         mii_info->link = 1;
442
443         mii_info->advertising = (ADVERTISED_10baseT_Half |
444                         ADVERTISED_10baseT_Full |
445                         ADVERTISED_100baseT_Half |
446                         ADVERTISED_100baseT_Full |
447                         ADVERTISED_1000baseT_Full);
448         mii_info->autoneg = 1;
449
450         spin_lock_init(&mii_info->mdio_lock);
451
452         mii_info->mii_id = priv->einfo->phyid;
453
454         mii_info->dev = dev;
455
456         mii_info->mdio_read = &read_phy_reg;
457         mii_info->mdio_write = &write_phy_reg;
458
459         priv->mii_info = mii_info;
460
461         /* Reset the management interface */
462         gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
463
464         /* Setup the MII Mgmt clock speed */
465         gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
466
467         /* Wait until the bus is free */
468         while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
469                         timeout--)
470                 cpu_relax();
471
472         if(timeout <= 0) {
473                 printk(KERN_ERR "%s: The MII Bus is stuck!\n",
474                                 dev->name);
475                 err = -1;
476                 goto bus_fail;
477         }
478
479         /* get info for this PHY */
480         curphy = get_phy_info(priv->mii_info);
481
482         if (curphy == NULL) {
483                 if (netif_msg_ifup(priv))
484                         printk(KERN_ERR "%s: No PHY found\n", dev->name);
485                 err = -1;
486                 goto no_phy;
487         }
488
489         mii_info->phyinfo = curphy;
490
491         /* Run the commands which initialize the PHY */
492         if(curphy->init) {
493                 err = curphy->init(priv->mii_info);
494
495                 if (err)
496                         goto phy_init_fail;
497         }
498
499         return 0;
500
501 phy_init_fail:
502 no_phy:
503 bus_fail:
504         kfree(mii_info);
505
506         return err;
507 }
508
509 static void init_registers(struct net_device *dev)
510 {
511         struct gfar_private *priv = netdev_priv(dev);
512
513         /* Clear IEVENT */
514         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
515
516         /* Initialize IMASK */
517         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
518
519         /* Init hash registers to zero */
520         gfar_write(&priv->regs->igaddr0, 0);
521         gfar_write(&priv->regs->igaddr1, 0);
522         gfar_write(&priv->regs->igaddr2, 0);
523         gfar_write(&priv->regs->igaddr3, 0);
524         gfar_write(&priv->regs->igaddr4, 0);
525         gfar_write(&priv->regs->igaddr5, 0);
526         gfar_write(&priv->regs->igaddr6, 0);
527         gfar_write(&priv->regs->igaddr7, 0);
528
529         gfar_write(&priv->regs->gaddr0, 0);
530         gfar_write(&priv->regs->gaddr1, 0);
531         gfar_write(&priv->regs->gaddr2, 0);
532         gfar_write(&priv->regs->gaddr3, 0);
533         gfar_write(&priv->regs->gaddr4, 0);
534         gfar_write(&priv->regs->gaddr5, 0);
535         gfar_write(&priv->regs->gaddr6, 0);
536         gfar_write(&priv->regs->gaddr7, 0);
537
538         /* Zero out the rmon mib registers if it has them */
539         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
540                 memset((void *) &(priv->regs->rmon), 0,
541                        sizeof (struct rmon_mib));
542
543                 /* Mask off the CAM interrupts */
544                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
545                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
546         }
547
548         /* Initialize the max receive buffer length */
549         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
550
551 #ifdef CONFIG_GFAR_BUFSTASH
552         /* If we are stashing buffers, we need to set the
553          * extraction length to the size of the buffer */
554         gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
555 #endif
556
557         /* Initialize the Minimum Frame Length Register */
558         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
559
560         /* Setup Attributes so that snooping is on for rx */
561         gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
562         gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
563
564         /* Assign the TBI an address which won't conflict with the PHYs */
565         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
566 }
567
568
569 /* Halt the receive and transmit queues */
570 void gfar_halt(struct net_device *dev)
571 {
572         struct gfar_private *priv = netdev_priv(dev);
573         struct gfar *regs = priv->regs;
574         u32 tempval;
575
576         /* Mask all interrupts */
577         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
578
579         /* Clear all interrupts */
580         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
581
582         /* Stop the DMA, and wait for it to stop */
583         tempval = gfar_read(&priv->regs->dmactrl);
584         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
585             != (DMACTRL_GRS | DMACTRL_GTS)) {
586                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
587                 gfar_write(&priv->regs->dmactrl, tempval);
588
589                 while (!(gfar_read(&priv->regs->ievent) &
590                          (IEVENT_GRSC | IEVENT_GTSC)))
591                         cpu_relax();
592         }
593
594         /* Disable Rx and Tx */
595         tempval = gfar_read(&regs->maccfg1);
596         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
597         gfar_write(&regs->maccfg1, tempval);
598 }
599
600 void stop_gfar(struct net_device *dev)
601 {
602         struct gfar_private *priv = netdev_priv(dev);
603         struct gfar *regs = priv->regs;
604         unsigned long flags;
605
606         /* Lock it down */
607         spin_lock_irqsave(&priv->lock, flags);
608
609         /* Tell the kernel the link is down */
610         priv->mii_info->link = 0;
611         adjust_link(dev);
612
613         gfar_halt(dev);
614
615         if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
616                 /* Clear any pending interrupts */
617                 mii_clear_phy_interrupt(priv->mii_info);
618
619                 /* Disable PHY Interrupts */
620                 mii_configure_phy_interrupt(priv->mii_info,
621                                 MII_INTERRUPT_DISABLED);
622         }
623
624         spin_unlock_irqrestore(&priv->lock, flags);
625
626         /* Free the IRQs */
627         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
628                 free_irq(priv->interruptError, dev);
629                 free_irq(priv->interruptTransmit, dev);
630                 free_irq(priv->interruptReceive, dev);
631         } else {
632                 free_irq(priv->interruptTransmit, dev);
633         }
634
635         if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
636                 free_irq(priv->einfo->interruptPHY, dev);
637         } else {
638                 del_timer_sync(&priv->phy_info_timer);
639         }
640
641         free_skb_resources(priv);
642
643         dma_free_coherent(NULL,
644                         sizeof(struct txbd8)*priv->tx_ring_size
645                         + sizeof(struct rxbd8)*priv->rx_ring_size,
646                         priv->tx_bd_base,
647                         gfar_read(&regs->tbase0));
648 }
649
650 /* If there are any tx skbs or rx skbs still around, free them.
651  * Then free tx_skbuff and rx_skbuff */
652 void free_skb_resources(struct gfar_private *priv)
653 {
654         struct rxbd8 *rxbdp;
655         struct txbd8 *txbdp;
656         int i;
657
658         /* Go through all the buffer descriptors and free their data buffers */
659         txbdp = priv->tx_bd_base;
660
661         for (i = 0; i < priv->tx_ring_size; i++) {
662
663                 if (priv->tx_skbuff[i]) {
664                         dma_unmap_single(NULL, txbdp->bufPtr,
665                                         txbdp->length,
666                                         DMA_TO_DEVICE);
667                         dev_kfree_skb_any(priv->tx_skbuff[i]);
668                         priv->tx_skbuff[i] = NULL;
669                 }
670         }
671
672         kfree(priv->tx_skbuff);
673
674         rxbdp = priv->rx_bd_base;
675
676         /* rx_skbuff is not guaranteed to be allocated, so only
677          * free it and its contents if it is allocated */
678         if(priv->rx_skbuff != NULL) {
679                 for (i = 0; i < priv->rx_ring_size; i++) {
680                         if (priv->rx_skbuff[i]) {
681                                 dma_unmap_single(NULL, rxbdp->bufPtr,
682                                                 priv->rx_buffer_size
683                                                 + RXBUF_ALIGNMENT,
684                                                 DMA_FROM_DEVICE);
685
686                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
687                                 priv->rx_skbuff[i] = NULL;
688                         }
689
690                         rxbdp->status = 0;
691                         rxbdp->length = 0;
692                         rxbdp->bufPtr = 0;
693
694                         rxbdp++;
695                 }
696
697                 kfree(priv->rx_skbuff);
698         }
699 }
700
701 void gfar_start(struct net_device *dev)
702 {
703         struct gfar_private *priv = netdev_priv(dev);
704         struct gfar *regs = priv->regs;
705         u32 tempval;
706
707         /* Enable Rx and Tx in MACCFG1 */
708         tempval = gfar_read(&regs->maccfg1);
709         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
710         gfar_write(&regs->maccfg1, tempval);
711
712         /* Initialize DMACTRL to have WWR and WOP */
713         tempval = gfar_read(&priv->regs->dmactrl);
714         tempval |= DMACTRL_INIT_SETTINGS;
715         gfar_write(&priv->regs->dmactrl, tempval);
716
717         /* Clear THLT, so that the DMA starts polling now */
718         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
719
720         /* Make sure we aren't stopped */
721         tempval = gfar_read(&priv->regs->dmactrl);
722         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
723         gfar_write(&priv->regs->dmactrl, tempval);
724
725         /* Unmask the interrupts we look for */
726         gfar_write(&regs->imask, IMASK_DEFAULT);
727 }
728
729 /* Bring the controller up and running */
730 int startup_gfar(struct net_device *dev)
731 {
732         struct txbd8 *txbdp;
733         struct rxbd8 *rxbdp;
734         dma_addr_t addr;
735         unsigned long vaddr;
736         int i;
737         struct gfar_private *priv = netdev_priv(dev);
738         struct gfar *regs = priv->regs;
739         int err = 0;
740         u32 rctrl = 0;
741
742         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
743
744         /* Allocate memory for the buffer descriptors */
745         vaddr = (unsigned long) dma_alloc_coherent(NULL,
746                         sizeof (struct txbd8) * priv->tx_ring_size +
747                         sizeof (struct rxbd8) * priv->rx_ring_size,
748                         &addr, GFP_KERNEL);
749
750         if (vaddr == 0) {
751                 if (netif_msg_ifup(priv))
752                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
753                                         dev->name);
754                 return -ENOMEM;
755         }
756
757         priv->tx_bd_base = (struct txbd8 *) vaddr;
758
759         /* enet DMA only understands physical addresses */
760         gfar_write(&regs->tbase0, addr);
761
762         /* Start the rx descriptor ring where the tx ring leaves off */
763         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
764         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
765         priv->rx_bd_base = (struct rxbd8 *) vaddr;
766         gfar_write(&regs->rbase0, addr);
767
768         /* Setup the skbuff rings */
769         priv->tx_skbuff =
770             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
771                                         priv->tx_ring_size, GFP_KERNEL);
772
773         if (priv->tx_skbuff == NULL) {
774                 if (netif_msg_ifup(priv))
775                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
776                                         dev->name);
777                 err = -ENOMEM;
778                 goto tx_skb_fail;
779         }
780
781         for (i = 0; i < priv->tx_ring_size; i++)
782                 priv->tx_skbuff[i] = NULL;
783
784         priv->rx_skbuff =
785             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
786                                         priv->rx_ring_size, GFP_KERNEL);
787
788         if (priv->rx_skbuff == NULL) {
789                 if (netif_msg_ifup(priv))
790                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
791                                         dev->name);
792                 err = -ENOMEM;
793                 goto rx_skb_fail;
794         }
795
796         for (i = 0; i < priv->rx_ring_size; i++)
797                 priv->rx_skbuff[i] = NULL;
798
799         /* Initialize some variables in our dev structure */
800         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
801         priv->cur_rx = priv->rx_bd_base;
802         priv->skb_curtx = priv->skb_dirtytx = 0;
803         priv->skb_currx = 0;
804
805         /* Initialize Transmit Descriptor Ring */
806         txbdp = priv->tx_bd_base;
807         for (i = 0; i < priv->tx_ring_size; i++) {
808                 txbdp->status = 0;
809                 txbdp->length = 0;
810                 txbdp->bufPtr = 0;
811                 txbdp++;
812         }
813
814         /* Set the last descriptor in the ring to indicate wrap */
815         txbdp--;
816         txbdp->status |= TXBD_WRAP;
817
818         rxbdp = priv->rx_bd_base;
819         for (i = 0; i < priv->rx_ring_size; i++) {
820                 struct sk_buff *skb = NULL;
821
822                 rxbdp->status = 0;
823
824                 skb = gfar_new_skb(dev, rxbdp);
825
826                 priv->rx_skbuff[i] = skb;
827
828                 rxbdp++;
829         }
830
831         /* Set the last descriptor in the ring to wrap */
832         rxbdp--;
833         rxbdp->status |= RXBD_WRAP;
834
835         /* If the device has multiple interrupts, register for
836          * them.  Otherwise, only register for the one */
837         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
838                 /* Install our interrupt handlers for Error,
839                  * Transmit, and Receive */
840                 if (request_irq(priv->interruptError, gfar_error,
841                                 0, "enet_error", dev) < 0) {
842                         if (netif_msg_intr(priv))
843                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
844                                         dev->name, priv->interruptError);
845
846                         err = -1;
847                         goto err_irq_fail;
848                 }
849
850                 if (request_irq(priv->interruptTransmit, gfar_transmit,
851                                 0, "enet_tx", dev) < 0) {
852                         if (netif_msg_intr(priv))
853                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
854                                         dev->name, priv->interruptTransmit);
855
856                         err = -1;
857
858                         goto tx_irq_fail;
859                 }
860
861                 if (request_irq(priv->interruptReceive, gfar_receive,
862                                 0, "enet_rx", dev) < 0) {
863                         if (netif_msg_intr(priv))
864                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
865                                                 dev->name, priv->interruptReceive);
866
867                         err = -1;
868                         goto rx_irq_fail;
869                 }
870         } else {
871                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
872                                 0, "gfar_interrupt", dev) < 0) {
873                         if (netif_msg_intr(priv))
874                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
875                                         dev->name, priv->interruptError);
876
877                         err = -1;
878                         goto err_irq_fail;
879                 }
880         }
881
882         /* Set up the PHY change work queue */
883         INIT_WORK(&priv->tq, gfar_phy_change, dev);
884
885         init_timer(&priv->phy_info_timer);
886         priv->phy_info_timer.function = &gfar_phy_startup_timer;
887         priv->phy_info_timer.data = (unsigned long) priv->mii_info;
888         mod_timer(&priv->phy_info_timer, jiffies + HZ);
889
890         /* Configure the coalescing support */
891         if (priv->txcoalescing)
892                 gfar_write(&regs->txic,
893                            mk_ic_value(priv->txcount, priv->txtime));
894         else
895                 gfar_write(&regs->txic, 0);
896
897         if (priv->rxcoalescing)
898                 gfar_write(&regs->rxic,
899                            mk_ic_value(priv->rxcount, priv->rxtime));
900         else
901                 gfar_write(&regs->rxic, 0);
902
903         if (priv->rx_csum_enable)
904                 rctrl |= RCTRL_CHECKSUMMING;
905
906         if (priv->extended_hash)
907                 rctrl |= RCTRL_EXTHASH;
908
909         if (priv->vlan_enable)
910                 rctrl |= RCTRL_VLAN;
911
912         /* Init rctrl based on our settings */
913         gfar_write(&priv->regs->rctrl, rctrl);
914
915         if (dev->features & NETIF_F_IP_CSUM)
916                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
917
918         gfar_start(dev);
919
920         return 0;
921
922 rx_irq_fail:
923         free_irq(priv->interruptTransmit, dev);
924 tx_irq_fail:
925         free_irq(priv->interruptError, dev);
926 err_irq_fail:
927 rx_skb_fail:
928         free_skb_resources(priv);
929 tx_skb_fail:
930         dma_free_coherent(NULL,
931                         sizeof(struct txbd8)*priv->tx_ring_size
932                         + sizeof(struct rxbd8)*priv->rx_ring_size,
933                         priv->tx_bd_base,
934                         gfar_read(&regs->tbase0));
935
936         if (priv->mii_info->phyinfo->close)
937                 priv->mii_info->phyinfo->close(priv->mii_info);
938
939         kfree(priv->mii_info);
940
941         return err;
942 }
943
944 /* Called when something needs to use the ethernet device */
945 /* Returns 0 for success. */
946 static int gfar_enet_open(struct net_device *dev)
947 {
948         int err;
949
950         /* Initialize a bunch of registers */
951         init_registers(dev);
952
953         gfar_set_mac_address(dev);
954
955         err = init_phy(dev);
956
957         if(err)
958                 return err;
959
960         err = startup_gfar(dev);
961
962         netif_start_queue(dev);
963
964         return err;
965 }
966
967 static struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
968 {
969         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
970
971         memset(fcb, 0, GMAC_FCB_LEN);
972
973         /* Flag the bd so the controller looks for the FCB */
974         bdp->status |= TXBD_TOE;
975
976         return fcb;
977 }
978
979 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
980 {
981         int len;
982
983         /* If we're here, it's a IP packet with a TCP or UDP
984          * payload.  We set it to checksum, using a pseudo-header
985          * we provide
986          */
987         fcb->ip = 1;
988         fcb->tup = 1;
989         fcb->ctu = 1;
990         fcb->nph = 1;
991
992         /* Notify the controller what the protocol is */
993         if (skb->nh.iph->protocol == IPPROTO_UDP)
994                 fcb->udp = 1;
995
996         /* l3os is the distance between the start of the
997          * frame (skb->data) and the start of the IP hdr.
998          * l4os is the distance between the start of the
999          * l3 hdr and the l4 hdr */
1000         fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
1001         fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
1002
1003         len = skb->nh.iph->tot_len - fcb->l4os;
1004
1005         /* Provide the pseudoheader csum */
1006         fcb->phcs = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1007                         skb->nh.iph->daddr, len,
1008                         skb->nh.iph->protocol, 0);
1009 }
1010
1011 void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1012 {
1013         fcb->vln = 1;
1014         fcb->vlctl = vlan_tx_tag_get(skb);
1015 }
1016
1017 /* This is called by the kernel when a frame is ready for transmission. */
1018 /* It is pointed to by the dev->hard_start_xmit function pointer */
1019 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 {
1021         struct gfar_private *priv = netdev_priv(dev);
1022         struct txfcb *fcb = NULL;
1023         struct txbd8 *txbdp;
1024
1025         /* Update transmit stats */
1026         priv->stats.tx_bytes += skb->len;
1027
1028         /* Lock priv now */
1029         spin_lock_irq(&priv->lock);
1030
1031         /* Point at the first free tx descriptor */
1032         txbdp = priv->cur_tx;
1033
1034         /* Clear all but the WRAP status flags */
1035         txbdp->status &= TXBD_WRAP;
1036
1037         /* Set up checksumming */
1038         if ((dev->features & NETIF_F_IP_CSUM) 
1039                         && (CHECKSUM_HW == skb->ip_summed)) {
1040                 fcb = gfar_add_fcb(skb, txbdp);
1041                 gfar_tx_checksum(skb, fcb);
1042         }
1043
1044         if (priv->vlan_enable &&
1045                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1046                 if (NULL == fcb)
1047                         fcb = gfar_add_fcb(skb, txbdp);
1048
1049                 gfar_tx_vlan(skb, fcb);
1050         }
1051
1052         /* Set buffer length and pointer */
1053         txbdp->length = skb->len;
1054         txbdp->bufPtr = dma_map_single(NULL, skb->data,
1055                         skb->len, DMA_TO_DEVICE);
1056
1057         /* Save the skb pointer so we can free it later */
1058         priv->tx_skbuff[priv->skb_curtx] = skb;
1059
1060         /* Update the current skb pointer (wrapping if this was the last) */
1061         priv->skb_curtx =
1062             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1063
1064         /* Flag the BD as interrupt-causing */
1065         txbdp->status |= TXBD_INTERRUPT;
1066
1067         /* Flag the BD as ready to go, last in frame, and  */
1068         /* in need of CRC */
1069         txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1070
1071         dev->trans_start = jiffies;
1072
1073         /* If this was the last BD in the ring, the next one */
1074         /* is at the beginning of the ring */
1075         if (txbdp->status & TXBD_WRAP)
1076                 txbdp = priv->tx_bd_base;
1077         else
1078                 txbdp++;
1079
1080         /* If the next BD still needs to be cleaned up, then the bds
1081            are full.  We need to tell the kernel to stop sending us stuff. */
1082         if (txbdp == priv->dirty_tx) {
1083                 netif_stop_queue(dev);
1084
1085                 priv->stats.tx_fifo_errors++;
1086         }
1087
1088         /* Update the current txbd to the next one */
1089         priv->cur_tx = txbdp;
1090
1091         /* Tell the DMA to go go go */
1092         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1093
1094         /* Unlock priv */
1095         spin_unlock_irq(&priv->lock);
1096
1097         return 0;
1098 }
1099
1100 /* Stops the kernel queue, and halts the controller */
1101 static int gfar_close(struct net_device *dev)
1102 {
1103         struct gfar_private *priv = netdev_priv(dev);
1104         stop_gfar(dev);
1105
1106         /* Shutdown the PHY */
1107         if (priv->mii_info->phyinfo->close)
1108                 priv->mii_info->phyinfo->close(priv->mii_info);
1109
1110         kfree(priv->mii_info);
1111
1112         netif_stop_queue(dev);
1113
1114         return 0;
1115 }
1116
1117 /* returns a net_device_stats structure pointer */
1118 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1119 {
1120         struct gfar_private *priv = netdev_priv(dev);
1121
1122         return &(priv->stats);
1123 }
1124
1125 /* Changes the mac address if the controller is not running. */
1126 int gfar_set_mac_address(struct net_device *dev)
1127 {
1128         struct gfar_private *priv = netdev_priv(dev);
1129         int i;
1130         char tmpbuf[MAC_ADDR_LEN];
1131         u32 tempval;
1132
1133         /* Now copy it into the mac registers backwards, cuz */
1134         /* little endian is silly */
1135         for (i = 0; i < MAC_ADDR_LEN; i++)
1136                 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
1137
1138         gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
1139
1140         tempval = *((u32 *) (tmpbuf + 4));
1141
1142         gfar_write(&priv->regs->macstnaddr2, tempval);
1143
1144         return 0;
1145 }
1146
1147
1148 /* Enables and disables VLAN insertion/extraction */
1149 static void gfar_vlan_rx_register(struct net_device *dev,
1150                 struct vlan_group *grp)
1151 {
1152         struct gfar_private *priv = netdev_priv(dev);
1153         unsigned long flags;
1154         u32 tempval;
1155
1156         spin_lock_irqsave(&priv->lock, flags);
1157
1158         priv->vlgrp = grp;
1159
1160         if (grp) {
1161                 /* Enable VLAN tag insertion */
1162                 tempval = gfar_read(&priv->regs->tctrl);
1163                 tempval |= TCTRL_VLINS;
1164
1165                 gfar_write(&priv->regs->tctrl, tempval);
1166                 
1167                 /* Enable VLAN tag extraction */
1168                 tempval = gfar_read(&priv->regs->rctrl);
1169                 tempval |= RCTRL_VLEX;
1170                 gfar_write(&priv->regs->rctrl, tempval);
1171         } else {
1172                 /* Disable VLAN tag insertion */
1173                 tempval = gfar_read(&priv->regs->tctrl);
1174                 tempval &= ~TCTRL_VLINS;
1175                 gfar_write(&priv->regs->tctrl, tempval);
1176
1177                 /* Disable VLAN tag extraction */
1178                 tempval = gfar_read(&priv->regs->rctrl);
1179                 tempval &= ~RCTRL_VLEX;
1180                 gfar_write(&priv->regs->rctrl, tempval);
1181         }
1182
1183         spin_unlock_irqrestore(&priv->lock, flags);
1184 }
1185
1186
1187 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1188 {
1189         struct gfar_private *priv = netdev_priv(dev);
1190         unsigned long flags;
1191
1192         spin_lock_irqsave(&priv->lock, flags);
1193
1194         if (priv->vlgrp)
1195                 priv->vlgrp->vlan_devices[vid] = NULL;
1196
1197         spin_unlock_irqrestore(&priv->lock, flags);
1198 }
1199
1200
1201 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1202 {
1203         int tempsize, tempval;
1204         struct gfar_private *priv = netdev_priv(dev);
1205         int oldsize = priv->rx_buffer_size;
1206         int frame_size = new_mtu + ETH_HLEN;
1207
1208         if (priv->vlan_enable)
1209                 frame_size += VLAN_ETH_HLEN;
1210
1211         if (gfar_uses_fcb(priv))
1212                 frame_size += GMAC_FCB_LEN;
1213
1214         frame_size += priv->padding;
1215
1216         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1217                 if (netif_msg_drv(priv))
1218                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1219                                         dev->name);
1220                 return -EINVAL;
1221         }
1222
1223         tempsize =
1224             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1225             INCREMENTAL_BUFFER_SIZE;
1226
1227         /* Only stop and start the controller if it isn't already
1228          * stopped */
1229         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1230                 stop_gfar(dev);
1231
1232         priv->rx_buffer_size = tempsize;
1233
1234         dev->mtu = new_mtu;
1235
1236         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1237         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1238
1239         /* If the mtu is larger than the max size for standard
1240          * ethernet frames (ie, a jumbo frame), then set maccfg2
1241          * to allow huge frames, and to check the length */
1242         tempval = gfar_read(&priv->regs->maccfg2);
1243
1244         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1245                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1246         else
1247                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1248
1249         gfar_write(&priv->regs->maccfg2, tempval);
1250
1251         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1252                 startup_gfar(dev);
1253
1254         return 0;
1255 }
1256
1257 /* gfar_timeout gets called when a packet has not been
1258  * transmitted after a set amount of time.
1259  * For now, assume that clearing out all the structures, and
1260  * starting over will fix the problem. */
1261 static void gfar_timeout(struct net_device *dev)
1262 {
1263         struct gfar_private *priv = netdev_priv(dev);
1264
1265         priv->stats.tx_errors++;
1266
1267         if (dev->flags & IFF_UP) {
1268                 stop_gfar(dev);
1269                 startup_gfar(dev);
1270         }
1271
1272         netif_schedule(dev);
1273 }
1274
1275 /* Interrupt Handler for Transmit complete */
1276 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1277 {
1278         struct net_device *dev = (struct net_device *) dev_id;
1279         struct gfar_private *priv = netdev_priv(dev);
1280         struct txbd8 *bdp;
1281
1282         /* Clear IEVENT */
1283         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1284
1285         /* Lock priv */
1286         spin_lock(&priv->lock);
1287         bdp = priv->dirty_tx;
1288         while ((bdp->status & TXBD_READY) == 0) {
1289                 /* If dirty_tx and cur_tx are the same, then either the */
1290                 /* ring is empty or full now (it could only be full in the beginning, */
1291                 /* obviously).  If it is empty, we are done. */
1292                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1293                         break;
1294
1295                 priv->stats.tx_packets++;
1296
1297                 /* Deferred means some collisions occurred during transmit, */
1298                 /* but we eventually sent the packet. */
1299                 if (bdp->status & TXBD_DEF)
1300                         priv->stats.collisions++;
1301
1302                 /* Free the sk buffer associated with this TxBD */
1303                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1304                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1305                 priv->skb_dirtytx =
1306                     (priv->skb_dirtytx +
1307                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1308
1309                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1310                 if (bdp->status & TXBD_WRAP)
1311                         bdp = priv->tx_bd_base;
1312                 else
1313                         bdp++;
1314
1315                 /* Move dirty_tx to be the next bd */
1316                 priv->dirty_tx = bdp;
1317
1318                 /* We freed a buffer, so now we can restart transmission */
1319                 if (netif_queue_stopped(dev))
1320                         netif_wake_queue(dev);
1321         } /* while ((bdp->status & TXBD_READY) == 0) */
1322
1323         /* If we are coalescing the interrupts, reset the timer */
1324         /* Otherwise, clear it */
1325         if (priv->txcoalescing)
1326                 gfar_write(&priv->regs->txic,
1327                            mk_ic_value(priv->txcount, priv->txtime));
1328         else
1329                 gfar_write(&priv->regs->txic, 0);
1330
1331         spin_unlock(&priv->lock);
1332
1333         return IRQ_HANDLED;
1334 }
1335
1336 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1337 {
1338         struct gfar_private *priv = netdev_priv(dev);
1339         struct sk_buff *skb = NULL;
1340         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1341
1342         /* We have to allocate the skb, so keep trying till we succeed */
1343         while ((!skb) && timeout--)
1344                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1345
1346         if (skb == NULL)
1347                 return NULL;
1348
1349         /* We need the data buffer to be aligned properly.  We will reserve
1350          * as many bytes as needed to align the data properly
1351          */
1352         skb_reserve(skb,
1353                     RXBUF_ALIGNMENT -
1354                     (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
1355
1356         skb->dev = dev;
1357
1358         bdp->bufPtr = dma_map_single(NULL, skb->data,
1359                         priv->rx_buffer_size + RXBUF_ALIGNMENT,
1360                         DMA_FROM_DEVICE);
1361
1362         bdp->length = 0;
1363
1364         /* Mark the buffer empty */
1365         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1366
1367         return skb;
1368 }
1369
1370 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1371 {
1372         struct net_device_stats *stats = &priv->stats;
1373         struct gfar_extra_stats *estats = &priv->extra_stats;
1374
1375         /* If the packet was truncated, none of the other errors
1376          * matter */
1377         if (status & RXBD_TRUNCATED) {
1378                 stats->rx_length_errors++;
1379
1380                 estats->rx_trunc++;
1381
1382                 return;
1383         }
1384         /* Count the errors, if there were any */
1385         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1386                 stats->rx_length_errors++;
1387
1388                 if (status & RXBD_LARGE)
1389                         estats->rx_large++;
1390                 else
1391                         estats->rx_short++;
1392         }
1393         if (status & RXBD_NONOCTET) {
1394                 stats->rx_frame_errors++;
1395                 estats->rx_nonoctet++;
1396         }
1397         if (status & RXBD_CRCERR) {
1398                 estats->rx_crcerr++;
1399                 stats->rx_crc_errors++;
1400         }
1401         if (status & RXBD_OVERRUN) {
1402                 estats->rx_overrun++;
1403                 stats->rx_crc_errors++;
1404         }
1405 }
1406
1407 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1408 {
1409         struct net_device *dev = (struct net_device *) dev_id;
1410         struct gfar_private *priv = netdev_priv(dev);
1411
1412 #ifdef CONFIG_GFAR_NAPI
1413         u32 tempval;
1414 #endif
1415
1416         /* Clear IEVENT, so rx interrupt isn't called again
1417          * because of this interrupt */
1418         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1419
1420         /* support NAPI */
1421 #ifdef CONFIG_GFAR_NAPI
1422         if (netif_rx_schedule_prep(dev)) {
1423                 tempval = gfar_read(&priv->regs->imask);
1424                 tempval &= IMASK_RX_DISABLED;
1425                 gfar_write(&priv->regs->imask, tempval);
1426
1427                 __netif_rx_schedule(dev);
1428         } else {
1429                 if (netif_msg_rx_err(priv))
1430                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1431                                 dev->name, gfar_read(&priv->regs->ievent),
1432                                 gfar_read(&priv->regs->imask));
1433         }
1434 #else
1435
1436         spin_lock(&priv->lock);
1437         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1438
1439         /* If we are coalescing interrupts, update the timer */
1440         /* Otherwise, clear it */
1441         if (priv->rxcoalescing)
1442                 gfar_write(&priv->regs->rxic,
1443                            mk_ic_value(priv->rxcount, priv->rxtime));
1444         else
1445                 gfar_write(&priv->regs->rxic, 0);
1446
1447         spin_unlock(&priv->lock);
1448 #endif
1449
1450         return IRQ_HANDLED;
1451 }
1452
1453 static inline int gfar_rx_vlan(struct sk_buff *skb,
1454                 struct vlan_group *vlgrp, unsigned short vlctl)
1455 {
1456 #ifdef CONFIG_GFAR_NAPI
1457         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1458 #else
1459         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1460 #endif
1461 }
1462
1463 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1464 {
1465         /* If valid headers were found, and valid sums
1466          * were verified, then we tell the kernel that no
1467          * checksumming is necessary.  Otherwise, it is */
1468         if (fcb->cip && !fcb->eip && fcb->ctu && !fcb->etu)
1469                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1470         else
1471                 skb->ip_summed = CHECKSUM_NONE;
1472 }
1473
1474
1475 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1476 {
1477         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1478
1479         /* Remove the FCB from the skb */
1480         skb_pull(skb, GMAC_FCB_LEN);
1481
1482         return fcb;
1483 }
1484
1485 /* gfar_process_frame() -- handle one incoming packet if skb
1486  * isn't NULL.  */
1487 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1488                 int length)
1489 {
1490         struct gfar_private *priv = netdev_priv(dev);
1491         struct rxfcb *fcb = NULL;
1492
1493         if (skb == NULL) {
1494                 if (netif_msg_rx_err(priv))
1495                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1496                 priv->stats.rx_dropped++;
1497                 priv->extra_stats.rx_skbmissing++;
1498         } else {
1499                 int ret;
1500
1501                 /* Prep the skb for the packet */
1502                 skb_put(skb, length);
1503
1504                 /* Grab the FCB if there is one */
1505                 if (gfar_uses_fcb(priv))
1506                         fcb = gfar_get_fcb(skb);
1507
1508                 /* Remove the padded bytes, if there are any */
1509                 if (priv->padding)
1510                         skb_pull(skb, priv->padding);
1511
1512                 if (priv->rx_csum_enable)
1513                         gfar_rx_checksum(skb, fcb);
1514
1515                 /* Tell the skb what kind of packet this is */
1516                 skb->protocol = eth_type_trans(skb, dev);
1517
1518                 /* Send the packet up the stack */
1519                 if (unlikely(priv->vlgrp && fcb->vln))
1520                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1521                 else
1522                         ret = RECEIVE(skb);
1523
1524                 if (NET_RX_DROP == ret)
1525                         priv->extra_stats.kernel_dropped++;
1526         }
1527
1528         return 0;
1529 }
1530
1531 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1532  *   until the budget/quota has been reached. Returns the number
1533  *   of frames handled
1534  */
1535 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1536 {
1537         struct rxbd8 *bdp;
1538         struct sk_buff *skb;
1539         u16 pkt_len;
1540         int howmany = 0;
1541         struct gfar_private *priv = netdev_priv(dev);
1542
1543         /* Get the first full descriptor */
1544         bdp = priv->cur_rx;
1545
1546         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1547                 skb = priv->rx_skbuff[priv->skb_currx];
1548
1549                 if (!(bdp->status &
1550                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1551                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1552                         /* Increment the number of packets */
1553                         priv->stats.rx_packets++;
1554                         howmany++;
1555
1556                         /* Remove the FCS from the packet length */
1557                         pkt_len = bdp->length - 4;
1558
1559                         gfar_process_frame(dev, skb, pkt_len);
1560
1561                         priv->stats.rx_bytes += pkt_len;
1562                 } else {
1563                         count_errors(bdp->status, priv);
1564
1565                         if (skb)
1566                                 dev_kfree_skb_any(skb);
1567
1568                         priv->rx_skbuff[priv->skb_currx] = NULL;
1569                 }
1570
1571                 dev->last_rx = jiffies;
1572
1573                 /* Clear the status flags for this buffer */
1574                 bdp->status &= ~RXBD_STATS;
1575
1576                 /* Add another skb for the future */
1577                 skb = gfar_new_skb(dev, bdp);
1578                 priv->rx_skbuff[priv->skb_currx] = skb;
1579
1580                 /* Update to the next pointer */
1581                 if (bdp->status & RXBD_WRAP)
1582                         bdp = priv->rx_bd_base;
1583                 else
1584                         bdp++;
1585
1586                 /* update to point at the next skb */
1587                 priv->skb_currx =
1588                     (priv->skb_currx +
1589                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1590
1591         }
1592
1593         /* Update the current rxbd pointer to be the next one */
1594         priv->cur_rx = bdp;
1595
1596         /* If no packets have arrived since the
1597          * last one we processed, clear the IEVENT RX and
1598          * BSY bits so that another interrupt won't be
1599          * generated when we set IMASK */
1600         if (bdp->status & RXBD_EMPTY)
1601                 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1602
1603         return howmany;
1604 }
1605
1606 #ifdef CONFIG_GFAR_NAPI
1607 static int gfar_poll(struct net_device *dev, int *budget)
1608 {
1609         int howmany;
1610         struct gfar_private *priv = netdev_priv(dev);
1611         int rx_work_limit = *budget;
1612
1613         if (rx_work_limit > dev->quota)
1614                 rx_work_limit = dev->quota;
1615
1616         howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1617
1618         dev->quota -= howmany;
1619         rx_work_limit -= howmany;
1620         *budget -= howmany;
1621
1622         if (rx_work_limit >= 0) {
1623                 netif_rx_complete(dev);
1624
1625                 /* Clear the halt bit in RSTAT */
1626                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1627
1628                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1629
1630                 /* If we are coalescing interrupts, update the timer */
1631                 /* Otherwise, clear it */
1632                 if (priv->rxcoalescing)
1633                         gfar_write(&priv->regs->rxic,
1634                                    mk_ic_value(priv->rxcount, priv->rxtime));
1635                 else
1636                         gfar_write(&priv->regs->rxic, 0);
1637         }
1638
1639         return (rx_work_limit < 0) ? 1 : 0;
1640 }
1641 #endif
1642
1643 /* The interrupt handler for devices with one interrupt */
1644 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1645 {
1646         struct net_device *dev = dev_id;
1647         struct gfar_private *priv = netdev_priv(dev);
1648
1649         /* Save ievent for future reference */
1650         u32 events = gfar_read(&priv->regs->ievent);
1651
1652         /* Clear IEVENT */
1653         gfar_write(&priv->regs->ievent, events);
1654
1655         /* Check for reception */
1656         if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1657                 gfar_receive(irq, dev_id, regs);
1658
1659         /* Check for transmit completion */
1660         if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1661                 gfar_transmit(irq, dev_id, regs);
1662
1663         /* Update error statistics */
1664         if (events & IEVENT_TXE) {
1665                 priv->stats.tx_errors++;
1666
1667                 if (events & IEVENT_LC)
1668                         priv->stats.tx_window_errors++;
1669                 if (events & IEVENT_CRL)
1670                         priv->stats.tx_aborted_errors++;
1671                 if (events & IEVENT_XFUN) {
1672                         if (netif_msg_tx_err(priv))
1673                                 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1674                         priv->stats.tx_dropped++;
1675                         priv->extra_stats.tx_underrun++;
1676
1677                         /* Reactivate the Tx Queues */
1678                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1679                 }
1680         }
1681         if (events & IEVENT_BSY) {
1682                 priv->stats.rx_errors++;
1683                 priv->extra_stats.rx_bsy++;
1684
1685                 gfar_receive(irq, dev_id, regs);
1686
1687 #ifndef CONFIG_GFAR_NAPI
1688                 /* Clear the halt bit in RSTAT */
1689                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1690 #endif
1691
1692                 if (netif_msg_rx_err(priv))
1693                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1694                                         dev->name,
1695                                         gfar_read(&priv->regs->rstat));
1696         }
1697         if (events & IEVENT_BABR) {
1698                 priv->stats.rx_errors++;
1699                 priv->extra_stats.rx_babr++;
1700
1701                 if (netif_msg_rx_err(priv))
1702                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1703         }
1704         if (events & IEVENT_EBERR) {
1705                 priv->extra_stats.eberr++;
1706                 if (netif_msg_rx_err(priv))
1707                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1708         }
1709         if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1710                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1711
1712         if (events & IEVENT_BABT) {
1713                 priv->extra_stats.tx_babt++;
1714                 if (netif_msg_rx_err(priv))
1715                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1716         }
1717
1718         return IRQ_HANDLED;
1719 }
1720
1721 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1722 {
1723         struct net_device *dev = (struct net_device *) dev_id;
1724         struct gfar_private *priv = netdev_priv(dev);
1725
1726         /* Clear the interrupt */
1727         mii_clear_phy_interrupt(priv->mii_info);
1728
1729         /* Disable PHY interrupts */
1730         mii_configure_phy_interrupt(priv->mii_info,
1731                         MII_INTERRUPT_DISABLED);
1732
1733         /* Schedule the phy change */
1734         schedule_work(&priv->tq);
1735
1736         return IRQ_HANDLED;
1737 }
1738
1739 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1740 static void gfar_phy_change(void *data)
1741 {
1742         struct net_device *dev = (struct net_device *) data;
1743         struct gfar_private *priv = netdev_priv(dev);
1744         int result = 0;
1745
1746         /* Delay to give the PHY a chance to change the
1747          * register state */
1748         msleep(1);
1749
1750         /* Update the link, speed, duplex */
1751         result = priv->mii_info->phyinfo->read_status(priv->mii_info);
1752
1753         /* Adjust the known status as long as the link
1754          * isn't still coming up */
1755         if((0 == result) || (priv->mii_info->link == 0))
1756                 adjust_link(dev);
1757
1758         /* Reenable interrupts, if needed */
1759         if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR)
1760                 mii_configure_phy_interrupt(priv->mii_info,
1761                                 MII_INTERRUPT_ENABLED);
1762 }
1763
1764 /* Called every so often on systems that don't interrupt
1765  * the core for PHY changes */
1766 static void gfar_phy_timer(unsigned long data)
1767 {
1768         struct net_device *dev = (struct net_device *) data;
1769         struct gfar_private *priv = netdev_priv(dev);
1770
1771         schedule_work(&priv->tq);
1772
1773         mod_timer(&priv->phy_info_timer, jiffies +
1774                         GFAR_PHY_CHANGE_TIME * HZ);
1775 }
1776
1777 /* Keep trying aneg for some time
1778  * If, after GFAR_AN_TIMEOUT seconds, it has not
1779  * finished, we switch to forced.
1780  * Either way, once the process has completed, we either
1781  * request the interrupt, or switch the timer over to
1782  * using gfar_phy_timer to check status */
1783 static void gfar_phy_startup_timer(unsigned long data)
1784 {
1785         int result;
1786         static int secondary = GFAR_AN_TIMEOUT;
1787         struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
1788         struct gfar_private *priv = netdev_priv(mii_info->dev);
1789
1790         /* Configure the Auto-negotiation */
1791         result = mii_info->phyinfo->config_aneg(mii_info);
1792
1793         /* If autonegotiation failed to start, and
1794          * we haven't timed out, reset the timer, and return */
1795         if (result && secondary--) {
1796                 mod_timer(&priv->phy_info_timer, jiffies + HZ);
1797                 return;
1798         } else if (result) {
1799                 /* Couldn't start autonegotiation.
1800                  * Try switching to forced */
1801                 mii_info->autoneg = 0;
1802                 result = mii_info->phyinfo->config_aneg(mii_info);
1803
1804                 /* Forcing failed!  Give up */
1805                 if(result) {
1806                         if (netif_msg_link(priv))
1807                                 printk(KERN_ERR "%s: Forcing failed!\n",
1808                                                 mii_info->dev->name);
1809                         return;
1810                 }
1811         }
1812
1813         /* Kill the timer so it can be restarted */
1814         del_timer_sync(&priv->phy_info_timer);
1815
1816         /* Grab the PHY interrupt, if necessary/possible */
1817         if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
1818                 if (request_irq(priv->einfo->interruptPHY,
1819                                         phy_interrupt,
1820                                         SA_SHIRQ,
1821                                         "phy_interrupt",
1822                                         mii_info->dev) < 0) {
1823                         if (netif_msg_intr(priv))
1824                                 printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
1825                                                 mii_info->dev->name,
1826                                         priv->einfo->interruptPHY);
1827                 } else {
1828                         mii_configure_phy_interrupt(priv->mii_info,
1829                                         MII_INTERRUPT_ENABLED);
1830                         return;
1831                 }
1832         }
1833
1834         /* Start the timer again, this time in order to
1835          * handle a change in status */
1836         init_timer(&priv->phy_info_timer);
1837         priv->phy_info_timer.function = &gfar_phy_timer;
1838         priv->phy_info_timer.data = (unsigned long) mii_info->dev;
1839         mod_timer(&priv->phy_info_timer, jiffies +
1840                         GFAR_PHY_CHANGE_TIME * HZ);
1841 }
1842
1843 /* Called every time the controller might need to be made
1844  * aware of new link state.  The PHY code conveys this
1845  * information through variables in the priv structure, and this
1846  * function converts those variables into the appropriate
1847  * register values, and can bring down the device if needed.
1848  */
1849 static void adjust_link(struct net_device *dev)
1850 {
1851         struct gfar_private *priv = netdev_priv(dev);
1852         struct gfar *regs = priv->regs;
1853         u32 tempval;
1854         struct gfar_mii_info *mii_info = priv->mii_info;
1855
1856         if (mii_info->link) {
1857                 /* Now we make sure that we can be in full duplex mode.
1858                  * If not, we operate in half-duplex mode. */
1859                 if (mii_info->duplex != priv->oldduplex) {
1860                         if (!(mii_info->duplex)) {
1861                                 tempval = gfar_read(&regs->maccfg2);
1862                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1863                                 gfar_write(&regs->maccfg2, tempval);
1864
1865                                 if (netif_msg_link(priv))
1866                                         printk(KERN_INFO "%s: Half Duplex\n",
1867                                                         dev->name);
1868                         } else {
1869                                 tempval = gfar_read(&regs->maccfg2);
1870                                 tempval |= MACCFG2_FULL_DUPLEX;
1871                                 gfar_write(&regs->maccfg2, tempval);
1872
1873                                 if (netif_msg_link(priv))
1874                                         printk(KERN_INFO "%s: Full Duplex\n",
1875                                                         dev->name);
1876                         }
1877
1878                         priv->oldduplex = mii_info->duplex;
1879                 }
1880
1881                 if (mii_info->speed != priv->oldspeed) {
1882                         switch (mii_info->speed) {
1883                         case 1000:
1884                                 tempval = gfar_read(&regs->maccfg2);
1885                                 tempval =
1886                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1887                                 gfar_write(&regs->maccfg2, tempval);
1888                                 break;
1889                         case 100:
1890                         case 10:
1891                                 tempval = gfar_read(&regs->maccfg2);
1892                                 tempval =
1893                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1894                                 gfar_write(&regs->maccfg2, tempval);
1895                                 break;
1896                         default:
1897                                 if (netif_msg_link(priv))
1898                                         printk(KERN_WARNING
1899                                                         "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1900                                                         dev->name, mii_info->speed);
1901                                 break;
1902                         }
1903
1904                         if (netif_msg_link(priv))
1905                                 printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
1906                                                 mii_info->speed);
1907
1908                         priv->oldspeed = mii_info->speed;
1909                 }
1910
1911                 if (!priv->oldlink) {
1912                         if (netif_msg_link(priv))
1913                                 printk(KERN_INFO "%s: Link is up\n", dev->name);
1914                         priv->oldlink = 1;
1915                         netif_carrier_on(dev);
1916                         netif_schedule(dev);
1917                 }
1918         } else {
1919                 if (priv->oldlink) {
1920                         if (netif_msg_link(priv))
1921                                 printk(KERN_INFO "%s: Link is down\n",
1922                                                 dev->name);
1923                         priv->oldlink = 0;
1924                         priv->oldspeed = 0;
1925                         priv->oldduplex = -1;
1926                         netif_carrier_off(dev);
1927                 }
1928         }
1929 }
1930
1931
1932 /* Update the hash table based on the current list of multicast
1933  * addresses we subscribe to.  Also, change the promiscuity of
1934  * the device based on the flags (this function is called
1935  * whenever dev->flags is changed */
1936 static void gfar_set_multi(struct net_device *dev)
1937 {
1938         struct dev_mc_list *mc_ptr;
1939         struct gfar_private *priv = netdev_priv(dev);
1940         struct gfar *regs = priv->regs;
1941         u32 tempval;
1942
1943         if(dev->flags & IFF_PROMISC) {
1944                 if (netif_msg_drv(priv))
1945                         printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1946                                         dev->name);
1947                 /* Set RCTRL to PROM */
1948                 tempval = gfar_read(&regs->rctrl);
1949                 tempval |= RCTRL_PROM;
1950                 gfar_write(&regs->rctrl, tempval);
1951         } else {
1952                 /* Set RCTRL to not PROM */
1953                 tempval = gfar_read(&regs->rctrl);
1954                 tempval &= ~(RCTRL_PROM);
1955                 gfar_write(&regs->rctrl, tempval);
1956         }
1957         
1958         if(dev->flags & IFF_ALLMULTI) {
1959                 /* Set the hash to rx all multicast frames */
1960                 gfar_write(&regs->igaddr0, 0xffffffff);
1961                 gfar_write(&regs->igaddr1, 0xffffffff);
1962                 gfar_write(&regs->igaddr2, 0xffffffff);
1963                 gfar_write(&regs->igaddr3, 0xffffffff);
1964                 gfar_write(&regs->igaddr4, 0xffffffff);
1965                 gfar_write(&regs->igaddr5, 0xffffffff);
1966                 gfar_write(&regs->igaddr6, 0xffffffff);
1967                 gfar_write(&regs->igaddr7, 0xffffffff);
1968                 gfar_write(&regs->gaddr0, 0xffffffff);
1969                 gfar_write(&regs->gaddr1, 0xffffffff);
1970                 gfar_write(&regs->gaddr2, 0xffffffff);
1971                 gfar_write(&regs->gaddr3, 0xffffffff);
1972                 gfar_write(&regs->gaddr4, 0xffffffff);
1973                 gfar_write(&regs->gaddr5, 0xffffffff);
1974                 gfar_write(&regs->gaddr6, 0xffffffff);
1975                 gfar_write(&regs->gaddr7, 0xffffffff);
1976         } else {
1977                 /* zero out the hash */
1978                 gfar_write(&regs->igaddr0, 0x0);
1979                 gfar_write(&regs->igaddr1, 0x0);
1980                 gfar_write(&regs->igaddr2, 0x0);
1981                 gfar_write(&regs->igaddr3, 0x0);
1982                 gfar_write(&regs->igaddr4, 0x0);
1983                 gfar_write(&regs->igaddr5, 0x0);
1984                 gfar_write(&regs->igaddr6, 0x0);
1985                 gfar_write(&regs->igaddr7, 0x0);
1986                 gfar_write(&regs->gaddr0, 0x0);
1987                 gfar_write(&regs->gaddr1, 0x0);
1988                 gfar_write(&regs->gaddr2, 0x0);
1989                 gfar_write(&regs->gaddr3, 0x0);
1990                 gfar_write(&regs->gaddr4, 0x0);
1991                 gfar_write(&regs->gaddr5, 0x0);
1992                 gfar_write(&regs->gaddr6, 0x0);
1993                 gfar_write(&regs->gaddr7, 0x0);
1994
1995                 if(dev->mc_count == 0)
1996                         return;
1997
1998                 /* Parse the list, and set the appropriate bits */
1999                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2000                         gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2001                 }
2002         }
2003
2004         return;
2005 }
2006
2007 /* Set the appropriate hash bit for the given addr */
2008 /* The algorithm works like so:
2009  * 1) Take the Destination Address (ie the multicast address), and
2010  * do a CRC on it (little endian), and reverse the bits of the
2011  * result.
2012  * 2) Use the 8 most significant bits as a hash into a 256-entry
2013  * table.  The table is controlled through 8 32-bit registers:
2014  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2015  * gaddr7.  This means that the 3 most significant bits in the
2016  * hash index which gaddr register to use, and the 5 other bits
2017  * indicate which bit (assuming an IBM numbering scheme, which
2018  * for PowerPC (tm) is usually the case) in the register holds
2019  * the entry. */
2020 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2021 {
2022         u32 tempval;
2023         struct gfar_private *priv = netdev_priv(dev);
2024         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2025         int width = priv->hash_width;
2026         u8 whichbit = (result >> (32 - width)) & 0x1f;
2027         u8 whichreg = result >> (32 - width + 5);
2028         u32 value = (1 << (31-whichbit));
2029
2030         tempval = gfar_read(priv->hash_regs[whichreg]);
2031         tempval |= value;
2032         gfar_write(priv->hash_regs[whichreg], tempval);
2033
2034         return;
2035 }
2036
2037 /* GFAR error interrupt handler */
2038 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
2039 {
2040         struct net_device *dev = dev_id;
2041         struct gfar_private *priv = netdev_priv(dev);
2042
2043         /* Save ievent for future reference */
2044         u32 events = gfar_read(&priv->regs->ievent);
2045
2046         /* Clear IEVENT */
2047         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
2048
2049         /* Hmm... */
2050         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2051                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2052                                 dev->name, events, gfar_read(&priv->regs->imask));
2053
2054         /* Update the error counters */
2055         if (events & IEVENT_TXE) {
2056                 priv->stats.tx_errors++;
2057
2058                 if (events & IEVENT_LC)
2059                         priv->stats.tx_window_errors++;
2060                 if (events & IEVENT_CRL)
2061                         priv->stats.tx_aborted_errors++;
2062                 if (events & IEVENT_XFUN) {
2063                         if (netif_msg_tx_err(priv))
2064                                 printk(KERN_DEBUG "%s: underrun.  packet dropped.\n",
2065                                                 dev->name);
2066                         priv->stats.tx_dropped++;
2067                         priv->extra_stats.tx_underrun++;
2068
2069                         /* Reactivate the Tx Queues */
2070                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2071                 }
2072                 if (netif_msg_tx_err(priv))
2073                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2074         }
2075         if (events & IEVENT_BSY) {
2076                 priv->stats.rx_errors++;
2077                 priv->extra_stats.rx_bsy++;
2078
2079                 gfar_receive(irq, dev_id, regs);
2080
2081 #ifndef CONFIG_GFAR_NAPI
2082                 /* Clear the halt bit in RSTAT */
2083                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
2084 #endif
2085
2086                 if (netif_msg_rx_err(priv))
2087                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
2088                                         dev->name,
2089                                         gfar_read(&priv->regs->rstat));
2090         }
2091         if (events & IEVENT_BABR) {
2092                 priv->stats.rx_errors++;
2093                 priv->extra_stats.rx_babr++;
2094
2095                 if (netif_msg_rx_err(priv))
2096                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
2097         }
2098         if (events & IEVENT_EBERR) {
2099                 priv->extra_stats.eberr++;
2100                 if (netif_msg_rx_err(priv))
2101                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
2102         }
2103         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2104                 if (netif_msg_rx_status(priv))
2105                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
2106
2107         if (events & IEVENT_BABT) {
2108                 priv->extra_stats.tx_babt++;
2109                 if (netif_msg_tx_err(priv))
2110                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
2111         }
2112         return IRQ_HANDLED;
2113 }
2114
2115 /* Structure for a device driver */
2116 static struct device_driver gfar_driver = {
2117         .name = "fsl-gianfar",
2118         .bus = &platform_bus_type,
2119         .probe = gfar_probe,
2120         .remove = gfar_remove,
2121 };
2122
2123 static int __init gfar_init(void)
2124 {
2125         return driver_register(&gfar_driver);
2126 }
2127
2128 static void __exit gfar_exit(void)
2129 {
2130         driver_unregister(&gfar_driver);
2131 }
2132
2133 module_init(gfar_init);
2134 module_exit(gfar_exit);
2135