2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
38 #define DRV_NAME "sata_mv"
39 #define DRV_VERSION "0.7"
42 /* BAR's are enumerated in terms of pci_resource_start() terms */
43 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
44 MV_IO_BAR = 2, /* offset 0x18: IO space */
45 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
48 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
51 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
52 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
53 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
54 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
55 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
56 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
58 MV_SATAHC0_REG_BASE = 0x20000,
59 MV_FLASH_CTL = 0x1046c,
60 MV_GPIO_PORT_CTL = 0x104f0,
61 MV_RESET_CFG = 0x180d8,
63 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
64 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
66 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
68 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
71 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
73 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
74 * CRPB needs alignment on a 256B boundary. Size == 256B
75 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
76 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
78 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
79 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
81 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
82 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
85 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
87 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
91 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
92 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
93 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
94 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
95 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
96 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
98 CRQB_FLAG_READ = (1 << 0),
100 CRQB_CMD_ADDR_SHIFT = 8,
101 CRQB_CMD_CS = (0x2 << 11),
102 CRQB_CMD_LAST = (1 << 15),
104 CRPB_FLAG_STATUS_SHIFT = 8,
106 EPRD_FLAG_END_OF_TBL = (1 << 31),
108 /* PCI interface registers */
110 PCI_COMMAND_OFS = 0xc00,
112 PCI_MAIN_CMD_STS_OFS = 0xd30,
113 STOP_PCI_MASTER = (1 << 2),
114 PCI_MASTER_EMPTY = (1 << 3),
115 GLOB_SFT_RST = (1 << 4),
118 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
119 MV_PCI_DISC_TIMER = 0xd04,
120 MV_PCI_MSI_TRIGGER = 0xc38,
121 MV_PCI_SERR_MASK = 0xc28,
122 MV_PCI_XBAR_TMOUT = 0x1d04,
123 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
124 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
125 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
126 MV_PCI_ERR_COMMAND = 0x1d50,
128 PCI_IRQ_CAUSE_OFS = 0x1d58,
129 PCI_IRQ_MASK_OFS = 0x1d5c,
130 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
132 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
133 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
134 PORT0_ERR = (1 << 0), /* shift by port # */
135 PORT0_DONE = (1 << 1), /* shift by port # */
136 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
137 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
139 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
140 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
141 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
142 GPIO_INT = (1 << 22),
143 SELF_INT = (1 << 23),
144 TWSI_INT = (1 << 24),
145 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
146 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
147 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
150 /* SATAHC registers */
153 HC_IRQ_CAUSE_OFS = 0x14,
154 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
155 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
156 DEV_IRQ = (1 << 8), /* shift by port # */
158 /* Shadow block registers */
160 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
163 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
164 SATA_ACTIVE_OFS = 0x350,
171 SATA_INTERFACE_CTL = 0x050,
173 MV_M2_PREAMP_MASK = 0x7e0,
177 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
178 EDMA_CFG_NCQ = (1 << 5),
179 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
180 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
181 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
183 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
184 EDMA_ERR_IRQ_MASK_OFS = 0xc,
185 EDMA_ERR_D_PAR = (1 << 0),
186 EDMA_ERR_PRD_PAR = (1 << 1),
187 EDMA_ERR_DEV = (1 << 2),
188 EDMA_ERR_DEV_DCON = (1 << 3),
189 EDMA_ERR_DEV_CON = (1 << 4),
190 EDMA_ERR_SERR = (1 << 5),
191 EDMA_ERR_SELF_DIS = (1 << 7),
192 EDMA_ERR_BIST_ASYNC = (1 << 8),
193 EDMA_ERR_CRBQ_PAR = (1 << 9),
194 EDMA_ERR_CRPB_PAR = (1 << 10),
195 EDMA_ERR_INTRL_PAR = (1 << 11),
196 EDMA_ERR_IORDY = (1 << 12),
197 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
198 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
199 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
200 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
201 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
202 EDMA_ERR_TRANS_PROTO = (1 << 31),
203 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
204 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
205 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
206 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
207 EDMA_ERR_LNK_DATA_RX |
208 EDMA_ERR_LNK_DATA_TX |
209 EDMA_ERR_TRANS_PROTO),
211 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
212 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
214 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
215 EDMA_REQ_Q_PTR_SHIFT = 5,
217 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
218 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
219 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
220 EDMA_RSP_Q_PTR_SHIFT = 3,
227 EDMA_IORDY_TMOUT = 0x34,
230 /* Host private flags (hp_flags) */
231 MV_HP_FLAG_MSI = (1 << 0),
232 MV_HP_ERRATA_50XXB0 = (1 << 1),
233 MV_HP_ERRATA_50XXB2 = (1 << 2),
234 MV_HP_ERRATA_60X1B2 = (1 << 3),
235 MV_HP_ERRATA_60X1C0 = (1 << 4),
236 MV_HP_ERRATA_XX42A0 = (1 << 5),
237 MV_HP_50XX = (1 << 6),
238 MV_HP_GEN_IIE = (1 << 7),
240 /* Port private flags (pp_flags) */
241 MV_PP_FLAG_EDMA_EN = (1 << 0),
242 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
245 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
246 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
247 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
248 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
249 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
252 /* Our DMA boundary is determined by an ePRD being unable to handle
253 * anything larger than 64KB
255 MV_DMA_BOUNDARY = 0xffffU,
257 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
259 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
272 /* Command ReQuest Block: 32B */
288 /* Command ResPonse Block: 8B */
295 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
303 struct mv_port_priv {
304 struct mv_crqb *crqb;
306 struct mv_crpb *crpb;
308 struct mv_sg *sg_tbl;
309 dma_addr_t sg_tbl_dma;
313 struct mv_port_signal {
320 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
322 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
323 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
325 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
327 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
328 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
331 struct mv_host_priv {
333 struct mv_port_signal signal[8];
334 const struct mv_hw_ops *ops;
337 static void mv_irq_clear(struct ata_port *ap);
338 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
339 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
340 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
341 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
342 static void mv_phy_reset(struct ata_port *ap);
343 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
344 static int mv_port_start(struct ata_port *ap);
345 static void mv_port_stop(struct ata_port *ap);
346 static void mv_qc_prep(struct ata_queued_cmd *qc);
347 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
348 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
349 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
350 static void mv_eng_timeout(struct ata_port *ap);
351 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
353 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
355 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
356 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
358 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
360 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
361 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
363 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
365 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
366 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
368 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
370 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
371 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
372 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
373 unsigned int port_no);
374 static void mv_stop_and_reset(struct ata_port *ap);
376 static struct scsi_host_template mv_sht = {
377 .module = THIS_MODULE,
379 .ioctl = ata_scsi_ioctl,
380 .queuecommand = ata_scsi_queuecmd,
381 .can_queue = MV_USE_Q_DEPTH,
382 .this_id = ATA_SHT_THIS_ID,
383 .sg_tablesize = MV_MAX_SG_CT / 2,
384 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
385 .emulated = ATA_SHT_EMULATED,
386 .use_clustering = ATA_SHT_USE_CLUSTERING,
387 .proc_name = DRV_NAME,
388 .dma_boundary = MV_DMA_BOUNDARY,
389 .slave_configure = ata_scsi_slave_config,
390 .slave_destroy = ata_scsi_slave_destroy,
391 .bios_param = ata_std_bios_param,
394 static const struct ata_port_operations mv5_ops = {
395 .port_disable = ata_port_disable,
397 .tf_load = ata_tf_load,
398 .tf_read = ata_tf_read,
399 .check_status = ata_check_status,
400 .exec_command = ata_exec_command,
401 .dev_select = ata_std_dev_select,
403 .phy_reset = mv_phy_reset,
405 .qc_prep = mv_qc_prep,
406 .qc_issue = mv_qc_issue,
407 .data_xfer = ata_mmio_data_xfer,
409 .eng_timeout = mv_eng_timeout,
411 .irq_handler = mv_interrupt,
412 .irq_clear = mv_irq_clear,
414 .scr_read = mv5_scr_read,
415 .scr_write = mv5_scr_write,
417 .port_start = mv_port_start,
418 .port_stop = mv_port_stop,
421 static const struct ata_port_operations mv6_ops = {
422 .port_disable = ata_port_disable,
424 .tf_load = ata_tf_load,
425 .tf_read = ata_tf_read,
426 .check_status = ata_check_status,
427 .exec_command = ata_exec_command,
428 .dev_select = ata_std_dev_select,
430 .phy_reset = mv_phy_reset,
432 .qc_prep = mv_qc_prep,
433 .qc_issue = mv_qc_issue,
434 .data_xfer = ata_mmio_data_xfer,
436 .eng_timeout = mv_eng_timeout,
438 .irq_handler = mv_interrupt,
439 .irq_clear = mv_irq_clear,
441 .scr_read = mv_scr_read,
442 .scr_write = mv_scr_write,
444 .port_start = mv_port_start,
445 .port_stop = mv_port_stop,
448 static const struct ata_port_operations mv_iie_ops = {
449 .port_disable = ata_port_disable,
451 .tf_load = ata_tf_load,
452 .tf_read = ata_tf_read,
453 .check_status = ata_check_status,
454 .exec_command = ata_exec_command,
455 .dev_select = ata_std_dev_select,
457 .phy_reset = mv_phy_reset,
459 .qc_prep = mv_qc_prep_iie,
460 .qc_issue = mv_qc_issue,
461 .data_xfer = ata_mmio_data_xfer,
463 .eng_timeout = mv_eng_timeout,
465 .irq_handler = mv_interrupt,
466 .irq_clear = mv_irq_clear,
468 .scr_read = mv_scr_read,
469 .scr_write = mv_scr_write,
471 .port_start = mv_port_start,
472 .port_stop = mv_port_stop,
475 static const struct ata_port_info mv_port_info[] = {
478 .flags = MV_COMMON_FLAGS,
479 .pio_mask = 0x1f, /* pio0-4 */
480 .udma_mask = 0x7f, /* udma0-6 */
481 .port_ops = &mv5_ops,
485 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
486 .pio_mask = 0x1f, /* pio0-4 */
487 .udma_mask = 0x7f, /* udma0-6 */
488 .port_ops = &mv5_ops,
492 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
493 .pio_mask = 0x1f, /* pio0-4 */
494 .udma_mask = 0x7f, /* udma0-6 */
495 .port_ops = &mv5_ops,
499 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
500 .pio_mask = 0x1f, /* pio0-4 */
501 .udma_mask = 0x7f, /* udma0-6 */
502 .port_ops = &mv6_ops,
506 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
508 .pio_mask = 0x1f, /* pio0-4 */
509 .udma_mask = 0x7f, /* udma0-6 */
510 .port_ops = &mv6_ops,
514 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
515 .pio_mask = 0x1f, /* pio0-4 */
516 .udma_mask = 0x7f, /* udma0-6 */
517 .port_ops = &mv_iie_ops,
521 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
522 .pio_mask = 0x1f, /* pio0-4 */
523 .udma_mask = 0x7f, /* udma0-6 */
524 .port_ops = &mv_iie_ops,
528 static const struct pci_device_id mv_pci_tbl[] = {
529 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
530 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
531 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
532 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
534 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
535 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
536 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
537 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
538 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
540 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
542 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
544 { } /* terminate list */
547 static struct pci_driver mv_pci_driver = {
549 .id_table = mv_pci_tbl,
550 .probe = mv_init_one,
551 .remove = ata_pci_remove_one,
554 static const struct mv_hw_ops mv5xxx_ops = {
555 .phy_errata = mv5_phy_errata,
556 .enable_leds = mv5_enable_leds,
557 .read_preamp = mv5_read_preamp,
558 .reset_hc = mv5_reset_hc,
559 .reset_flash = mv5_reset_flash,
560 .reset_bus = mv5_reset_bus,
563 static const struct mv_hw_ops mv6xxx_ops = {
564 .phy_errata = mv6_phy_errata,
565 .enable_leds = mv6_enable_leds,
566 .read_preamp = mv6_read_preamp,
567 .reset_hc = mv6_reset_hc,
568 .reset_flash = mv6_reset_flash,
569 .reset_bus = mv_reset_pci_bus,
575 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
582 static inline void writelfl(unsigned long data, void __iomem *addr)
585 (void) readl(addr); /* flush to avoid PCI posted write */
588 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
590 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
593 static inline unsigned int mv_hc_from_port(unsigned int port)
595 return port >> MV_PORT_HC_SHIFT;
598 static inline unsigned int mv_hardport_from_port(unsigned int port)
600 return port & MV_PORT_MASK;
603 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
606 return mv_hc_base(base, mv_hc_from_port(port));
609 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
611 return mv_hc_base_from_port(base, port) +
612 MV_SATAHC_ARBTR_REG_SZ +
613 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
616 static inline void __iomem *mv_ap_base(struct ata_port *ap)
618 return mv_port_base(ap->host->mmio_base, ap->port_no);
621 static inline int mv_get_hc_count(unsigned long port_flags)
623 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
626 static void mv_irq_clear(struct ata_port *ap)
631 * mv_start_dma - Enable eDMA engine
632 * @base: port base address
633 * @pp: port private data
635 * Verify the local cache of the eDMA state is accurate with a
639 * Inherited from caller.
641 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
643 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
644 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
645 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
647 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
651 * mv_stop_dma - Disable eDMA engine
652 * @ap: ATA channel to manipulate
654 * Verify the local cache of the eDMA state is accurate with a
658 * Inherited from caller.
660 static void mv_stop_dma(struct ata_port *ap)
662 void __iomem *port_mmio = mv_ap_base(ap);
663 struct mv_port_priv *pp = ap->private_data;
667 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
668 /* Disable EDMA if active. The disable bit auto clears.
670 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
671 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
673 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
676 /* now properly wait for the eDMA to stop */
677 for (i = 1000; i > 0; i--) {
678 reg = readl(port_mmio + EDMA_CMD_OFS);
679 if (!(EDMA_EN & reg)) {
686 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
687 /* FIXME: Consider doing a reset here to recover */
692 static void mv_dump_mem(void __iomem *start, unsigned bytes)
695 for (b = 0; b < bytes; ) {
696 DPRINTK("%p: ", start + b);
697 for (w = 0; b < bytes && w < 4; w++) {
698 printk("%08x ",readl(start + b));
706 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
711 for (b = 0; b < bytes; ) {
712 DPRINTK("%02x: ", b);
713 for (w = 0; b < bytes && w < 4; w++) {
714 (void) pci_read_config_dword(pdev,b,&dw);
722 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
723 struct pci_dev *pdev)
726 void __iomem *hc_base = mv_hc_base(mmio_base,
727 port >> MV_PORT_HC_SHIFT);
728 void __iomem *port_base;
729 int start_port, num_ports, p, start_hc, num_hcs, hc;
732 start_hc = start_port = 0;
733 num_ports = 8; /* shld be benign for 4 port devs */
736 start_hc = port >> MV_PORT_HC_SHIFT;
738 num_ports = num_hcs = 1;
740 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
741 num_ports > 1 ? num_ports - 1 : start_port);
744 DPRINTK("PCI config space regs:\n");
745 mv_dump_pci_cfg(pdev, 0x68);
747 DPRINTK("PCI regs:\n");
748 mv_dump_mem(mmio_base+0xc00, 0x3c);
749 mv_dump_mem(mmio_base+0xd00, 0x34);
750 mv_dump_mem(mmio_base+0xf00, 0x4);
751 mv_dump_mem(mmio_base+0x1d00, 0x6c);
752 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
753 hc_base = mv_hc_base(mmio_base, hc);
754 DPRINTK("HC regs (HC %i):\n", hc);
755 mv_dump_mem(hc_base, 0x1c);
757 for (p = start_port; p < start_port + num_ports; p++) {
758 port_base = mv_port_base(mmio_base, p);
759 DPRINTK("EDMA regs (port %i):\n",p);
760 mv_dump_mem(port_base, 0x54);
761 DPRINTK("SATA regs (port %i):\n",p);
762 mv_dump_mem(port_base+0x300, 0x60);
767 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
775 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
778 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
787 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
789 unsigned int ofs = mv_scr_offset(sc_reg_in);
791 if (0xffffffffU != ofs) {
792 return readl(mv_ap_base(ap) + ofs);
798 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
800 unsigned int ofs = mv_scr_offset(sc_reg_in);
802 if (0xffffffffU != ofs) {
803 writelfl(val, mv_ap_base(ap) + ofs);
807 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
809 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
811 /* set up non-NCQ EDMA configuration */
812 cfg &= ~0x1f; /* clear queue depth */
813 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
814 cfg &= ~(1 << 9); /* disable equeue */
817 cfg |= (1 << 8); /* enab config burst size mask */
819 else if (IS_GEN_II(hpriv))
820 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
822 else if (IS_GEN_IIE(hpriv)) {
823 cfg |= (1 << 23); /* dis RX PM port mask */
824 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
825 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
826 cfg |= (1 << 18); /* enab early completion */
827 cfg |= (1 << 17); /* enab host q cache */
828 cfg |= (1 << 22); /* enab cutthrough */
831 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
835 * mv_port_start - Port specific init/start routine.
836 * @ap: ATA channel to manipulate
838 * Allocate and point to DMA memory, init port private memory,
842 * Inherited from caller.
844 static int mv_port_start(struct ata_port *ap)
846 struct device *dev = ap->host->dev;
847 struct mv_host_priv *hpriv = ap->host->private_data;
848 struct mv_port_priv *pp;
849 void __iomem *port_mmio = mv_ap_base(ap);
854 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
858 mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
862 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
864 rc = ata_pad_alloc(ap, dev);
868 /* First item in chunk of DMA memory:
869 * 32-slot command request table (CRQB), 32 bytes each in size
872 pp->crqb_dma = mem_dma;
874 mem_dma += MV_CRQB_Q_SZ;
877 * 32-slot command response table (CRPB), 8 bytes each in size
880 pp->crpb_dma = mem_dma;
882 mem_dma += MV_CRPB_Q_SZ;
885 * Table of scatter-gather descriptors (ePRD), 16 bytes each
888 pp->sg_tbl_dma = mem_dma;
890 mv_edma_cfg(hpriv, port_mmio);
892 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
893 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
894 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
896 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
897 writelfl(pp->crqb_dma & 0xffffffff,
898 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
900 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
902 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
904 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
905 writelfl(pp->crpb_dma & 0xffffffff,
906 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
908 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
910 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
911 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
913 /* Don't turn on EDMA here...do it before DMA commands only. Else
914 * we'll be unable to send non-data, PIO, etc due to restricted access
917 ap->private_data = pp;
922 * mv_port_stop - Port specific cleanup/stop routine.
923 * @ap: ATA channel to manipulate
925 * Stop DMA, cleanup port memory.
928 * This routine uses the host lock to protect the DMA stop.
930 static void mv_port_stop(struct ata_port *ap)
934 spin_lock_irqsave(&ap->host->lock, flags);
936 spin_unlock_irqrestore(&ap->host->lock, flags);
940 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
941 * @qc: queued command whose SG list to source from
943 * Populate the SG list and mark the last entry.
946 * Inherited from caller.
948 static void mv_fill_sg(struct ata_queued_cmd *qc)
950 struct mv_port_priv *pp = qc->ap->private_data;
952 struct scatterlist *sg;
954 ata_for_each_sg(sg, qc) {
956 u32 sg_len, len, offset;
958 addr = sg_dma_address(sg);
959 sg_len = sg_dma_len(sg);
962 offset = addr & MV_DMA_BOUNDARY;
964 if ((offset + sg_len) > 0x10000)
965 len = 0x10000 - offset;
967 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
968 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
969 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
974 if (!sg_len && ata_sg_is_last(sg, qc))
975 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
982 static inline unsigned mv_inc_q_index(unsigned index)
984 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
987 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
989 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
990 (last ? CRQB_CMD_LAST : 0);
991 *cmdw = cpu_to_le16(tmp);
995 * mv_qc_prep - Host specific command preparation.
996 * @qc: queued command to prepare
998 * This routine simply redirects to the general purpose routine
999 * if command is not DMA. Else, it handles prep of the CRQB
1000 * (command request block), does some sanity checking, and calls
1001 * the SG load routine.
1004 * Inherited from caller.
1006 static void mv_qc_prep(struct ata_queued_cmd *qc)
1008 struct ata_port *ap = qc->ap;
1009 struct mv_port_priv *pp = ap->private_data;
1011 struct ata_taskfile *tf;
1015 if (ATA_PROT_DMA != qc->tf.protocol)
1018 /* Fill in command request block
1020 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1021 flags |= CRQB_FLAG_READ;
1022 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1023 flags |= qc->tag << CRQB_TAG_SHIFT;
1025 /* get current queue index from hardware */
1026 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1027 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1029 pp->crqb[in_index].sg_addr =
1030 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1031 pp->crqb[in_index].sg_addr_hi =
1032 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1033 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1035 cw = &pp->crqb[in_index].ata_cmd[0];
1038 /* Sadly, the CRQB cannot accomodate all registers--there are
1039 * only 11 bytes...so we must pick and choose required
1040 * registers based on the command. So, we drop feature and
1041 * hob_feature for [RW] DMA commands, but they are needed for
1042 * NCQ. NCQ will drop hob_nsect.
1044 switch (tf->command) {
1046 case ATA_CMD_READ_EXT:
1048 case ATA_CMD_WRITE_EXT:
1049 case ATA_CMD_WRITE_FUA_EXT:
1050 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1052 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1053 case ATA_CMD_FPDMA_READ:
1054 case ATA_CMD_FPDMA_WRITE:
1055 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1056 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1058 #endif /* FIXME: remove this line when NCQ added */
1060 /* The only other commands EDMA supports in non-queued and
1061 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1062 * of which are defined/used by Linux. If we get here, this
1063 * driver needs work.
1065 * FIXME: modify libata to give qc_prep a return value and
1066 * return error here.
1068 BUG_ON(tf->command);
1071 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1072 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1073 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1074 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1075 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1076 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1077 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1078 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1079 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1081 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1087 * mv_qc_prep_iie - Host specific command preparation.
1088 * @qc: queued command to prepare
1090 * This routine simply redirects to the general purpose routine
1091 * if command is not DMA. Else, it handles prep of the CRQB
1092 * (command request block), does some sanity checking, and calls
1093 * the SG load routine.
1096 * Inherited from caller.
1098 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1100 struct ata_port *ap = qc->ap;
1101 struct mv_port_priv *pp = ap->private_data;
1102 struct mv_crqb_iie *crqb;
1103 struct ata_taskfile *tf;
1107 if (ATA_PROT_DMA != qc->tf.protocol)
1110 /* Fill in Gen IIE command request block
1112 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1113 flags |= CRQB_FLAG_READ;
1115 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1116 flags |= qc->tag << CRQB_TAG_SHIFT;
1118 /* get current queue index from hardware */
1119 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1120 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1122 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1123 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1124 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1125 crqb->flags = cpu_to_le32(flags);
1128 crqb->ata_cmd[0] = cpu_to_le32(
1129 (tf->command << 16) |
1132 crqb->ata_cmd[1] = cpu_to_le32(
1138 crqb->ata_cmd[2] = cpu_to_le32(
1139 (tf->hob_lbal << 0) |
1140 (tf->hob_lbam << 8) |
1141 (tf->hob_lbah << 16) |
1142 (tf->hob_feature << 24)
1144 crqb->ata_cmd[3] = cpu_to_le32(
1146 (tf->hob_nsect << 8)
1149 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1155 * mv_qc_issue - Initiate a command to the host
1156 * @qc: queued command to start
1158 * This routine simply redirects to the general purpose routine
1159 * if command is not DMA. Else, it sanity checks our local
1160 * caches of the request producer/consumer indices then enables
1161 * DMA and bumps the request producer index.
1164 * Inherited from caller.
1166 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1168 void __iomem *port_mmio = mv_ap_base(qc->ap);
1169 struct mv_port_priv *pp = qc->ap->private_data;
1173 if (ATA_PROT_DMA != qc->tf.protocol) {
1174 /* We're about to send a non-EDMA capable command to the
1175 * port. Turn off EDMA so there won't be problems accessing
1176 * shadow block, etc registers.
1178 mv_stop_dma(qc->ap);
1179 return ata_qc_issue_prot(qc);
1182 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1183 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1185 /* until we do queuing, the queue should be empty at this point */
1186 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1187 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1189 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1191 mv_start_dma(port_mmio, pp);
1193 /* and write the request in pointer to kick the EDMA to life */
1194 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1195 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1196 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1202 * mv_get_crpb_status - get status from most recently completed cmd
1203 * @ap: ATA channel to manipulate
1205 * This routine is for use when the port is in DMA mode, when it
1206 * will be using the CRPB (command response block) method of
1207 * returning command completion information. We check indices
1208 * are good, grab status, and bump the response consumer index to
1209 * prove that we're up to date.
1212 * Inherited from caller.
1214 static u8 mv_get_crpb_status(struct ata_port *ap)
1216 void __iomem *port_mmio = mv_ap_base(ap);
1217 struct mv_port_priv *pp = ap->private_data;
1222 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1223 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1225 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1226 >> CRPB_FLAG_STATUS_SHIFT;
1228 /* increment our consumer index... */
1229 out_index = mv_inc_q_index(out_index);
1231 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1232 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1233 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1235 /* write out our inc'd consumer index so EDMA knows we're caught up */
1236 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1237 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1238 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1240 /* Return ATA status register for completed CRPB */
1245 * mv_err_intr - Handle error interrupts on the port
1246 * @ap: ATA channel to manipulate
1247 * @reset_allowed: bool: 0 == don't trigger from reset here
1249 * In most cases, just clear the interrupt and move on. However,
1250 * some cases require an eDMA reset, which is done right before
1251 * the COMRESET in mv_phy_reset(). The SERR case requires a
1252 * clear of pending errors in the SATA SERROR register. Finally,
1253 * if the port disabled DMA, update our cached copy to match.
1256 * Inherited from caller.
1258 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1260 void __iomem *port_mmio = mv_ap_base(ap);
1261 u32 edma_err_cause, serr = 0;
1263 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1265 if (EDMA_ERR_SERR & edma_err_cause) {
1266 sata_scr_read(ap, SCR_ERROR, &serr);
1267 sata_scr_write_flush(ap, SCR_ERROR, serr);
1269 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1270 struct mv_port_priv *pp = ap->private_data;
1271 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1273 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1274 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1276 /* Clear EDMA now that SERR cleanup done */
1277 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1279 /* check for fatal here and recover if needed */
1280 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1281 mv_stop_and_reset(ap);
1285 * mv_host_intr - Handle all interrupts on the given host controller
1286 * @host: host specific structure
1287 * @relevant: port error bits relevant to this host controller
1288 * @hc: which host controller we're to look at
1290 * Read then write clear the HC interrupt status then walk each
1291 * port connected to the HC and see if it needs servicing. Port
1292 * success ints are reported in the HC interrupt status reg, the
1293 * port error ints are reported in the higher level main
1294 * interrupt status register and thus are passed in via the
1295 * 'relevant' argument.
1298 * Inherited from caller.
1300 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1302 void __iomem *mmio = host->mmio_base;
1303 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1304 struct ata_queued_cmd *qc;
1306 int shift, port, port0, hard_port, handled;
1307 unsigned int err_mask;
1312 port0 = MV_PORTS_PER_HC;
1315 /* we'll need the HC success int register in most cases */
1316 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1318 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1321 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1322 hc,relevant,hc_irq_cause);
1324 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1326 struct ata_port *ap = host->ports[port];
1327 struct mv_port_priv *pp = ap->private_data;
1329 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1330 handled = 0; /* ensure ata_status is set if handled++ */
1332 /* Note that DEV_IRQ might happen spuriously during EDMA,
1333 * and should be ignored in such cases.
1334 * The cause of this is still under investigation.
1336 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1337 /* EDMA: check for response queue interrupt */
1338 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1339 ata_status = mv_get_crpb_status(ap);
1343 /* PIO: check for device (drive) interrupt */
1344 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1345 ata_status = readb((void __iomem *)
1346 ap->ioaddr.status_addr);
1348 /* ignore spurious intr if drive still BUSY */
1349 if (ata_status & ATA_BUSY) {
1356 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1359 err_mask = ac_err_mask(ata_status);
1361 shift = port << 1; /* (port * 2) */
1362 if (port >= MV_PORTS_PER_HC) {
1363 shift++; /* skip bit 8 in the HC Main IRQ reg */
1365 if ((PORT0_ERR << shift) & relevant) {
1367 err_mask |= AC_ERR_OTHER;
1372 qc = ata_qc_from_tag(ap, ap->active_tag);
1373 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1374 VPRINTK("port %u IRQ found for qc, "
1375 "ata_status 0x%x\n", port,ata_status);
1376 /* mark qc status appropriately */
1377 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1378 qc->err_mask |= err_mask;
1379 ata_qc_complete(qc);
1390 * @dev_instance: private data; in this case the host structure
1393 * Read the read only register to determine if any host
1394 * controllers have pending interrupts. If so, call lower level
1395 * routine to handle. Also check for PCI errors which are only
1399 * This routine holds the host lock while processing pending
1402 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1404 struct ata_host *host = dev_instance;
1405 unsigned int hc, handled = 0, n_hcs;
1406 void __iomem *mmio = host->mmio_base;
1407 struct mv_host_priv *hpriv;
1410 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1412 /* check the cases where we either have nothing pending or have read
1413 * a bogus register value which can indicate HW removal or PCI fault
1415 if (!irq_stat || (0xffffffffU == irq_stat)) {
1419 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1420 spin_lock(&host->lock);
1422 for (hc = 0; hc < n_hcs; hc++) {
1423 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1425 mv_host_intr(host, relevant, hc);
1430 hpriv = host->private_data;
1431 if (IS_60XX(hpriv)) {
1432 /* deal with the interrupt coalescing bits */
1433 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1434 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1435 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1436 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1440 if (PCI_ERR & irq_stat) {
1441 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1442 readl(mmio + PCI_IRQ_CAUSE_OFS));
1444 DPRINTK("All regs @ PCI error\n");
1445 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1447 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1450 spin_unlock(&host->lock);
1452 return IRQ_RETVAL(handled);
1455 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1457 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1458 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1460 return hc_mmio + ofs;
1463 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1467 switch (sc_reg_in) {
1471 ofs = sc_reg_in * sizeof(u32);
1480 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1482 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1483 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1485 if (ofs != 0xffffffffU)
1486 return readl(mmio + ofs);
1491 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1493 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1494 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1496 if (ofs != 0xffffffffU)
1497 writelfl(val, mmio + ofs);
1500 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1505 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1507 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1510 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1512 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1515 mv_reset_pci_bus(pdev, mmio);
1518 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1520 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1523 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1526 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1529 tmp = readl(phy_mmio + MV5_PHY_MODE);
1531 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1532 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1535 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1539 writel(0, mmio + MV_GPIO_PORT_CTL);
1541 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1543 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1545 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1548 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1551 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1552 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1554 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1557 tmp = readl(phy_mmio + MV5_LT_MODE);
1559 writel(tmp, phy_mmio + MV5_LT_MODE);
1561 tmp = readl(phy_mmio + MV5_PHY_CTL);
1564 writel(tmp, phy_mmio + MV5_PHY_CTL);
1567 tmp = readl(phy_mmio + MV5_PHY_MODE);
1569 tmp |= hpriv->signal[port].pre;
1570 tmp |= hpriv->signal[port].amps;
1571 writel(tmp, phy_mmio + MV5_PHY_MODE);
1576 #define ZERO(reg) writel(0, port_mmio + (reg))
1577 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1580 void __iomem *port_mmio = mv_port_base(mmio, port);
1582 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1584 mv_channel_reset(hpriv, mmio, port);
1586 ZERO(0x028); /* command */
1587 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1588 ZERO(0x004); /* timer */
1589 ZERO(0x008); /* irq err cause */
1590 ZERO(0x00c); /* irq err mask */
1591 ZERO(0x010); /* rq bah */
1592 ZERO(0x014); /* rq inp */
1593 ZERO(0x018); /* rq outp */
1594 ZERO(0x01c); /* respq bah */
1595 ZERO(0x024); /* respq outp */
1596 ZERO(0x020); /* respq inp */
1597 ZERO(0x02c); /* test control */
1598 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1602 #define ZERO(reg) writel(0, hc_mmio + (reg))
1603 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1606 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1614 tmp = readl(hc_mmio + 0x20);
1617 writel(tmp, hc_mmio + 0x20);
1621 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1624 unsigned int hc, port;
1626 for (hc = 0; hc < n_hc; hc++) {
1627 for (port = 0; port < MV_PORTS_PER_HC; port++)
1628 mv5_reset_hc_port(hpriv, mmio,
1629 (hc * MV_PORTS_PER_HC) + port);
1631 mv5_reset_one_hc(hpriv, mmio, hc);
1638 #define ZERO(reg) writel(0, mmio + (reg))
1639 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1643 tmp = readl(mmio + MV_PCI_MODE);
1645 writel(tmp, mmio + MV_PCI_MODE);
1647 ZERO(MV_PCI_DISC_TIMER);
1648 ZERO(MV_PCI_MSI_TRIGGER);
1649 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1650 ZERO(HC_MAIN_IRQ_MASK_OFS);
1651 ZERO(MV_PCI_SERR_MASK);
1652 ZERO(PCI_IRQ_CAUSE_OFS);
1653 ZERO(PCI_IRQ_MASK_OFS);
1654 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1655 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1656 ZERO(MV_PCI_ERR_ATTRIBUTE);
1657 ZERO(MV_PCI_ERR_COMMAND);
1661 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1665 mv5_reset_flash(hpriv, mmio);
1667 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1669 tmp |= (1 << 5) | (1 << 6);
1670 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1674 * mv6_reset_hc - Perform the 6xxx global soft reset
1675 * @mmio: base address of the HBA
1677 * This routine only applies to 6xxx parts.
1680 * Inherited from caller.
1682 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1685 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1689 /* Following procedure defined in PCI "main command and status
1693 writel(t | STOP_PCI_MASTER, reg);
1695 for (i = 0; i < 1000; i++) {
1698 if (PCI_MASTER_EMPTY & t) {
1702 if (!(PCI_MASTER_EMPTY & t)) {
1703 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1711 writel(t | GLOB_SFT_RST, reg);
1714 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1716 if (!(GLOB_SFT_RST & t)) {
1717 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1722 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1725 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1728 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1730 if (GLOB_SFT_RST & t) {
1731 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1738 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1741 void __iomem *port_mmio;
1744 tmp = readl(mmio + MV_RESET_CFG);
1745 if ((tmp & (1 << 0)) == 0) {
1746 hpriv->signal[idx].amps = 0x7 << 8;
1747 hpriv->signal[idx].pre = 0x1 << 5;
1751 port_mmio = mv_port_base(mmio, idx);
1752 tmp = readl(port_mmio + PHY_MODE2);
1754 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1755 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1758 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1760 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1763 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1766 void __iomem *port_mmio = mv_port_base(mmio, port);
1768 u32 hp_flags = hpriv->hp_flags;
1770 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1772 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1775 if (fix_phy_mode2) {
1776 m2 = readl(port_mmio + PHY_MODE2);
1779 writel(m2, port_mmio + PHY_MODE2);
1783 m2 = readl(port_mmio + PHY_MODE2);
1784 m2 &= ~((1 << 16) | (1 << 31));
1785 writel(m2, port_mmio + PHY_MODE2);
1790 /* who knows what this magic does */
1791 tmp = readl(port_mmio + PHY_MODE3);
1794 writel(tmp, port_mmio + PHY_MODE3);
1796 if (fix_phy_mode4) {
1799 m4 = readl(port_mmio + PHY_MODE4);
1801 if (hp_flags & MV_HP_ERRATA_60X1B2)
1802 tmp = readl(port_mmio + 0x310);
1804 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1806 writel(m4, port_mmio + PHY_MODE4);
1808 if (hp_flags & MV_HP_ERRATA_60X1B2)
1809 writel(tmp, port_mmio + 0x310);
1812 /* Revert values of pre-emphasis and signal amps to the saved ones */
1813 m2 = readl(port_mmio + PHY_MODE2);
1815 m2 &= ~MV_M2_PREAMP_MASK;
1816 m2 |= hpriv->signal[port].amps;
1817 m2 |= hpriv->signal[port].pre;
1820 /* according to mvSata 3.6.1, some IIE values are fixed */
1821 if (IS_GEN_IIE(hpriv)) {
1826 writel(m2, port_mmio + PHY_MODE2);
1829 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1830 unsigned int port_no)
1832 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1834 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1836 if (IS_60XX(hpriv)) {
1837 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1838 ifctl |= (1 << 7); /* enable gen2i speed */
1839 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1840 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1843 udelay(25); /* allow reset propagation */
1845 /* Spec never mentions clearing the bit. Marvell's driver does
1846 * clear the bit, however.
1848 writelfl(0, port_mmio + EDMA_CMD_OFS);
1850 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1856 static void mv_stop_and_reset(struct ata_port *ap)
1858 struct mv_host_priv *hpriv = ap->host->private_data;
1859 void __iomem *mmio = ap->host->mmio_base;
1863 mv_channel_reset(hpriv, mmio, ap->port_no);
1865 __mv_phy_reset(ap, 0);
1868 static inline void __msleep(unsigned int msec, int can_sleep)
1877 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1878 * @ap: ATA channel to manipulate
1880 * Part of this is taken from __sata_phy_reset and modified to
1881 * not sleep since this routine gets called from interrupt level.
1884 * Inherited from caller. This is coded to safe to call at
1885 * interrupt level, i.e. it does not sleep.
1887 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1889 struct mv_port_priv *pp = ap->private_data;
1890 struct mv_host_priv *hpriv = ap->host->private_data;
1891 void __iomem *port_mmio = mv_ap_base(ap);
1892 struct ata_taskfile tf;
1893 struct ata_device *dev = &ap->device[0];
1894 unsigned long timeout;
1898 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1900 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1901 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1902 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1904 /* Issue COMRESET via SControl */
1906 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1907 __msleep(1, can_sleep);
1909 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1910 __msleep(20, can_sleep);
1912 timeout = jiffies + msecs_to_jiffies(200);
1914 sata_scr_read(ap, SCR_STATUS, &sstatus);
1915 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1918 __msleep(1, can_sleep);
1919 } while (time_before(jiffies, timeout));
1921 /* work around errata */
1922 if (IS_60XX(hpriv) &&
1923 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1925 goto comreset_retry;
1927 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1928 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1929 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1931 if (ata_port_online(ap)) {
1934 sata_scr_read(ap, SCR_STATUS, &sstatus);
1935 ata_port_printk(ap, KERN_INFO,
1936 "no device found (phy stat %08x)\n", sstatus);
1937 ata_port_disable(ap);
1940 ap->cbl = ATA_CBL_SATA;
1942 /* even after SStatus reflects that device is ready,
1943 * it seems to take a while for link to be fully
1944 * established (and thus Status no longer 0x80/0x7F),
1945 * so we poll a bit for that, here.
1949 u8 drv_stat = ata_check_status(ap);
1950 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1952 __msleep(500, can_sleep);
1957 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1958 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1959 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1960 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1962 dev->class = ata_dev_classify(&tf);
1963 if (!ata_dev_enabled(dev)) {
1964 VPRINTK("Port disabled post-sig: No device present.\n");
1965 ata_port_disable(ap);
1968 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1970 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1975 static void mv_phy_reset(struct ata_port *ap)
1977 __mv_phy_reset(ap, 1);
1981 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1982 * @ap: ATA channel to manipulate
1984 * Intent is to clear all pending error conditions, reset the
1985 * chip/bus, fail the command, and move on.
1988 * This routine holds the host lock while failing the command.
1990 static void mv_eng_timeout(struct ata_port *ap)
1992 struct ata_queued_cmd *qc;
1993 unsigned long flags;
1995 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
1996 DPRINTK("All regs @ start of eng_timeout\n");
1997 mv_dump_all_regs(ap->host->mmio_base, ap->port_no,
1998 to_pci_dev(ap->host->dev));
2000 qc = ata_qc_from_tag(ap, ap->active_tag);
2001 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2002 ap->host->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2004 spin_lock_irqsave(&ap->host->lock, flags);
2006 mv_stop_and_reset(ap);
2007 spin_unlock_irqrestore(&ap->host->lock, flags);
2009 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2010 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2011 qc->err_mask |= AC_ERR_TIMEOUT;
2012 ata_eh_qc_complete(qc);
2017 * mv_port_init - Perform some early initialization on a single port.
2018 * @port: libata data structure storing shadow register addresses
2019 * @port_mmio: base address of the port
2021 * Initialize shadow register mmio addresses, clear outstanding
2022 * interrupts on the port, and unmask interrupts for the future
2023 * start of the port.
2026 * Inherited from caller.
2028 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2030 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2033 /* PIO related setup
2035 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2037 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2038 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2039 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2040 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2041 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2042 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2044 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2045 /* special case: control/altstatus doesn't have ATA_REG_ address */
2046 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2049 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2051 /* Clear any currently outstanding port interrupt conditions */
2052 serr_ofs = mv_scr_offset(SCR_ERROR);
2053 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2054 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2056 /* unmask all EDMA error interrupts */
2057 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2059 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2060 readl(port_mmio + EDMA_CFG_OFS),
2061 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2062 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2065 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2066 unsigned int board_idx)
2069 u32 hp_flags = hpriv->hp_flags;
2071 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2075 hpriv->ops = &mv5xxx_ops;
2076 hp_flags |= MV_HP_50XX;
2080 hp_flags |= MV_HP_ERRATA_50XXB0;
2083 hp_flags |= MV_HP_ERRATA_50XXB2;
2086 dev_printk(KERN_WARNING, &pdev->dev,
2087 "Applying 50XXB2 workarounds to unknown rev\n");
2088 hp_flags |= MV_HP_ERRATA_50XXB2;
2095 hpriv->ops = &mv5xxx_ops;
2096 hp_flags |= MV_HP_50XX;
2100 hp_flags |= MV_HP_ERRATA_50XXB0;
2103 hp_flags |= MV_HP_ERRATA_50XXB2;
2106 dev_printk(KERN_WARNING, &pdev->dev,
2107 "Applying B2 workarounds to unknown rev\n");
2108 hp_flags |= MV_HP_ERRATA_50XXB2;
2115 hpriv->ops = &mv6xxx_ops;
2119 hp_flags |= MV_HP_ERRATA_60X1B2;
2122 hp_flags |= MV_HP_ERRATA_60X1C0;
2125 dev_printk(KERN_WARNING, &pdev->dev,
2126 "Applying B2 workarounds to unknown rev\n");
2127 hp_flags |= MV_HP_ERRATA_60X1B2;
2134 hpriv->ops = &mv6xxx_ops;
2136 hp_flags |= MV_HP_GEN_IIE;
2140 hp_flags |= MV_HP_ERRATA_XX42A0;
2143 hp_flags |= MV_HP_ERRATA_60X1C0;
2146 dev_printk(KERN_WARNING, &pdev->dev,
2147 "Applying 60X1C0 workarounds to unknown rev\n");
2148 hp_flags |= MV_HP_ERRATA_60X1C0;
2154 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2158 hpriv->hp_flags = hp_flags;
2164 * mv_init_host - Perform some early initialization of the host.
2165 * @pdev: host PCI device
2166 * @probe_ent: early data struct representing the host
2168 * If possible, do an early global reset of the host. Then do
2169 * our port init and clear/unmask all/relevant host interrupts.
2172 * Inherited from caller.
2174 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2175 unsigned int board_idx)
2177 int rc = 0, n_hc, port, hc;
2178 void __iomem *mmio = probe_ent->mmio_base;
2179 struct mv_host_priv *hpriv = probe_ent->private_data;
2181 /* global interrupt mask */
2182 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2184 rc = mv_chip_id(pdev, hpriv, board_idx);
2188 n_hc = mv_get_hc_count(probe_ent->port_flags);
2189 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2191 for (port = 0; port < probe_ent->n_ports; port++)
2192 hpriv->ops->read_preamp(hpriv, port, mmio);
2194 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2198 hpriv->ops->reset_flash(hpriv, mmio);
2199 hpriv->ops->reset_bus(pdev, mmio);
2200 hpriv->ops->enable_leds(hpriv, mmio);
2202 for (port = 0; port < probe_ent->n_ports; port++) {
2203 if (IS_60XX(hpriv)) {
2204 void __iomem *port_mmio = mv_port_base(mmio, port);
2206 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2207 ifctl |= (1 << 7); /* enable gen2i speed */
2208 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2209 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2212 hpriv->ops->phy_errata(hpriv, mmio, port);
2215 for (port = 0; port < probe_ent->n_ports; port++) {
2216 void __iomem *port_mmio = mv_port_base(mmio, port);
2217 mv_port_init(&probe_ent->port[port], port_mmio);
2220 for (hc = 0; hc < n_hc; hc++) {
2221 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2223 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2224 "(before clear)=0x%08x\n", hc,
2225 readl(hc_mmio + HC_CFG_OFS),
2226 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2228 /* Clear any currently outstanding hc interrupt conditions */
2229 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2232 /* Clear any currently outstanding host interrupt conditions */
2233 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2235 /* and unmask interrupt generation for host regs */
2236 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2237 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2239 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2240 "PCI int cause/mask=0x%08x/0x%08x\n",
2241 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2242 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2243 readl(mmio + PCI_IRQ_CAUSE_OFS),
2244 readl(mmio + PCI_IRQ_MASK_OFS));
2251 * mv_print_info - Dump key info to kernel log for perusal.
2252 * @probe_ent: early data struct representing the host
2254 * FIXME: complete this.
2257 * Inherited from caller.
2259 static void mv_print_info(struct ata_probe_ent *probe_ent)
2261 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2262 struct mv_host_priv *hpriv = probe_ent->private_data;
2266 /* Use this to determine the HW stepping of the chip so we know
2267 * what errata to workaround
2269 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2271 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2274 else if (scc == 0x01)
2279 dev_printk(KERN_INFO, &pdev->dev,
2280 "%u slots %u ports %s mode IRQ via %s\n",
2281 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2282 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2286 * mv_init_one - handle a positive probe of a Marvell host
2287 * @pdev: PCI device found
2288 * @ent: PCI device ID entry for the matched host
2291 * Inherited from caller.
2293 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2295 static int printed_version = 0;
2296 struct device *dev = &pdev->dev;
2297 struct ata_probe_ent *probe_ent;
2298 struct mv_host_priv *hpriv;
2299 unsigned int board_idx = (unsigned int)ent->driver_data;
2300 void __iomem *mmio_base;
2303 if (!printed_version++)
2304 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2306 rc = pcim_enable_device(pdev);
2309 pci_set_master(pdev);
2311 rc = pci_request_regions(pdev, DRV_NAME);
2313 pcim_pin_device(pdev);
2317 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
2318 if (probe_ent == NULL)
2321 probe_ent->dev = pci_dev_to_dev(pdev);
2322 INIT_LIST_HEAD(&probe_ent->node);
2324 mmio_base = pcim_iomap(pdev, MV_PRIMARY_BAR, 0);
2325 if (mmio_base == NULL)
2328 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
2332 probe_ent->sht = mv_port_info[board_idx].sht;
2333 probe_ent->port_flags = mv_port_info[board_idx].flags;
2334 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2335 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2336 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2338 probe_ent->irq = pdev->irq;
2339 probe_ent->irq_flags = IRQF_SHARED;
2340 probe_ent->mmio_base = mmio_base;
2341 probe_ent->private_data = hpriv;
2343 /* initialize adapter */
2344 rc = mv_init_host(pdev, probe_ent, board_idx);
2348 /* Enable interrupts */
2349 if (msi && !pci_enable_msi(pdev))
2352 mv_dump_pci_cfg(pdev, 0x68);
2353 mv_print_info(probe_ent);
2355 if (ata_device_add(probe_ent) == 0)
2358 devm_kfree(dev, probe_ent);
2362 static int __init mv_init(void)
2364 return pci_register_driver(&mv_pci_driver);
2367 static void __exit mv_exit(void)
2369 pci_unregister_driver(&mv_pci_driver);
2372 MODULE_AUTHOR("Brett Russ");
2373 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2374 MODULE_LICENSE("GPL");
2375 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2376 MODULE_VERSION(DRV_VERSION);
2378 module_param(msi, int, 0444);
2379 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2381 module_init(mv_init);
2382 module_exit(mv_exit);