2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
131 fis[13] = tf->hob_nsect;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
230 tf->protocol = ATA_PROT_DMA;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
454 struct ata_ioports *ioaddr = &ap->ioaddr;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
498 struct ata_ioports *ioaddr = &ap->ioaddr;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
534 static unsigned int ata_devchk(struct ata_port *ap,
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
625 else if ((device == 0) && (err == 0x81))
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
633 if (class == ATA_DEV_UNKNOWN)
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
695 ata_id_string(id, s, ofs, len - 1);
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
703 static u64 ata_id_n_sectors(const u16 *id)
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
709 return ata_id_u32(id, 60);
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
714 return id[1] * id[3] * id[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
755 tmp = ATA_DEVICE_OBS;
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
762 outb(tmp, ap->ioaddr.device_addr);
764 ata_pause(ap); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
796 ap->ops->dev_select(ap, device);
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
816 static inline void ata_dump_id(const u16 *id)
818 DPRINTK("49==0x%04x "
828 DPRINTK("80==0x%04x "
838 DPRINTK("88==0x%04x "
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
859 static unsigned int ata_id_xfermask(const u16 *id)
861 unsigned int pio_mask, mwdma_mask, udma_mask;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
873 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
875 /* But wait.. there's more. Design your standards by
876 * committee and you too can get a free iordy field to
877 * process. However its the speeds not the modes that
878 * are supported... Note drivers using the timing API
879 * will get this right anyway
883 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
885 if (ata_id_is_cfa(id)) {
887 * Process compact flash extended modes
889 int pio = id[163] & 0x7;
890 int dma = (id[163] >> 3) & 7;
893 pio_mask |= (1 << 5);
895 pio_mask |= (1 << 6);
897 mwdma_mask |= (1 << 3);
899 mwdma_mask |= (1 << 4);
903 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
904 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
906 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
910 * ata_port_queue_task - Queue port_task
911 * @ap: The ata_port to queue port_task for
912 * @fn: workqueue function to be scheduled
913 * @data: data value to pass to workqueue function
914 * @delay: delay time for workqueue function
916 * Schedule @fn(@data) for execution after @delay jiffies using
917 * port_task. There is one port_task per port and it's the
918 * user(low level driver)'s responsibility to make sure that only
919 * one task is active at any given time.
921 * libata core layer takes care of synchronization between
922 * port_task and EH. ata_port_queue_task() may be ignored for EH
926 * Inherited from caller.
928 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
936 PREPARE_WORK(&ap->port_task, fn, data);
939 rc = queue_work(ata_wq, &ap->port_task);
941 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
943 /* rc == 0 means that another user is using port task */
948 * ata_port_flush_task - Flush port_task
949 * @ap: The ata_port to flush port_task for
951 * After this function completes, port_task is guranteed not to
952 * be running or scheduled.
955 * Kernel thread context (may sleep)
957 void ata_port_flush_task(struct ata_port *ap)
963 spin_lock_irqsave(ap->lock, flags);
964 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
965 spin_unlock_irqrestore(ap->lock, flags);
967 DPRINTK("flush #1\n");
968 flush_workqueue(ata_wq);
971 * At this point, if a task is running, it's guaranteed to see
972 * the FLUSH flag; thus, it will never queue pio tasks again.
975 if (!cancel_delayed_work(&ap->port_task)) {
977 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
979 flush_workqueue(ata_wq);
982 spin_lock_irqsave(ap->lock, flags);
983 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
984 spin_unlock_irqrestore(ap->lock, flags);
987 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
990 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
992 struct completion *waiting = qc->private_data;
998 * ata_exec_internal - execute libata internal command
999 * @dev: Device to which the command is sent
1000 * @tf: Taskfile registers for the command and the result
1001 * @cdb: CDB for packet command
1002 * @dma_dir: Data tranfer direction of the command
1003 * @buf: Data buffer of the command
1004 * @buflen: Length of data buffer
1006 * Executes libata internal command with timeout. @tf contains
1007 * command on entry and result on return. Timeout and error
1008 * conditions are reported via return value. No recovery action
1009 * is taken after a command times out. It's caller's duty to
1010 * clean up after timeout.
1013 * None. Should be called with kernel context, might sleep.
1016 * Zero on success, AC_ERR_* mask on failure
1018 unsigned ata_exec_internal(struct ata_device *dev,
1019 struct ata_taskfile *tf, const u8 *cdb,
1020 int dma_dir, void *buf, unsigned int buflen)
1022 struct ata_port *ap = dev->ap;
1023 u8 command = tf->command;
1024 struct ata_queued_cmd *qc;
1025 unsigned int tag, preempted_tag;
1026 u32 preempted_sactive, preempted_qc_active;
1027 DECLARE_COMPLETION_ONSTACK(wait);
1028 unsigned long flags;
1029 unsigned int err_mask;
1032 spin_lock_irqsave(ap->lock, flags);
1034 /* no internal command while frozen */
1035 if (ap->pflags & ATA_PFLAG_FROZEN) {
1036 spin_unlock_irqrestore(ap->lock, flags);
1037 return AC_ERR_SYSTEM;
1040 /* initialize internal qc */
1042 /* XXX: Tag 0 is used for drivers with legacy EH as some
1043 * drivers choke if any other tag is given. This breaks
1044 * ata_tag_internal() test for those drivers. Don't use new
1045 * EH stuff without converting to it.
1047 if (ap->ops->error_handler)
1048 tag = ATA_TAG_INTERNAL;
1052 if (test_and_set_bit(tag, &ap->qc_allocated))
1054 qc = __ata_qc_from_tag(ap, tag);
1062 preempted_tag = ap->active_tag;
1063 preempted_sactive = ap->sactive;
1064 preempted_qc_active = ap->qc_active;
1065 ap->active_tag = ATA_TAG_POISON;
1069 /* prepare & issue qc */
1072 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1073 qc->flags |= ATA_QCFLAG_RESULT_TF;
1074 qc->dma_dir = dma_dir;
1075 if (dma_dir != DMA_NONE) {
1076 ata_sg_init_one(qc, buf, buflen);
1077 qc->nsect = buflen / ATA_SECT_SIZE;
1080 qc->private_data = &wait;
1081 qc->complete_fn = ata_qc_complete_internal;
1085 spin_unlock_irqrestore(ap->lock, flags);
1087 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1089 ata_port_flush_task(ap);
1092 spin_lock_irqsave(ap->lock, flags);
1094 /* We're racing with irq here. If we lose, the
1095 * following test prevents us from completing the qc
1096 * twice. If we win, the port is frozen and will be
1097 * cleaned up by ->post_internal_cmd().
1099 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1100 qc->err_mask |= AC_ERR_TIMEOUT;
1102 if (ap->ops->error_handler)
1103 ata_port_freeze(ap);
1105 ata_qc_complete(qc);
1107 if (ata_msg_warn(ap))
1108 ata_dev_printk(dev, KERN_WARNING,
1109 "qc timeout (cmd 0x%x)\n", command);
1112 spin_unlock_irqrestore(ap->lock, flags);
1115 /* do post_internal_cmd */
1116 if (ap->ops->post_internal_cmd)
1117 ap->ops->post_internal_cmd(qc);
1119 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1120 if (ata_msg_warn(ap))
1121 ata_dev_printk(dev, KERN_WARNING,
1122 "zero err_mask for failed "
1123 "internal command, assuming AC_ERR_OTHER\n");
1124 qc->err_mask |= AC_ERR_OTHER;
1128 spin_lock_irqsave(ap->lock, flags);
1130 *tf = qc->result_tf;
1131 err_mask = qc->err_mask;
1134 ap->active_tag = preempted_tag;
1135 ap->sactive = preempted_sactive;
1136 ap->qc_active = preempted_qc_active;
1138 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1139 * Until those drivers are fixed, we detect the condition
1140 * here, fail the command with AC_ERR_SYSTEM and reenable the
1143 * Note that this doesn't change any behavior as internal
1144 * command failure results in disabling the device in the
1145 * higher layer for LLDDs without new reset/EH callbacks.
1147 * Kill the following code as soon as those drivers are fixed.
1149 if (ap->flags & ATA_FLAG_DISABLED) {
1150 err_mask |= AC_ERR_SYSTEM;
1154 spin_unlock_irqrestore(ap->lock, flags);
1160 * ata_do_simple_cmd - execute simple internal command
1161 * @dev: Device to which the command is sent
1162 * @cmd: Opcode to execute
1164 * Execute a 'simple' command, that only consists of the opcode
1165 * 'cmd' itself, without filling any other registers
1168 * Kernel thread context (may sleep).
1171 * Zero on success, AC_ERR_* mask on failure
1173 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1175 struct ata_taskfile tf;
1177 ata_tf_init(dev, &tf);
1180 tf.flags |= ATA_TFLAG_DEVICE;
1181 tf.protocol = ATA_PROT_NODATA;
1183 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1187 * ata_pio_need_iordy - check if iordy needed
1190 * Check if the current speed of the device requires IORDY. Used
1191 * by various controllers for chip configuration.
1194 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1197 int speed = adev->pio_mode - XFER_PIO_0;
1204 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1206 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1207 pio = adev->id[ATA_ID_EIDE_PIO];
1208 /* Is the speed faster than the drive allows non IORDY ? */
1210 /* This is cycle times not frequency - watch the logic! */
1211 if (pio > 240) /* PIO2 is 240nS per cycle */
1220 * ata_dev_read_id - Read ID data from the specified device
1221 * @dev: target device
1222 * @p_class: pointer to class of the target device (may be changed)
1223 * @post_reset: is this read ID post-reset?
1224 * @id: buffer to read IDENTIFY data into
1226 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1227 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1228 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1229 * for pre-ATA4 drives.
1232 * Kernel thread context (may sleep)
1235 * 0 on success, -errno otherwise.
1237 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1238 int post_reset, u16 *id)
1240 struct ata_port *ap = dev->ap;
1241 unsigned int class = *p_class;
1242 struct ata_taskfile tf;
1243 unsigned int err_mask = 0;
1247 if (ata_msg_ctl(ap))
1248 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1249 __FUNCTION__, ap->id, dev->devno);
1251 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1254 ata_tf_init(dev, &tf);
1258 tf.command = ATA_CMD_ID_ATA;
1261 tf.command = ATA_CMD_ID_ATAPI;
1265 reason = "unsupported class";
1269 tf.protocol = ATA_PROT_PIO;
1271 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1272 id, sizeof(id[0]) * ATA_ID_WORDS);
1275 reason = "I/O error";
1279 swap_buf_le16(id, ATA_ID_WORDS);
1283 reason = "device reports illegal type";
1285 if (class == ATA_DEV_ATA) {
1286 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1289 if (ata_id_is_ata(id))
1293 if (post_reset && class == ATA_DEV_ATA) {
1295 * The exact sequence expected by certain pre-ATA4 drives is:
1298 * INITIALIZE DEVICE PARAMETERS
1300 * Some drives were very specific about that exact sequence.
1302 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1303 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1306 reason = "INIT_DEV_PARAMS failed";
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1323 if (ata_msg_warn(ap))
1324 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1325 "(%s, err_mask=0x%x)\n", reason, err_mask);
1329 static inline u8 ata_dev_knobble(struct ata_device *dev)
1331 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1334 static void ata_dev_config_ncq(struct ata_device *dev,
1335 char *desc, size_t desc_sz)
1337 struct ata_port *ap = dev->ap;
1338 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1340 if (!ata_id_has_ncq(dev->id)) {
1345 if (ap->flags & ATA_FLAG_NCQ) {
1346 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1347 dev->flags |= ATA_DFLAG_NCQ;
1350 if (hdepth >= ddepth)
1351 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1353 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1356 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1360 if (ap->scsi_host) {
1361 unsigned int len = 0;
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 len = max(len, ap->device[i].cdb_len);
1366 ap->scsi_host->max_cmd_len = len;
1371 * ata_dev_configure - Configure the specified ATA/ATAPI device
1372 * @dev: Target device to configure
1373 * @print_info: Enable device info printout
1375 * Configure @dev according to @dev->id. Generic and low-level
1376 * driver specific fixups are also applied.
1379 * Kernel thread context (may sleep)
1382 * 0 on success, -errno otherwise
1384 int ata_dev_configure(struct ata_device *dev, int print_info)
1386 struct ata_port *ap = dev->ap;
1387 const u16 *id = dev->id;
1388 unsigned int xfer_mask;
1389 char revbuf[7]; /* XYZ-99\0 */
1392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1393 ata_dev_printk(dev, KERN_INFO,
1394 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1395 __FUNCTION__, ap->id, dev->devno);
1399 if (ata_msg_probe(ap))
1400 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1401 __FUNCTION__, ap->id, dev->devno);
1403 /* print device capabilities */
1404 if (ata_msg_probe(ap))
1405 ata_dev_printk(dev, KERN_DEBUG,
1406 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1407 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1409 id[49], id[82], id[83], id[84],
1410 id[85], id[86], id[87], id[88]);
1412 /* initialize to-be-configured parameters */
1413 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1414 dev->max_sectors = 0;
1422 * common ATA, ATAPI feature tests
1425 /* find max transfer mode; for printk only */
1426 xfer_mask = ata_id_xfermask(id);
1428 if (ata_msg_probe(ap))
1431 /* ATA-specific feature tests */
1432 if (dev->class == ATA_DEV_ATA) {
1433 if (ata_id_is_cfa(id)) {
1434 if (id[162] & 1) /* CPRM may make this media unusable */
1435 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1436 ap->id, dev->devno);
1437 snprintf(revbuf, 7, "CFA");
1440 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1442 dev->n_sectors = ata_id_n_sectors(id);
1444 if (ata_id_has_lba(id)) {
1445 const char *lba_desc;
1449 dev->flags |= ATA_DFLAG_LBA;
1450 if (ata_id_has_lba48(id)) {
1451 dev->flags |= ATA_DFLAG_LBA48;
1456 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1458 /* print device info to dmesg */
1459 if (ata_msg_drv(ap) && print_info)
1460 ata_dev_printk(dev, KERN_INFO, "%s, "
1461 "max %s, %Lu sectors: %s %s\n",
1463 ata_mode_string(xfer_mask),
1464 (unsigned long long)dev->n_sectors,
1465 lba_desc, ncq_desc);
1469 /* Default translation */
1470 dev->cylinders = id[1];
1472 dev->sectors = id[6];
1474 if (ata_id_current_chs_valid(id)) {
1475 /* Current CHS translation is valid. */
1476 dev->cylinders = id[54];
1477 dev->heads = id[55];
1478 dev->sectors = id[56];
1481 /* print device info to dmesg */
1482 if (ata_msg_drv(ap) && print_info)
1483 ata_dev_printk(dev, KERN_INFO, "%s, "
1484 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1486 ata_mode_string(xfer_mask),
1487 (unsigned long long)dev->n_sectors,
1488 dev->cylinders, dev->heads,
1492 if (dev->id[59] & 0x100) {
1493 dev->multi_count = dev->id[59] & 0xff;
1494 if (ata_msg_drv(ap) && print_info)
1495 ata_dev_printk(dev, KERN_INFO,
1496 "ata%u: dev %u multi count %u\n",
1497 ap->id, dev->devno, dev->multi_count);
1503 /* ATAPI-specific feature tests */
1504 else if (dev->class == ATA_DEV_ATAPI) {
1505 char *cdb_intr_string = "";
1507 rc = atapi_cdb_len(id);
1508 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1509 if (ata_msg_warn(ap))
1510 ata_dev_printk(dev, KERN_WARNING,
1511 "unsupported CDB len\n");
1515 dev->cdb_len = (unsigned int) rc;
1517 if (ata_id_cdb_intr(dev->id)) {
1518 dev->flags |= ATA_DFLAG_CDB_INTR;
1519 cdb_intr_string = ", CDB intr";
1522 /* print device info to dmesg */
1523 if (ata_msg_drv(ap) && print_info)
1524 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1525 ata_mode_string(xfer_mask),
1529 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1530 /* Let the user know. We don't want to disallow opens for
1531 rescue purposes, or in case the vendor is just a blithering
1534 ata_dev_printk(dev, KERN_WARNING,
1535 "Drive reports diagnostics failure. This may indicate a drive\n");
1536 ata_dev_printk(dev, KERN_WARNING,
1537 "fault or invalid emulation. Contact drive vendor for information.\n");
1541 ata_set_port_max_cmd_len(ap);
1543 /* limit bridge transfers to udma5, 200 sectors */
1544 if (ata_dev_knobble(dev)) {
1545 if (ata_msg_drv(ap) && print_info)
1546 ata_dev_printk(dev, KERN_INFO,
1547 "applying bridge limits\n");
1548 dev->udma_mask &= ATA_UDMA5;
1549 dev->max_sectors = ATA_MAX_SECTORS;
1552 if (ap->ops->dev_config)
1553 ap->ops->dev_config(ap, dev);
1555 if (ata_msg_probe(ap))
1556 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1557 __FUNCTION__, ata_chk_status(ap));
1561 if (ata_msg_probe(ap))
1562 ata_dev_printk(dev, KERN_DEBUG,
1563 "%s: EXIT, err\n", __FUNCTION__);
1568 * ata_bus_probe - Reset and probe ATA bus
1571 * Master ATA bus probing function. Initiates a hardware-dependent
1572 * bus reset, then attempts to identify any devices found on
1576 * PCI/etc. bus probe sem.
1579 * Zero on success, negative errno otherwise.
1582 int ata_bus_probe(struct ata_port *ap)
1584 unsigned int classes[ATA_MAX_DEVICES];
1585 int tries[ATA_MAX_DEVICES];
1586 int i, rc, down_xfermask;
1587 struct ata_device *dev;
1591 for (i = 0; i < ATA_MAX_DEVICES; i++)
1592 tries[i] = ATA_PROBE_MAX_TRIES;
1597 /* reset and determine device classes */
1598 ap->ops->phy_reset(ap);
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
1603 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1604 dev->class != ATA_DEV_UNKNOWN)
1605 classes[dev->devno] = dev->class;
1607 classes[dev->devno] = ATA_DEV_NONE;
1609 dev->class = ATA_DEV_UNKNOWN;
1614 /* after the reset the device state is PIO 0 and the controller
1615 state is undefined. Record the mode */
1617 for (i = 0; i < ATA_MAX_DEVICES; i++)
1618 ap->device[i].pio_mode = XFER_PIO_0;
1620 /* read IDENTIFY page and configure devices */
1621 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1622 dev = &ap->device[i];
1625 dev->class = classes[i];
1627 if (!ata_dev_enabled(dev))
1630 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1634 rc = ata_dev_configure(dev, 1);
1639 /* configure transfer mode */
1640 rc = ata_set_mode(ap, &dev);
1646 for (i = 0; i < ATA_MAX_DEVICES; i++)
1647 if (ata_dev_enabled(&ap->device[i]))
1650 /* no device present, disable port */
1651 ata_port_disable(ap);
1652 ap->ops->port_disable(ap);
1659 tries[dev->devno] = 0;
1662 sata_down_spd_limit(ap);
1665 tries[dev->devno]--;
1666 if (down_xfermask &&
1667 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1668 tries[dev->devno] = 0;
1671 if (!tries[dev->devno]) {
1672 ata_down_xfermask_limit(dev, 1);
1673 ata_dev_disable(dev);
1680 * ata_port_probe - Mark port as enabled
1681 * @ap: Port for which we indicate enablement
1683 * Modify @ap data structure such that the system
1684 * thinks that the entire port is enabled.
1686 * LOCKING: host lock, or some other form of
1690 void ata_port_probe(struct ata_port *ap)
1692 ap->flags &= ~ATA_FLAG_DISABLED;
1696 * sata_print_link_status - Print SATA link status
1697 * @ap: SATA port to printk link status about
1699 * This function prints link speed and status of a SATA link.
1704 static void sata_print_link_status(struct ata_port *ap)
1706 u32 sstatus, scontrol, tmp;
1708 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1710 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1712 if (ata_port_online(ap)) {
1713 tmp = (sstatus >> 4) & 0xf;
1714 ata_port_printk(ap, KERN_INFO,
1715 "SATA link up %s (SStatus %X SControl %X)\n",
1716 sata_spd_string(tmp), sstatus, scontrol);
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link down (SStatus %X SControl %X)\n",
1725 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1726 * @ap: SATA port associated with target SATA PHY.
1728 * This function issues commands to standard SATA Sxxx
1729 * PHY registers, to wake up the phy (and device), and
1730 * clear any reset condition.
1733 * PCI/etc. bus probe sem.
1736 void __sata_phy_reset(struct ata_port *ap)
1739 unsigned long timeout = jiffies + (HZ * 5);
1741 if (ap->flags & ATA_FLAG_SATA_RESET) {
1742 /* issue phy wake/reset */
1743 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1744 /* Couldn't find anything in SATA I/II specs, but
1745 * AHCI-1.1 10.4.2 says at least 1 ms. */
1748 /* phy wake/clear reset */
1749 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1751 /* wait for phy to become ready, if necessary */
1754 sata_scr_read(ap, SCR_STATUS, &sstatus);
1755 if ((sstatus & 0xf) != 1)
1757 } while (time_before(jiffies, timeout));
1759 /* print link status */
1760 sata_print_link_status(ap);
1762 /* TODO: phy layer with polling, timeouts, etc. */
1763 if (!ata_port_offline(ap))
1766 ata_port_disable(ap);
1768 if (ap->flags & ATA_FLAG_DISABLED)
1771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1772 ata_port_disable(ap);
1776 ap->cbl = ATA_CBL_SATA;
1780 * sata_phy_reset - Reset SATA bus.
1781 * @ap: SATA port associated with target SATA PHY.
1783 * This function resets the SATA bus, and then probes
1784 * the bus for devices.
1787 * PCI/etc. bus probe sem.
1790 void sata_phy_reset(struct ata_port *ap)
1792 __sata_phy_reset(ap);
1793 if (ap->flags & ATA_FLAG_DISABLED)
1799 * ata_dev_pair - return other device on cable
1802 * Obtain the other device on the same cable, or if none is
1803 * present NULL is returned
1806 struct ata_device *ata_dev_pair(struct ata_device *adev)
1808 struct ata_port *ap = adev->ap;
1809 struct ata_device *pair = &ap->device[1 - adev->devno];
1810 if (!ata_dev_enabled(pair))
1816 * ata_port_disable - Disable port.
1817 * @ap: Port to be disabled.
1819 * Modify @ap data structure such that the system
1820 * thinks that the entire port is disabled, and should
1821 * never attempt to probe or communicate with devices
1824 * LOCKING: host lock, or some other form of
1828 void ata_port_disable(struct ata_port *ap)
1830 ap->device[0].class = ATA_DEV_NONE;
1831 ap->device[1].class = ATA_DEV_NONE;
1832 ap->flags |= ATA_FLAG_DISABLED;
1836 * sata_down_spd_limit - adjust SATA spd limit downward
1837 * @ap: Port to adjust SATA spd limit for
1839 * Adjust SATA spd limit of @ap downward. Note that this
1840 * function only adjusts the limit. The change must be applied
1841 * using sata_set_spd().
1844 * Inherited from caller.
1847 * 0 on success, negative errno on failure
1849 int sata_down_spd_limit(struct ata_port *ap)
1851 u32 sstatus, spd, mask;
1854 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1858 mask = ap->sata_spd_limit;
1861 highbit = fls(mask) - 1;
1862 mask &= ~(1 << highbit);
1864 spd = (sstatus >> 4) & 0xf;
1868 mask &= (1 << spd) - 1;
1872 ap->sata_spd_limit = mask;
1874 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1875 sata_spd_string(fls(mask)));
1880 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1884 if (ap->sata_spd_limit == UINT_MAX)
1887 limit = fls(ap->sata_spd_limit);
1889 spd = (*scontrol >> 4) & 0xf;
1890 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1892 return spd != limit;
1896 * sata_set_spd_needed - is SATA spd configuration needed
1897 * @ap: Port in question
1899 * Test whether the spd limit in SControl matches
1900 * @ap->sata_spd_limit. This function is used to determine
1901 * whether hardreset is necessary to apply SATA spd
1905 * Inherited from caller.
1908 * 1 if SATA spd configuration is needed, 0 otherwise.
1910 int sata_set_spd_needed(struct ata_port *ap)
1914 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1917 return __sata_set_spd_needed(ap, &scontrol);
1921 * sata_set_spd - set SATA spd according to spd limit
1922 * @ap: Port to set SATA spd for
1924 * Set SATA spd of @ap according to sata_spd_limit.
1927 * Inherited from caller.
1930 * 0 if spd doesn't need to be changed, 1 if spd has been
1931 * changed. Negative errno if SCR registers are inaccessible.
1933 int sata_set_spd(struct ata_port *ap)
1938 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1941 if (!__sata_set_spd_needed(ap, &scontrol))
1944 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1951 * This mode timing computation functionality is ported over from
1952 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1955 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1956 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1957 * for UDMA6, which is currently supported only by Maxtor drives.
1959 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1962 static const struct ata_timing ata_timing[] = {
1964 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1965 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1966 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1969 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1970 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1972 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1973 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1975 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1978 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1979 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1982 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1983 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1985 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1987 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1988 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1990 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1991 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1994 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1999 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2000 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2002 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2004 q->setup = EZ(t->setup * 1000, T);
2005 q->act8b = EZ(t->act8b * 1000, T);
2006 q->rec8b = EZ(t->rec8b * 1000, T);
2007 q->cyc8b = EZ(t->cyc8b * 1000, T);
2008 q->active = EZ(t->active * 1000, T);
2009 q->recover = EZ(t->recover * 1000, T);
2010 q->cycle = EZ(t->cycle * 1000, T);
2011 q->udma = EZ(t->udma * 1000, UT);
2014 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2015 struct ata_timing *m, unsigned int what)
2017 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2018 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2019 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2020 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2021 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2022 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2023 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2024 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2027 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2029 const struct ata_timing *t;
2031 for (t = ata_timing; t->mode != speed; t++)
2032 if (t->mode == 0xFF)
2037 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2038 struct ata_timing *t, int T, int UT)
2040 const struct ata_timing *s;
2041 struct ata_timing p;
2047 if (!(s = ata_timing_find_mode(speed)))
2050 memcpy(t, s, sizeof(*s));
2053 * If the drive is an EIDE drive, it can tell us it needs extended
2054 * PIO/MW_DMA cycle timing.
2057 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2058 memset(&p, 0, sizeof(p));
2059 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2060 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2061 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2062 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2063 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2065 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2069 * Convert the timing to bus clock counts.
2072 ata_timing_quantize(t, t, T, UT);
2075 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2076 * S.M.A.R.T * and some other commands. We have to ensure that the
2077 * DMA cycle timing is slower/equal than the fastest PIO timing.
2080 if (speed > XFER_PIO_4) {
2081 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2082 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2086 * Lengthen active & recovery time so that cycle time is correct.
2089 if (t->act8b + t->rec8b < t->cyc8b) {
2090 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2091 t->rec8b = t->cyc8b - t->act8b;
2094 if (t->active + t->recover < t->cycle) {
2095 t->active += (t->cycle - (t->active + t->recover)) / 2;
2096 t->recover = t->cycle - t->active;
2103 * ata_down_xfermask_limit - adjust dev xfer masks downward
2104 * @dev: Device to adjust xfer masks
2105 * @force_pio0: Force PIO0
2107 * Adjust xfer masks of @dev downward. Note that this function
2108 * does not apply the change. Invoking ata_set_mode() afterwards
2109 * will apply the limit.
2112 * Inherited from caller.
2115 * 0 on success, negative errno on failure
2117 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2119 unsigned long xfer_mask;
2122 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2127 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2128 if (xfer_mask & ATA_MASK_UDMA)
2129 xfer_mask &= ~ATA_MASK_MWDMA;
2131 highbit = fls(xfer_mask) - 1;
2132 xfer_mask &= ~(1 << highbit);
2134 xfer_mask &= 1 << ATA_SHIFT_PIO;
2138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2141 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2142 ata_mode_string(xfer_mask));
2150 static int ata_dev_set_mode(struct ata_device *dev)
2152 unsigned int err_mask;
2155 dev->flags &= ~ATA_DFLAG_PIO;
2156 if (dev->xfer_shift == ATA_SHIFT_PIO)
2157 dev->flags |= ATA_DFLAG_PIO;
2159 err_mask = ata_dev_set_xfermode(dev);
2161 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2162 "(err_mask=0x%x)\n", err_mask);
2166 rc = ata_dev_revalidate(dev, 0);
2170 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2171 dev->xfer_shift, (int)dev->xfer_mode);
2173 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2174 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2179 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2180 * @ap: port on which timings will be programmed
2181 * @r_failed_dev: out paramter for failed device
2183 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2184 * ata_set_mode() fails, pointer to the failing device is
2185 * returned in @r_failed_dev.
2188 * PCI/etc. bus probe sem.
2191 * 0 on success, negative errno otherwise
2193 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2195 struct ata_device *dev;
2196 int i, rc = 0, used_dma = 0, found = 0;
2198 /* has private set_mode? */
2199 if (ap->ops->set_mode) {
2200 /* FIXME: make ->set_mode handle no device case and
2201 * return error code and failing device on failure.
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2204 if (ata_dev_ready(&ap->device[i])) {
2205 ap->ops->set_mode(ap);
2212 /* step 1: calculate xfer_mask */
2213 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2214 unsigned int pio_mask, dma_mask;
2216 dev = &ap->device[i];
2218 if (!ata_dev_enabled(dev))
2221 ata_dev_xfermask(dev);
2223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2225 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2226 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2235 /* step 2: always set host PIO timings */
2236 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2237 dev = &ap->device[i];
2238 if (!ata_dev_enabled(dev))
2241 if (!dev->pio_mode) {
2242 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2247 dev->xfer_mode = dev->pio_mode;
2248 dev->xfer_shift = ATA_SHIFT_PIO;
2249 if (ap->ops->set_piomode)
2250 ap->ops->set_piomode(ap, dev);
2253 /* step 3: set host DMA timings */
2254 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2255 dev = &ap->device[i];
2257 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2260 dev->xfer_mode = dev->dma_mode;
2261 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2262 if (ap->ops->set_dmamode)
2263 ap->ops->set_dmamode(ap, dev);
2266 /* step 4: update devices' xfer mode */
2267 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2268 dev = &ap->device[i];
2270 /* don't udpate suspended devices' xfer mode */
2271 if (!ata_dev_ready(dev))
2274 rc = ata_dev_set_mode(dev);
2279 /* Record simplex status. If we selected DMA then the other
2280 * host channels are not permitted to do so.
2282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2283 ap->host->simplex_claimed = 1;
2285 /* step5: chip specific finalisation */
2286 if (ap->ops->post_set_mode)
2287 ap->ops->post_set_mode(ap);
2291 *r_failed_dev = dev;
2296 * ata_tf_to_host - issue ATA taskfile to host controller
2297 * @ap: port to which command is being issued
2298 * @tf: ATA taskfile register set
2300 * Issues ATA taskfile register set to ATA host controller,
2301 * with proper synchronization with interrupt handler and
2305 * spin_lock_irqsave(host lock)
2308 static inline void ata_tf_to_host(struct ata_port *ap,
2309 const struct ata_taskfile *tf)
2311 ap->ops->tf_load(ap, tf);
2312 ap->ops->exec_command(ap, tf);
2316 * ata_busy_sleep - sleep until BSY clears, or timeout
2317 * @ap: port containing status register to be polled
2318 * @tmout_pat: impatience timeout
2319 * @tmout: overall timeout
2321 * Sleep until ATA Status register bit BSY clears,
2322 * or a timeout occurs.
2327 unsigned int ata_busy_sleep (struct ata_port *ap,
2328 unsigned long tmout_pat, unsigned long tmout)
2330 unsigned long timer_start, timeout;
2333 status = ata_busy_wait(ap, ATA_BUSY, 300);
2334 timer_start = jiffies;
2335 timeout = timer_start + tmout_pat;
2336 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2338 status = ata_busy_wait(ap, ATA_BUSY, 3);
2341 if (status & ATA_BUSY)
2342 ata_port_printk(ap, KERN_WARNING,
2343 "port is slow to respond, please be patient\n");
2345 timeout = timer_start + tmout;
2346 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2348 status = ata_chk_status(ap);
2351 if (status & ATA_BUSY) {
2352 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2353 "(%lu secs)\n", tmout / HZ);
2360 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2362 struct ata_ioports *ioaddr = &ap->ioaddr;
2363 unsigned int dev0 = devmask & (1 << 0);
2364 unsigned int dev1 = devmask & (1 << 1);
2365 unsigned long timeout;
2367 /* if device 0 was found in ata_devchk, wait for its
2371 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2373 /* if device 1 was found in ata_devchk, wait for
2374 * register access, then wait for BSY to clear
2376 timeout = jiffies + ATA_TMOUT_BOOT;
2380 ap->ops->dev_select(ap, 1);
2381 if (ap->flags & ATA_FLAG_MMIO) {
2382 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2383 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2385 nsect = inb(ioaddr->nsect_addr);
2386 lbal = inb(ioaddr->lbal_addr);
2388 if ((nsect == 1) && (lbal == 1))
2390 if (time_after(jiffies, timeout)) {
2394 msleep(50); /* give drive a breather */
2397 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2399 /* is all this really necessary? */
2400 ap->ops->dev_select(ap, 0);
2402 ap->ops->dev_select(ap, 1);
2404 ap->ops->dev_select(ap, 0);
2407 static unsigned int ata_bus_softreset(struct ata_port *ap,
2408 unsigned int devmask)
2410 struct ata_ioports *ioaddr = &ap->ioaddr;
2412 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2414 /* software reset. causes dev0 to be selected */
2415 if (ap->flags & ATA_FLAG_MMIO) {
2416 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2417 udelay(20); /* FIXME: flush */
2418 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2419 udelay(20); /* FIXME: flush */
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2422 outb(ap->ctl, ioaddr->ctl_addr);
2424 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2426 outb(ap->ctl, ioaddr->ctl_addr);
2429 /* spec mandates ">= 2ms" before checking status.
2430 * We wait 150ms, because that was the magic delay used for
2431 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2432 * between when the ATA command register is written, and then
2433 * status is checked. Because waiting for "a while" before
2434 * checking status is fine, post SRST, we perform this magic
2435 * delay here as well.
2437 * Old drivers/ide uses the 2mS rule and then waits for ready
2441 /* Before we perform post reset processing we want to see if
2442 * the bus shows 0xFF because the odd clown forgets the D7
2443 * pulldown resistor.
2445 if (ata_check_status(ap) == 0xFF) {
2446 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2447 return AC_ERR_OTHER;
2450 ata_bus_post_reset(ap, devmask);
2456 * ata_bus_reset - reset host port and associated ATA channel
2457 * @ap: port to reset
2459 * This is typically the first time we actually start issuing
2460 * commands to the ATA channel. We wait for BSY to clear, then
2461 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2462 * result. Determine what devices, if any, are on the channel
2463 * by looking at the device 0/1 error register. Look at the signature
2464 * stored in each device's taskfile registers, to determine if
2465 * the device is ATA or ATAPI.
2468 * PCI/etc. bus probe sem.
2469 * Obtains host lock.
2472 * Sets ATA_FLAG_DISABLED if bus reset fails.
2475 void ata_bus_reset(struct ata_port *ap)
2477 struct ata_ioports *ioaddr = &ap->ioaddr;
2478 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2480 unsigned int dev0, dev1 = 0, devmask = 0;
2482 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2484 /* determine if device 0/1 are present */
2485 if (ap->flags & ATA_FLAG_SATA_RESET)
2488 dev0 = ata_devchk(ap, 0);
2490 dev1 = ata_devchk(ap, 1);
2494 devmask |= (1 << 0);
2496 devmask |= (1 << 1);
2498 /* select device 0 again */
2499 ap->ops->dev_select(ap, 0);
2501 /* issue bus reset */
2502 if (ap->flags & ATA_FLAG_SRST)
2503 if (ata_bus_softreset(ap, devmask))
2507 * determine by signature whether we have ATA or ATAPI devices
2509 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2510 if ((slave_possible) && (err != 0x81))
2511 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2513 /* re-enable interrupts */
2514 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2517 /* is double-select really necessary? */
2518 if (ap->device[1].class != ATA_DEV_NONE)
2519 ap->ops->dev_select(ap, 1);
2520 if (ap->device[0].class != ATA_DEV_NONE)
2521 ap->ops->dev_select(ap, 0);
2523 /* if no devices were detected, disable this port */
2524 if ((ap->device[0].class == ATA_DEV_NONE) &&
2525 (ap->device[1].class == ATA_DEV_NONE))
2528 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2529 /* set up device control for ATA_FLAG_SATA_RESET */
2530 if (ap->flags & ATA_FLAG_MMIO)
2531 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2533 outb(ap->ctl, ioaddr->ctl_addr);
2540 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2541 ap->ops->port_disable(ap);
2547 * sata_phy_debounce - debounce SATA phy status
2548 * @ap: ATA port to debounce SATA phy status for
2549 * @params: timing parameters { interval, duratinon, timeout } in msec
2551 * Make sure SStatus of @ap reaches stable state, determined by
2552 * holding the same value where DET is not 1 for @duration polled
2553 * every @interval, before @timeout. Timeout constraints the
2554 * beginning of the stable state. Because, after hot unplugging,
2555 * DET gets stuck at 1 on some controllers, this functions waits
2556 * until timeout then returns 0 if DET is stable at 1.
2559 * Kernel thread context (may sleep)
2562 * 0 on success, -errno on failure.
2564 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2566 unsigned long interval_msec = params[0];
2567 unsigned long duration = params[1] * HZ / 1000;
2568 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2569 unsigned long last_jiffies;
2573 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2578 last_jiffies = jiffies;
2581 msleep(interval_msec);
2582 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2588 if (cur == 1 && time_before(jiffies, timeout))
2590 if (time_after(jiffies, last_jiffies + duration))
2595 /* unstable, start over */
2597 last_jiffies = jiffies;
2600 if (time_after(jiffies, timeout))
2606 * sata_phy_resume - resume SATA phy
2607 * @ap: ATA port to resume SATA phy for
2608 * @params: timing parameters { interval, duratinon, timeout } in msec
2610 * Resume SATA phy of @ap and debounce it.
2613 * Kernel thread context (may sleep)
2616 * 0 on success, -errno on failure.
2618 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2623 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2626 scontrol = (scontrol & 0x0f0) | 0x300;
2628 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2631 /* Some PHYs react badly if SStatus is pounded immediately
2632 * after resuming. Delay 200ms before debouncing.
2636 return sata_phy_debounce(ap, params);
2639 static void ata_wait_spinup(struct ata_port *ap)
2641 struct ata_eh_context *ehc = &ap->eh_context;
2642 unsigned long end, secs;
2645 /* first, debounce phy if SATA */
2646 if (ap->cbl == ATA_CBL_SATA) {
2647 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2649 /* if debounced successfully and offline, no need to wait */
2650 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2654 /* okay, let's give the drive time to spin up */
2655 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2656 secs = ((end - jiffies) + HZ - 1) / HZ;
2658 if (time_after(jiffies, end))
2662 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2663 "(%lu secs)\n", secs);
2665 schedule_timeout_uninterruptible(end - jiffies);
2669 * ata_std_prereset - prepare for reset
2670 * @ap: ATA port to be reset
2672 * @ap is about to be reset. Initialize it.
2675 * Kernel thread context (may sleep)
2678 * 0 on success, -errno otherwise.
2680 int ata_std_prereset(struct ata_port *ap)
2682 struct ata_eh_context *ehc = &ap->eh_context;
2683 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2686 /* handle link resume & hotplug spinup */
2687 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2688 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2689 ehc->i.action |= ATA_EH_HARDRESET;
2691 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2692 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2693 ata_wait_spinup(ap);
2695 /* if we're about to do hardreset, nothing more to do */
2696 if (ehc->i.action & ATA_EH_HARDRESET)
2699 /* if SATA, resume phy */
2700 if (ap->cbl == ATA_CBL_SATA) {
2701 rc = sata_phy_resume(ap, timing);
2702 if (rc && rc != -EOPNOTSUPP) {
2703 /* phy resume failed */
2704 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2705 "link for reset (errno=%d)\n", rc);
2710 /* Wait for !BSY if the controller can wait for the first D2H
2711 * Reg FIS and we don't know that no device is attached.
2713 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2714 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2720 * ata_std_softreset - reset host port via ATA SRST
2721 * @ap: port to reset
2722 * @classes: resulting classes of attached devices
2724 * Reset host port using ATA SRST.
2727 * Kernel thread context (may sleep)
2730 * 0 on success, -errno otherwise.
2732 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2734 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2735 unsigned int devmask = 0, err_mask;
2740 if (ata_port_offline(ap)) {
2741 classes[0] = ATA_DEV_NONE;
2745 /* determine if device 0/1 are present */
2746 if (ata_devchk(ap, 0))
2747 devmask |= (1 << 0);
2748 if (slave_possible && ata_devchk(ap, 1))
2749 devmask |= (1 << 1);
2751 /* select device 0 again */
2752 ap->ops->dev_select(ap, 0);
2754 /* issue bus reset */
2755 DPRINTK("about to softreset, devmask=%x\n", devmask);
2756 err_mask = ata_bus_softreset(ap, devmask);
2758 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2763 /* determine by signature whether we have ATA or ATAPI devices */
2764 classes[0] = ata_dev_try_classify(ap, 0, &err);
2765 if (slave_possible && err != 0x81)
2766 classes[1] = ata_dev_try_classify(ap, 1, &err);
2769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2774 * sata_std_hardreset - reset host port via SATA phy reset
2775 * @ap: port to reset
2776 * @class: resulting class of attached device
2778 * SATA phy-reset host port using DET bits of SControl register.
2781 * Kernel thread context (may sleep)
2784 * 0 on success, -errno otherwise.
2786 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2788 struct ata_eh_context *ehc = &ap->eh_context;
2789 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2795 if (sata_set_spd_needed(ap)) {
2796 /* SATA spec says nothing about how to reconfigure
2797 * spd. To be on the safe side, turn off phy during
2798 * reconfiguration. This works for at least ICH7 AHCI
2801 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2804 scontrol = (scontrol & 0x0f0) | 0x304;
2806 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2812 /* issue phy wake/reset */
2813 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2816 scontrol = (scontrol & 0x0f0) | 0x301;
2818 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2822 * 10.4.2 says at least 1 ms.
2826 /* bring phy back */
2827 sata_phy_resume(ap, timing);
2829 /* TODO: phy layer with polling, timeouts, etc. */
2830 if (ata_port_offline(ap)) {
2831 *class = ATA_DEV_NONE;
2832 DPRINTK("EXIT, link offline\n");
2836 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2837 ata_port_printk(ap, KERN_ERR,
2838 "COMRESET failed (device not ready)\n");
2842 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2844 *class = ata_dev_try_classify(ap, 0, NULL);
2846 DPRINTK("EXIT, class=%u\n", *class);
2851 * ata_std_postreset - standard postreset callback
2852 * @ap: the target ata_port
2853 * @classes: classes of attached devices
2855 * This function is invoked after a successful reset. Note that
2856 * the device might have been reset more than once using
2857 * different reset methods before postreset is invoked.
2860 * Kernel thread context (may sleep)
2862 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2868 /* print link status */
2869 sata_print_link_status(ap);
2872 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2873 sata_scr_write(ap, SCR_ERROR, serror);
2875 /* re-enable interrupts */
2876 if (!ap->ops->error_handler) {
2877 /* FIXME: hack. create a hook instead */
2878 if (ap->ioaddr.ctl_addr)
2882 /* is double-select really necessary? */
2883 if (classes[0] != ATA_DEV_NONE)
2884 ap->ops->dev_select(ap, 1);
2885 if (classes[1] != ATA_DEV_NONE)
2886 ap->ops->dev_select(ap, 0);
2888 /* bail out if no device is present */
2889 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2890 DPRINTK("EXIT, no device\n");
2894 /* set up device control */
2895 if (ap->ioaddr.ctl_addr) {
2896 if (ap->flags & ATA_FLAG_MMIO)
2897 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2899 outb(ap->ctl, ap->ioaddr.ctl_addr);
2906 * ata_dev_same_device - Determine whether new ID matches configured device
2907 * @dev: device to compare against
2908 * @new_class: class of the new device
2909 * @new_id: IDENTIFY page of the new device
2911 * Compare @new_class and @new_id against @dev and determine
2912 * whether @dev is the device indicated by @new_class and
2919 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2921 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2924 const u16 *old_id = dev->id;
2925 unsigned char model[2][41], serial[2][21];
2928 if (dev->class != new_class) {
2929 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2930 dev->class, new_class);
2934 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2935 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2936 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2937 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2938 new_n_sectors = ata_id_n_sectors(new_id);
2940 if (strcmp(model[0], model[1])) {
2941 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2942 "'%s' != '%s'\n", model[0], model[1]);
2946 if (strcmp(serial[0], serial[1])) {
2947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2948 "'%s' != '%s'\n", serial[0], serial[1]);
2952 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2953 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2955 (unsigned long long)dev->n_sectors,
2956 (unsigned long long)new_n_sectors);
2964 * ata_dev_revalidate - Revalidate ATA device
2965 * @dev: device to revalidate
2966 * @post_reset: is this revalidation after reset?
2968 * Re-read IDENTIFY page and make sure @dev is still attached to
2972 * Kernel thread context (may sleep)
2975 * 0 on success, negative errno otherwise
2977 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2979 unsigned int class = dev->class;
2980 u16 *id = (void *)dev->ap->sector_buf;
2983 if (!ata_dev_enabled(dev)) {
2989 rc = ata_dev_read_id(dev, &class, post_reset, id);
2993 /* is the device still there? */
2994 if (!ata_dev_same_device(dev, class, id)) {
2999 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3001 /* configure device according to the new ID */
3002 rc = ata_dev_configure(dev, 0);
3007 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3011 static const char * const ata_dma_blacklist [] = {
3012 "WDC AC11000H", NULL,
3013 "WDC AC22100H", NULL,
3014 "WDC AC32500H", NULL,
3015 "WDC AC33100H", NULL,
3016 "WDC AC31600H", NULL,
3017 "WDC AC32100H", "24.09P07",
3018 "WDC AC23200L", "21.10N21",
3019 "Compaq CRD-8241B", NULL,
3024 "SanDisk SDP3B", NULL,
3025 "SanDisk SDP3B-64", NULL,
3026 "SANYO CD-ROM CRD", NULL,
3027 "HITACHI CDR-8", NULL,
3028 "HITACHI CDR-8335", NULL,
3029 "HITACHI CDR-8435", NULL,
3030 "Toshiba CD-ROM XM-6202B", NULL,
3031 "TOSHIBA CD-ROM XM-1702BC", NULL,
3033 "E-IDE CD-ROM CR-840", NULL,
3034 "CD-ROM Drive/F5A", NULL,
3035 "WPI CDD-820", NULL,
3036 "SAMSUNG CD-ROM SC-148C", NULL,
3037 "SAMSUNG CD-ROM SC", NULL,
3038 "SanDisk SDP3B-64", NULL,
3039 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3040 "_NEC DV5800A", NULL,
3041 "SAMSUNG CD-ROM SN-124", "N001"
3044 static int ata_strim(char *s, size_t len)
3046 len = strnlen(s, len);
3048 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3049 while ((len > 0) && (s[len - 1] == ' ')) {
3056 static int ata_dma_blacklisted(const struct ata_device *dev)
3058 unsigned char model_num[40];
3059 unsigned char model_rev[16];
3060 unsigned int nlen, rlen;
3063 /* We don't support polling DMA.
3064 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3065 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3067 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3068 (dev->flags & ATA_DFLAG_CDB_INTR))
3071 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3073 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3075 nlen = ata_strim(model_num, sizeof(model_num));
3076 rlen = ata_strim(model_rev, sizeof(model_rev));
3078 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3079 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3080 if (ata_dma_blacklist[i+1] == NULL)
3082 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3090 * ata_dev_xfermask - Compute supported xfermask of the given device
3091 * @dev: Device to compute xfermask for
3093 * Compute supported xfermask of @dev and store it in
3094 * dev->*_mask. This function is responsible for applying all
3095 * known limits including host controller limits, device
3101 static void ata_dev_xfermask(struct ata_device *dev)
3103 struct ata_port *ap = dev->ap;
3104 struct ata_host *host = ap->host;
3105 unsigned long xfer_mask;
3107 /* controller modes available */
3108 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3109 ap->mwdma_mask, ap->udma_mask);
3111 /* Apply cable rule here. Don't apply it early because when
3112 * we handle hot plug the cable type can itself change.
3114 if (ap->cbl == ATA_CBL_PATA40)
3115 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3117 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3118 dev->mwdma_mask, dev->udma_mask);
3119 xfer_mask &= ata_id_xfermask(dev->id);
3122 * CFA Advanced TrueIDE timings are not allowed on a shared
3125 if (ata_dev_pair(dev)) {
3126 /* No PIO5 or PIO6 */
3127 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3128 /* No MWDMA3 or MWDMA 4 */
3129 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3132 if (ata_dma_blacklisted(dev)) {
3133 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3134 ata_dev_printk(dev, KERN_WARNING,
3135 "device is on DMA blacklist, disabling DMA\n");
3138 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3139 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3140 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3141 "other device, disabling DMA\n");
3144 if (ap->ops->mode_filter)
3145 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3147 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3148 &dev->mwdma_mask, &dev->udma_mask);
3152 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3153 * @dev: Device to which command will be sent
3155 * Issue SET FEATURES - XFER MODE command to device @dev
3159 * PCI/etc. bus probe sem.
3162 * 0 on success, AC_ERR_* mask otherwise.
3165 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3167 struct ata_taskfile tf;
3168 unsigned int err_mask;
3170 /* set up set-features taskfile */
3171 DPRINTK("set features - xfer mode\n");
3173 ata_tf_init(dev, &tf);
3174 tf.command = ATA_CMD_SET_FEATURES;
3175 tf.feature = SETFEATURES_XFER;
3176 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3177 tf.protocol = ATA_PROT_NODATA;
3178 tf.nsect = dev->xfer_mode;
3180 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3182 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3187 * ata_dev_init_params - Issue INIT DEV PARAMS command
3188 * @dev: Device to which command will be sent
3189 * @heads: Number of heads (taskfile parameter)
3190 * @sectors: Number of sectors (taskfile parameter)
3193 * Kernel thread context (may sleep)
3196 * 0 on success, AC_ERR_* mask otherwise.
3198 static unsigned int ata_dev_init_params(struct ata_device *dev,
3199 u16 heads, u16 sectors)
3201 struct ata_taskfile tf;
3202 unsigned int err_mask;
3204 /* Number of sectors per track 1-255. Number of heads 1-16 */
3205 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3206 return AC_ERR_INVALID;
3208 /* set up init dev params taskfile */
3209 DPRINTK("init dev params \n");
3211 ata_tf_init(dev, &tf);
3212 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3213 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3214 tf.protocol = ATA_PROT_NODATA;
3216 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3218 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3220 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3225 * ata_sg_clean - Unmap DMA memory associated with command
3226 * @qc: Command containing DMA memory to be released
3228 * Unmap all mapped DMA memory associated with this command.
3231 * spin_lock_irqsave(host lock)
3234 static void ata_sg_clean(struct ata_queued_cmd *qc)
3236 struct ata_port *ap = qc->ap;
3237 struct scatterlist *sg = qc->__sg;
3238 int dir = qc->dma_dir;
3239 void *pad_buf = NULL;
3241 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3242 WARN_ON(sg == NULL);
3244 if (qc->flags & ATA_QCFLAG_SINGLE)
3245 WARN_ON(qc->n_elem > 1);
3247 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3249 /* if we padded the buffer out to 32-bit bound, and data
3250 * xfer direction is from-device, we must copy from the
3251 * pad buffer back into the supplied buffer
3253 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3254 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3256 if (qc->flags & ATA_QCFLAG_SG) {
3258 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3259 /* restore last sg */
3260 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3262 struct scatterlist *psg = &qc->pad_sgent;
3263 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3264 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3265 kunmap_atomic(addr, KM_IRQ0);
3269 dma_unmap_single(ap->dev,
3270 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3273 sg->length += qc->pad_len;
3275 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3276 pad_buf, qc->pad_len);
3279 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3284 * ata_fill_sg - Fill PCI IDE PRD table
3285 * @qc: Metadata associated with taskfile to be transferred
3287 * Fill PCI IDE PRD (scatter-gather) table with segments
3288 * associated with the current disk command.
3291 * spin_lock_irqsave(host lock)
3294 static void ata_fill_sg(struct ata_queued_cmd *qc)
3296 struct ata_port *ap = qc->ap;
3297 struct scatterlist *sg;
3300 WARN_ON(qc->__sg == NULL);
3301 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3304 ata_for_each_sg(sg, qc) {
3308 /* determine if physical DMA addr spans 64K boundary.
3309 * Note h/w doesn't support 64-bit, so we unconditionally
3310 * truncate dma_addr_t to u32.
3312 addr = (u32) sg_dma_address(sg);
3313 sg_len = sg_dma_len(sg);
3316 offset = addr & 0xffff;
3318 if ((offset + sg_len) > 0x10000)
3319 len = 0x10000 - offset;
3321 ap->prd[idx].addr = cpu_to_le32(addr);
3322 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3323 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3332 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3335 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3336 * @qc: Metadata associated with taskfile to check
3338 * Allow low-level driver to filter ATA PACKET commands, returning
3339 * a status indicating whether or not it is OK to use DMA for the
3340 * supplied PACKET command.
3343 * spin_lock_irqsave(host lock)
3345 * RETURNS: 0 when ATAPI DMA can be used
3348 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3350 struct ata_port *ap = qc->ap;
3351 int rc = 0; /* Assume ATAPI DMA is OK by default */
3353 if (ap->ops->check_atapi_dma)
3354 rc = ap->ops->check_atapi_dma(qc);
3359 * ata_qc_prep - Prepare taskfile for submission
3360 * @qc: Metadata associated with taskfile to be prepared
3362 * Prepare ATA taskfile for submission.
3365 * spin_lock_irqsave(host lock)
3367 void ata_qc_prep(struct ata_queued_cmd *qc)
3369 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3375 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3378 * ata_sg_init_one - Associate command with memory buffer
3379 * @qc: Command to be associated
3380 * @buf: Memory buffer
3381 * @buflen: Length of memory buffer, in bytes.
3383 * Initialize the data-related elements of queued_cmd @qc
3384 * to point to a single memory buffer, @buf of byte length @buflen.
3387 * spin_lock_irqsave(host lock)
3390 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3392 struct scatterlist *sg;
3394 qc->flags |= ATA_QCFLAG_SINGLE;
3396 memset(&qc->sgent, 0, sizeof(qc->sgent));
3397 qc->__sg = &qc->sgent;
3399 qc->orig_n_elem = 1;
3401 qc->nbytes = buflen;
3404 sg_init_one(sg, buf, buflen);
3408 * ata_sg_init - Associate command with scatter-gather table.
3409 * @qc: Command to be associated
3410 * @sg: Scatter-gather table.
3411 * @n_elem: Number of elements in s/g table.
3413 * Initialize the data-related elements of queued_cmd @qc
3414 * to point to a scatter-gather table @sg, containing @n_elem
3418 * spin_lock_irqsave(host lock)
3421 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3422 unsigned int n_elem)
3424 qc->flags |= ATA_QCFLAG_SG;
3426 qc->n_elem = n_elem;
3427 qc->orig_n_elem = n_elem;
3431 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3432 * @qc: Command with memory buffer to be mapped.
3434 * DMA-map the memory buffer associated with queued_cmd @qc.
3437 * spin_lock_irqsave(host lock)
3440 * Zero on success, negative on error.
3443 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3445 struct ata_port *ap = qc->ap;
3446 int dir = qc->dma_dir;
3447 struct scatterlist *sg = qc->__sg;
3448 dma_addr_t dma_address;
3451 /* we must lengthen transfers to end on a 32-bit boundary */
3452 qc->pad_len = sg->length & 3;
3454 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3455 struct scatterlist *psg = &qc->pad_sgent;
3457 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3459 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3461 if (qc->tf.flags & ATA_TFLAG_WRITE)
3462 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3465 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3466 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3468 sg->length -= qc->pad_len;
3469 if (sg->length == 0)
3472 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3473 sg->length, qc->pad_len);
3481 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3483 if (dma_mapping_error(dma_address)) {
3485 sg->length += qc->pad_len;
3489 sg_dma_address(sg) = dma_address;
3490 sg_dma_len(sg) = sg->length;
3493 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3494 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3500 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3501 * @qc: Command with scatter-gather table to be mapped.
3503 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3506 * spin_lock_irqsave(host lock)
3509 * Zero on success, negative on error.
3513 static int ata_sg_setup(struct ata_queued_cmd *qc)
3515 struct ata_port *ap = qc->ap;
3516 struct scatterlist *sg = qc->__sg;
3517 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3518 int n_elem, pre_n_elem, dir, trim_sg = 0;
3520 VPRINTK("ENTER, ata%u\n", ap->id);
3521 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3523 /* we must lengthen transfers to end on a 32-bit boundary */
3524 qc->pad_len = lsg->length & 3;
3526 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3527 struct scatterlist *psg = &qc->pad_sgent;
3528 unsigned int offset;
3530 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3532 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3535 * psg->page/offset are used to copy to-be-written
3536 * data in this function or read data in ata_sg_clean.
3538 offset = lsg->offset + lsg->length - qc->pad_len;
3539 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3540 psg->offset = offset_in_page(offset);
3542 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3543 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3544 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3545 kunmap_atomic(addr, KM_IRQ0);
3548 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3549 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3551 lsg->length -= qc->pad_len;
3552 if (lsg->length == 0)
3555 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3556 qc->n_elem - 1, lsg->length, qc->pad_len);
3559 pre_n_elem = qc->n_elem;
3560 if (trim_sg && pre_n_elem)
3569 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3571 /* restore last sg */
3572 lsg->length += qc->pad_len;
3576 DPRINTK("%d sg elements mapped\n", n_elem);
3579 qc->n_elem = n_elem;
3585 * swap_buf_le16 - swap halves of 16-bit words in place
3586 * @buf: Buffer to swap
3587 * @buf_words: Number of 16-bit words in buffer.
3589 * Swap halves of 16-bit words if needed to convert from
3590 * little-endian byte order to native cpu byte order, or
3594 * Inherited from caller.
3596 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3601 for (i = 0; i < buf_words; i++)
3602 buf[i] = le16_to_cpu(buf[i]);
3603 #endif /* __BIG_ENDIAN */
3607 * ata_mmio_data_xfer - Transfer data by MMIO
3608 * @adev: device for this I/O
3610 * @buflen: buffer length
3611 * @write_data: read/write
3613 * Transfer data from/to the device data register by MMIO.
3616 * Inherited from caller.
3619 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3620 unsigned int buflen, int write_data)
3622 struct ata_port *ap = adev->ap;
3624 unsigned int words = buflen >> 1;
3625 u16 *buf16 = (u16 *) buf;
3626 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3628 /* Transfer multiple of 2 bytes */
3630 for (i = 0; i < words; i++)
3631 writew(le16_to_cpu(buf16[i]), mmio);
3633 for (i = 0; i < words; i++)
3634 buf16[i] = cpu_to_le16(readw(mmio));
3637 /* Transfer trailing 1 byte, if any. */
3638 if (unlikely(buflen & 0x01)) {
3639 u16 align_buf[1] = { 0 };
3640 unsigned char *trailing_buf = buf + buflen - 1;
3643 memcpy(align_buf, trailing_buf, 1);
3644 writew(le16_to_cpu(align_buf[0]), mmio);
3646 align_buf[0] = cpu_to_le16(readw(mmio));
3647 memcpy(trailing_buf, align_buf, 1);
3653 * ata_pio_data_xfer - Transfer data by PIO
3654 * @adev: device to target
3656 * @buflen: buffer length
3657 * @write_data: read/write
3659 * Transfer data from/to the device data register by PIO.
3662 * Inherited from caller.
3665 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3666 unsigned int buflen, int write_data)
3668 struct ata_port *ap = adev->ap;
3669 unsigned int words = buflen >> 1;
3671 /* Transfer multiple of 2 bytes */
3673 outsw(ap->ioaddr.data_addr, buf, words);
3675 insw(ap->ioaddr.data_addr, buf, words);
3677 /* Transfer trailing 1 byte, if any. */
3678 if (unlikely(buflen & 0x01)) {
3679 u16 align_buf[1] = { 0 };
3680 unsigned char *trailing_buf = buf + buflen - 1;
3683 memcpy(align_buf, trailing_buf, 1);
3684 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3686 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3687 memcpy(trailing_buf, align_buf, 1);
3693 * ata_pio_data_xfer_noirq - Transfer data by PIO
3694 * @adev: device to target
3696 * @buflen: buffer length
3697 * @write_data: read/write
3699 * Transfer data from/to the device data register by PIO. Do the
3700 * transfer with interrupts disabled.
3703 * Inherited from caller.
3706 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3707 unsigned int buflen, int write_data)
3709 unsigned long flags;
3710 local_irq_save(flags);
3711 ata_pio_data_xfer(adev, buf, buflen, write_data);
3712 local_irq_restore(flags);
3717 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3718 * @qc: Command on going
3720 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3723 * Inherited from caller.
3726 static void ata_pio_sector(struct ata_queued_cmd *qc)
3728 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3729 struct scatterlist *sg = qc->__sg;
3730 struct ata_port *ap = qc->ap;
3732 unsigned int offset;
3735 if (qc->cursect == (qc->nsect - 1))
3736 ap->hsm_task_state = HSM_ST_LAST;
3738 page = sg[qc->cursg].page;
3739 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3741 /* get the current page and offset */
3742 page = nth_page(page, (offset >> PAGE_SHIFT));
3743 offset %= PAGE_SIZE;
3745 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3747 if (PageHighMem(page)) {
3748 unsigned long flags;
3750 /* FIXME: use a bounce buffer */
3751 local_irq_save(flags);
3752 buf = kmap_atomic(page, KM_IRQ0);
3754 /* do the actual data transfer */
3755 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3757 kunmap_atomic(buf, KM_IRQ0);
3758 local_irq_restore(flags);
3760 buf = page_address(page);
3761 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3767 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3774 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3775 * @qc: Command on going
3777 * Transfer one or many ATA_SECT_SIZE of data from/to the
3778 * ATA device for the DRQ request.
3781 * Inherited from caller.
3784 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3786 if (is_multi_taskfile(&qc->tf)) {
3787 /* READ/WRITE MULTIPLE */
3790 WARN_ON(qc->dev->multi_count == 0);
3792 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3800 * atapi_send_cdb - Write CDB bytes to hardware
3801 * @ap: Port to which ATAPI device is attached.
3802 * @qc: Taskfile currently active
3804 * When device has indicated its readiness to accept
3805 * a CDB, this function is called. Send the CDB.
3811 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3814 DPRINTK("send cdb\n");
3815 WARN_ON(qc->dev->cdb_len < 12);
3817 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3818 ata_altstatus(ap); /* flush */
3820 switch (qc->tf.protocol) {
3821 case ATA_PROT_ATAPI:
3822 ap->hsm_task_state = HSM_ST;
3824 case ATA_PROT_ATAPI_NODATA:
3825 ap->hsm_task_state = HSM_ST_LAST;
3827 case ATA_PROT_ATAPI_DMA:
3828 ap->hsm_task_state = HSM_ST_LAST;
3829 /* initiate bmdma */
3830 ap->ops->bmdma_start(qc);
3836 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3837 * @qc: Command on going
3838 * @bytes: number of bytes
3840 * Transfer Transfer data from/to the ATAPI device.
3843 * Inherited from caller.
3847 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3849 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3850 struct scatterlist *sg = qc->__sg;
3851 struct ata_port *ap = qc->ap;
3854 unsigned int offset, count;
3856 if (qc->curbytes + bytes >= qc->nbytes)
3857 ap->hsm_task_state = HSM_ST_LAST;
3860 if (unlikely(qc->cursg >= qc->n_elem)) {
3862 * The end of qc->sg is reached and the device expects
3863 * more data to transfer. In order not to overrun qc->sg
3864 * and fulfill length specified in the byte count register,
3865 * - for read case, discard trailing data from the device
3866 * - for write case, padding zero data to the device
3868 u16 pad_buf[1] = { 0 };
3869 unsigned int words = bytes >> 1;
3872 if (words) /* warning if bytes > 1 */
3873 ata_dev_printk(qc->dev, KERN_WARNING,
3874 "%u bytes trailing data\n", bytes);
3876 for (i = 0; i < words; i++)
3877 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3879 ap->hsm_task_state = HSM_ST_LAST;
3883 sg = &qc->__sg[qc->cursg];
3886 offset = sg->offset + qc->cursg_ofs;
3888 /* get the current page and offset */
3889 page = nth_page(page, (offset >> PAGE_SHIFT));
3890 offset %= PAGE_SIZE;
3892 /* don't overrun current sg */
3893 count = min(sg->length - qc->cursg_ofs, bytes);
3895 /* don't cross page boundaries */
3896 count = min(count, (unsigned int)PAGE_SIZE - offset);
3898 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3900 if (PageHighMem(page)) {
3901 unsigned long flags;
3903 /* FIXME: use bounce buffer */
3904 local_irq_save(flags);
3905 buf = kmap_atomic(page, KM_IRQ0);
3907 /* do the actual data transfer */
3908 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3910 kunmap_atomic(buf, KM_IRQ0);
3911 local_irq_restore(flags);
3913 buf = page_address(page);
3914 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3918 qc->curbytes += count;
3919 qc->cursg_ofs += count;
3921 if (qc->cursg_ofs == sg->length) {
3931 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3932 * @qc: Command on going
3934 * Transfer Transfer data from/to the ATAPI device.
3937 * Inherited from caller.
3940 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3942 struct ata_port *ap = qc->ap;
3943 struct ata_device *dev = qc->dev;
3944 unsigned int ireason, bc_lo, bc_hi, bytes;
3945 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3947 /* Abuse qc->result_tf for temp storage of intermediate TF
3948 * here to save some kernel stack usage.
3949 * For normal completion, qc->result_tf is not relevant. For
3950 * error, qc->result_tf is later overwritten by ata_qc_complete().
3951 * So, the correctness of qc->result_tf is not affected.
3953 ap->ops->tf_read(ap, &qc->result_tf);
3954 ireason = qc->result_tf.nsect;
3955 bc_lo = qc->result_tf.lbam;
3956 bc_hi = qc->result_tf.lbah;
3957 bytes = (bc_hi << 8) | bc_lo;
3959 /* shall be cleared to zero, indicating xfer of data */
3960 if (ireason & (1 << 0))
3963 /* make sure transfer direction matches expected */
3964 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3965 if (do_write != i_write)
3968 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3970 __atapi_pio_bytes(qc, bytes);
3975 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3976 qc->err_mask |= AC_ERR_HSM;
3977 ap->hsm_task_state = HSM_ST_ERR;
3981 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3982 * @ap: the target ata_port
3986 * 1 if ok in workqueue, 0 otherwise.
3989 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3991 if (qc->tf.flags & ATA_TFLAG_POLLING)
3994 if (ap->hsm_task_state == HSM_ST_FIRST) {
3995 if (qc->tf.protocol == ATA_PROT_PIO &&
3996 (qc->tf.flags & ATA_TFLAG_WRITE))
3999 if (is_atapi_taskfile(&qc->tf) &&
4000 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4008 * ata_hsm_qc_complete - finish a qc running on standard HSM
4009 * @qc: Command to complete
4010 * @in_wq: 1 if called from workqueue, 0 otherwise
4012 * Finish @qc which is running on standard HSM.
4015 * If @in_wq is zero, spin_lock_irqsave(host lock).
4016 * Otherwise, none on entry and grabs host lock.
4018 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4020 struct ata_port *ap = qc->ap;
4021 unsigned long flags;
4023 if (ap->ops->error_handler) {
4025 spin_lock_irqsave(ap->lock, flags);
4027 /* EH might have kicked in while host lock is
4030 qc = ata_qc_from_tag(ap, qc->tag);
4032 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4034 ata_qc_complete(qc);
4036 ata_port_freeze(ap);
4039 spin_unlock_irqrestore(ap->lock, flags);
4041 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4042 ata_qc_complete(qc);
4044 ata_port_freeze(ap);
4048 spin_lock_irqsave(ap->lock, flags);
4050 ata_qc_complete(qc);
4051 spin_unlock_irqrestore(ap->lock, flags);
4053 ata_qc_complete(qc);
4056 ata_altstatus(ap); /* flush */
4060 * ata_hsm_move - move the HSM to the next state.
4061 * @ap: the target ata_port
4063 * @status: current device status
4064 * @in_wq: 1 if called from workqueue, 0 otherwise
4067 * 1 when poll next status needed, 0 otherwise.
4069 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4070 u8 status, int in_wq)
4072 unsigned long flags = 0;
4075 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4077 /* Make sure ata_qc_issue_prot() does not throw things
4078 * like DMA polling into the workqueue. Notice that
4079 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4081 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4084 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4085 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4087 switch (ap->hsm_task_state) {
4089 /* Send first data block or PACKET CDB */
4091 /* If polling, we will stay in the work queue after
4092 * sending the data. Otherwise, interrupt handler
4093 * takes over after sending the data.
4095 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4097 /* check device status */
4098 if (unlikely((status & ATA_DRQ) == 0)) {
4099 /* handle BSY=0, DRQ=0 as error */
4100 if (likely(status & (ATA_ERR | ATA_DF)))
4101 /* device stops HSM for abort/error */
4102 qc->err_mask |= AC_ERR_DEV;
4104 /* HSM violation. Let EH handle this */
4105 qc->err_mask |= AC_ERR_HSM;
4107 ap->hsm_task_state = HSM_ST_ERR;
4111 /* Device should not ask for data transfer (DRQ=1)
4112 * when it finds something wrong.
4113 * We ignore DRQ here and stop the HSM by
4114 * changing hsm_task_state to HSM_ST_ERR and
4115 * let the EH abort the command or reset the device.
4117 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4118 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4120 qc->err_mask |= AC_ERR_HSM;
4121 ap->hsm_task_state = HSM_ST_ERR;
4125 /* Send the CDB (atapi) or the first data block (ata pio out).
4126 * During the state transition, interrupt handler shouldn't
4127 * be invoked before the data transfer is complete and
4128 * hsm_task_state is changed. Hence, the following locking.
4131 spin_lock_irqsave(ap->lock, flags);
4133 if (qc->tf.protocol == ATA_PROT_PIO) {
4134 /* PIO data out protocol.
4135 * send first data block.
4138 /* ata_pio_sectors() might change the state
4139 * to HSM_ST_LAST. so, the state is changed here
4140 * before ata_pio_sectors().
4142 ap->hsm_task_state = HSM_ST;
4143 ata_pio_sectors(qc);
4144 ata_altstatus(ap); /* flush */
4147 atapi_send_cdb(ap, qc);
4150 spin_unlock_irqrestore(ap->lock, flags);
4152 /* if polling, ata_pio_task() handles the rest.
4153 * otherwise, interrupt handler takes over from here.
4158 /* complete command or read/write the data register */
4159 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4160 /* ATAPI PIO protocol */
4161 if ((status & ATA_DRQ) == 0) {
4162 /* No more data to transfer or device error.
4163 * Device error will be tagged in HSM_ST_LAST.
4165 ap->hsm_task_state = HSM_ST_LAST;
4169 /* Device should not ask for data transfer (DRQ=1)
4170 * when it finds something wrong.
4171 * We ignore DRQ here and stop the HSM by
4172 * changing hsm_task_state to HSM_ST_ERR and
4173 * let the EH abort the command or reset the device.
4175 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4176 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4178 qc->err_mask |= AC_ERR_HSM;
4179 ap->hsm_task_state = HSM_ST_ERR;
4183 atapi_pio_bytes(qc);
4185 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4186 /* bad ireason reported by device */
4190 /* ATA PIO protocol */
4191 if (unlikely((status & ATA_DRQ) == 0)) {
4192 /* handle BSY=0, DRQ=0 as error */
4193 if (likely(status & (ATA_ERR | ATA_DF)))
4194 /* device stops HSM for abort/error */
4195 qc->err_mask |= AC_ERR_DEV;
4197 /* HSM violation. Let EH handle this */
4198 qc->err_mask |= AC_ERR_HSM;
4200 ap->hsm_task_state = HSM_ST_ERR;
4204 /* For PIO reads, some devices may ask for
4205 * data transfer (DRQ=1) alone with ERR=1.
4206 * We respect DRQ here and transfer one
4207 * block of junk data before changing the
4208 * hsm_task_state to HSM_ST_ERR.
4210 * For PIO writes, ERR=1 DRQ=1 doesn't make
4211 * sense since the data block has been
4212 * transferred to the device.
4214 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4215 /* data might be corrputed */
4216 qc->err_mask |= AC_ERR_DEV;
4218 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4219 ata_pio_sectors(qc);
4221 status = ata_wait_idle(ap);
4224 if (status & (ATA_BUSY | ATA_DRQ))
4225 qc->err_mask |= AC_ERR_HSM;
4227 /* ata_pio_sectors() might change the
4228 * state to HSM_ST_LAST. so, the state
4229 * is changed after ata_pio_sectors().
4231 ap->hsm_task_state = HSM_ST_ERR;
4235 ata_pio_sectors(qc);
4237 if (ap->hsm_task_state == HSM_ST_LAST &&
4238 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4241 status = ata_wait_idle(ap);
4246 ata_altstatus(ap); /* flush */
4251 if (unlikely(!ata_ok(status))) {
4252 qc->err_mask |= __ac_err_mask(status);
4253 ap->hsm_task_state = HSM_ST_ERR;
4257 /* no more data to transfer */
4258 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4259 ap->id, qc->dev->devno, status);
4261 WARN_ON(qc->err_mask);
4263 ap->hsm_task_state = HSM_ST_IDLE;
4265 /* complete taskfile transaction */
4266 ata_hsm_qc_complete(qc, in_wq);
4272 /* make sure qc->err_mask is available to
4273 * know what's wrong and recover
4275 WARN_ON(qc->err_mask == 0);
4277 ap->hsm_task_state = HSM_ST_IDLE;
4279 /* complete taskfile transaction */
4280 ata_hsm_qc_complete(qc, in_wq);
4292 static void ata_pio_task(void *_data)
4294 struct ata_queued_cmd *qc = _data;
4295 struct ata_port *ap = qc->ap;
4300 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4303 * This is purely heuristic. This is a fast path.
4304 * Sometimes when we enter, BSY will be cleared in
4305 * a chk-status or two. If not, the drive is probably seeking
4306 * or something. Snooze for a couple msecs, then
4307 * chk-status again. If still busy, queue delayed work.
4309 status = ata_busy_wait(ap, ATA_BUSY, 5);
4310 if (status & ATA_BUSY) {
4312 status = ata_busy_wait(ap, ATA_BUSY, 10);
4313 if (status & ATA_BUSY) {
4314 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4320 poll_next = ata_hsm_move(ap, qc, status, 1);
4322 /* another command or interrupt handler
4323 * may be running at this point.
4330 * ata_qc_new - Request an available ATA command, for queueing
4331 * @ap: Port associated with device @dev
4332 * @dev: Device from whom we request an available command structure
4338 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4340 struct ata_queued_cmd *qc = NULL;
4343 /* no command while frozen */
4344 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4347 /* the last tag is reserved for internal command. */
4348 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4349 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4350 qc = __ata_qc_from_tag(ap, i);
4361 * ata_qc_new_init - Request an available ATA command, and initialize it
4362 * @dev: Device from whom we request an available command structure
4368 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4370 struct ata_port *ap = dev->ap;
4371 struct ata_queued_cmd *qc;
4373 qc = ata_qc_new(ap);
4386 * ata_qc_free - free unused ata_queued_cmd
4387 * @qc: Command to complete
4389 * Designed to free unused ata_queued_cmd object
4390 * in case something prevents using it.
4393 * spin_lock_irqsave(host lock)
4395 void ata_qc_free(struct ata_queued_cmd *qc)
4397 struct ata_port *ap = qc->ap;
4400 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4404 if (likely(ata_tag_valid(tag))) {
4405 qc->tag = ATA_TAG_POISON;
4406 clear_bit(tag, &ap->qc_allocated);
4410 void __ata_qc_complete(struct ata_queued_cmd *qc)
4412 struct ata_port *ap = qc->ap;
4414 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4415 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4417 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4420 /* command should be marked inactive atomically with qc completion */
4421 if (qc->tf.protocol == ATA_PROT_NCQ)
4422 ap->sactive &= ~(1 << qc->tag);
4424 ap->active_tag = ATA_TAG_POISON;
4426 /* atapi: mark qc as inactive to prevent the interrupt handler
4427 * from completing the command twice later, before the error handler
4428 * is called. (when rc != 0 and atapi request sense is needed)
4430 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4431 ap->qc_active &= ~(1 << qc->tag);
4433 /* call completion callback */
4434 qc->complete_fn(qc);
4438 * ata_qc_complete - Complete an active ATA command
4439 * @qc: Command to complete
4440 * @err_mask: ATA Status register contents
4442 * Indicate to the mid and upper layers that an ATA
4443 * command has completed, with either an ok or not-ok status.
4446 * spin_lock_irqsave(host lock)
4448 void ata_qc_complete(struct ata_queued_cmd *qc)
4450 struct ata_port *ap = qc->ap;
4452 /* XXX: New EH and old EH use different mechanisms to
4453 * synchronize EH with regular execution path.
4455 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4456 * Normal execution path is responsible for not accessing a
4457 * failed qc. libata core enforces the rule by returning NULL
4458 * from ata_qc_from_tag() for failed qcs.
4460 * Old EH depends on ata_qc_complete() nullifying completion
4461 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4462 * not synchronize with interrupt handler. Only PIO task is
4465 if (ap->ops->error_handler) {
4466 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4468 if (unlikely(qc->err_mask))
4469 qc->flags |= ATA_QCFLAG_FAILED;
4471 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4472 if (!ata_tag_internal(qc->tag)) {
4473 /* always fill result TF for failed qc */
4474 ap->ops->tf_read(ap, &qc->result_tf);
4475 ata_qc_schedule_eh(qc);
4480 /* read result TF if requested */
4481 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4482 ap->ops->tf_read(ap, &qc->result_tf);
4484 __ata_qc_complete(qc);
4486 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4489 /* read result TF if failed or requested */
4490 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4491 ap->ops->tf_read(ap, &qc->result_tf);
4493 __ata_qc_complete(qc);
4498 * ata_qc_complete_multiple - Complete multiple qcs successfully
4499 * @ap: port in question
4500 * @qc_active: new qc_active mask
4501 * @finish_qc: LLDD callback invoked before completing a qc
4503 * Complete in-flight commands. This functions is meant to be
4504 * called from low-level driver's interrupt routine to complete
4505 * requests normally. ap->qc_active and @qc_active is compared
4506 * and commands are completed accordingly.
4509 * spin_lock_irqsave(host lock)
4512 * Number of completed commands on success, -errno otherwise.
4514 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4515 void (*finish_qc)(struct ata_queued_cmd *))
4521 done_mask = ap->qc_active ^ qc_active;
4523 if (unlikely(done_mask & qc_active)) {
4524 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4525 "(%08x->%08x)\n", ap->qc_active, qc_active);
4529 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4530 struct ata_queued_cmd *qc;
4532 if (!(done_mask & (1 << i)))
4535 if ((qc = ata_qc_from_tag(ap, i))) {
4538 ata_qc_complete(qc);
4546 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4548 struct ata_port *ap = qc->ap;
4550 switch (qc->tf.protocol) {
4553 case ATA_PROT_ATAPI_DMA:
4556 case ATA_PROT_ATAPI:
4558 if (ap->flags & ATA_FLAG_PIO_DMA)
4571 * ata_qc_issue - issue taskfile to device
4572 * @qc: command to issue to device
4574 * Prepare an ATA command to submission to device.
4575 * This includes mapping the data into a DMA-able
4576 * area, filling in the S/G table, and finally
4577 * writing the taskfile to hardware, starting the command.
4580 * spin_lock_irqsave(host lock)
4582 void ata_qc_issue(struct ata_queued_cmd *qc)
4584 struct ata_port *ap = qc->ap;
4586 /* Make sure only one non-NCQ command is outstanding. The
4587 * check is skipped for old EH because it reuses active qc to
4588 * request ATAPI sense.
4590 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4592 if (qc->tf.protocol == ATA_PROT_NCQ) {
4593 WARN_ON(ap->sactive & (1 << qc->tag));
4594 ap->sactive |= 1 << qc->tag;
4596 WARN_ON(ap->sactive);
4597 ap->active_tag = qc->tag;
4600 qc->flags |= ATA_QCFLAG_ACTIVE;
4601 ap->qc_active |= 1 << qc->tag;
4603 if (ata_should_dma_map(qc)) {
4604 if (qc->flags & ATA_QCFLAG_SG) {
4605 if (ata_sg_setup(qc))
4607 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4608 if (ata_sg_setup_one(qc))
4612 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 ap->ops->qc_prep(qc);
4617 qc->err_mask |= ap->ops->qc_issue(qc);
4618 if (unlikely(qc->err_mask))
4623 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4624 qc->err_mask |= AC_ERR_SYSTEM;
4626 ata_qc_complete(qc);
4630 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4631 * @qc: command to issue to device
4633 * Using various libata functions and hooks, this function
4634 * starts an ATA command. ATA commands are grouped into
4635 * classes called "protocols", and issuing each type of protocol
4636 * is slightly different.
4638 * May be used as the qc_issue() entry in ata_port_operations.
4641 * spin_lock_irqsave(host lock)
4644 * Zero on success, AC_ERR_* mask on failure
4647 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4649 struct ata_port *ap = qc->ap;
4651 /* Use polling pio if the LLD doesn't handle
4652 * interrupt driven pio and atapi CDB interrupt.
4654 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4655 switch (qc->tf.protocol) {
4657 case ATA_PROT_ATAPI:
4658 case ATA_PROT_ATAPI_NODATA:
4659 qc->tf.flags |= ATA_TFLAG_POLLING;
4661 case ATA_PROT_ATAPI_DMA:
4662 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4663 /* see ata_dma_blacklisted() */
4671 /* select the device */
4672 ata_dev_select(ap, qc->dev->devno, 1, 0);
4674 /* start the command */
4675 switch (qc->tf.protocol) {
4676 case ATA_PROT_NODATA:
4677 if (qc->tf.flags & ATA_TFLAG_POLLING)
4678 ata_qc_set_polling(qc);
4680 ata_tf_to_host(ap, &qc->tf);
4681 ap->hsm_task_state = HSM_ST_LAST;
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
4684 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4689 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4691 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4692 ap->ops->bmdma_setup(qc); /* set up bmdma */
4693 ap->ops->bmdma_start(qc); /* initiate bmdma */
4694 ap->hsm_task_state = HSM_ST_LAST;
4698 if (qc->tf.flags & ATA_TFLAG_POLLING)
4699 ata_qc_set_polling(qc);
4701 ata_tf_to_host(ap, &qc->tf);
4703 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4704 /* PIO data out protocol */
4705 ap->hsm_task_state = HSM_ST_FIRST;
4706 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4708 /* always send first data block using
4709 * the ata_pio_task() codepath.
4712 /* PIO data in protocol */
4713 ap->hsm_task_state = HSM_ST;
4715 if (qc->tf.flags & ATA_TFLAG_POLLING)
4716 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4718 /* if polling, ata_pio_task() handles the rest.
4719 * otherwise, interrupt handler takes over from here.
4725 case ATA_PROT_ATAPI:
4726 case ATA_PROT_ATAPI_NODATA:
4727 if (qc->tf.flags & ATA_TFLAG_POLLING)
4728 ata_qc_set_polling(qc);
4730 ata_tf_to_host(ap, &qc->tf);
4732 ap->hsm_task_state = HSM_ST_FIRST;
4734 /* send cdb by polling if no cdb interrupt */
4735 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4736 (qc->tf.flags & ATA_TFLAG_POLLING))
4737 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4740 case ATA_PROT_ATAPI_DMA:
4741 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4743 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4744 ap->ops->bmdma_setup(qc); /* set up bmdma */
4745 ap->hsm_task_state = HSM_ST_FIRST;
4747 /* send cdb by polling if no cdb interrupt */
4748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4749 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4754 return AC_ERR_SYSTEM;
4761 * ata_host_intr - Handle host interrupt for given (port, task)
4762 * @ap: Port on which interrupt arrived (possibly...)
4763 * @qc: Taskfile currently active in engine
4765 * Handle host interrupt for given queued command. Currently,
4766 * only DMA interrupts are handled. All other commands are
4767 * handled via polling with interrupts disabled (nIEN bit).
4770 * spin_lock_irqsave(host lock)
4773 * One if interrupt was handled, zero if not (shared irq).
4776 inline unsigned int ata_host_intr (struct ata_port *ap,
4777 struct ata_queued_cmd *qc)
4779 u8 status, host_stat = 0;
4781 VPRINTK("ata%u: protocol %d task_state %d\n",
4782 ap->id, qc->tf.protocol, ap->hsm_task_state);
4784 /* Check whether we are expecting interrupt in this state */
4785 switch (ap->hsm_task_state) {
4787 /* Some pre-ATAPI-4 devices assert INTRQ
4788 * at this state when ready to receive CDB.
4791 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4792 * The flag was turned on only for atapi devices.
4793 * No need to check is_atapi_taskfile(&qc->tf) again.
4795 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4799 if (qc->tf.protocol == ATA_PROT_DMA ||
4800 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4801 /* check status of DMA engine */
4802 host_stat = ap->ops->bmdma_status(ap);
4803 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4805 /* if it's not our irq... */
4806 if (!(host_stat & ATA_DMA_INTR))
4809 /* before we do anything else, clear DMA-Start bit */
4810 ap->ops->bmdma_stop(qc);
4812 if (unlikely(host_stat & ATA_DMA_ERR)) {
4813 /* error when transfering data to/from memory */
4814 qc->err_mask |= AC_ERR_HOST_BUS;
4815 ap->hsm_task_state = HSM_ST_ERR;
4825 /* check altstatus */
4826 status = ata_altstatus(ap);
4827 if (status & ATA_BUSY)
4830 /* check main status, clearing INTRQ */
4831 status = ata_chk_status(ap);
4832 if (unlikely(status & ATA_BUSY))
4835 /* ack bmdma irq events */
4836 ap->ops->irq_clear(ap);
4838 ata_hsm_move(ap, qc, status, 0);
4839 return 1; /* irq handled */
4842 ap->stats.idle_irq++;
4845 if ((ap->stats.idle_irq % 1000) == 0) {
4846 ata_irq_ack(ap, 0); /* debug trap */
4847 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4851 return 0; /* irq not handled */
4855 * ata_interrupt - Default ATA host interrupt handler
4856 * @irq: irq line (unused)
4857 * @dev_instance: pointer to our ata_host information structure
4860 * Default interrupt handler for PCI IDE devices. Calls
4861 * ata_host_intr() for each port that is not disabled.
4864 * Obtains host lock during operation.
4867 * IRQ_NONE or IRQ_HANDLED.
4870 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4872 struct ata_host *host = dev_instance;
4874 unsigned int handled = 0;
4875 unsigned long flags;
4877 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4878 spin_lock_irqsave(&host->lock, flags);
4880 for (i = 0; i < host->n_ports; i++) {
4881 struct ata_port *ap;
4883 ap = host->ports[i];
4885 !(ap->flags & ATA_FLAG_DISABLED)) {
4886 struct ata_queued_cmd *qc;
4888 qc = ata_qc_from_tag(ap, ap->active_tag);
4889 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4890 (qc->flags & ATA_QCFLAG_ACTIVE))
4891 handled |= ata_host_intr(ap, qc);
4895 spin_unlock_irqrestore(&host->lock, flags);
4897 return IRQ_RETVAL(handled);
4901 * sata_scr_valid - test whether SCRs are accessible
4902 * @ap: ATA port to test SCR accessibility for
4904 * Test whether SCRs are accessible for @ap.
4910 * 1 if SCRs are accessible, 0 otherwise.
4912 int sata_scr_valid(struct ata_port *ap)
4914 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4918 * sata_scr_read - read SCR register of the specified port
4919 * @ap: ATA port to read SCR for
4921 * @val: Place to store read value
4923 * Read SCR register @reg of @ap into *@val. This function is
4924 * guaranteed to succeed if the cable type of the port is SATA
4925 * and the port implements ->scr_read.
4931 * 0 on success, negative errno on failure.
4933 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4935 if (sata_scr_valid(ap)) {
4936 *val = ap->ops->scr_read(ap, reg);
4943 * sata_scr_write - write SCR register of the specified port
4944 * @ap: ATA port to write SCR for
4945 * @reg: SCR to write
4946 * @val: value to write
4948 * Write @val to SCR register @reg of @ap. This function is
4949 * guaranteed to succeed if the cable type of the port is SATA
4950 * and the port implements ->scr_read.
4956 * 0 on success, negative errno on failure.
4958 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4960 if (sata_scr_valid(ap)) {
4961 ap->ops->scr_write(ap, reg, val);
4968 * sata_scr_write_flush - write SCR register of the specified port and flush
4969 * @ap: ATA port to write SCR for
4970 * @reg: SCR to write
4971 * @val: value to write
4973 * This function is identical to sata_scr_write() except that this
4974 * function performs flush after writing to the register.
4980 * 0 on success, negative errno on failure.
4982 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4984 if (sata_scr_valid(ap)) {
4985 ap->ops->scr_write(ap, reg, val);
4986 ap->ops->scr_read(ap, reg);
4993 * ata_port_online - test whether the given port is online
4994 * @ap: ATA port to test
4996 * Test whether @ap is online. Note that this function returns 0
4997 * if online status of @ap cannot be obtained, so
4998 * ata_port_online(ap) != !ata_port_offline(ap).
5004 * 1 if the port online status is available and online.
5006 int ata_port_online(struct ata_port *ap)
5010 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5016 * ata_port_offline - test whether the given port is offline
5017 * @ap: ATA port to test
5019 * Test whether @ap is offline. Note that this function returns
5020 * 0 if offline status of @ap cannot be obtained, so
5021 * ata_port_online(ap) != !ata_port_offline(ap).
5027 * 1 if the port offline status is available and offline.
5029 int ata_port_offline(struct ata_port *ap)
5033 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5038 int ata_flush_cache(struct ata_device *dev)
5040 unsigned int err_mask;
5043 if (!ata_try_flush_cache(dev))
5046 if (ata_id_has_flush_ext(dev->id))
5047 cmd = ATA_CMD_FLUSH_EXT;
5049 cmd = ATA_CMD_FLUSH;
5051 err_mask = ata_do_simple_cmd(dev, cmd);
5053 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5060 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5061 unsigned int action, unsigned int ehi_flags,
5064 unsigned long flags;
5067 for (i = 0; i < host->n_ports; i++) {
5068 struct ata_port *ap = host->ports[i];
5070 /* Previous resume operation might still be in
5071 * progress. Wait for PM_PENDING to clear.
5073 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5074 ata_port_wait_eh(ap);
5075 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5078 /* request PM ops to EH */
5079 spin_lock_irqsave(ap->lock, flags);
5084 ap->pm_result = &rc;
5087 ap->pflags |= ATA_PFLAG_PM_PENDING;
5088 ap->eh_info.action |= action;
5089 ap->eh_info.flags |= ehi_flags;
5091 ata_port_schedule_eh(ap);
5093 spin_unlock_irqrestore(ap->lock, flags);
5095 /* wait and check result */
5097 ata_port_wait_eh(ap);
5098 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5108 * ata_host_suspend - suspend host
5109 * @host: host to suspend
5112 * Suspend @host. Actual operation is performed by EH. This
5113 * function requests EH to perform PM operations and waits for EH
5117 * Kernel thread context (may sleep).
5120 * 0 on success, -errno on failure.
5122 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5126 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5130 /* EH is quiescent now. Fail if we have any ready device.
5131 * This happens if hotplug occurs between completion of device
5132 * suspension and here.
5134 for (i = 0; i < host->n_ports; i++) {
5135 struct ata_port *ap = host->ports[i];
5137 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5138 struct ata_device *dev = &ap->device[j];
5140 if (ata_dev_ready(dev)) {
5141 ata_port_printk(ap, KERN_WARNING,
5142 "suspend failed, device %d "
5143 "still active\n", dev->devno);
5150 host->dev->power.power_state = mesg;
5154 ata_host_resume(host);
5159 * ata_host_resume - resume host
5160 * @host: host to resume
5162 * Resume @host. Actual operation is performed by EH. This
5163 * function requests EH to perform PM operations and returns.
5164 * Note that all resume operations are performed parallely.
5167 * Kernel thread context (may sleep).
5169 void ata_host_resume(struct ata_host *host)
5171 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5172 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5173 host->dev->power.power_state = PMSG_ON;
5177 * ata_port_start - Set port up for dma.
5178 * @ap: Port to initialize
5180 * Called just after data structures for each port are
5181 * initialized. Allocates space for PRD table.
5183 * May be used as the port_start() entry in ata_port_operations.
5186 * Inherited from caller.
5189 int ata_port_start (struct ata_port *ap)
5191 struct device *dev = ap->dev;
5194 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5198 rc = ata_pad_alloc(ap, dev);
5200 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5204 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5211 * ata_port_stop - Undo ata_port_start()
5212 * @ap: Port to shut down
5214 * Frees the PRD table.
5216 * May be used as the port_stop() entry in ata_port_operations.
5219 * Inherited from caller.
5222 void ata_port_stop (struct ata_port *ap)
5224 struct device *dev = ap->dev;
5226 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5227 ata_pad_free(ap, dev);
5230 void ata_host_stop (struct ata_host *host)
5232 if (host->mmio_base)
5233 iounmap(host->mmio_base);
5237 * ata_dev_init - Initialize an ata_device structure
5238 * @dev: Device structure to initialize
5240 * Initialize @dev in preparation for probing.
5243 * Inherited from caller.
5245 void ata_dev_init(struct ata_device *dev)
5247 struct ata_port *ap = dev->ap;
5248 unsigned long flags;
5250 /* SATA spd limit is bound to the first device */
5251 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5253 /* High bits of dev->flags are used to record warm plug
5254 * requests which occur asynchronously. Synchronize using
5257 spin_lock_irqsave(ap->lock, flags);
5258 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5259 spin_unlock_irqrestore(ap->lock, flags);
5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5263 dev->pio_mask = UINT_MAX;
5264 dev->mwdma_mask = UINT_MAX;
5265 dev->udma_mask = UINT_MAX;
5269 * ata_port_init - Initialize an ata_port structure
5270 * @ap: Structure to initialize
5271 * @host: Collection of hosts to which @ap belongs
5272 * @ent: Probe information provided by low-level driver
5273 * @port_no: Port number associated with this ata_port
5275 * Initialize a new ata_port structure.
5278 * Inherited from caller.
5280 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5281 const struct ata_probe_ent *ent, unsigned int port_no)
5285 ap->lock = &host->lock;
5286 ap->flags = ATA_FLAG_DISABLED;
5287 ap->id = ata_unique_id++;
5288 ap->ctl = ATA_DEVCTL_OBS;
5291 ap->port_no = port_no;
5292 if (port_no == 1 && ent->pinfo2) {
5293 ap->pio_mask = ent->pinfo2->pio_mask;
5294 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5295 ap->udma_mask = ent->pinfo2->udma_mask;
5296 ap->flags |= ent->pinfo2->flags;
5297 ap->ops = ent->pinfo2->port_ops;
5299 ap->pio_mask = ent->pio_mask;
5300 ap->mwdma_mask = ent->mwdma_mask;
5301 ap->udma_mask = ent->udma_mask;
5302 ap->flags |= ent->port_flags;
5303 ap->ops = ent->port_ops;
5305 ap->hw_sata_spd_limit = UINT_MAX;
5306 ap->active_tag = ATA_TAG_POISON;
5307 ap->last_ctl = 0xFF;
5309 #if defined(ATA_VERBOSE_DEBUG)
5310 /* turn on all debugging levels */
5311 ap->msg_enable = 0x00FF;
5312 #elif defined(ATA_DEBUG)
5313 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5315 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5318 INIT_WORK(&ap->port_task, NULL, NULL);
5319 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5320 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5321 INIT_LIST_HEAD(&ap->eh_done_q);
5322 init_waitqueue_head(&ap->eh_wait_q);
5324 /* set cable type */
5325 ap->cbl = ATA_CBL_NONE;
5326 if (ap->flags & ATA_FLAG_SATA)
5327 ap->cbl = ATA_CBL_SATA;
5329 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5330 struct ata_device *dev = &ap->device[i];
5337 ap->stats.unhandled_irq = 1;
5338 ap->stats.idle_irq = 1;
5341 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5345 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5346 * @ap: ATA port to initialize SCSI host for
5347 * @shost: SCSI host associated with @ap
5349 * Initialize SCSI host @shost associated with ATA port @ap.
5352 * Inherited from caller.
5354 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5356 ap->scsi_host = shost;
5358 shost->unique_id = ap->id;
5361 shost->max_channel = 1;
5362 shost->max_cmd_len = 12;
5366 * ata_port_add - Attach low-level ATA driver to system
5367 * @ent: Information provided by low-level driver
5368 * @host: Collections of ports to which we add
5369 * @port_no: Port number associated with this host
5371 * Attach low-level ATA driver to system.
5374 * PCI/etc. bus probe sem.
5377 * New ata_port on success, for NULL on error.
5379 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5380 struct ata_host *host,
5381 unsigned int port_no)
5383 struct Scsi_Host *shost;
5384 struct ata_port *ap;
5388 if (!ent->port_ops->error_handler &&
5389 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5390 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5395 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5399 shost->transportt = &ata_scsi_transport_template;
5401 ap = ata_shost_to_port(shost);
5403 ata_port_init(ap, host, ent, port_no);
5404 ata_port_init_shost(ap, shost);
5410 * ata_sas_host_init - Initialize a host struct
5411 * @host: host to initialize
5412 * @dev: device host is attached to
5413 * @flags: host flags
5417 * PCI/etc. bus probe sem.
5421 void ata_host_init(struct ata_host *host, struct device *dev,
5422 unsigned long flags, const struct ata_port_operations *ops)
5424 spin_lock_init(&host->lock);
5426 host->flags = flags;
5431 * ata_device_add - Register hardware device with ATA and SCSI layers
5432 * @ent: Probe information describing hardware device to be registered
5434 * This function processes the information provided in the probe
5435 * information struct @ent, allocates the necessary ATA and SCSI
5436 * host information structures, initializes them, and registers
5437 * everything with requisite kernel subsystems.
5439 * This function requests irqs, probes the ATA bus, and probes
5443 * PCI/etc. bus probe sem.
5446 * Number of ports registered. Zero on error (no ports registered).
5448 int ata_device_add(const struct ata_probe_ent *ent)
5451 struct device *dev = ent->dev;
5452 struct ata_host *host;
5456 /* alloc a container for our list of ATA ports (buses) */
5457 host = kzalloc(sizeof(struct ata_host) +
5458 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5462 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5463 host->n_ports = ent->n_ports;
5464 host->irq = ent->irq;
5465 host->irq2 = ent->irq2;
5466 host->mmio_base = ent->mmio_base;
5467 host->private_data = ent->private_data;
5469 /* register each port bound to this device */
5470 for (i = 0; i < host->n_ports; i++) {
5471 struct ata_port *ap;
5472 unsigned long xfer_mode_mask;
5473 int irq_line = ent->irq;
5475 ap = ata_port_add(ent, host, i);
5479 host->ports[i] = ap;
5482 if (ent->dummy_port_mask & (1 << i)) {
5483 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5484 ap->ops = &ata_dummy_port_ops;
5489 rc = ap->ops->port_start(ap);
5491 host->ports[i] = NULL;
5492 scsi_host_put(ap->scsi_host);
5496 /* Report the secondary IRQ for second channel legacy */
5497 if (i == 1 && ent->irq2)
5498 irq_line = ent->irq2;
5500 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5501 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5502 (ap->pio_mask << ATA_SHIFT_PIO);
5504 /* print per-port info to dmesg */
5505 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5506 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5507 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5508 ata_mode_string(xfer_mode_mask),
5509 ap->ioaddr.cmd_addr,
5510 ap->ioaddr.ctl_addr,
5511 ap->ioaddr.bmdma_addr,
5515 host->ops->irq_clear(ap);
5516 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5519 /* obtain irq, that may be shared between channels */
5520 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5523 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5528 /* do we have a second IRQ for the other channel, eg legacy mode */
5530 /* We will get weird core code crashes later if this is true
5532 BUG_ON(ent->irq == ent->irq2);
5534 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5537 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5539 goto err_out_free_irq;
5543 /* perform each probe synchronously */
5544 DPRINTK("probe begin\n");
5545 for (i = 0; i < host->n_ports; i++) {
5546 struct ata_port *ap = host->ports[i];
5550 /* init sata_spd_limit to the current value */
5551 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5552 int spd = (scontrol >> 4) & 0xf;
5553 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5555 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5557 rc = scsi_add_host(ap->scsi_host, dev);
5559 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5560 /* FIXME: do something useful here */
5561 /* FIXME: handle unconditional calls to
5562 * scsi_scan_host and ata_host_remove, below,
5567 if (ap->ops->error_handler) {
5568 struct ata_eh_info *ehi = &ap->eh_info;
5569 unsigned long flags;
5573 /* kick EH for boot probing */
5574 spin_lock_irqsave(ap->lock, flags);
5576 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5577 ehi->action |= ATA_EH_SOFTRESET;
5578 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5580 ap->pflags |= ATA_PFLAG_LOADING;
5581 ata_port_schedule_eh(ap);
5583 spin_unlock_irqrestore(ap->lock, flags);
5585 /* wait for EH to finish */
5586 ata_port_wait_eh(ap);
5588 DPRINTK("ata%u: bus probe begin\n", ap->id);
5589 rc = ata_bus_probe(ap);
5590 DPRINTK("ata%u: bus probe end\n", ap->id);
5593 /* FIXME: do something useful here?
5594 * Current libata behavior will
5595 * tear down everything when
5596 * the module is removed
5597 * or the h/w is unplugged.
5603 /* probes are done, now scan each port's disk(s) */
5604 DPRINTK("host probe begin\n");
5605 for (i = 0; i < host->n_ports; i++) {
5606 struct ata_port *ap = host->ports[i];
5608 ata_scsi_scan_host(ap);
5611 dev_set_drvdata(dev, host);
5613 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5614 return ent->n_ports; /* success */
5617 free_irq(ent->irq, host);
5619 for (i = 0; i < host->n_ports; i++) {
5620 struct ata_port *ap = host->ports[i];
5622 ap->ops->port_stop(ap);
5623 scsi_host_put(ap->scsi_host);
5628 VPRINTK("EXIT, returning 0\n");
5633 * ata_port_detach - Detach ATA port in prepration of device removal
5634 * @ap: ATA port to be detached
5636 * Detach all ATA devices and the associated SCSI devices of @ap;
5637 * then, remove the associated SCSI host. @ap is guaranteed to
5638 * be quiescent on return from this function.
5641 * Kernel thread context (may sleep).
5643 void ata_port_detach(struct ata_port *ap)
5645 unsigned long flags;
5648 if (!ap->ops->error_handler)
5651 /* tell EH we're leaving & flush EH */
5652 spin_lock_irqsave(ap->lock, flags);
5653 ap->pflags |= ATA_PFLAG_UNLOADING;
5654 spin_unlock_irqrestore(ap->lock, flags);
5656 ata_port_wait_eh(ap);
5658 /* EH is now guaranteed to see UNLOADING, so no new device
5659 * will be attached. Disable all existing devices.
5661 spin_lock_irqsave(ap->lock, flags);
5663 for (i = 0; i < ATA_MAX_DEVICES; i++)
5664 ata_dev_disable(&ap->device[i]);
5666 spin_unlock_irqrestore(ap->lock, flags);
5668 /* Final freeze & EH. All in-flight commands are aborted. EH
5669 * will be skipped and retrials will be terminated with bad
5672 spin_lock_irqsave(ap->lock, flags);
5673 ata_port_freeze(ap); /* won't be thawed */
5674 spin_unlock_irqrestore(ap->lock, flags);
5676 ata_port_wait_eh(ap);
5678 /* Flush hotplug task. The sequence is similar to
5679 * ata_port_flush_task().
5681 flush_workqueue(ata_aux_wq);
5682 cancel_delayed_work(&ap->hotplug_task);
5683 flush_workqueue(ata_aux_wq);
5686 /* remove the associated SCSI host */
5687 scsi_remove_host(ap->scsi_host);
5691 * ata_host_remove - PCI layer callback for device removal
5692 * @host: ATA host set that was removed
5694 * Unregister all objects associated with this host set. Free those
5698 * Inherited from calling layer (may sleep).
5701 void ata_host_remove(struct ata_host *host)
5705 for (i = 0; i < host->n_ports; i++)
5706 ata_port_detach(host->ports[i]);
5708 free_irq(host->irq, host);
5710 free_irq(host->irq2, host);
5712 for (i = 0; i < host->n_ports; i++) {
5713 struct ata_port *ap = host->ports[i];
5715 ata_scsi_release(ap->scsi_host);
5717 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5718 struct ata_ioports *ioaddr = &ap->ioaddr;
5720 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5721 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5722 release_region(ATA_PRIMARY_CMD, 8);
5723 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5724 release_region(ATA_SECONDARY_CMD, 8);
5727 scsi_host_put(ap->scsi_host);
5730 if (host->ops->host_stop)
5731 host->ops->host_stop(host);
5737 * ata_scsi_release - SCSI layer callback hook for host unload
5738 * @host: libata host to be unloaded
5740 * Performs all duties necessary to shut down a libata port...
5741 * Kill port kthread, disable port, and release resources.
5744 * Inherited from SCSI layer.
5750 int ata_scsi_release(struct Scsi_Host *shost)
5752 struct ata_port *ap = ata_shost_to_port(shost);
5756 ap->ops->port_disable(ap);
5757 ap->ops->port_stop(ap);
5763 struct ata_probe_ent *
5764 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5766 struct ata_probe_ent *probe_ent;
5768 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5770 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5771 kobject_name(&(dev->kobj)));
5775 INIT_LIST_HEAD(&probe_ent->node);
5776 probe_ent->dev = dev;
5778 probe_ent->sht = port->sht;
5779 probe_ent->port_flags = port->flags;
5780 probe_ent->pio_mask = port->pio_mask;
5781 probe_ent->mwdma_mask = port->mwdma_mask;
5782 probe_ent->udma_mask = port->udma_mask;
5783 probe_ent->port_ops = port->port_ops;
5789 * ata_std_ports - initialize ioaddr with standard port offsets.
5790 * @ioaddr: IO address structure to be initialized
5792 * Utility function which initializes data_addr, error_addr,
5793 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5794 * device_addr, status_addr, and command_addr to standard offsets
5795 * relative to cmd_addr.
5797 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5800 void ata_std_ports(struct ata_ioports *ioaddr)
5802 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5803 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5804 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5805 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5806 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5807 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5808 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5809 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5810 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5811 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5817 void ata_pci_host_stop (struct ata_host *host)
5819 struct pci_dev *pdev = to_pci_dev(host->dev);
5821 pci_iounmap(pdev, host->mmio_base);
5825 * ata_pci_remove_one - PCI layer callback for device removal
5826 * @pdev: PCI device that was removed
5828 * PCI layer indicates to libata via this hook that
5829 * hot-unplug or module unload event has occurred.
5830 * Handle this by unregistering all objects associated
5831 * with this PCI device. Free those objects. Then finally
5832 * release PCI resources and disable device.
5835 * Inherited from PCI layer (may sleep).
5838 void ata_pci_remove_one (struct pci_dev *pdev)
5840 struct device *dev = pci_dev_to_dev(pdev);
5841 struct ata_host *host = dev_get_drvdata(dev);
5843 ata_host_remove(host);
5845 pci_release_regions(pdev);
5846 pci_disable_device(pdev);
5847 dev_set_drvdata(dev, NULL);
5850 /* move to PCI subsystem */
5851 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5853 unsigned long tmp = 0;
5855 switch (bits->width) {
5858 pci_read_config_byte(pdev, bits->reg, &tmp8);
5864 pci_read_config_word(pdev, bits->reg, &tmp16);
5870 pci_read_config_dword(pdev, bits->reg, &tmp32);
5881 return (tmp == bits->val) ? 1 : 0;
5884 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5886 pci_save_state(pdev);
5888 if (mesg.event == PM_EVENT_SUSPEND) {
5889 pci_disable_device(pdev);
5890 pci_set_power_state(pdev, PCI_D3hot);
5894 void ata_pci_device_do_resume(struct pci_dev *pdev)
5896 pci_set_power_state(pdev, PCI_D0);
5897 pci_restore_state(pdev);
5898 pci_enable_device(pdev);
5899 pci_set_master(pdev);
5902 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5904 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5907 rc = ata_host_suspend(host, mesg);
5911 ata_pci_device_do_suspend(pdev, mesg);
5916 int ata_pci_device_resume(struct pci_dev *pdev)
5918 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5920 ata_pci_device_do_resume(pdev);
5921 ata_host_resume(host);
5924 #endif /* CONFIG_PCI */
5927 static int __init ata_init(void)
5929 ata_probe_timeout *= HZ;
5930 ata_wq = create_workqueue("ata");
5934 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5936 destroy_workqueue(ata_wq);
5940 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5944 static void __exit ata_exit(void)
5946 destroy_workqueue(ata_wq);
5947 destroy_workqueue(ata_aux_wq);
5950 module_init(ata_init);
5951 module_exit(ata_exit);
5953 static unsigned long ratelimit_time;
5954 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5956 int ata_ratelimit(void)
5959 unsigned long flags;
5961 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5963 if (time_after(jiffies, ratelimit_time)) {
5965 ratelimit_time = jiffies + (HZ/5);
5969 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5975 * ata_wait_register - wait until register value changes
5976 * @reg: IO-mapped register
5977 * @mask: Mask to apply to read register value
5978 * @val: Wait condition
5979 * @interval_msec: polling interval in milliseconds
5980 * @timeout_msec: timeout in milliseconds
5982 * Waiting for some bits of register to change is a common
5983 * operation for ATA controllers. This function reads 32bit LE
5984 * IO-mapped register @reg and tests for the following condition.
5986 * (*@reg & mask) != val
5988 * If the condition is met, it returns; otherwise, the process is
5989 * repeated after @interval_msec until timeout.
5992 * Kernel thread context (may sleep)
5995 * The final register value.
5997 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5998 unsigned long interval_msec,
5999 unsigned long timeout_msec)
6001 unsigned long timeout;
6004 tmp = ioread32(reg);
6006 /* Calculate timeout _after_ the first read to make sure
6007 * preceding writes reach the controller before starting to
6008 * eat away the timeout.
6010 timeout = jiffies + (timeout_msec * HZ) / 1000;
6012 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6013 msleep(interval_msec);
6014 tmp = ioread32(reg);
6023 static void ata_dummy_noret(struct ata_port *ap) { }
6024 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6025 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6027 static u8 ata_dummy_check_status(struct ata_port *ap)
6032 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6034 return AC_ERR_SYSTEM;
6037 const struct ata_port_operations ata_dummy_port_ops = {
6038 .port_disable = ata_port_disable,
6039 .check_status = ata_dummy_check_status,
6040 .check_altstatus = ata_dummy_check_status,
6041 .dev_select = ata_noop_dev_select,
6042 .qc_prep = ata_noop_qc_prep,
6043 .qc_issue = ata_dummy_qc_issue,
6044 .freeze = ata_dummy_noret,
6045 .thaw = ata_dummy_noret,
6046 .error_handler = ata_dummy_noret,
6047 .post_internal_cmd = ata_dummy_qc_noret,
6048 .irq_clear = ata_dummy_noret,
6049 .port_start = ata_dummy_ret0,
6050 .port_stop = ata_dummy_noret,
6054 * libata is essentially a library of internal helper functions for
6055 * low-level ATA host controller drivers. As such, the API/ABI is
6056 * likely to change as new drivers are added and updated.
6057 * Do not depend on ABI/API stability.
6060 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6061 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6062 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6063 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6064 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6065 EXPORT_SYMBOL_GPL(ata_std_ports);
6066 EXPORT_SYMBOL_GPL(ata_host_init);
6067 EXPORT_SYMBOL_GPL(ata_device_add);
6068 EXPORT_SYMBOL_GPL(ata_port_detach);
6069 EXPORT_SYMBOL_GPL(ata_host_remove);
6070 EXPORT_SYMBOL_GPL(ata_sg_init);
6071 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6072 EXPORT_SYMBOL_GPL(ata_hsm_move);
6073 EXPORT_SYMBOL_GPL(ata_qc_complete);
6074 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6075 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6076 EXPORT_SYMBOL_GPL(ata_tf_load);
6077 EXPORT_SYMBOL_GPL(ata_tf_read);
6078 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6079 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6080 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6081 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6082 EXPORT_SYMBOL_GPL(ata_check_status);
6083 EXPORT_SYMBOL_GPL(ata_altstatus);
6084 EXPORT_SYMBOL_GPL(ata_exec_command);
6085 EXPORT_SYMBOL_GPL(ata_port_start);
6086 EXPORT_SYMBOL_GPL(ata_port_stop);
6087 EXPORT_SYMBOL_GPL(ata_host_stop);
6088 EXPORT_SYMBOL_GPL(ata_interrupt);
6089 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6090 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6091 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6092 EXPORT_SYMBOL_GPL(ata_qc_prep);
6093 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6094 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6095 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6096 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6097 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6098 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6099 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6100 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6101 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6102 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6103 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6104 EXPORT_SYMBOL_GPL(ata_port_probe);
6105 EXPORT_SYMBOL_GPL(sata_set_spd);
6106 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6107 EXPORT_SYMBOL_GPL(sata_phy_resume);
6108 EXPORT_SYMBOL_GPL(sata_phy_reset);
6109 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6110 EXPORT_SYMBOL_GPL(ata_bus_reset);
6111 EXPORT_SYMBOL_GPL(ata_std_prereset);
6112 EXPORT_SYMBOL_GPL(ata_std_softreset);
6113 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6114 EXPORT_SYMBOL_GPL(ata_std_postreset);
6115 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6116 EXPORT_SYMBOL_GPL(ata_dev_classify);
6117 EXPORT_SYMBOL_GPL(ata_dev_pair);
6118 EXPORT_SYMBOL_GPL(ata_port_disable);
6119 EXPORT_SYMBOL_GPL(ata_ratelimit);
6120 EXPORT_SYMBOL_GPL(ata_wait_register);
6121 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6122 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6123 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6124 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6125 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6126 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6127 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6128 EXPORT_SYMBOL_GPL(ata_scsi_release);
6129 EXPORT_SYMBOL_GPL(ata_host_intr);
6130 EXPORT_SYMBOL_GPL(sata_scr_valid);
6131 EXPORT_SYMBOL_GPL(sata_scr_read);
6132 EXPORT_SYMBOL_GPL(sata_scr_write);
6133 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6134 EXPORT_SYMBOL_GPL(ata_port_online);
6135 EXPORT_SYMBOL_GPL(ata_port_offline);
6136 EXPORT_SYMBOL_GPL(ata_host_suspend);
6137 EXPORT_SYMBOL_GPL(ata_host_resume);
6138 EXPORT_SYMBOL_GPL(ata_id_string);
6139 EXPORT_SYMBOL_GPL(ata_id_c_string);
6140 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6142 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6143 EXPORT_SYMBOL_GPL(ata_timing_compute);
6144 EXPORT_SYMBOL_GPL(ata_timing_merge);
6147 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6148 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6149 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6150 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6151 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6152 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6153 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6154 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6155 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6156 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6157 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6158 #endif /* CONFIG_PCI */
6160 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6161 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6163 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6164 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6165 EXPORT_SYMBOL_GPL(ata_port_abort);
6166 EXPORT_SYMBOL_GPL(ata_port_freeze);
6167 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6168 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6169 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6170 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6171 EXPORT_SYMBOL_GPL(ata_do_eh);