2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/smp_lock.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/init.h>
30 #include <linux/vmalloc.h>
32 #include <linux/sysctl.h>
33 #include <linux/list.h>
34 #include <linux/file.h>
35 #include <linux/poll.h>
36 #include <linux/vfs.h>
37 #include <linux/smp.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
78 * bit0 : register implemented
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_lock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
167 #define UNPROTECT_CTX(c, f) \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
173 #define PROTECT_CTX_NOPRINT(c, f) \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 #define PROTECT_CTX_NOIRQ(c) \
187 spin_lock(&(c)->ctx_lock); \
190 #define UNPROTECT_CTX_NOIRQ(c) \
192 spin_unlock(&(c)->ctx_lock); \
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
227 #define PFM_DEBUGGING 1
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
234 #define DPRINT_ovfl(a) \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339 * magic number used to verify that structure is really
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
465 * perfmon command descriptions
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
471 unsigned int cmd_narg;
473 int (*cmd_getsize)(void *arg, size_t *sz);
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
525 .ctl_name = CTL_UNNUMBERED,
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
530 .proc_handler = &proc_dointvec,
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
538 .proc_handler = &proc_dointvec,
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
546 .proc_handler = &proc_dointvec,
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
554 .proc_handler = &proc_dointvec,
558 static ctl_table pfm_sysctl_dir[] = {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
563 .child = pfm_ctl_table,
567 static ctl_table pfm_sysctl_root[] = {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
572 .child = pfm_sysctl_dir,
576 static struct ctl_table_header *pfm_sysctl_header;
578 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
580 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
584 pfm_put_task(struct task_struct *task)
586 if (task != current) put_task_struct(task);
590 pfm_set_task_notify(struct task_struct *task)
592 struct thread_info *info;
594 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
595 set_bit(TIF_NOTIFY_RESUME, &info->flags);
599 pfm_clear_task_notify(void)
601 clear_thread_flag(TIF_NOTIFY_RESUME);
605 pfm_reserve_page(unsigned long a)
607 SetPageReserved(vmalloc_to_page((void *)a));
610 pfm_unreserve_page(unsigned long a)
612 ClearPageReserved(vmalloc_to_page((void*)a));
615 static inline unsigned long
616 pfm_protect_ctx_ctxsw(pfm_context_t *x)
618 spin_lock(&(x)->ctx_lock);
623 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
625 spin_unlock(&(x)->ctx_lock);
628 static inline unsigned int
629 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
631 return do_munmap(mm, addr, len);
634 static inline unsigned long
635 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
637 return get_unmapped_area(file, addr, len, pgoff, flags);
642 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
643 struct vfsmount *mnt)
645 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
648 static struct file_system_type pfm_fs_type = {
650 .get_sb = pfmfs_get_sb,
651 .kill_sb = kill_anon_super,
654 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
655 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
656 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
657 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
658 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
661 /* forward declaration */
662 static const struct file_operations pfm_file_ops;
665 * forward declarations
668 static void pfm_lazy_save_regs (struct task_struct *ta);
671 void dump_pmu_state(const char *);
672 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
674 #include "perfmon_itanium.h"
675 #include "perfmon_mckinley.h"
676 #include "perfmon_montecito.h"
677 #include "perfmon_generic.h"
679 static pmu_config_t *pmu_confs[]={
683 &pmu_conf_gen, /* must be last */
688 static int pfm_end_notify_user(pfm_context_t *ctx);
691 pfm_clear_psr_pp(void)
693 ia64_rsm(IA64_PSR_PP);
700 ia64_ssm(IA64_PSR_PP);
705 pfm_clear_psr_up(void)
707 ia64_rsm(IA64_PSR_UP);
714 ia64_ssm(IA64_PSR_UP);
718 static inline unsigned long
722 tmp = ia64_getreg(_IA64_REG_PSR);
728 pfm_set_psr_l(unsigned long val)
730 ia64_setreg(_IA64_REG_PSR_L, val);
742 pfm_unfreeze_pmu(void)
749 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
753 for (i=0; i < nibrs; i++) {
754 ia64_set_ibr(i, ibrs[i]);
755 ia64_dv_serialize_instruction();
761 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
765 for (i=0; i < ndbrs; i++) {
766 ia64_set_dbr(i, dbrs[i]);
767 ia64_dv_serialize_data();
773 * PMD[i] must be a counter. no check is made
775 static inline unsigned long
776 pfm_read_soft_counter(pfm_context_t *ctx, int i)
778 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
782 * PMD[i] must be a counter. no check is made
785 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
787 unsigned long ovfl_val = pmu_conf->ovfl_val;
789 ctx->ctx_pmds[i].val = val & ~ovfl_val;
791 * writing to unimplemented part is ignore, so we do not need to
794 ia64_set_pmd(i, val & ovfl_val);
798 pfm_get_new_msg(pfm_context_t *ctx)
802 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
804 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
805 if (next == ctx->ctx_msgq_head) return NULL;
807 idx = ctx->ctx_msgq_tail;
808 ctx->ctx_msgq_tail = next;
810 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
812 return ctx->ctx_msgq+idx;
816 pfm_get_next_msg(pfm_context_t *ctx)
820 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
822 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
827 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
832 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
834 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
840 pfm_reset_msgq(pfm_context_t *ctx)
842 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
843 DPRINT(("ctx=%p msgq reset\n", ctx));
847 pfm_rvmalloc(unsigned long size)
852 size = PAGE_ALIGN(size);
855 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
856 memset(mem, 0, size);
857 addr = (unsigned long)mem;
859 pfm_reserve_page(addr);
868 pfm_rvfree(void *mem, unsigned long size)
873 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
874 addr = (unsigned long) mem;
875 while ((long) size > 0) {
876 pfm_unreserve_page(addr);
885 static pfm_context_t *
886 pfm_context_alloc(void)
891 * allocate context descriptor
892 * must be able to free with interrupts disabled
894 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
896 DPRINT(("alloc ctx @%p\n", ctx));
902 pfm_context_free(pfm_context_t *ctx)
905 DPRINT(("free ctx @%p\n", ctx));
911 pfm_mask_monitoring(struct task_struct *task)
913 pfm_context_t *ctx = PFM_GET_CTX(task);
914 unsigned long mask, val, ovfl_mask;
917 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
919 ovfl_mask = pmu_conf->ovfl_val;
921 * monitoring can only be masked as a result of a valid
922 * counter overflow. In UP, it means that the PMU still
923 * has an owner. Note that the owner can be different
924 * from the current task. However the PMU state belongs
926 * In SMP, a valid overflow only happens when task is
927 * current. Therefore if we come here, we know that
928 * the PMU state belongs to the current task, therefore
929 * we can access the live registers.
931 * So in both cases, the live register contains the owner's
932 * state. We can ONLY touch the PMU registers and NOT the PSR.
934 * As a consequence to this call, the ctx->th_pmds[] array
935 * contains stale information which must be ignored
936 * when context is reloaded AND monitoring is active (see
939 mask = ctx->ctx_used_pmds[0];
940 for (i = 0; mask; i++, mask>>=1) {
941 /* skip non used pmds */
942 if ((mask & 0x1) == 0) continue;
943 val = ia64_get_pmd(i);
945 if (PMD_IS_COUNTING(i)) {
947 * we rebuild the full 64 bit value of the counter
949 ctx->ctx_pmds[i].val += (val & ovfl_mask);
951 ctx->ctx_pmds[i].val = val;
953 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
955 ctx->ctx_pmds[i].val,
959 * mask monitoring by setting the privilege level to 0
960 * we cannot use psr.pp/psr.up for this, it is controlled by
963 * if task is current, modify actual registers, otherwise modify
964 * thread save state, i.e., what will be restored in pfm_load_regs()
966 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
967 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
968 if ((mask & 0x1) == 0UL) continue;
969 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
970 ctx->th_pmcs[i] &= ~0xfUL;
971 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
974 * make all of this visible
980 * must always be done with task == current
982 * context must be in MASKED state when calling
985 pfm_restore_monitoring(struct task_struct *task)
987 pfm_context_t *ctx = PFM_GET_CTX(task);
988 unsigned long mask, ovfl_mask;
989 unsigned long psr, val;
992 is_system = ctx->ctx_fl_system;
993 ovfl_mask = pmu_conf->ovfl_val;
995 if (task != current) {
996 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
999 if (ctx->ctx_state != PFM_CTX_MASKED) {
1000 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1001 task->pid, current->pid, ctx->ctx_state);
1004 psr = pfm_get_psr();
1006 * monitoring is masked via the PMC.
1007 * As we restore their value, we do not want each counter to
1008 * restart right away. We stop monitoring using the PSR,
1009 * restore the PMC (and PMD) and then re-establish the psr
1010 * as it was. Note that there can be no pending overflow at
1011 * this point, because monitoring was MASKED.
1013 * system-wide session are pinned and self-monitoring
1015 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1016 /* disable dcr pp */
1017 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1023 * first, we restore the PMD
1025 mask = ctx->ctx_used_pmds[0];
1026 for (i = 0; mask; i++, mask>>=1) {
1027 /* skip non used pmds */
1028 if ((mask & 0x1) == 0) continue;
1030 if (PMD_IS_COUNTING(i)) {
1032 * we split the 64bit value according to
1035 val = ctx->ctx_pmds[i].val & ovfl_mask;
1036 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1038 val = ctx->ctx_pmds[i].val;
1040 ia64_set_pmd(i, val);
1042 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1044 ctx->ctx_pmds[i].val,
1050 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1051 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1052 if ((mask & 0x1) == 0UL) continue;
1053 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1054 ia64_set_pmc(i, ctx->th_pmcs[i]);
1055 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1060 * must restore DBR/IBR because could be modified while masked
1061 * XXX: need to optimize
1063 if (ctx->ctx_fl_using_dbreg) {
1064 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1065 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1071 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1073 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1080 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1086 for (i=0; mask; i++, mask>>=1) {
1087 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1092 * reload from thread state (used for ctxw only)
1095 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1098 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1100 for (i=0; mask; i++, mask>>=1) {
1101 if ((mask & 0x1) == 0) continue;
1102 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1103 ia64_set_pmd(i, val);
1109 * propagate PMD from context to thread-state
1112 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1114 unsigned long ovfl_val = pmu_conf->ovfl_val;
1115 unsigned long mask = ctx->ctx_all_pmds[0];
1119 DPRINT(("mask=0x%lx\n", mask));
1121 for (i=0; mask; i++, mask>>=1) {
1123 val = ctx->ctx_pmds[i].val;
1126 * We break up the 64 bit value into 2 pieces
1127 * the lower bits go to the machine state in the
1128 * thread (will be reloaded on ctxsw in).
1129 * The upper part stays in the soft-counter.
1131 if (PMD_IS_COUNTING(i)) {
1132 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1135 ctx->th_pmds[i] = val;
1137 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1140 ctx->ctx_pmds[i].val));
1145 * propagate PMC from context to thread-state
1148 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1150 unsigned long mask = ctx->ctx_all_pmcs[0];
1153 DPRINT(("mask=0x%lx\n", mask));
1155 for (i=0; mask; i++, mask>>=1) {
1156 /* masking 0 with ovfl_val yields 0 */
1157 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1158 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1165 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1169 for (i=0; mask; i++, mask>>=1) {
1170 if ((mask & 0x1) == 0) continue;
1171 ia64_set_pmc(i, pmcs[i]);
1177 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1179 return memcmp(a, b, sizeof(pfm_uuid_t));
1183 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1186 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1191 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1194 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1200 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1204 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1209 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1213 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1218 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1221 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1226 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1229 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1233 static pfm_buffer_fmt_t *
1234 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1236 struct list_head * pos;
1237 pfm_buffer_fmt_t * entry;
1239 list_for_each(pos, &pfm_buffer_fmt_list) {
1240 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1241 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1248 * find a buffer format based on its uuid
1250 static pfm_buffer_fmt_t *
1251 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1253 pfm_buffer_fmt_t * fmt;
1254 spin_lock(&pfm_buffer_fmt_lock);
1255 fmt = __pfm_find_buffer_fmt(uuid);
1256 spin_unlock(&pfm_buffer_fmt_lock);
1261 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1265 /* some sanity checks */
1266 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1268 /* we need at least a handler */
1269 if (fmt->fmt_handler == NULL) return -EINVAL;
1272 * XXX: need check validity of fmt_arg_size
1275 spin_lock(&pfm_buffer_fmt_lock);
1277 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1278 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1282 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1283 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1286 spin_unlock(&pfm_buffer_fmt_lock);
1289 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1292 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1294 pfm_buffer_fmt_t *fmt;
1297 spin_lock(&pfm_buffer_fmt_lock);
1299 fmt = __pfm_find_buffer_fmt(uuid);
1301 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1305 list_del_init(&fmt->fmt_list);
1306 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1309 spin_unlock(&pfm_buffer_fmt_lock);
1313 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1315 extern void update_pal_halt_status(int);
1318 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1320 unsigned long flags;
1322 * validy checks on cpu_mask have been done upstream
1326 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1327 pfm_sessions.pfs_sys_sessions,
1328 pfm_sessions.pfs_task_sessions,
1329 pfm_sessions.pfs_sys_use_dbregs,
1335 * cannot mix system wide and per-task sessions
1337 if (pfm_sessions.pfs_task_sessions > 0UL) {
1338 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1339 pfm_sessions.pfs_task_sessions));
1343 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1345 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1347 pfm_sessions.pfs_sys_session[cpu] = task;
1349 pfm_sessions.pfs_sys_sessions++ ;
1352 if (pfm_sessions.pfs_sys_sessions) goto abort;
1353 pfm_sessions.pfs_task_sessions++;
1356 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1357 pfm_sessions.pfs_sys_sessions,
1358 pfm_sessions.pfs_task_sessions,
1359 pfm_sessions.pfs_sys_use_dbregs,
1364 * disable default_idle() to go to PAL_HALT
1366 update_pal_halt_status(0);
1373 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1374 pfm_sessions.pfs_sys_session[cpu]->pid,
1384 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1386 unsigned long flags;
1388 * validy checks on cpu_mask have been done upstream
1392 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1393 pfm_sessions.pfs_sys_sessions,
1394 pfm_sessions.pfs_task_sessions,
1395 pfm_sessions.pfs_sys_use_dbregs,
1401 pfm_sessions.pfs_sys_session[cpu] = NULL;
1403 * would not work with perfmon+more than one bit in cpu_mask
1405 if (ctx && ctx->ctx_fl_using_dbreg) {
1406 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1407 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1409 pfm_sessions.pfs_sys_use_dbregs--;
1412 pfm_sessions.pfs_sys_sessions--;
1414 pfm_sessions.pfs_task_sessions--;
1416 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1417 pfm_sessions.pfs_sys_sessions,
1418 pfm_sessions.pfs_task_sessions,
1419 pfm_sessions.pfs_sys_use_dbregs,
1424 * if possible, enable default_idle() to go into PAL_HALT
1426 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1427 update_pal_halt_status(1);
1435 * removes virtual mapping of the sampling buffer.
1436 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1437 * a PROTECT_CTX() section.
1440 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1445 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1446 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1450 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1453 * does the actual unmapping
1455 down_write(&task->mm->mmap_sem);
1457 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1459 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1461 up_write(&task->mm->mmap_sem);
1463 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1466 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472 * free actual physical storage used by sampling buffer
1476 pfm_free_smpl_buffer(pfm_context_t *ctx)
1478 pfm_buffer_fmt_t *fmt;
1480 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 * we won't use the buffer format anymore
1485 fmt = ctx->ctx_buf_fmt;
1487 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_vaddr));
1492 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1499 ctx->ctx_smpl_hdr = NULL;
1500 ctx->ctx_smpl_size = 0UL;
1505 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1511 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1513 if (fmt == NULL) return;
1515 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1521 * no real gain from having the whole whorehouse mounted. So we don't need
1522 * any operations on the root directory. However, we need a non-trivial
1523 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1525 static struct vfsmount *pfmfs_mnt;
1530 int err = register_filesystem(&pfm_fs_type);
1532 pfmfs_mnt = kern_mount(&pfm_fs_type);
1533 err = PTR_ERR(pfmfs_mnt);
1534 if (IS_ERR(pfmfs_mnt))
1535 unregister_filesystem(&pfm_fs_type);
1545 unregister_filesystem(&pfm_fs_type);
1550 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1555 unsigned long flags;
1556 DECLARE_WAITQUEUE(wait, current);
1557 if (PFM_IS_FILE(filp) == 0) {
1558 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1562 ctx = (pfm_context_t *)filp->private_data;
1564 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1569 * check even when there is no message
1571 if (size < sizeof(pfm_msg_t)) {
1572 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1576 PROTECT_CTX(ctx, flags);
1579 * put ourselves on the wait queue
1581 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1589 set_current_state(TASK_INTERRUPTIBLE);
1591 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1594 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1596 UNPROTECT_CTX(ctx, flags);
1599 * check non-blocking read
1602 if(filp->f_flags & O_NONBLOCK) break;
1605 * check pending signals
1607 if(signal_pending(current)) {
1612 * no message, so wait
1616 PROTECT_CTX(ctx, flags);
1618 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1619 set_current_state(TASK_RUNNING);
1620 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1622 if (ret < 0) goto abort;
1625 msg = pfm_get_next_msg(ctx);
1627 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1631 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1634 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1637 UNPROTECT_CTX(ctx, flags);
1643 pfm_write(struct file *file, const char __user *ubuf,
1644 size_t size, loff_t *ppos)
1646 DPRINT(("pfm_write called\n"));
1651 pfm_poll(struct file *filp, poll_table * wait)
1654 unsigned long flags;
1655 unsigned int mask = 0;
1657 if (PFM_IS_FILE(filp) == 0) {
1658 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1662 ctx = (pfm_context_t *)filp->private_data;
1664 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1669 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1671 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1673 PROTECT_CTX(ctx, flags);
1675 if (PFM_CTXQ_EMPTY(ctx) == 0)
1676 mask = POLLIN | POLLRDNORM;
1678 UNPROTECT_CTX(ctx, flags);
1680 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1686 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1688 DPRINT(("pfm_ioctl called\n"));
1693 * interrupt cannot be masked when coming here
1696 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1700 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1702 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1706 ctx->ctx_async_queue, ret));
1712 pfm_fasync(int fd, struct file *filp, int on)
1717 if (PFM_IS_FILE(filp) == 0) {
1718 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1722 ctx = (pfm_context_t *)filp->private_data;
1724 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1728 * we cannot mask interrupts during this call because this may
1729 * may go to sleep if memory is not readily avalaible.
1731 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1732 * done in caller. Serialization of this function is ensured by caller.
1734 ret = pfm_do_fasync(fd, filp, ctx, on);
1737 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1740 ctx->ctx_async_queue, ret));
1747 * this function is exclusively called from pfm_close().
1748 * The context is not protected at that time, nor are interrupts
1749 * on the remote CPU. That's necessary to avoid deadlocks.
1752 pfm_syswide_force_stop(void *info)
1754 pfm_context_t *ctx = (pfm_context_t *)info;
1755 struct pt_regs *regs = task_pt_regs(current);
1756 struct task_struct *owner;
1757 unsigned long flags;
1760 if (ctx->ctx_cpu != smp_processor_id()) {
1761 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1763 smp_processor_id());
1766 owner = GET_PMU_OWNER();
1767 if (owner != ctx->ctx_task) {
1768 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1770 owner->pid, ctx->ctx_task->pid);
1773 if (GET_PMU_CTX() != ctx) {
1774 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1776 GET_PMU_CTX(), ctx);
1780 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1782 * the context is already protected in pfm_close(), we simply
1783 * need to mask interrupts to avoid a PMU interrupt race on
1786 local_irq_save(flags);
1788 ret = pfm_context_unload(ctx, NULL, 0, regs);
1790 DPRINT(("context_unload returned %d\n", ret));
1794 * unmask interrupts, PMU interrupts are now spurious here
1796 local_irq_restore(flags);
1800 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1804 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1805 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1806 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1808 #endif /* CONFIG_SMP */
1811 * called for each close(). Partially free resources.
1812 * When caller is self-monitoring, the context is unloaded.
1815 pfm_flush(struct file *filp, fl_owner_t id)
1818 struct task_struct *task;
1819 struct pt_regs *regs;
1820 unsigned long flags;
1821 unsigned long smpl_buf_size = 0UL;
1822 void *smpl_buf_vaddr = NULL;
1823 int state, is_system;
1825 if (PFM_IS_FILE(filp) == 0) {
1826 DPRINT(("bad magic for\n"));
1830 ctx = (pfm_context_t *)filp->private_data;
1832 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1837 * remove our file from the async queue, if we use this mode.
1838 * This can be done without the context being protected. We come
1839 * here when the context has become unreacheable by other tasks.
1841 * We may still have active monitoring at this point and we may
1842 * end up in pfm_overflow_handler(). However, fasync_helper()
1843 * operates with interrupts disabled and it cleans up the
1844 * queue. If the PMU handler is called prior to entering
1845 * fasync_helper() then it will send a signal. If it is
1846 * invoked after, it will find an empty queue and no
1847 * signal will be sent. In both case, we are safe
1849 if (filp->f_flags & FASYNC) {
1850 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1851 pfm_do_fasync (-1, filp, ctx, 0);
1854 PROTECT_CTX(ctx, flags);
1856 state = ctx->ctx_state;
1857 is_system = ctx->ctx_fl_system;
1859 task = PFM_CTX_TASK(ctx);
1860 regs = task_pt_regs(task);
1862 DPRINT(("ctx_state=%d is_current=%d\n",
1864 task == current ? 1 : 0));
1867 * if state == UNLOADED, then task is NULL
1871 * we must stop and unload because we are losing access to the context.
1873 if (task == current) {
1876 * the task IS the owner but it migrated to another CPU: that's bad
1877 * but we must handle this cleanly. Unfortunately, the kernel does
1878 * not provide a mechanism to block migration (while the context is loaded).
1880 * We need to release the resource on the ORIGINAL cpu.
1882 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1884 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1886 * keep context protected but unmask interrupt for IPI
1888 local_irq_restore(flags);
1890 pfm_syswide_cleanup_other_cpu(ctx);
1893 * restore interrupt masking
1895 local_irq_save(flags);
1898 * context is unloaded at this point
1901 #endif /* CONFIG_SMP */
1904 DPRINT(("forcing unload\n"));
1906 * stop and unload, returning with state UNLOADED
1907 * and session unreserved.
1909 pfm_context_unload(ctx, NULL, 0, regs);
1911 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1916 * remove virtual mapping, if any, for the calling task.
1917 * cannot reset ctx field until last user is calling close().
1919 * ctx_smpl_vaddr must never be cleared because it is needed
1920 * by every task with access to the context
1922 * When called from do_exit(), the mm context is gone already, therefore
1923 * mm is NULL, i.e., the VMA is already gone and we do not have to
1926 if (ctx->ctx_smpl_vaddr && current->mm) {
1927 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1928 smpl_buf_size = ctx->ctx_smpl_size;
1931 UNPROTECT_CTX(ctx, flags);
1934 * if there was a mapping, then we systematically remove it
1935 * at this point. Cannot be done inside critical section
1936 * because some VM function reenables interrupts.
1939 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1944 * called either on explicit close() or from exit_files().
1945 * Only the LAST user of the file gets to this point, i.e., it is
1948 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1949 * (fput()),i.e, last task to access the file. Nobody else can access the
1950 * file at this point.
1952 * When called from exit_files(), the VMA has been freed because exit_mm()
1953 * is executed before exit_files().
1955 * When called from exit_files(), the current task is not yet ZOMBIE but we
1956 * flush the PMU state to the context.
1959 pfm_close(struct inode *inode, struct file *filp)
1962 struct task_struct *task;
1963 struct pt_regs *regs;
1964 DECLARE_WAITQUEUE(wait, current);
1965 unsigned long flags;
1966 unsigned long smpl_buf_size = 0UL;
1967 void *smpl_buf_addr = NULL;
1968 int free_possible = 1;
1969 int state, is_system;
1971 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1973 if (PFM_IS_FILE(filp) == 0) {
1974 DPRINT(("bad magic\n"));
1978 ctx = (pfm_context_t *)filp->private_data;
1980 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1984 PROTECT_CTX(ctx, flags);
1986 state = ctx->ctx_state;
1987 is_system = ctx->ctx_fl_system;
1989 task = PFM_CTX_TASK(ctx);
1990 regs = task_pt_regs(task);
1992 DPRINT(("ctx_state=%d is_current=%d\n",
1994 task == current ? 1 : 0));
1997 * if task == current, then pfm_flush() unloaded the context
1999 if (state == PFM_CTX_UNLOADED) goto doit;
2002 * context is loaded/masked and task != current, we need to
2003 * either force an unload or go zombie
2007 * The task is currently blocked or will block after an overflow.
2008 * we must force it to wakeup to get out of the
2009 * MASKED state and transition to the unloaded state by itself.
2011 * This situation is only possible for per-task mode
2013 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2016 * set a "partial" zombie state to be checked
2017 * upon return from down() in pfm_handle_work().
2019 * We cannot use the ZOMBIE state, because it is checked
2020 * by pfm_load_regs() which is called upon wakeup from down().
2021 * In such case, it would free the context and then we would
2022 * return to pfm_handle_work() which would access the
2023 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2024 * but visible to pfm_handle_work().
2026 * For some window of time, we have a zombie context with
2027 * ctx_state = MASKED and not ZOMBIE
2029 ctx->ctx_fl_going_zombie = 1;
2032 * force task to wake up from MASKED state
2034 complete(&ctx->ctx_restart_done);
2036 DPRINT(("waking up ctx_state=%d\n", state));
2039 * put ourself to sleep waiting for the other
2040 * task to report completion
2042 * the context is protected by mutex, therefore there
2043 * is no risk of being notified of completion before
2044 * begin actually on the waitq.
2046 set_current_state(TASK_INTERRUPTIBLE);
2047 add_wait_queue(&ctx->ctx_zombieq, &wait);
2049 UNPROTECT_CTX(ctx, flags);
2052 * XXX: check for signals :
2053 * - ok for explicit close
2054 * - not ok when coming from exit_files()
2059 PROTECT_CTX(ctx, flags);
2062 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2063 set_current_state(TASK_RUNNING);
2066 * context is unloaded at this point
2068 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2070 else if (task != current) {
2073 * switch context to zombie state
2075 ctx->ctx_state = PFM_CTX_ZOMBIE;
2077 DPRINT(("zombie ctx for [%d]\n", task->pid));
2079 * cannot free the context on the spot. deferred until
2080 * the task notices the ZOMBIE state
2084 pfm_context_unload(ctx, NULL, 0, regs);
2089 /* reload state, may have changed during opening of critical section */
2090 state = ctx->ctx_state;
2093 * the context is still attached to a task (possibly current)
2094 * we cannot destroy it right now
2098 * we must free the sampling buffer right here because
2099 * we cannot rely on it being cleaned up later by the
2100 * monitored task. It is not possible to free vmalloc'ed
2101 * memory in pfm_load_regs(). Instead, we remove the buffer
2102 * now. should there be subsequent PMU overflow originally
2103 * meant for sampling, the will be converted to spurious
2104 * and that's fine because the monitoring tools is gone anyway.
2106 if (ctx->ctx_smpl_hdr) {
2107 smpl_buf_addr = ctx->ctx_smpl_hdr;
2108 smpl_buf_size = ctx->ctx_smpl_size;
2109 /* no more sampling */
2110 ctx->ctx_smpl_hdr = NULL;
2111 ctx->ctx_fl_is_sampling = 0;
2114 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2120 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2123 * UNLOADED that the session has already been unreserved.
2125 if (state == PFM_CTX_ZOMBIE) {
2126 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2130 * disconnect file descriptor from context must be done
2133 filp->private_data = NULL;
2136 * if we free on the spot, the context is now completely unreacheable
2137 * from the callers side. The monitored task side is also cut, so we
2140 * If we have a deferred free, only the caller side is disconnected.
2142 UNPROTECT_CTX(ctx, flags);
2145 * All memory free operations (especially for vmalloc'ed memory)
2146 * MUST be done with interrupts ENABLED.
2148 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2151 * return the memory used by the context
2153 if (free_possible) pfm_context_free(ctx);
2159 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2161 DPRINT(("pfm_no_open called\n"));
2167 static const struct file_operations pfm_file_ops = {
2168 .llseek = no_llseek,
2173 .open = pfm_no_open, /* special open code to disallow open via /proc */
2174 .fasync = pfm_fasync,
2175 .release = pfm_close,
2180 pfmfs_delete_dentry(struct dentry *dentry)
2185 static struct dentry_operations pfmfs_dentry_operations = {
2186 .d_delete = pfmfs_delete_dentry,
2191 pfm_alloc_fd(struct file **cfile)
2194 struct file *file = NULL;
2195 struct inode * inode;
2199 fd = get_unused_fd();
2200 if (fd < 0) return -ENFILE;
2204 file = get_empty_filp();
2205 if (!file) goto out;
2208 * allocate a new inode
2210 inode = new_inode(pfmfs_mnt->mnt_sb);
2211 if (!inode) goto out;
2213 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2215 inode->i_mode = S_IFCHR|S_IRUGO;
2216 inode->i_uid = current->fsuid;
2217 inode->i_gid = current->fsgid;
2219 sprintf(name, "[%lu]", inode->i_ino);
2221 this.len = strlen(name);
2222 this.hash = inode->i_ino;
2227 * allocate a new dcache entry
2229 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2230 if (!file->f_path.dentry) goto out;
2232 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2234 d_add(file->f_path.dentry, inode);
2235 file->f_path.mnt = mntget(pfmfs_mnt);
2236 file->f_mapping = inode->i_mapping;
2238 file->f_op = &pfm_file_ops;
2239 file->f_mode = FMODE_READ;
2240 file->f_flags = O_RDONLY;
2244 * may have to delay until context is attached?
2246 fd_install(fd, file);
2249 * the file structure we will use
2255 if (file) put_filp(file);
2261 pfm_free_fd(int fd, struct file *file)
2263 struct files_struct *files = current->files;
2264 struct fdtable *fdt;
2267 * there ie no fd_uninstall(), so we do it here
2269 spin_lock(&files->file_lock);
2270 fdt = files_fdtable(files);
2271 rcu_assign_pointer(fdt->fd[fd], NULL);
2272 spin_unlock(&files->file_lock);
2280 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2282 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2285 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2288 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2299 * allocate a sampling buffer and remaps it into the user address space of the task
2302 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2304 struct mm_struct *mm = task->mm;
2305 struct vm_area_struct *vma = NULL;
2311 * the fixed header + requested size and align to page boundary
2313 size = PAGE_ALIGN(rsize);
2315 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2318 * check requested size to avoid Denial-of-service attacks
2319 * XXX: may have to refine this test
2320 * Check against address space limit.
2322 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2325 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2329 * We do the easy to undo allocations first.
2331 * pfm_rvmalloc(), clears the buffer, so there is no leak
2333 smpl_buf = pfm_rvmalloc(size);
2334 if (smpl_buf == NULL) {
2335 DPRINT(("Can't allocate sampling buffer\n"));
2339 DPRINT(("smpl_buf @%p\n", smpl_buf));
2342 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2344 DPRINT(("Cannot allocate vma\n"));
2349 * partially initialize the vma for the sampling buffer
2352 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2353 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2356 * Now we have everything we need and we can initialize
2357 * and connect all the data structures
2360 ctx->ctx_smpl_hdr = smpl_buf;
2361 ctx->ctx_smpl_size = size; /* aligned size */
2364 * Let's do the difficult operations next.
2366 * now we atomically find some area in the address space and
2367 * remap the buffer in it.
2369 down_write(&task->mm->mmap_sem);
2371 /* find some free area in address space, must have mmap sem held */
2372 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2373 if (vma->vm_start == 0UL) {
2374 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2375 up_write(&task->mm->mmap_sem);
2378 vma->vm_end = vma->vm_start + size;
2379 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2381 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2383 /* can only be applied to current task, need to have the mm semaphore held when called */
2384 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2385 DPRINT(("Can't remap buffer\n"));
2386 up_write(&task->mm->mmap_sem);
2391 * now insert the vma in the vm list for the process, must be
2392 * done with mmap lock held
2394 insert_vm_struct(mm, vma);
2396 mm->total_vm += size >> PAGE_SHIFT;
2397 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2399 up_write(&task->mm->mmap_sem);
2402 * keep track of user level virtual address
2404 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2405 *(unsigned long *)user_vaddr = vma->vm_start;
2410 kmem_cache_free(vm_area_cachep, vma);
2412 pfm_rvfree(smpl_buf, size);
2418 * XXX: do something better here
2421 pfm_bad_permissions(struct task_struct *task)
2423 /* inspired by ptrace_attach() */
2424 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2433 return ((current->uid != task->euid)
2434 || (current->uid != task->suid)
2435 || (current->uid != task->uid)
2436 || (current->gid != task->egid)
2437 || (current->gid != task->sgid)
2438 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2442 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2448 ctx_flags = pfx->ctx_flags;
2450 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2453 * cannot block in this mode
2455 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2456 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2461 /* probably more to add here */
2467 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2468 unsigned int cpu, pfarg_context_t *arg)
2470 pfm_buffer_fmt_t *fmt = NULL;
2471 unsigned long size = 0UL;
2473 void *fmt_arg = NULL;
2475 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2477 /* invoke and lock buffer format, if found */
2478 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2480 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2485 * buffer argument MUST be contiguous to pfarg_context_t
2487 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2489 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2491 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2493 if (ret) goto error;
2495 /* link buffer format and context */
2496 ctx->ctx_buf_fmt = fmt;
2499 * check if buffer format wants to use perfmon buffer allocation/mapping service
2501 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2502 if (ret) goto error;
2506 * buffer is always remapped into the caller's address space
2508 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2509 if (ret) goto error;
2511 /* keep track of user address of buffer */
2512 arg->ctx_smpl_vaddr = uaddr;
2514 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2521 pfm_reset_pmu_state(pfm_context_t *ctx)
2526 * install reset values for PMC.
2528 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2529 if (PMC_IS_IMPL(i) == 0) continue;
2530 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2531 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2534 * PMD registers are set to 0UL when the context in memset()
2538 * On context switched restore, we must restore ALL pmc and ALL pmd even
2539 * when they are not actively used by the task. In UP, the incoming process
2540 * may otherwise pick up left over PMC, PMD state from the previous process.
2541 * As opposed to PMD, stale PMC can cause harm to the incoming
2542 * process because they may change what is being measured.
2543 * Therefore, we must systematically reinstall the entire
2544 * PMC state. In SMP, the same thing is possible on the
2545 * same CPU but also on between 2 CPUs.
2547 * The problem with PMD is information leaking especially
2548 * to user level when psr.sp=0
2550 * There is unfortunately no easy way to avoid this problem
2551 * on either UP or SMP. This definitively slows down the
2552 * pfm_load_regs() function.
2556 * bitmask of all PMCs accessible to this context
2558 * PMC0 is treated differently.
2560 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2563 * bitmask of all PMDs that are accesible to this context
2565 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2567 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2570 * useful in case of re-enable after disable
2572 ctx->ctx_used_ibrs[0] = 0UL;
2573 ctx->ctx_used_dbrs[0] = 0UL;
2577 pfm_ctx_getsize(void *arg, size_t *sz)
2579 pfarg_context_t *req = (pfarg_context_t *)arg;
2580 pfm_buffer_fmt_t *fmt;
2584 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2586 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2588 DPRINT(("cannot find buffer format\n"));
2591 /* get just enough to copy in user parameters */
2592 *sz = fmt->fmt_arg_size;
2593 DPRINT(("arg_size=%lu\n", *sz));
2601 * cannot attach if :
2603 * - task not owned by caller
2604 * - task incompatible with context mode
2607 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2610 * no kernel task or task not owner by caller
2612 if (task->mm == NULL) {
2613 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2616 if (pfm_bad_permissions(task)) {
2617 DPRINT(("no permission to attach to [%d]\n", task->pid));
2621 * cannot block in self-monitoring mode
2623 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2624 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2628 if (task->exit_state == EXIT_ZOMBIE) {
2629 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2634 * always ok for self
2636 if (task == current) return 0;
2638 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2639 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2643 * make sure the task is off any CPU
2645 wait_task_inactive(task);
2647 /* more to come... */
2653 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2655 struct task_struct *p = current;
2658 /* XXX: need to add more checks here */
2659 if (pid < 2) return -EPERM;
2661 if (pid != current->pid) {
2663 read_lock(&tasklist_lock);
2665 p = find_task_by_pid(pid);
2667 /* make sure task cannot go away while we operate on it */
2668 if (p) get_task_struct(p);
2670 read_unlock(&tasklist_lock);
2672 if (p == NULL) return -ESRCH;
2675 ret = pfm_task_incompatible(ctx, p);
2678 } else if (p != current) {
2687 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2689 pfarg_context_t *req = (pfarg_context_t *)arg;
2694 /* let's check the arguments first */
2695 ret = pfarg_is_sane(current, req);
2696 if (ret < 0) return ret;
2698 ctx_flags = req->ctx_flags;
2702 ctx = pfm_context_alloc();
2703 if (!ctx) goto error;
2705 ret = pfm_alloc_fd(&filp);
2706 if (ret < 0) goto error_file;
2708 req->ctx_fd = ctx->ctx_fd = ret;
2711 * attach context to file
2713 filp->private_data = ctx;
2716 * does the user want to sample?
2718 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2719 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2720 if (ret) goto buffer_error;
2724 * init context protection lock
2726 spin_lock_init(&ctx->ctx_lock);
2729 * context is unloaded
2731 ctx->ctx_state = PFM_CTX_UNLOADED;
2734 * initialization of context's flags
2736 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2737 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2738 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2739 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2741 * will move to set properties
2742 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2746 * init restart semaphore to locked
2748 init_completion(&ctx->ctx_restart_done);
2751 * activation is used in SMP only
2753 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2754 SET_LAST_CPU(ctx, -1);
2757 * initialize notification message queue
2759 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2760 init_waitqueue_head(&ctx->ctx_msgq_wait);
2761 init_waitqueue_head(&ctx->ctx_zombieq);
2763 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2768 ctx->ctx_fl_excl_idle,
2773 * initialize soft PMU state
2775 pfm_reset_pmu_state(ctx);
2780 pfm_free_fd(ctx->ctx_fd, filp);
2782 if (ctx->ctx_buf_fmt) {
2783 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2786 pfm_context_free(ctx);
2792 static inline unsigned long
2793 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2795 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2796 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2797 extern unsigned long carta_random32 (unsigned long seed);
2799 if (reg->flags & PFM_REGFL_RANDOM) {
2800 new_seed = carta_random32(old_seed);
2801 val -= (old_seed & mask); /* counter values are negative numbers! */
2802 if ((mask >> 32) != 0)
2803 /* construct a full 64-bit random value: */
2804 new_seed |= carta_random32(old_seed >> 32) << 32;
2805 reg->seed = new_seed;
2812 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2814 unsigned long mask = ovfl_regs[0];
2815 unsigned long reset_others = 0UL;
2820 * now restore reset value on sampling overflowed counters
2822 mask >>= PMU_FIRST_COUNTER;
2823 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2825 if ((mask & 0x1UL) == 0UL) continue;
2827 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2828 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2830 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2834 * Now take care of resetting the other registers
2836 for(i = 0; reset_others; i++, reset_others >>= 1) {
2838 if ((reset_others & 0x1) == 0) continue;
2840 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2842 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2843 is_long_reset ? "long" : "short", i, val));
2848 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2850 unsigned long mask = ovfl_regs[0];
2851 unsigned long reset_others = 0UL;
2855 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2857 if (ctx->ctx_state == PFM_CTX_MASKED) {
2858 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2863 * now restore reset value on sampling overflowed counters
2865 mask >>= PMU_FIRST_COUNTER;
2866 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2868 if ((mask & 0x1UL) == 0UL) continue;
2870 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2871 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2873 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2875 pfm_write_soft_counter(ctx, i, val);
2879 * Now take care of resetting the other registers
2881 for(i = 0; reset_others; i++, reset_others >>= 1) {
2883 if ((reset_others & 0x1) == 0) continue;
2885 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2887 if (PMD_IS_COUNTING(i)) {
2888 pfm_write_soft_counter(ctx, i, val);
2890 ia64_set_pmd(i, val);
2892 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2893 is_long_reset ? "long" : "short", i, val));
2899 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2901 struct task_struct *task;
2902 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2903 unsigned long value, pmc_pm;
2904 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2905 unsigned int cnum, reg_flags, flags, pmc_type;
2906 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2907 int is_monitor, is_counting, state;
2909 pfm_reg_check_t wr_func;
2910 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2912 state = ctx->ctx_state;
2913 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2914 is_system = ctx->ctx_fl_system;
2915 task = ctx->ctx_task;
2916 impl_pmds = pmu_conf->impl_pmds[0];
2918 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2922 * In system wide and when the context is loaded, access can only happen
2923 * when the caller is running on the CPU being monitored by the session.
2924 * It does not have to be the owner (ctx_task) of the context per se.
2926 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2927 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2930 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2932 expert_mode = pfm_sysctl.expert_mode;
2934 for (i = 0; i < count; i++, req++) {
2936 cnum = req->reg_num;
2937 reg_flags = req->reg_flags;
2938 value = req->reg_value;
2939 smpl_pmds = req->reg_smpl_pmds[0];
2940 reset_pmds = req->reg_reset_pmds[0];
2944 if (cnum >= PMU_MAX_PMCS) {
2945 DPRINT(("pmc%u is invalid\n", cnum));
2949 pmc_type = pmu_conf->pmc_desc[cnum].type;
2950 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2951 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2952 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2955 * we reject all non implemented PMC as well
2956 * as attempts to modify PMC[0-3] which are used
2957 * as status registers by the PMU
2959 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2960 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2963 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2965 * If the PMC is a monitor, then if the value is not the default:
2966 * - system-wide session: PMCx.pm=1 (privileged monitor)
2967 * - per-task : PMCx.pm=0 (user monitor)
2969 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2970 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2979 * enforce generation of overflow interrupt. Necessary on all
2982 value |= 1 << PMU_PMC_OI;
2984 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2985 flags |= PFM_REGFL_OVFL_NOTIFY;
2988 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2990 /* verify validity of smpl_pmds */
2991 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2992 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2996 /* verify validity of reset_pmds */
2997 if ((reset_pmds & impl_pmds) != reset_pmds) {
2998 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
3002 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
3003 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3006 /* eventid on non-counting monitors are ignored */
3010 * execute write checker, if any
3012 if (likely(expert_mode == 0 && wr_func)) {
3013 ret = (*wr_func)(task, ctx, cnum, &value, regs);
3014 if (ret) goto error;
3019 * no error on this register
3021 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3024 * Now we commit the changes to the software state
3028 * update overflow information
3032 * full flag update each time a register is programmed
3034 ctx->ctx_pmds[cnum].flags = flags;
3036 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3037 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3038 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3041 * Mark all PMDS to be accessed as used.
3043 * We do not keep track of PMC because we have to
3044 * systematically restore ALL of them.
3046 * We do not update the used_monitors mask, because
3047 * if we have not programmed them, then will be in
3048 * a quiescent state, therefore we will not need to
3049 * mask/restore then when context is MASKED.
3051 CTX_USED_PMD(ctx, reset_pmds);
3052 CTX_USED_PMD(ctx, smpl_pmds);
3054 * make sure we do not try to reset on
3055 * restart because we have established new values
3057 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3060 * Needed in case the user does not initialize the equivalent
3061 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3062 * possible leak here.
3064 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3067 * keep track of the monitor PMC that we are using.
3068 * we save the value of the pmc in ctx_pmcs[] and if
3069 * the monitoring is not stopped for the context we also
3070 * place it in the saved state area so that it will be
3071 * picked up later by the context switch code.
3073 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3075 * The value in th_pmcs[] may be modified on overflow, i.e., when
3076 * monitoring needs to be stopped.
3078 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3081 * update context state
3083 ctx->ctx_pmcs[cnum] = value;
3087 * write thread state
3089 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3092 * write hardware register if we can
3094 if (can_access_pmu) {
3095 ia64_set_pmc(cnum, value);
3100 * per-task SMP only here
3102 * we are guaranteed that the task is not running on the other CPU,
3103 * we indicate that this PMD will need to be reloaded if the task
3104 * is rescheduled on the CPU it ran last on.
3106 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3111 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3117 ctx->ctx_all_pmcs[0],
3118 ctx->ctx_used_pmds[0],
3119 ctx->ctx_pmds[cnum].eventid,
3122 ctx->ctx_reload_pmcs[0],
3123 ctx->ctx_used_monitors[0],
3124 ctx->ctx_ovfl_regs[0]));
3128 * make sure the changes are visible
3130 if (can_access_pmu) ia64_srlz_d();
3134 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3139 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3141 struct task_struct *task;
3142 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3143 unsigned long value, hw_value, ovfl_mask;
3145 int i, can_access_pmu = 0, state;
3146 int is_counting, is_loaded, is_system, expert_mode;
3148 pfm_reg_check_t wr_func;
3151 state = ctx->ctx_state;
3152 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3153 is_system = ctx->ctx_fl_system;
3154 ovfl_mask = pmu_conf->ovfl_val;
3155 task = ctx->ctx_task;
3157 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3160 * on both UP and SMP, we can only write to the PMC when the task is
3161 * the owner of the local PMU.
3163 if (likely(is_loaded)) {
3165 * In system wide and when the context is loaded, access can only happen
3166 * when the caller is running on the CPU being monitored by the session.
3167 * It does not have to be the owner (ctx_task) of the context per se.
3169 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3170 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3173 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3175 expert_mode = pfm_sysctl.expert_mode;
3177 for (i = 0; i < count; i++, req++) {
3179 cnum = req->reg_num;
3180 value = req->reg_value;
3182 if (!PMD_IS_IMPL(cnum)) {
3183 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3186 is_counting = PMD_IS_COUNTING(cnum);
3187 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3190 * execute write checker, if any
3192 if (unlikely(expert_mode == 0 && wr_func)) {
3193 unsigned long v = value;
3195 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3196 if (ret) goto abort_mission;
3203 * no error on this register
3205 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3208 * now commit changes to software state
3213 * update virtualized (64bits) counter
3217 * write context state
3219 ctx->ctx_pmds[cnum].lval = value;
3222 * when context is load we use the split value
3225 hw_value = value & ovfl_mask;
3226 value = value & ~ovfl_mask;
3230 * update reset values (not just for counters)
3232 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3233 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3236 * update randomization parameters (not just for counters)
3238 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3239 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3242 * update context value
3244 ctx->ctx_pmds[cnum].val = value;
3247 * Keep track of what we use
3249 * We do not keep track of PMC because we have to
3250 * systematically restore ALL of them.
3252 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3255 * mark this PMD register used as well
3257 CTX_USED_PMD(ctx, RDEP(cnum));
3260 * make sure we do not try to reset on
3261 * restart because we have established new values
3263 if (is_counting && state == PFM_CTX_MASKED) {
3264 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3269 * write thread state
3271 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3274 * write hardware register if we can
3276 if (can_access_pmu) {
3277 ia64_set_pmd(cnum, hw_value);
3281 * we are guaranteed that the task is not running on the other CPU,
3282 * we indicate that this PMD will need to be reloaded if the task
3283 * is rescheduled on the CPU it ran last on.
3285 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3290 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3291 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3297 ctx->ctx_pmds[cnum].val,
3298 ctx->ctx_pmds[cnum].short_reset,
3299 ctx->ctx_pmds[cnum].long_reset,
3300 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3301 ctx->ctx_pmds[cnum].seed,
3302 ctx->ctx_pmds[cnum].mask,
3303 ctx->ctx_used_pmds[0],
3304 ctx->ctx_pmds[cnum].reset_pmds[0],
3305 ctx->ctx_reload_pmds[0],
3306 ctx->ctx_all_pmds[0],
3307 ctx->ctx_ovfl_regs[0]));
3311 * make changes visible
3313 if (can_access_pmu) ia64_srlz_d();
3319 * for now, we have only one possibility for error
3321 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3326 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3327 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3328 * interrupt is delivered during the call, it will be kept pending until we leave, making
3329 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3330 * guaranteed to return consistent data to the user, it may simply be old. It is not
3331 * trivial to treat the overflow while inside the call because you may end up in
3332 * some module sampling buffer code causing deadlocks.
3335 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3337 struct task_struct *task;
3338 unsigned long val = 0UL, lval, ovfl_mask, sval;
3339 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3340 unsigned int cnum, reg_flags = 0;
3341 int i, can_access_pmu = 0, state;
3342 int is_loaded, is_system, is_counting, expert_mode;
3344 pfm_reg_check_t rd_func;
3347 * access is possible when loaded only for
3348 * self-monitoring tasks or in UP mode
3351 state = ctx->ctx_state;
3352 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3353 is_system = ctx->ctx_fl_system;
3354 ovfl_mask = pmu_conf->ovfl_val;
3355 task = ctx->ctx_task;
3357 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3359 if (likely(is_loaded)) {
3361 * In system wide and when the context is loaded, access can only happen
3362 * when the caller is running on the CPU being monitored by the session.
3363 * It does not have to be the owner (ctx_task) of the context per se.
3365 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3366 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3370 * this can be true when not self-monitoring only in UP
3372 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3374 if (can_access_pmu) ia64_srlz_d();
3376 expert_mode = pfm_sysctl.expert_mode;
3378 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3384 * on both UP and SMP, we can only read the PMD from the hardware register when
3385 * the task is the owner of the local PMU.
3388 for (i = 0; i < count; i++, req++) {
3390 cnum = req->reg_num;
3391 reg_flags = req->reg_flags;
3393 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3395 * we can only read the register that we use. That includes
3396 * the one we explicitely initialize AND the one we want included
3397 * in the sampling buffer (smpl_regs).
3399 * Having this restriction allows optimization in the ctxsw routine
3400 * without compromising security (leaks)
3402 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3404 sval = ctx->ctx_pmds[cnum].val;
3405 lval = ctx->ctx_pmds[cnum].lval;
3406 is_counting = PMD_IS_COUNTING(cnum);
3409 * If the task is not the current one, then we check if the
3410 * PMU state is still in the local live register due to lazy ctxsw.
3411 * If true, then we read directly from the registers.
3413 if (can_access_pmu){
3414 val = ia64_get_pmd(cnum);
3417 * context has been saved
3418 * if context is zombie, then task does not exist anymore.
3419 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3421 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3423 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3427 * XXX: need to check for overflow when loaded
3434 * execute read checker, if any
3436 if (unlikely(expert_mode == 0 && rd_func)) {
3437 unsigned long v = val;
3438 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3439 if (ret) goto error;
3444 PFM_REG_RETFLAG_SET(reg_flags, 0);
3446 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3449 * update register return value, abort all if problem during copy.
3450 * we only modify the reg_flags field. no check mode is fine because
3451 * access has been verified upfront in sys_perfmonctl().
3453 req->reg_value = val;
3454 req->reg_flags = reg_flags;
3455 req->reg_last_reset_val = lval;
3461 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3466 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3470 if (req == NULL) return -EINVAL;
3472 ctx = GET_PMU_CTX();
3474 if (ctx == NULL) return -EINVAL;
3477 * for now limit to current task, which is enough when calling
3478 * from overflow handler
3480 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3482 return pfm_write_pmcs(ctx, req, nreq, regs);
3484 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3487 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3491 if (req == NULL) return -EINVAL;
3493 ctx = GET_PMU_CTX();
3495 if (ctx == NULL) return -EINVAL;
3498 * for now limit to current task, which is enough when calling
3499 * from overflow handler
3501 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3503 return pfm_read_pmds(ctx, req, nreq, regs);
3505 EXPORT_SYMBOL(pfm_mod_read_pmds);
3508 * Only call this function when a process it trying to
3509 * write the debug registers (reading is always allowed)
3512 pfm_use_debug_registers(struct task_struct *task)
3514 pfm_context_t *ctx = task->thread.pfm_context;
3515 unsigned long flags;
3518 if (pmu_conf->use_rr_dbregs == 0) return 0;
3520 DPRINT(("called for [%d]\n", task->pid));
3525 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3528 * Even on SMP, we do not need to use an atomic here because
3529 * the only way in is via ptrace() and this is possible only when the
3530 * process is stopped. Even in the case where the ctxsw out is not totally
3531 * completed by the time we come here, there is no way the 'stopped' process
3532 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3533 * So this is always safe.
3535 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3540 * We cannot allow setting breakpoints when system wide monitoring
3541 * sessions are using the debug registers.
3543 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3546 pfm_sessions.pfs_ptrace_use_dbregs++;
3548 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3549 pfm_sessions.pfs_ptrace_use_dbregs,
3550 pfm_sessions.pfs_sys_use_dbregs,
3559 * This function is called for every task that exits with the
3560 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3561 * able to use the debug registers for debugging purposes via
3562 * ptrace(). Therefore we know it was not using them for
3563 * perfmormance monitoring, so we only decrement the number
3564 * of "ptraced" debug register users to keep the count up to date
3567 pfm_release_debug_registers(struct task_struct *task)
3569 unsigned long flags;
3572 if (pmu_conf->use_rr_dbregs == 0) return 0;
3575 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3576 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3579 pfm_sessions.pfs_ptrace_use_dbregs--;
3588 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3590 struct task_struct *task;
3591 pfm_buffer_fmt_t *fmt;
3592 pfm_ovfl_ctrl_t rst_ctrl;
3593 int state, is_system;
3596 state = ctx->ctx_state;
3597 fmt = ctx->ctx_buf_fmt;
3598 is_system = ctx->ctx_fl_system;
3599 task = PFM_CTX_TASK(ctx);
3602 case PFM_CTX_MASKED:
3604 case PFM_CTX_LOADED:
3605 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3607 case PFM_CTX_UNLOADED:
3608 case PFM_CTX_ZOMBIE:
3609 DPRINT(("invalid state=%d\n", state));
3612 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3617 * In system wide and when the context is loaded, access can only happen
3618 * when the caller is running on the CPU being monitored by the session.
3619 * It does not have to be the owner (ctx_task) of the context per se.
3621 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3622 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3627 if (unlikely(task == NULL)) {
3628 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3632 if (task == current || is_system) {
3634 fmt = ctx->ctx_buf_fmt;
3636 DPRINT(("restarting self %d ovfl=0x%lx\n",
3638 ctx->ctx_ovfl_regs[0]));
3640 if (CTX_HAS_SMPL(ctx)) {
3642 prefetch(ctx->ctx_smpl_hdr);
3644 rst_ctrl.bits.mask_monitoring = 0;
3645 rst_ctrl.bits.reset_ovfl_pmds = 0;
3647 if (state == PFM_CTX_LOADED)
3648 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3650 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3652 rst_ctrl.bits.mask_monitoring = 0;
3653 rst_ctrl.bits.reset_ovfl_pmds = 1;
3657 if (rst_ctrl.bits.reset_ovfl_pmds)
3658 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3660 if (rst_ctrl.bits.mask_monitoring == 0) {
3661 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3663 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3665 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3667 // cannot use pfm_stop_monitoring(task, regs);
3671 * clear overflowed PMD mask to remove any stale information
3673 ctx->ctx_ovfl_regs[0] = 0UL;
3676 * back to LOADED state
3678 ctx->ctx_state = PFM_CTX_LOADED;
3681 * XXX: not really useful for self monitoring
3683 ctx->ctx_fl_can_restart = 0;
3689 * restart another task
3693 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3694 * one is seen by the task.
3696 if (state == PFM_CTX_MASKED) {
3697 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3699 * will prevent subsequent restart before this one is
3700 * seen by other task
3702 ctx->ctx_fl_can_restart = 0;
3706 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3707 * the task is blocked or on its way to block. That's the normal
3708 * restart path. If the monitoring is not masked, then the task
3709 * can be actively monitoring and we cannot directly intervene.
3710 * Therefore we use the trap mechanism to catch the task and
3711 * force it to reset the buffer/reset PMDs.
3713 * if non-blocking, then we ensure that the task will go into
3714 * pfm_handle_work() before returning to user mode.
3716 * We cannot explicitely reset another task, it MUST always
3717 * be done by the task itself. This works for system wide because
3718 * the tool that is controlling the session is logically doing
3719 * "self-monitoring".
3721 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3722 DPRINT(("unblocking [%d] \n", task->pid));
3723 complete(&ctx->ctx_restart_done);
3725 DPRINT(("[%d] armed exit trap\n", task->pid));
3727 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3729 PFM_SET_WORK_PENDING(task, 1);
3731 pfm_set_task_notify(task);
3734 * XXX: send reschedule if task runs on another CPU
3741 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3743 unsigned int m = *(unsigned int *)arg;
3745 pfm_sysctl.debug = m == 0 ? 0 : 1;
3747 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3750 memset(pfm_stats, 0, sizeof(pfm_stats));
3751 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3757 * arg can be NULL and count can be zero for this function
3760 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3762 struct thread_struct *thread = NULL;
3763 struct task_struct *task;
3764 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3765 unsigned long flags;
3770 int i, can_access_pmu = 0;
3771 int is_system, is_loaded;
3773 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3775 state = ctx->ctx_state;
3776 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3777 is_system = ctx->ctx_fl_system;
3778 task = ctx->ctx_task;
3780 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3783 * on both UP and SMP, we can only write to the PMC when the task is
3784 * the owner of the local PMU.
3787 thread = &task->thread;
3789 * In system wide and when the context is loaded, access can only happen
3790 * when the caller is running on the CPU being monitored by the session.
3791 * It does not have to be the owner (ctx_task) of the context per se.
3793 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3794 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3797 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3801 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3802 * ensuring that no real breakpoint can be installed via this call.
3804 * IMPORTANT: regs can be NULL in this function
3807 first_time = ctx->ctx_fl_using_dbreg == 0;
3810 * don't bother if we are loaded and task is being debugged
3812 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3813 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3818 * check for debug registers in system wide mode
3820 * If though a check is done in pfm_context_load(),
3821 * we must repeat it here, in case the registers are
3822 * written after the context is loaded
3827 if (first_time && is_system) {
3828 if (pfm_sessions.pfs_ptrace_use_dbregs)
3831 pfm_sessions.pfs_sys_use_dbregs++;
3836 if (ret != 0) return ret;
3839 * mark ourself as user of the debug registers for
3842 ctx->ctx_fl_using_dbreg = 1;
3845 * clear hardware registers to make sure we don't
3846 * pick up stale state.
3848 * for a system wide session, we do not use
3849 * thread.dbr, thread.ibr because this process
3850 * never leaves the current CPU and the state
3851 * is shared by all processes running on it
3853 if (first_time && can_access_pmu) {
3854 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3855 for (i=0; i < pmu_conf->num_ibrs; i++) {
3856 ia64_set_ibr(i, 0UL);
3857 ia64_dv_serialize_instruction();
3860 for (i=0; i < pmu_conf->num_dbrs; i++) {
3861 ia64_set_dbr(i, 0UL);
3862 ia64_dv_serialize_data();
3868 * Now install the values into the registers
3870 for (i = 0; i < count; i++, req++) {
3872 rnum = req->dbreg_num;
3873 dbreg.val = req->dbreg_value;
3877 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3878 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3879 rnum, dbreg.val, mode, i, count));
3885 * make sure we do not install enabled breakpoint
3888 if (mode == PFM_CODE_RR)
3889 dbreg.ibr.ibr_x = 0;
3891 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3894 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3897 * Debug registers, just like PMC, can only be modified
3898 * by a kernel call. Moreover, perfmon() access to those
3899 * registers are centralized in this routine. The hardware
3900 * does not modify the value of these registers, therefore,
3901 * if we save them as they are written, we can avoid having
3902 * to save them on context switch out. This is made possible
3903 * by the fact that when perfmon uses debug registers, ptrace()
3904 * won't be able to modify them concurrently.
3906 if (mode == PFM_CODE_RR) {
3907 CTX_USED_IBR(ctx, rnum);
3909 if (can_access_pmu) {
3910 ia64_set_ibr(rnum, dbreg.val);
3911 ia64_dv_serialize_instruction();
3914 ctx->ctx_ibrs[rnum] = dbreg.val;
3916 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3917 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3919 CTX_USED_DBR(ctx, rnum);
3921 if (can_access_pmu) {
3922 ia64_set_dbr(rnum, dbreg.val);
3923 ia64_dv_serialize_data();
3925 ctx->ctx_dbrs[rnum] = dbreg.val;
3927 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3928 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3936 * in case it was our first attempt, we undo the global modifications
3940 if (ctx->ctx_fl_system) {
3941 pfm_sessions.pfs_sys_use_dbregs--;
3944 ctx->ctx_fl_using_dbreg = 0;
3947 * install error return flag
3949 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3955 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3957 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3961 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3963 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3967 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3971 if (req == NULL) return -EINVAL;
3973 ctx = GET_PMU_CTX();
3975 if (ctx == NULL) return -EINVAL;
3978 * for now limit to current task, which is enough when calling
3979 * from overflow handler
3981 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3983 return pfm_write_ibrs(ctx, req, nreq, regs);
3985 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3988 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3992 if (req == NULL) return -EINVAL;
3994 ctx = GET_PMU_CTX();
3996 if (ctx == NULL) return -EINVAL;
3999 * for now limit to current task, which is enough when calling
4000 * from overflow handler
4002 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
4004 return pfm_write_dbrs(ctx, req, nreq, regs);
4006 EXPORT_SYMBOL(pfm_mod_write_dbrs);
4010 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4012 pfarg_features_t *req = (pfarg_features_t *)arg;
4014 req->ft_version = PFM_VERSION;
4019 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4021 struct pt_regs *tregs;
4022 struct task_struct *task = PFM_CTX_TASK(ctx);
4023 int state, is_system;
4025 state = ctx->ctx_state;
4026 is_system = ctx->ctx_fl_system;
4029 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4031 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4034 * In system wide and when the context is loaded, access can only happen
4035 * when the caller is running on the CPU being monitored by the session.
4036 * It does not have to be the owner (ctx_task) of the context per se.
4038 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4039 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4042 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4043 PFM_CTX_TASK(ctx)->pid,
4047 * in system mode, we need to update the PMU directly
4048 * and the user level state of the caller, which may not
4049 * necessarily be the creator of the context.
4053 * Update local PMU first
4057 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4061 * update local cpuinfo
4063 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4066 * stop monitoring, does srlz.i
4071 * stop monitoring in the caller
4073 ia64_psr(regs)->pp = 0;
4081 if (task == current) {
4082 /* stop monitoring at kernel level */
4086 * stop monitoring at the user level
4088 ia64_psr(regs)->up = 0;
4090 tregs = task_pt_regs(task);
4093 * stop monitoring at the user level
4095 ia64_psr(tregs)->up = 0;
4098 * monitoring disabled in kernel at next reschedule
4100 ctx->ctx_saved_psr_up = 0;
4101 DPRINT(("task=[%d]\n", task->pid));
4108 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4110 struct pt_regs *tregs;
4111 int state, is_system;
4113 state = ctx->ctx_state;
4114 is_system = ctx->ctx_fl_system;
4116 if (state != PFM_CTX_LOADED) return -EINVAL;
4119 * In system wide and when the context is loaded, access can only happen
4120 * when the caller is running on the CPU being monitored by the session.
4121 * It does not have to be the owner (ctx_task) of the context per se.
4123 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4124 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4129 * in system mode, we need to update the PMU directly
4130 * and the user level state of the caller, which may not
4131 * necessarily be the creator of the context.
4136 * set user level psr.pp for the caller
4138 ia64_psr(regs)->pp = 1;
4141 * now update the local PMU and cpuinfo
4143 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4146 * start monitoring at kernel level
4151 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4161 if (ctx->ctx_task == current) {
4163 /* start monitoring at kernel level */
4167 * activate monitoring at user level
4169 ia64_psr(regs)->up = 1;
4172 tregs = task_pt_regs(ctx->ctx_task);
4175 * start monitoring at the kernel level the next
4176 * time the task is scheduled
4178 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4181 * activate monitoring at user level
4183 ia64_psr(tregs)->up = 1;
4189 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4191 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4196 for (i = 0; i < count; i++, req++) {
4198 cnum = req->reg_num;
4200 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4202 req->reg_value = PMC_DFL_VAL(cnum);
4204 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4206 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4211 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4216 pfm_check_task_exist(pfm_context_t *ctx)
4218 struct task_struct *g, *t;
4221 read_lock(&tasklist_lock);
4223 do_each_thread (g, t) {
4224 if (t->thread.pfm_context == ctx) {
4228 } while_each_thread (g, t);
4230 read_unlock(&tasklist_lock);
4232 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4238 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4240 struct task_struct *task;
4241 struct thread_struct *thread;
4242 struct pfm_context_t *old;
4243 unsigned long flags;
4245 struct task_struct *owner_task = NULL;
4247 pfarg_load_t *req = (pfarg_load_t *)arg;
4248 unsigned long *pmcs_source, *pmds_source;
4251 int state, is_system, set_dbregs = 0;
4253 state = ctx->ctx_state;
4254 is_system = ctx->ctx_fl_system;
4256 * can only load from unloaded or terminated state
4258 if (state != PFM_CTX_UNLOADED) {
4259 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4265 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4267 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4268 DPRINT(("cannot use blocking mode on self\n"));
4272 ret = pfm_get_task(ctx, req->load_pid, &task);
4274 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4281 * system wide is self monitoring only
4283 if (is_system && task != current) {
4284 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4289 thread = &task->thread;
4293 * cannot load a context which is using range restrictions,
4294 * into a task that is being debugged.
4296 if (ctx->ctx_fl_using_dbreg) {
4297 if (thread->flags & IA64_THREAD_DBG_VALID) {
4299 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4305 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4306 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4309 pfm_sessions.pfs_sys_use_dbregs++;
4310 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4317 if (ret) goto error;
4321 * SMP system-wide monitoring implies self-monitoring.
4323 * The programming model expects the task to
4324 * be pinned on a CPU throughout the session.
4325 * Here we take note of the current CPU at the
4326 * time the context is loaded. No call from
4327 * another CPU will be allowed.
4329 * The pinning via shed_setaffinity()
4330 * must be done by the calling task prior
4333 * systemwide: keep track of CPU this session is supposed to run on
4335 the_cpu = ctx->ctx_cpu = smp_processor_id();
4339 * now reserve the session
4341 ret = pfm_reserve_session(current, is_system, the_cpu);
4342 if (ret) goto error;
4345 * task is necessarily stopped at this point.
4347 * If the previous context was zombie, then it got removed in
4348 * pfm_save_regs(). Therefore we should not see it here.
4349 * If we see a context, then this is an active context
4351 * XXX: needs to be atomic
4353 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4354 thread->pfm_context, ctx));
4357 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4359 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4363 pfm_reset_msgq(ctx);
4365 ctx->ctx_state = PFM_CTX_LOADED;
4368 * link context to task
4370 ctx->ctx_task = task;
4374 * we load as stopped
4376 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4377 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4379 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4381 thread->flags |= IA64_THREAD_PM_VALID;
4385 * propagate into thread-state
4387 pfm_copy_pmds(task, ctx);
4388 pfm_copy_pmcs(task, ctx);
4390 pmcs_source = ctx->th_pmcs;
4391 pmds_source = ctx->th_pmds;
4394 * always the case for system-wide
4396 if (task == current) {
4398 if (is_system == 0) {
4400 /* allow user level control */
4401 ia64_psr(regs)->sp = 0;
4402 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4404 SET_LAST_CPU(ctx, smp_processor_id());
4406 SET_ACTIVATION(ctx);
4409 * push the other task out, if any
4411 owner_task = GET_PMU_OWNER();
4412 if (owner_task) pfm_lazy_save_regs(owner_task);
4416 * load all PMD from ctx to PMU (as opposed to thread state)
4417 * restore all PMC from ctx to PMU
4419 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4420 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4422 ctx->ctx_reload_pmcs[0] = 0UL;
4423 ctx->ctx_reload_pmds[0] = 0UL;
4426 * guaranteed safe by earlier check against DBG_VALID
4428 if (ctx->ctx_fl_using_dbreg) {
4429 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4430 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4435 SET_PMU_OWNER(task, ctx);
4437 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4440 * when not current, task MUST be stopped, so this is safe
4442 regs = task_pt_regs(task);
4444 /* force a full reload */
4445 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4446 SET_LAST_CPU(ctx, -1);
4448 /* initial saved psr (stopped) */
4449 ctx->ctx_saved_psr_up = 0UL;
4450 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4456 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4459 * we must undo the dbregs setting (for system-wide)
4461 if (ret && set_dbregs) {
4463 pfm_sessions.pfs_sys_use_dbregs--;
4467 * release task, there is now a link with the context
4469 if (is_system == 0 && task != current) {
4473 ret = pfm_check_task_exist(ctx);
4475 ctx->ctx_state = PFM_CTX_UNLOADED;
4476 ctx->ctx_task = NULL;
4484 * in this function, we do not need to increase the use count
4485 * for the task via get_task_struct(), because we hold the
4486 * context lock. If the task were to disappear while having
4487 * a context attached, it would go through pfm_exit_thread()
4488 * which also grabs the context lock and would therefore be blocked
4489 * until we are here.
4491 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4494 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4496 struct task_struct *task = PFM_CTX_TASK(ctx);
4497 struct pt_regs *tregs;
4498 int prev_state, is_system;
4501 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4503 prev_state = ctx->ctx_state;
4504 is_system = ctx->ctx_fl_system;
4507 * unload only when necessary
4509 if (prev_state == PFM_CTX_UNLOADED) {
4510 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4515 * clear psr and dcr bits
4517 ret = pfm_stop(ctx, NULL, 0, regs);
4518 if (ret) return ret;
4520 ctx->ctx_state = PFM_CTX_UNLOADED;
4523 * in system mode, we need to update the PMU directly
4524 * and the user level state of the caller, which may not
4525 * necessarily be the creator of the context.
4532 * local PMU is taken care of in pfm_stop()
4534 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4535 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4538 * save PMDs in context
4541 pfm_flush_pmds(current, ctx);
4544 * at this point we are done with the PMU
4545 * so we can unreserve the resource.
4547 if (prev_state != PFM_CTX_ZOMBIE)
4548 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4551 * disconnect context from task
4553 task->thread.pfm_context = NULL;
4555 * disconnect task from context
4557 ctx->ctx_task = NULL;
4560 * There is nothing more to cleanup here.
4568 tregs = task == current ? regs : task_pt_regs(task);
4570 if (task == current) {
4572 * cancel user level control
4574 ia64_psr(regs)->sp = 1;
4576 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4579 * save PMDs to context
4582 pfm_flush_pmds(task, ctx);
4585 * at this point we are done with the PMU
4586 * so we can unreserve the resource.
4588 * when state was ZOMBIE, we have already unreserved.
4590 if (prev_state != PFM_CTX_ZOMBIE)
4591 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4594 * reset activation counter and psr
4596 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4597 SET_LAST_CPU(ctx, -1);
4600 * PMU state will not be restored
4602 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4605 * break links between context and task
4607 task->thread.pfm_context = NULL;
4608 ctx->ctx_task = NULL;
4610 PFM_SET_WORK_PENDING(task, 0);
4612 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4613 ctx->ctx_fl_can_restart = 0;
4614 ctx->ctx_fl_going_zombie = 0;
4616 DPRINT(("disconnected [%d] from context\n", task->pid));
4623 * called only from exit_thread(): task == current
4624 * we come here only if current has a context attached (loaded or masked)
4627 pfm_exit_thread(struct task_struct *task)
4630 unsigned long flags;
4631 struct pt_regs *regs = task_pt_regs(task);
4635 ctx = PFM_GET_CTX(task);
4637 PROTECT_CTX(ctx, flags);
4639 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4641 state = ctx->ctx_state;
4643 case PFM_CTX_UNLOADED:
4645 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4646 * be in unloaded state
4648 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4650 case PFM_CTX_LOADED:
4651 case PFM_CTX_MASKED:
4652 ret = pfm_context_unload(ctx, NULL, 0, regs);
4654 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4656 DPRINT(("ctx unloaded for current state was %d\n", state));
4658 pfm_end_notify_user(ctx);
4660 case PFM_CTX_ZOMBIE:
4661 ret = pfm_context_unload(ctx, NULL, 0, regs);
4663 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4668 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4671 UNPROTECT_CTX(ctx, flags);
4673 { u64 psr = pfm_get_psr();
4674 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4675 BUG_ON(GET_PMU_OWNER());
4676 BUG_ON(ia64_psr(regs)->up);
4677 BUG_ON(ia64_psr(regs)->pp);
4681 * All memory free operations (especially for vmalloc'ed memory)
4682 * MUST be done with interrupts ENABLED.
4684 if (free_ok) pfm_context_free(ctx);
4688 * functions MUST be listed in the increasing order of their index (see permfon.h)
4690 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4691 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4692 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4693 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4694 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4696 static pfm_cmd_desc_t pfm_cmd_tab[]={
4697 /* 0 */PFM_CMD_NONE,
4698 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4699 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4700 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4701 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4702 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4703 /* 6 */PFM_CMD_NONE,
4704 /* 7 */PFM_CMD_NONE,
4705 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4706 /* 9 */PFM_CMD_NONE,
4707 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4708 /* 11 */PFM_CMD_NONE,
4709 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4710 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4711 /* 14 */PFM_CMD_NONE,
4712 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4713 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4714 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4715 /* 18 */PFM_CMD_NONE,
4716 /* 19 */PFM_CMD_NONE,
4717 /* 20 */PFM_CMD_NONE,
4718 /* 21 */PFM_CMD_NONE,
4719 /* 22 */PFM_CMD_NONE,
4720 /* 23 */PFM_CMD_NONE,
4721 /* 24 */PFM_CMD_NONE,
4722 /* 25 */PFM_CMD_NONE,
4723 /* 26 */PFM_CMD_NONE,
4724 /* 27 */PFM_CMD_NONE,
4725 /* 28 */PFM_CMD_NONE,
4726 /* 29 */PFM_CMD_NONE,
4727 /* 30 */PFM_CMD_NONE,
4728 /* 31 */PFM_CMD_NONE,
4729 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4730 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4732 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4735 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4737 struct task_struct *task;
4738 int state, old_state;
4741 state = ctx->ctx_state;
4742 task = ctx->ctx_task;
4745 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4749 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4753 task->state, PFM_CMD_STOPPED(cmd)));
4756 * self-monitoring always ok.
4758 * for system-wide the caller can either be the creator of the
4759 * context (to one to which the context is attached to) OR
4760 * a task running on the same CPU as the session.
4762 if (task == current || ctx->ctx_fl_system) return 0;
4765 * we are monitoring another thread
4768 case PFM_CTX_UNLOADED:
4770 * if context is UNLOADED we are safe to go
4773 case PFM_CTX_ZOMBIE:
4775 * no command can operate on a zombie context
4777 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4779 case PFM_CTX_MASKED:
4781 * PMU state has been saved to software even though
4782 * the thread may still be running.
4784 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4788 * context is LOADED or MASKED. Some commands may need to have
4791 * We could lift this restriction for UP but it would mean that
4792 * the user has no guarantee the task would not run between
4793 * two successive calls to perfmonctl(). That's probably OK.
4794 * If this user wants to ensure the task does not run, then
4795 * the task must be stopped.
4797 if (PFM_CMD_STOPPED(cmd)) {
4798 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4799 DPRINT(("[%d] task not in stopped state\n", task->pid));
4803 * task is now stopped, wait for ctxsw out
4805 * This is an interesting point in the code.
4806 * We need to unprotect the context because
4807 * the pfm_save_regs() routines needs to grab
4808 * the same lock. There are danger in doing
4809 * this because it leaves a window open for
4810 * another task to get access to the context
4811 * and possibly change its state. The one thing
4812 * that is not possible is for the context to disappear
4813 * because we are protected by the VFS layer, i.e.,
4814 * get_fd()/put_fd().
4818 UNPROTECT_CTX(ctx, flags);
4820 wait_task_inactive(task);
4822 PROTECT_CTX(ctx, flags);
4825 * we must recheck to verify if state has changed
4827 if (ctx->ctx_state != old_state) {
4828 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4836 * system-call entry point (must return long)
4839 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4841 struct file *file = NULL;
4842 pfm_context_t *ctx = NULL;
4843 unsigned long flags = 0UL;
4844 void *args_k = NULL;
4845 long ret; /* will expand int return types */
4846 size_t base_sz, sz, xtra_sz = 0;
4847 int narg, completed_args = 0, call_made = 0, cmd_flags;
4848 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4849 int (*getsize)(void *arg, size_t *sz);
4850 #define PFM_MAX_ARGSIZE 4096
4853 * reject any call if perfmon was disabled at initialization
4855 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4857 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4858 DPRINT(("invalid cmd=%d\n", cmd));
4862 func = pfm_cmd_tab[cmd].cmd_func;
4863 narg = pfm_cmd_tab[cmd].cmd_narg;
4864 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4865 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4866 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4868 if (unlikely(func == NULL)) {
4869 DPRINT(("invalid cmd=%d\n", cmd));
4873 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4881 * check if number of arguments matches what the command expects
4883 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4887 sz = xtra_sz + base_sz*count;
4889 * limit abuse to min page size
4891 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4892 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4897 * allocate default-sized argument buffer
4899 if (likely(count && args_k == NULL)) {
4900 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4901 if (args_k == NULL) return -ENOMEM;
4909 * assume sz = 0 for command without parameters
4911 if (sz && copy_from_user(args_k, arg, sz)) {
4912 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4917 * check if command supports extra parameters
4919 if (completed_args == 0 && getsize) {
4921 * get extra parameters size (based on main argument)
4923 ret = (*getsize)(args_k, &xtra_sz);
4924 if (ret) goto error_args;
4928 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4930 /* retry if necessary */
4931 if (likely(xtra_sz)) goto restart_args;
4934 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4939 if (unlikely(file == NULL)) {
4940 DPRINT(("invalid fd %d\n", fd));
4943 if (unlikely(PFM_IS_FILE(file) == 0)) {
4944 DPRINT(("fd %d not related to perfmon\n", fd));
4948 ctx = (pfm_context_t *)file->private_data;
4949 if (unlikely(ctx == NULL)) {
4950 DPRINT(("no context for fd %d\n", fd));
4953 prefetch(&ctx->ctx_state);
4955 PROTECT_CTX(ctx, flags);
4958 * check task is stopped
4960 ret = pfm_check_task_state(ctx, cmd, flags);
4961 if (unlikely(ret)) goto abort_locked;
4964 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4970 DPRINT(("context unlocked\n"));
4971 UNPROTECT_CTX(ctx, flags);
4974 /* copy argument back to user, if needed */
4975 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4983 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4989 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4991 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4992 pfm_ovfl_ctrl_t rst_ctrl;
4996 state = ctx->ctx_state;
4998 * Unlock sampling buffer and reset index atomically
4999 * XXX: not really needed when blocking
5001 if (CTX_HAS_SMPL(ctx)) {
5003 rst_ctrl.bits.mask_monitoring = 0;
5004 rst_ctrl.bits.reset_ovfl_pmds = 0;
5006 if (state == PFM_CTX_LOADED)
5007 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5009 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5011 rst_ctrl.bits.mask_monitoring = 0;
5012 rst_ctrl.bits.reset_ovfl_pmds = 1;
5016 if (rst_ctrl.bits.reset_ovfl_pmds) {
5017 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5019 if (rst_ctrl.bits.mask_monitoring == 0) {
5020 DPRINT(("resuming monitoring\n"));
5021 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5023 DPRINT(("stopping monitoring\n"));
5024 //pfm_stop_monitoring(current, regs);
5026 ctx->ctx_state = PFM_CTX_LOADED;
5031 * context MUST BE LOCKED when calling
5032 * can only be called for current
5035 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5039 DPRINT(("entering for [%d]\n", current->pid));
5041 ret = pfm_context_unload(ctx, NULL, 0, regs);
5043 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5047 * and wakeup controlling task, indicating we are now disconnected
5049 wake_up_interruptible(&ctx->ctx_zombieq);
5052 * given that context is still locked, the controlling
5053 * task will only get access when we return from
5054 * pfm_handle_work().
5058 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5060 * pfm_handle_work() can be called with interrupts enabled
5061 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5062 * call may sleep, therefore we must re-enable interrupts
5063 * to avoid deadlocks. It is safe to do so because this function
5064 * is called ONLY when returning to user level (PUStk=1), in which case
5065 * there is no risk of kernel stack overflow due to deep
5066 * interrupt nesting.
5069 pfm_handle_work(void)
5072 struct pt_regs *regs;
5073 unsigned long flags, dummy_flags;
5074 unsigned long ovfl_regs;
5075 unsigned int reason;
5078 ctx = PFM_GET_CTX(current);
5080 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5084 PROTECT_CTX(ctx, flags);
5086 PFM_SET_WORK_PENDING(current, 0);
5088 pfm_clear_task_notify();
5090 regs = task_pt_regs(current);
5093 * extract reason for being here and clear
5095 reason = ctx->ctx_fl_trap_reason;
5096 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5097 ovfl_regs = ctx->ctx_ovfl_regs[0];
5099 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5102 * must be done before we check for simple-reset mode
5104 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5107 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5108 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5111 * restore interrupt mask to what it was on entry.
5112 * Could be enabled/diasbled.
5114 UNPROTECT_CTX(ctx, flags);
5117 * force interrupt enable because of down_interruptible()
5121 DPRINT(("before block sleeping\n"));
5124 * may go through without blocking on SMP systems
5125 * if restart has been received already by the time we call down()
5127 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5129 DPRINT(("after block sleeping ret=%d\n", ret));
5132 * lock context and mask interrupts again
5133 * We save flags into a dummy because we may have
5134 * altered interrupts mask compared to entry in this
5137 PROTECT_CTX(ctx, dummy_flags);
5140 * we need to read the ovfl_regs only after wake-up
5141 * because we may have had pfm_write_pmds() in between
5142 * and that can changed PMD values and therefore
5143 * ovfl_regs is reset for these new PMD values.
5145 ovfl_regs = ctx->ctx_ovfl_regs[0];
5147 if (ctx->ctx_fl_going_zombie) {
5149 DPRINT(("context is zombie, bailing out\n"));
5150 pfm_context_force_terminate(ctx, regs);
5154 * in case of interruption of down() we don't restart anything
5156 if (ret < 0) goto nothing_to_do;
5159 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5160 ctx->ctx_ovfl_regs[0] = 0UL;
5164 * restore flags as they were upon entry
5166 UNPROTECT_CTX(ctx, flags);
5170 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5172 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5173 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5177 DPRINT(("waking up somebody\n"));
5179 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5182 * safe, we are not in intr handler, nor in ctxsw when
5185 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5191 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5193 pfm_msg_t *msg = NULL;
5195 if (ctx->ctx_fl_no_msg == 0) {
5196 msg = pfm_get_new_msg(ctx);
5198 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5202 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5203 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5204 msg->pfm_ovfl_msg.msg_active_set = 0;
5205 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5206 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5207 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5208 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5209 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5212 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5218 return pfm_notify_user(ctx, msg);
5222 pfm_end_notify_user(pfm_context_t *ctx)
5226 msg = pfm_get_new_msg(ctx);
5228 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5232 memset(msg, 0, sizeof(*msg));
5234 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5235 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5236 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5238 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5243 return pfm_notify_user(ctx, msg);
5247 * main overflow processing routine.
5248 * it can be called from the interrupt path or explicitely during the context switch code
5251 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5253 pfm_ovfl_arg_t *ovfl_arg;
5255 unsigned long old_val, ovfl_val, new_val;
5256 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5257 unsigned long tstamp;
5258 pfm_ovfl_ctrl_t ovfl_ctrl;
5259 unsigned int i, has_smpl;
5260 int must_notify = 0;
5262 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5265 * sanity test. Should never happen
5267 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5269 tstamp = ia64_get_itc();
5270 mask = pmc0 >> PMU_FIRST_COUNTER;
5271 ovfl_val = pmu_conf->ovfl_val;
5272 has_smpl = CTX_HAS_SMPL(ctx);
5274 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5275 "used_pmds=0x%lx\n",
5277 task ? task->pid: -1,
5278 (regs ? regs->cr_iip : 0),
5279 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5280 ctx->ctx_used_pmds[0]));
5284 * first we update the virtual counters
5285 * assume there was a prior ia64_srlz_d() issued
5287 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5289 /* skip pmd which did not overflow */
5290 if ((mask & 0x1) == 0) continue;
5293 * Note that the pmd is not necessarily 0 at this point as qualified events
5294 * may have happened before the PMU was frozen. The residual count is not
5295 * taken into consideration here but will be with any read of the pmd via
5298 old_val = new_val = ctx->ctx_pmds[i].val;
5299 new_val += 1 + ovfl_val;
5300 ctx->ctx_pmds[i].val = new_val;
5303 * check for overflow condition
5305 if (likely(old_val > new_val)) {
5306 ovfl_pmds |= 1UL << i;
5307 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5310 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5314 ia64_get_pmd(i) & ovfl_val,
5320 * there was no 64-bit overflow, nothing else to do
5322 if (ovfl_pmds == 0UL) return;
5325 * reset all control bits
5331 * if a sampling format module exists, then we "cache" the overflow by
5332 * calling the module's handler() routine.
5335 unsigned long start_cycles, end_cycles;
5336 unsigned long pmd_mask;
5338 int this_cpu = smp_processor_id();
5340 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5341 ovfl_arg = &ctx->ctx_ovfl_arg;
5343 prefetch(ctx->ctx_smpl_hdr);
5345 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5349 if ((pmd_mask & 0x1) == 0) continue;
5351 ovfl_arg->ovfl_pmd = (unsigned char )i;
5352 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5353 ovfl_arg->active_set = 0;
5354 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5355 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5357 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5358 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5359 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5362 * copy values of pmds of interest. Sampling format may copy them
5363 * into sampling buffer.
5366 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5367 if ((smpl_pmds & 0x1) == 0) continue;
5368 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5369 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5373 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5375 start_cycles = ia64_get_itc();
5378 * call custom buffer format record (handler) routine
5380 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5382 end_cycles = ia64_get_itc();
5385 * For those controls, we take the union because they have
5386 * an all or nothing behavior.
5388 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5389 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5390 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5392 * build the bitmask of pmds to reset now
5394 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5396 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5399 * when the module cannot handle the rest of the overflows, we abort right here
5401 if (ret && pmd_mask) {
5402 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5403 pmd_mask<<PMU_FIRST_COUNTER));
5406 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5408 ovfl_pmds &= ~reset_pmds;
5411 * when no sampling module is used, then the default
5412 * is to notify on overflow if requested by user
5414 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5415 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5416 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5417 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5419 * if needed, we reset all overflowed pmds
5421 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5424 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5427 * reset the requested PMD registers using the short reset values
5430 unsigned long bm = reset_pmds;
5431 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5434 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5436 * keep track of what to reset when unblocking
5438 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5441 * check for blocking context
5443 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5445 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5448 * set the perfmon specific checking pending work for the task
5450 PFM_SET_WORK_PENDING(task, 1);
5453 * when coming from ctxsw, current still points to the
5454 * previous task, therefore we must work with task and not current.
5456 pfm_set_task_notify(task);
5459 * defer until state is changed (shorten spin window). the context is locked
5460 * anyway, so the signal receiver would come spin for nothing.
5465 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5466 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5467 PFM_GET_WORK_PENDING(task),
5468 ctx->ctx_fl_trap_reason,
5471 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5473 * in case monitoring must be stopped, we toggle the psr bits
5475 if (ovfl_ctrl.bits.mask_monitoring) {
5476 pfm_mask_monitoring(task);
5477 ctx->ctx_state = PFM_CTX_MASKED;
5478 ctx->ctx_fl_can_restart = 1;
5482 * send notification now
5484 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5489 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5491 task ? task->pid : -1,
5497 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5498 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5499 * come here as zombie only if the task is the current task. In which case, we
5500 * can access the PMU hardware directly.
5502 * Note that zombies do have PM_VALID set. So here we do the minimal.
5504 * In case the context was zombified it could not be reclaimed at the time
5505 * the monitoring program exited. At this point, the PMU reservation has been
5506 * returned, the sampiing buffer has been freed. We must convert this call
5507 * into a spurious interrupt. However, we must also avoid infinite overflows
5508 * by stopping monitoring for this task. We can only come here for a per-task
5509 * context. All we need to do is to stop monitoring using the psr bits which
5510 * are always task private. By re-enabling secure montioring, we ensure that
5511 * the monitored task will not be able to re-activate monitoring.
5512 * The task will eventually be context switched out, at which point the context
5513 * will be reclaimed (that includes releasing ownership of the PMU).
5515 * So there might be a window of time where the number of per-task session is zero
5516 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5517 * context. This is safe because if a per-task session comes in, it will push this one
5518 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5519 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5520 * also push our zombie context out.
5522 * Overall pretty hairy stuff....
5524 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5526 ia64_psr(regs)->up = 0;
5527 ia64_psr(regs)->sp = 1;
5532 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5534 struct task_struct *task;
5536 unsigned long flags;
5538 int this_cpu = smp_processor_id();
5541 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5544 * srlz.d done before arriving here
5546 pmc0 = ia64_get_pmc(0);
5548 task = GET_PMU_OWNER();
5549 ctx = GET_PMU_CTX();
5552 * if we have some pending bits set
5553 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5555 if (PMC0_HAS_OVFL(pmc0) && task) {
5557 * we assume that pmc0.fr is always set here
5561 if (!ctx) goto report_spurious1;
5563 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5564 goto report_spurious2;
5566 PROTECT_CTX_NOPRINT(ctx, flags);
5568 pfm_overflow_handler(task, ctx, pmc0, regs);
5570 UNPROTECT_CTX_NOPRINT(ctx, flags);
5573 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5577 * keep it unfrozen at all times
5584 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5585 this_cpu, task->pid);
5589 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5597 pfm_interrupt_handler(int irq, void *arg)
5599 unsigned long start_cycles, total_cycles;
5600 unsigned long min, max;
5603 struct pt_regs *regs = get_irq_regs();
5605 this_cpu = get_cpu();
5606 if (likely(!pfm_alt_intr_handler)) {
5607 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5608 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5610 start_cycles = ia64_get_itc();
5612 ret = pfm_do_interrupt_handler(irq, arg, regs);
5614 total_cycles = ia64_get_itc();
5617 * don't measure spurious interrupts
5619 if (likely(ret == 0)) {
5620 total_cycles -= start_cycles;
5622 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5623 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5625 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5629 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5632 put_cpu_no_resched();
5637 * /proc/perfmon interface, for debug only
5640 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5643 pfm_proc_start(struct seq_file *m, loff_t *pos)
5646 return PFM_PROC_SHOW_HEADER;
5649 while (*pos <= NR_CPUS) {
5650 if (cpu_online(*pos - 1)) {
5651 return (void *)*pos;
5659 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5662 return pfm_proc_start(m, pos);
5666 pfm_proc_stop(struct seq_file *m, void *v)
5671 pfm_proc_show_header(struct seq_file *m)
5673 struct list_head * pos;
5674 pfm_buffer_fmt_t * entry;
5675 unsigned long flags;
5678 "perfmon version : %u.%u\n"
5681 "expert mode : %s\n"
5682 "ovfl_mask : 0x%lx\n"
5683 "PMU flags : 0x%x\n",
5684 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5686 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5687 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5694 "proc_sessions : %u\n"
5695 "sys_sessions : %u\n"
5696 "sys_use_dbregs : %u\n"
5697 "ptrace_use_dbregs : %u\n",
5698 pfm_sessions.pfs_task_sessions,
5699 pfm_sessions.pfs_sys_sessions,
5700 pfm_sessions.pfs_sys_use_dbregs,
5701 pfm_sessions.pfs_ptrace_use_dbregs);
5705 spin_lock(&pfm_buffer_fmt_lock);
5707 list_for_each(pos, &pfm_buffer_fmt_list) {
5708 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5709 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5720 entry->fmt_uuid[10],
5721 entry->fmt_uuid[11],
5722 entry->fmt_uuid[12],
5723 entry->fmt_uuid[13],
5724 entry->fmt_uuid[14],
5725 entry->fmt_uuid[15],
5728 spin_unlock(&pfm_buffer_fmt_lock);
5733 pfm_proc_show(struct seq_file *m, void *v)
5739 if (v == PFM_PROC_SHOW_HEADER) {
5740 pfm_proc_show_header(m);
5744 /* show info for CPU (v - 1) */
5748 "CPU%-2d overflow intrs : %lu\n"
5749 "CPU%-2d overflow cycles : %lu\n"
5750 "CPU%-2d overflow min : %lu\n"
5751 "CPU%-2d overflow max : %lu\n"
5752 "CPU%-2d smpl handler calls : %lu\n"
5753 "CPU%-2d smpl handler cycles : %lu\n"
5754 "CPU%-2d spurious intrs : %lu\n"
5755 "CPU%-2d replay intrs : %lu\n"
5756 "CPU%-2d syst_wide : %d\n"
5757 "CPU%-2d dcr_pp : %d\n"
5758 "CPU%-2d exclude idle : %d\n"
5759 "CPU%-2d owner : %d\n"
5760 "CPU%-2d context : %p\n"
5761 "CPU%-2d activations : %lu\n",
5762 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5763 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5764 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5765 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5766 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5767 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5768 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5769 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5770 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5771 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5772 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5773 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5774 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5775 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5777 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5779 psr = pfm_get_psr();
5784 "CPU%-2d psr : 0x%lx\n"
5785 "CPU%-2d pmc0 : 0x%lx\n",
5787 cpu, ia64_get_pmc(0));
5789 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5790 if (PMC_IS_COUNTING(i) == 0) continue;
5792 "CPU%-2d pmc%u : 0x%lx\n"
5793 "CPU%-2d pmd%u : 0x%lx\n",
5794 cpu, i, ia64_get_pmc(i),
5795 cpu, i, ia64_get_pmd(i));
5801 struct seq_operations pfm_seq_ops = {
5802 .start = pfm_proc_start,
5803 .next = pfm_proc_next,
5804 .stop = pfm_proc_stop,
5805 .show = pfm_proc_show
5809 pfm_proc_open(struct inode *inode, struct file *file)
5811 return seq_open(file, &pfm_seq_ops);
5816 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5817 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5818 * is active or inactive based on mode. We must rely on the value in
5819 * local_cpu_data->pfm_syst_info
5822 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5824 struct pt_regs *regs;
5826 unsigned long dcr_pp;
5828 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5831 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5832 * on every CPU, so we can rely on the pid to identify the idle task.
5834 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5835 regs = task_pt_regs(task);
5836 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5840 * if monitoring has started
5843 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5845 * context switching in?
5848 /* mask monitoring for the idle task */
5849 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5855 * context switching out
5856 * restore monitoring for next task
5858 * Due to inlining this odd if-then-else construction generates
5861 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5870 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5872 struct task_struct *task = ctx->ctx_task;
5874 ia64_psr(regs)->up = 0;
5875 ia64_psr(regs)->sp = 1;
5877 if (GET_PMU_OWNER() == task) {
5878 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5879 SET_PMU_OWNER(NULL, NULL);
5883 * disconnect the task from the context and vice-versa
5885 PFM_SET_WORK_PENDING(task, 0);
5887 task->thread.pfm_context = NULL;
5888 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5890 DPRINT(("force cleanup for [%d]\n", task->pid));
5895 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5898 pfm_save_regs(struct task_struct *task)
5901 unsigned long flags;
5905 ctx = PFM_GET_CTX(task);
5906 if (ctx == NULL) return;
5909 * we always come here with interrupts ALREADY disabled by
5910 * the scheduler. So we simply need to protect against concurrent
5911 * access, not CPU concurrency.
5913 flags = pfm_protect_ctx_ctxsw(ctx);
5915 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5916 struct pt_regs *regs = task_pt_regs(task);
5920 pfm_force_cleanup(ctx, regs);
5922 BUG_ON(ctx->ctx_smpl_hdr);
5924 pfm_unprotect_ctx_ctxsw(ctx, flags);
5926 pfm_context_free(ctx);
5931 * save current PSR: needed because we modify it
5934 psr = pfm_get_psr();
5936 BUG_ON(psr & (IA64_PSR_I));
5940 * This is the last instruction which may generate an overflow
5942 * We do not need to set psr.sp because, it is irrelevant in kernel.
5943 * It will be restored from ipsr when going back to user level
5948 * keep a copy of psr.up (for reload)
5950 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5953 * release ownership of this PMU.
5954 * PM interrupts are masked, so nothing
5957 SET_PMU_OWNER(NULL, NULL);
5960 * we systematically save the PMD as we have no
5961 * guarantee we will be schedule at that same
5964 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5967 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5968 * we will need it on the restore path to check
5969 * for pending overflow.
5971 ctx->th_pmcs[0] = ia64_get_pmc(0);
5974 * unfreeze PMU if had pending overflows
5976 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5979 * finally, allow context access.
5980 * interrupts will still be masked after this call.
5982 pfm_unprotect_ctx_ctxsw(ctx, flags);
5985 #else /* !CONFIG_SMP */
5987 pfm_save_regs(struct task_struct *task)
5992 ctx = PFM_GET_CTX(task);
5993 if (ctx == NULL) return;
5996 * save current PSR: needed because we modify it
5998 psr = pfm_get_psr();
6000 BUG_ON(psr & (IA64_PSR_I));
6004 * This is the last instruction which may generate an overflow
6006 * We do not need to set psr.sp because, it is irrelevant in kernel.
6007 * It will be restored from ipsr when going back to user level
6012 * keep a copy of psr.up (for reload)
6014 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6018 pfm_lazy_save_regs (struct task_struct *task)
6021 unsigned long flags;
6023 { u64 psr = pfm_get_psr();
6024 BUG_ON(psr & IA64_PSR_UP);
6027 ctx = PFM_GET_CTX(task);
6030 * we need to mask PMU overflow here to
6031 * make sure that we maintain pmc0 until
6032 * we save it. overflow interrupts are
6033 * treated as spurious if there is no
6036 * XXX: I don't think this is necessary
6038 PROTECT_CTX(ctx,flags);
6041 * release ownership of this PMU.
6042 * must be done before we save the registers.
6044 * after this call any PMU interrupt is treated
6047 SET_PMU_OWNER(NULL, NULL);
6050 * save all the pmds we use
6052 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6055 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6056 * it is needed to check for pended overflow
6057 * on the restore path
6059 ctx->th_pmcs[0] = ia64_get_pmc(0);
6062 * unfreeze PMU if had pending overflows
6064 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6067 * now get can unmask PMU interrupts, they will
6068 * be treated as purely spurious and we will not
6069 * lose any information
6071 UNPROTECT_CTX(ctx,flags);
6073 #endif /* CONFIG_SMP */
6077 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6080 pfm_load_regs (struct task_struct *task)
6083 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6084 unsigned long flags;
6086 int need_irq_resend;
6088 ctx = PFM_GET_CTX(task);
6089 if (unlikely(ctx == NULL)) return;
6091 BUG_ON(GET_PMU_OWNER());
6094 * possible on unload
6096 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6099 * we always come here with interrupts ALREADY disabled by
6100 * the scheduler. So we simply need to protect against concurrent
6101 * access, not CPU concurrency.
6103 flags = pfm_protect_ctx_ctxsw(ctx);
6104 psr = pfm_get_psr();
6106 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6108 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6109 BUG_ON(psr & IA64_PSR_I);
6111 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6112 struct pt_regs *regs = task_pt_regs(task);
6114 BUG_ON(ctx->ctx_smpl_hdr);
6116 pfm_force_cleanup(ctx, regs);
6118 pfm_unprotect_ctx_ctxsw(ctx, flags);
6121 * this one (kmalloc'ed) is fine with interrupts disabled
6123 pfm_context_free(ctx);
6129 * we restore ALL the debug registers to avoid picking up
6132 if (ctx->ctx_fl_using_dbreg) {
6133 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6134 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6137 * retrieve saved psr.up
6139 psr_up = ctx->ctx_saved_psr_up;
6142 * if we were the last user of the PMU on that CPU,
6143 * then nothing to do except restore psr
6145 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6148 * retrieve partial reload masks (due to user modifications)
6150 pmc_mask = ctx->ctx_reload_pmcs[0];
6151 pmd_mask = ctx->ctx_reload_pmds[0];
6155 * To avoid leaking information to the user level when psr.sp=0,
6156 * we must reload ALL implemented pmds (even the ones we don't use).
6157 * In the kernel we only allow PFM_READ_PMDS on registers which
6158 * we initialized or requested (sampling) so there is no risk there.
6160 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6163 * ALL accessible PMCs are systematically reloaded, unused registers
6164 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6165 * up stale configuration.
6167 * PMC0 is never in the mask. It is always restored separately.
6169 pmc_mask = ctx->ctx_all_pmcs[0];
6172 * when context is MASKED, we will restore PMC with plm=0
6173 * and PMD with stale information, but that's ok, nothing
6176 * XXX: optimize here
6178 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6179 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6182 * check for pending overflow at the time the state
6185 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6187 * reload pmc0 with the overflow information
6188 * On McKinley PMU, this will trigger a PMU interrupt
6190 ia64_set_pmc(0, ctx->th_pmcs[0]);
6192 ctx->th_pmcs[0] = 0UL;
6195 * will replay the PMU interrupt
6197 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6199 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6203 * we just did a reload, so we reset the partial reload fields
6205 ctx->ctx_reload_pmcs[0] = 0UL;
6206 ctx->ctx_reload_pmds[0] = 0UL;
6208 SET_LAST_CPU(ctx, smp_processor_id());
6211 * dump activation value for this PMU
6215 * record current activation for this context
6217 SET_ACTIVATION(ctx);
6220 * establish new ownership.
6222 SET_PMU_OWNER(task, ctx);
6225 * restore the psr.up bit. measurement
6227 * no PMU interrupt can happen at this point
6228 * because we still have interrupts disabled.
6230 if (likely(psr_up)) pfm_set_psr_up();
6233 * allow concurrent access to context
6235 pfm_unprotect_ctx_ctxsw(ctx, flags);
6237 #else /* !CONFIG_SMP */
6239 * reload PMU state for UP kernels
6240 * in 2.5 we come here with interrupts disabled
6243 pfm_load_regs (struct task_struct *task)
6246 struct task_struct *owner;
6247 unsigned long pmd_mask, pmc_mask;
6249 int need_irq_resend;
6251 owner = GET_PMU_OWNER();
6252 ctx = PFM_GET_CTX(task);
6253 psr = pfm_get_psr();
6255 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6256 BUG_ON(psr & IA64_PSR_I);
6259 * we restore ALL the debug registers to avoid picking up
6262 * This must be done even when the task is still the owner
6263 * as the registers may have been modified via ptrace()
6264 * (not perfmon) by the previous task.
6266 if (ctx->ctx_fl_using_dbreg) {
6267 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6268 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6272 * retrieved saved psr.up
6274 psr_up = ctx->ctx_saved_psr_up;
6275 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6278 * short path, our state is still there, just
6279 * need to restore psr and we go
6281 * we do not touch either PMC nor PMD. the psr is not touched
6282 * by the overflow_handler. So we are safe w.r.t. to interrupt
6283 * concurrency even without interrupt masking.
6285 if (likely(owner == task)) {
6286 if (likely(psr_up)) pfm_set_psr_up();
6291 * someone else is still using the PMU, first push it out and
6292 * then we'll be able to install our stuff !
6294 * Upon return, there will be no owner for the current PMU
6296 if (owner) pfm_lazy_save_regs(owner);
6299 * To avoid leaking information to the user level when psr.sp=0,
6300 * we must reload ALL implemented pmds (even the ones we don't use).
6301 * In the kernel we only allow PFM_READ_PMDS on registers which
6302 * we initialized or requested (sampling) so there is no risk there.
6304 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6307 * ALL accessible PMCs are systematically reloaded, unused registers
6308 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6309 * up stale configuration.
6311 * PMC0 is never in the mask. It is always restored separately
6313 pmc_mask = ctx->ctx_all_pmcs[0];
6315 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6316 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6319 * check for pending overflow at the time the state
6322 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6324 * reload pmc0 with the overflow information
6325 * On McKinley PMU, this will trigger a PMU interrupt
6327 ia64_set_pmc(0, ctx->th_pmcs[0]);
6330 ctx->th_pmcs[0] = 0UL;
6333 * will replay the PMU interrupt
6335 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6337 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6341 * establish new ownership.
6343 SET_PMU_OWNER(task, ctx);
6346 * restore the psr.up bit. measurement
6348 * no PMU interrupt can happen at this point
6349 * because we still have interrupts disabled.
6351 if (likely(psr_up)) pfm_set_psr_up();
6353 #endif /* CONFIG_SMP */
6356 * this function assumes monitoring is stopped
6359 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6362 unsigned long mask2, val, pmd_val, ovfl_val;
6363 int i, can_access_pmu = 0;
6367 * is the caller the task being monitored (or which initiated the
6368 * session for system wide measurements)
6370 is_self = ctx->ctx_task == task ? 1 : 0;
6373 * can access PMU is task is the owner of the PMU state on the current CPU
6374 * or if we are running on the CPU bound to the context in system-wide mode
6375 * (that is not necessarily the task the context is attached to in this mode).
6376 * In system-wide we always have can_access_pmu true because a task running on an
6377 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6379 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6380 if (can_access_pmu) {
6382 * Mark the PMU as not owned
6383 * This will cause the interrupt handler to do nothing in case an overflow
6384 * interrupt was in-flight
6385 * This also guarantees that pmc0 will contain the final state
6386 * It virtually gives us full control on overflow processing from that point
6389 SET_PMU_OWNER(NULL, NULL);
6390 DPRINT(("releasing ownership\n"));
6393 * read current overflow status:
6395 * we are guaranteed to read the final stable state
6398 pmc0 = ia64_get_pmc(0); /* slow */
6401 * reset freeze bit, overflow status information destroyed
6405 pmc0 = ctx->th_pmcs[0];
6407 * clear whatever overflow status bits there were
6409 ctx->th_pmcs[0] = 0;
6411 ovfl_val = pmu_conf->ovfl_val;
6413 * we save all the used pmds
6414 * we take care of overflows for counting PMDs
6416 * XXX: sampling situation is not taken into account here
6418 mask2 = ctx->ctx_used_pmds[0];
6420 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6422 for (i = 0; mask2; i++, mask2>>=1) {
6424 /* skip non used pmds */
6425 if ((mask2 & 0x1) == 0) continue;
6428 * can access PMU always true in system wide mode
6430 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6432 if (PMD_IS_COUNTING(i)) {
6433 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6436 ctx->ctx_pmds[i].val,
6440 * we rebuild the full 64 bit value of the counter
6442 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6445 * now everything is in ctx_pmds[] and we need
6446 * to clear the saved context from save_regs() such that
6447 * pfm_read_pmds() gets the correct value
6452 * take care of overflow inline
6454 if (pmc0 & (1UL << i)) {
6455 val += 1 + ovfl_val;
6456 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6460 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6462 if (is_self) ctx->th_pmds[i] = pmd_val;
6464 ctx->ctx_pmds[i].val = val;
6468 static struct irqaction perfmon_irqaction = {
6469 .handler = pfm_interrupt_handler,
6470 .flags = IRQF_DISABLED,
6475 pfm_alt_save_pmu_state(void *data)
6477 struct pt_regs *regs;
6479 regs = task_pt_regs(current);
6481 DPRINT(("called\n"));
6484 * should not be necessary but
6485 * let's take not risk
6489 ia64_psr(regs)->pp = 0;
6492 * This call is required
6493 * May cause a spurious interrupt on some processors
6501 pfm_alt_restore_pmu_state(void *data)
6503 struct pt_regs *regs;
6505 regs = task_pt_regs(current);
6507 DPRINT(("called\n"));
6510 * put PMU back in state expected
6515 ia64_psr(regs)->pp = 0;
6518 * perfmon runs with PMU unfrozen at all times
6526 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6531 /* some sanity checks */
6532 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6534 /* do the easy test first */
6535 if (pfm_alt_intr_handler) return -EBUSY;
6537 /* one at a time in the install or remove, just fail the others */
6538 if (!spin_trylock(&pfm_alt_install_check)) {
6542 /* reserve our session */
6543 for_each_online_cpu(reserve_cpu) {
6544 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6545 if (ret) goto cleanup_reserve;
6548 /* save the current system wide pmu states */
6549 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6551 DPRINT(("on_each_cpu() failed: %d\n", ret));
6552 goto cleanup_reserve;
6555 /* officially change to the alternate interrupt handler */
6556 pfm_alt_intr_handler = hdl;
6558 spin_unlock(&pfm_alt_install_check);
6563 for_each_online_cpu(i) {
6564 /* don't unreserve more than we reserved */
6565 if (i >= reserve_cpu) break;
6567 pfm_unreserve_session(NULL, 1, i);
6570 spin_unlock(&pfm_alt_install_check);
6574 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6577 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6582 if (hdl == NULL) return -EINVAL;
6584 /* cannot remove someone else's handler! */
6585 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6587 /* one at a time in the install or remove, just fail the others */
6588 if (!spin_trylock(&pfm_alt_install_check)) {
6592 pfm_alt_intr_handler = NULL;
6594 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6596 DPRINT(("on_each_cpu() failed: %d\n", ret));
6599 for_each_online_cpu(i) {
6600 pfm_unreserve_session(NULL, 1, i);
6603 spin_unlock(&pfm_alt_install_check);
6607 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6610 * perfmon initialization routine, called from the initcall() table
6612 static int init_pfm_fs(void);
6620 family = local_cpu_data->family;
6625 if ((*p)->probe() == 0) goto found;
6626 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6637 static const struct file_operations pfm_proc_fops = {
6638 .open = pfm_proc_open,
6640 .llseek = seq_lseek,
6641 .release = seq_release,
6647 unsigned int n, n_counters, i;
6649 printk("perfmon: version %u.%u IRQ %u\n",
6652 IA64_PERFMON_VECTOR);
6654 if (pfm_probe_pmu()) {
6655 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6656 local_cpu_data->family);
6661 * compute the number of implemented PMD/PMC from the
6662 * description tables
6665 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6666 if (PMC_IS_IMPL(i) == 0) continue;
6667 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6670 pmu_conf->num_pmcs = n;
6672 n = 0; n_counters = 0;
6673 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6674 if (PMD_IS_IMPL(i) == 0) continue;
6675 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6677 if (PMD_IS_COUNTING(i)) n_counters++;
6679 pmu_conf->num_pmds = n;
6680 pmu_conf->num_counters = n_counters;
6683 * sanity checks on the number of debug registers
6685 if (pmu_conf->use_rr_dbregs) {
6686 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6687 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6691 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6692 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6698 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6702 pmu_conf->num_counters,
6703 ffz(pmu_conf->ovfl_val));
6706 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6707 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6713 * create /proc/perfmon (mostly for debugging purposes)
6715 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6716 if (perfmon_dir == NULL) {
6717 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6722 * install customized file operations for /proc/perfmon entry
6724 perfmon_dir->proc_fops = &pfm_proc_fops;
6727 * create /proc/sys/kernel/perfmon (for debugging purposes)
6729 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6732 * initialize all our spinlocks
6734 spin_lock_init(&pfm_sessions.pfs_lock);
6735 spin_lock_init(&pfm_buffer_fmt_lock);
6739 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6744 __initcall(pfm_init);
6747 * this function is called before pfm_init()
6750 pfm_init_percpu (void)
6752 static int first_time=1;
6754 * make sure no measurement is active
6755 * (may inherit programmed PMCs from EFI).
6761 * we run with the PMU not frozen at all times
6766 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6770 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6775 * used for debug purposes only
6778 dump_pmu_state(const char *from)
6780 struct task_struct *task;
6781 struct pt_regs *regs;
6783 unsigned long psr, dcr, info, flags;
6786 local_irq_save(flags);
6788 this_cpu = smp_processor_id();
6789 regs = task_pt_regs(current);
6790 info = PFM_CPUINFO_GET();
6791 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6793 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6794 local_irq_restore(flags);
6798 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6805 task = GET_PMU_OWNER();
6806 ctx = GET_PMU_CTX();
6808 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6810 psr = pfm_get_psr();
6812 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6815 psr & IA64_PSR_PP ? 1 : 0,
6816 psr & IA64_PSR_UP ? 1 : 0,
6817 dcr & IA64_DCR_PP ? 1 : 0,
6820 ia64_psr(regs)->pp);
6822 ia64_psr(regs)->up = 0;
6823 ia64_psr(regs)->pp = 0;
6825 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6826 if (PMC_IS_IMPL(i) == 0) continue;
6827 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6830 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6831 if (PMD_IS_IMPL(i) == 0) continue;
6832 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6836 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6839 ctx->ctx_smpl_vaddr,
6843 ctx->ctx_saved_psr_up);
6845 local_irq_restore(flags);
6849 * called from process.c:copy_thread(). task is new child.
6852 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6854 struct thread_struct *thread;
6856 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6858 thread = &task->thread;
6861 * cut links inherited from parent (current)
6863 thread->pfm_context = NULL;
6865 PFM_SET_WORK_PENDING(task, 0);
6868 * the psr bits are already set properly in copy_threads()
6871 #else /* !CONFIG_PERFMON */
6873 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6877 #endif /* CONFIG_PERFMON */