2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/smp_lock.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/audit.h>
22 #include <linux/signal.h>
23 #include <linux/regset.h>
24 #include <linux/elf.h>
26 #include <asm/pgtable.h>
27 #include <asm/processor.h>
28 #include <asm/ptrace_offsets.h>
30 #include <asm/system.h>
31 #include <asm/uaccess.h>
32 #include <asm/unwind.h>
34 #include <asm/perfmon.h>
40 * Bits in the PSR that we allow ptrace() to change:
41 * be, up, ac, mfl, mfh (the user mask; five bits total)
42 * db (debug breakpoint fault; one bit)
43 * id (instruction debug fault disable; one bit)
44 * dd (data debug fault disable; one bit)
45 * ri (restart instruction; two bits)
46 * is (instruction set; one bit)
48 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
49 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
52 #define PFM_MASK MASK(38)
54 #define PTRACE_DEBUG 0
57 # define dprintk(format...) printk(format)
60 # define dprintk(format...)
63 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
66 in_syscall (struct pt_regs *pt)
68 return (long) pt->cr_ifs >= 0;
72 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
73 * bitset where bit i is set iff the NaT bit of register i is set.
76 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78 # define GET_BITS(first, last, unat) \
80 unsigned long bit = ia64_unat_pos(&pt->r##first); \
81 unsigned long nbits = (last - first + 1); \
82 unsigned long mask = MASK(nbits) << first; \
85 dist = 64 + bit - first; \
88 ia64_rotr(unat, dist) & mask; \
93 * Registers that are stored consecutively in struct pt_regs
94 * can be handled in parallel. If the register order in
95 * struct_pt_regs changes, this code MUST be updated.
97 val = GET_BITS( 1, 1, scratch_unat);
98 val |= GET_BITS( 2, 3, scratch_unat);
99 val |= GET_BITS(12, 13, scratch_unat);
100 val |= GET_BITS(14, 14, scratch_unat);
101 val |= GET_BITS(15, 15, scratch_unat);
102 val |= GET_BITS( 8, 11, scratch_unat);
103 val |= GET_BITS(16, 31, scratch_unat);
110 * Set the NaT bits for the scratch registers according to NAT and
111 * return the resulting unat (assuming the scratch registers are
115 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117 # define PUT_BITS(first, last, nat) \
119 unsigned long bit = ia64_unat_pos(&pt->r##first); \
120 unsigned long nbits = (last - first + 1); \
121 unsigned long mask = MASK(nbits) << first; \
124 dist = 64 + bit - first; \
126 dist = bit - first; \
127 ia64_rotl(nat & mask, dist); \
129 unsigned long scratch_unat;
132 * Registers that are stored consecutively in struct pt_regs
133 * can be handled in parallel. If the register order in
134 * struct_pt_regs changes, this code MUST be updated.
136 scratch_unat = PUT_BITS( 1, 1, nat);
137 scratch_unat |= PUT_BITS( 2, 3, nat);
138 scratch_unat |= PUT_BITS(12, 13, nat);
139 scratch_unat |= PUT_BITS(14, 14, nat);
140 scratch_unat |= PUT_BITS(15, 15, nat);
141 scratch_unat |= PUT_BITS( 8, 11, nat);
142 scratch_unat |= PUT_BITS(16, 31, nat);
149 #define IA64_MLX_TEMPLATE 0x2
150 #define IA64_MOVL_OPCODE 6
153 ia64_increment_ip (struct pt_regs *regs)
155 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
160 } else if (ri == 2) {
161 get_user(w0, (char __user *) regs->cr_iip + 0);
162 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 * rfi'ing to slot 2 of an MLX bundle causes
165 * an illegal operation fault. We don't want
172 ia64_psr(regs)->ri = ri;
176 ia64_decrement_ip (struct pt_regs *regs)
178 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180 if (ia64_psr(regs)->ri == 0) {
183 get_user(w0, (char __user *) regs->cr_iip + 0);
184 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 * rfi'ing to slot 2 of an MLX bundle causes
187 * an illegal operation fault. We don't want
193 ia64_psr(regs)->ri = ri;
197 * This routine is used to read an rnat bits that are stored on the
198 * kernel backing store. Since, in general, the alignment of the user
199 * and kernel are different, this is not completely trivial. In
200 * essence, we need to construct the user RNAT based on up to two
201 * kernel RNAT values and/or the RNAT value saved in the child's
206 * +--------+ <-- lowest address
213 * | slot01 | > child_regs->ar_rnat
215 * | slot02 | / kernel rbs
216 * +--------+ +--------+
217 * <- child_regs->ar_bspstore | slot61 | <-- krbs
218 * +- - - - + +--------+
220 * +- - - - + +--------+
222 * +- - - - + +--------+
224 * +- - - - + +--------+
229 * | slot01 | > child_stack->ar_rnat
233 * <--- child_stack->ar_bspstore
235 * The way to think of this code is as follows: bit 0 in the user rnat
236 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
237 * value. The kernel rnat value holding this bit is stored in
238 * variable rnat0. rnat1 is loaded with the kernel rnat value that
239 * form the upper bits of the user rnat value.
243 * o when reading the rnat "below" the first rnat slot on the kernel
244 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
245 * merged in from pt->ar_rnat.
247 * o when reading the rnat "above" the last rnat slot on the kernel
248 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
251 get_rnat (struct task_struct *task, struct switch_stack *sw,
252 unsigned long *krbs, unsigned long *urnat_addr,
253 unsigned long *urbs_end)
255 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
256 unsigned long umask = 0, mask, m;
257 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
258 long num_regs, nbits;
261 pt = task_pt_regs(task);
262 kbsp = (unsigned long *) sw->ar_bspstore;
263 ubspstore = (unsigned long *) pt->ar_bspstore;
265 if (urbs_end < urnat_addr)
266 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
271 * First, figure out which bit number slot 0 in user-land maps
272 * to in the kernel rnat. Do this by figuring out how many
273 * register slots we're beyond the user's backingstore and
274 * then computing the equivalent address in kernel space.
276 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
277 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
278 shift = ia64_rse_slot_num(slot0_kaddr);
279 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
280 rnat0_kaddr = rnat1_kaddr - 64;
282 if (ubspstore + 63 > urnat_addr) {
283 /* some bits need to be merged in from pt->ar_rnat */
284 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
285 urnat = (pt->ar_rnat & umask);
292 if (rnat0_kaddr >= kbsp)
294 else if (rnat0_kaddr > krbs)
295 rnat0 = *rnat0_kaddr;
296 urnat |= (rnat0 & m) >> shift;
298 m = mask >> (63 - shift);
299 if (rnat1_kaddr >= kbsp)
301 else if (rnat1_kaddr > krbs)
302 rnat1 = *rnat1_kaddr;
303 urnat |= (rnat1 & m) << (63 - shift);
308 * The reverse of get_rnat.
311 put_rnat (struct task_struct *task, struct switch_stack *sw,
312 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
313 unsigned long *urbs_end)
315 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
316 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
317 long num_regs, nbits;
319 unsigned long cfm, *urbs_kargs;
321 pt = task_pt_regs(task);
322 kbsp = (unsigned long *) sw->ar_bspstore;
323 ubspstore = (unsigned long *) pt->ar_bspstore;
325 urbs_kargs = urbs_end;
326 if (in_syscall(pt)) {
328 * If entered via syscall, don't allow user to set rnat bits
332 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
335 if (urbs_kargs >= urnat_addr)
338 if ((urnat_addr - 63) >= urbs_kargs)
340 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
345 * First, figure out which bit number slot 0 in user-land maps
346 * to in the kernel rnat. Do this by figuring out how many
347 * register slots we're beyond the user's backingstore and
348 * then computing the equivalent address in kernel space.
350 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
351 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
352 shift = ia64_rse_slot_num(slot0_kaddr);
353 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
354 rnat0_kaddr = rnat1_kaddr - 64;
356 if (ubspstore + 63 > urnat_addr) {
357 /* some bits need to be place in pt->ar_rnat: */
358 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
359 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
365 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
366 * rnat slot is ignored. so we don't have to clear it here.
368 rnat0 = (urnat << shift);
370 if (rnat0_kaddr >= kbsp)
371 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
372 else if (rnat0_kaddr > krbs)
373 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375 rnat1 = (urnat >> (63 - shift));
376 m = mask >> (63 - shift);
377 if (rnat1_kaddr >= kbsp)
378 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
379 else if (rnat1_kaddr > krbs)
380 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
384 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
385 unsigned long urbs_end)
387 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
393 * Read a word from the user-level backing store of task CHILD. ADDR
394 * is the user-level address to read the word from, VAL a pointer to
395 * the return value, and USER_BSP gives the end of the user-level
396 * backing store (i.e., it's the address that would be in ar.bsp after
397 * the user executed a "cover" instruction).
399 * This routine takes care of accessing the kernel register backing
400 * store for those registers that got spilled there. It also takes
401 * care of calculating the appropriate RNaT collection words.
404 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
405 unsigned long user_rbs_end, unsigned long addr, long *val)
407 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
408 struct pt_regs *child_regs;
412 urbs_end = (long *) user_rbs_end;
413 laddr = (unsigned long *) addr;
414 child_regs = task_pt_regs(child);
415 bspstore = (unsigned long *) child_regs->ar_bspstore;
416 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
417 if (on_kernel_rbs(addr, (unsigned long) bspstore,
418 (unsigned long) urbs_end))
421 * Attempt to read the RBS in an area that's actually
422 * on the kernel RBS => read the corresponding bits in
425 rnat_addr = ia64_rse_rnat_addr(laddr);
426 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428 if (laddr == rnat_addr) {
429 /* return NaT collection word itself */
434 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 * It is implementation dependent whether the
437 * data portion of a NaT value gets saved on a
438 * st8.spill or RSE spill (e.g., see EAS 2.6,
439 * 4.4.4.6 Register Spill and Fill). To get
440 * consistent behavior across all possible
441 * IA-64 implementations, we return zero in
448 if (laddr < urbs_end) {
450 * The desired word is on the kernel RBS and
453 regnum = ia64_rse_num_regs(bspstore, laddr);
454 *val = *ia64_rse_skip_regs(krbs, regnum);
458 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
459 if (copied != sizeof(ret))
466 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
467 unsigned long user_rbs_end, unsigned long addr, long val)
469 unsigned long *bspstore, *krbs, regnum, *laddr;
470 unsigned long *urbs_end = (long *) user_rbs_end;
471 struct pt_regs *child_regs;
473 laddr = (unsigned long *) addr;
474 child_regs = task_pt_regs(child);
475 bspstore = (unsigned long *) child_regs->ar_bspstore;
476 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
477 if (on_kernel_rbs(addr, (unsigned long) bspstore,
478 (unsigned long) urbs_end))
481 * Attempt to write the RBS in an area that's actually
482 * on the kernel RBS => write the corresponding bits
485 if (ia64_rse_is_rnat_slot(laddr))
486 put_rnat(child, child_stack, krbs, laddr, val,
489 if (laddr < urbs_end) {
490 regnum = ia64_rse_num_regs(bspstore, laddr);
491 *ia64_rse_skip_regs(krbs, regnum) = val;
494 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
501 * Calculate the address of the end of the user-level register backing
502 * store. This is the address that would have been stored in ar.bsp
503 * if the user had executed a "cover" instruction right before
504 * entering the kernel. If CFMP is not NULL, it is used to return the
505 * "current frame mask" that was active at the time the kernel was
509 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
512 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
515 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
516 bspstore = (unsigned long *) pt->ar_bspstore;
517 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
520 ndirty += (cfm & 0x7f);
522 cfm &= ~(1UL << 63); /* clear valid bit */
526 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
530 * Synchronize (i.e, write) the RSE backing store living in kernel
531 * space to the VM of the CHILD task. SW and PT are the pointers to
532 * the switch_stack and pt_regs structures, respectively.
533 * USER_RBS_END is the user-level address at which the backing store
537 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
538 unsigned long user_rbs_start, unsigned long user_rbs_end)
540 unsigned long addr, val;
543 /* now copy word for word from kernel rbs to user rbs: */
544 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
545 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
548 if (access_process_vm(child, addr, &val, sizeof(val), 1)
556 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
557 unsigned long user_rbs_start, unsigned long user_rbs_end)
559 unsigned long addr, val;
562 /* now copy word for word from user rbs to kernel rbs: */
563 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
564 if (access_process_vm(child, addr, &val, sizeof(val), 0)
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
575 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
578 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
581 unsigned long urbs_end;
584 if (unw_unwind_to_user(info) < 0)
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
602 void ia64_ptrace_stop(void)
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
606 tsk_set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
611 * This is called to read back the register backing store.
613 void ia64_sync_krbs(void)
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616 tsk_clear_notify_resume(current);
618 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
622 * After PTRACE_ATTACH, a thread's register backing store area in user
623 * space is assumed to contain correct data whenever the thread is
624 * stopped. arch_ptrace_stop takes care of this on tracing stops.
625 * But if the child was already stopped for job control when we attach
626 * to it, then it might not ever get into ptrace_stop by the time we
627 * want to examine the user memory containing the RBS.
630 ptrace_attach_sync_user_rbs (struct task_struct *child)
633 struct unw_frame_info info;
636 * If the child is in TASK_STOPPED, we need to change that to
637 * TASK_TRACED momentarily while we operate on it. This ensures
638 * that the child won't be woken up and return to user mode while
639 * we are doing the sync. (It can only be woken up for SIGKILL.)
642 read_lock(&tasklist_lock);
644 spin_lock_irq(&child->sighand->siglock);
645 if (child->state == TASK_STOPPED &&
646 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
647 tsk_set_notify_resume(child);
649 child->state = TASK_TRACED;
652 spin_unlock_irq(&child->sighand->siglock);
654 read_unlock(&tasklist_lock);
659 unw_init_from_blocked_task(&info, child);
660 do_sync_rbs(&info, ia64_sync_user_rbs);
663 * Now move the child back into TASK_STOPPED if it should be in a
664 * job control stop, so that SIGCONT can be used to wake it up.
666 read_lock(&tasklist_lock);
668 spin_lock_irq(&child->sighand->siglock);
669 if (child->state == TASK_TRACED &&
670 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
671 child->state = TASK_STOPPED;
673 spin_unlock_irq(&child->sighand->siglock);
675 read_unlock(&tasklist_lock);
679 thread_matches (struct task_struct *thread, unsigned long addr)
681 unsigned long thread_rbs_end;
682 struct pt_regs *thread_regs;
684 if (ptrace_check_attach(thread, 0) < 0)
686 * If the thread is not in an attachable state, we'll
687 * ignore it. The net effect is that if ADDR happens
688 * to overlap with the portion of the thread's
689 * register backing store that is currently residing
690 * on the thread's kernel stack, then ptrace() may end
691 * up accessing a stale value. But if the thread
692 * isn't stopped, that's a problem anyhow, so we're
693 * doing as well as we can...
697 thread_regs = task_pt_regs(thread);
698 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
699 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
702 return 1; /* looks like we've got a winner */
706 * Write f32-f127 back to task->thread.fph if it has been modified.
709 ia64_flush_fph (struct task_struct *task)
711 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
714 * Prevent migrating this task while
715 * we're fiddling with the FPU state
718 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
720 task->thread.flags |= IA64_THREAD_FPH_VALID;
721 ia64_save_fpu(&task->thread.fph[0]);
727 * Sync the fph state of the task so that it can be manipulated
728 * through thread.fph. If necessary, f32-f127 are written back to
729 * thread.fph or, if the fph state hasn't been used before, thread.fph
730 * is cleared to zeroes. Also, access to f32-f127 is disabled to
731 * ensure that the task picks up the state from thread.fph when it
735 ia64_sync_fph (struct task_struct *task)
737 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
739 ia64_flush_fph(task);
740 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
741 task->thread.flags |= IA64_THREAD_FPH_VALID;
742 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
749 * Change the machine-state of CHILD such that it will return via the normal
750 * kernel exit-path, rather than the syscall-exit path.
753 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
756 struct unw_frame_info info, prev_info;
757 unsigned long ip, sp, pr;
759 unw_init_from_blocked_task(&info, child);
762 if (unw_unwind(&info) < 0)
765 unw_get_sp(&info, &sp);
766 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
767 < IA64_PT_REGS_SIZE) {
768 dprintk("ptrace.%s: ran off the top of the kernel "
769 "stack\n", __func__);
772 if (unw_get_pr (&prev_info, &pr) < 0) {
773 unw_get_rp(&prev_info, &ip);
774 dprintk("ptrace.%s: failed to read "
775 "predicate register (ip=0x%lx)\n",
779 if (unw_is_intr_frame(&info)
780 && (pr & (1UL << PRED_USER_STACK)))
785 * Note: at the time of this call, the target task is blocked
786 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
787 * (aka, "pLvSys") we redirect execution from
788 * .work_pending_syscall_end to .work_processed_kernel.
790 unw_get_pr(&prev_info, &pr);
791 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
792 pr |= (1UL << PRED_NON_SYSCALL);
793 unw_set_pr(&prev_info, pr);
795 pt->cr_ifs = (1UL << 63) | cfm;
797 * Clear the memory that is NOT written on syscall-entry to
798 * ensure we do not leak kernel-state to user when execution
804 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
805 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
813 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
814 struct unw_frame_info *info,
815 unsigned long *data, int write_access)
817 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
822 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
823 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
824 dprintk("ptrace: failed to set ar.unat\n");
827 for (regnum = 4; regnum <= 7; ++regnum) {
828 unw_get_gr(info, regnum, &dummy, &nat);
829 unw_set_gr(info, regnum, dummy,
830 (nat_bits >> regnum) & 1);
833 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
834 dprintk("ptrace: failed to read ar.unat\n");
837 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
838 for (regnum = 4; regnum <= 7; ++regnum) {
839 unw_get_gr(info, regnum, &dummy, &nat);
840 nat_bits |= (nat != 0) << regnum;
848 access_uarea (struct task_struct *child, unsigned long addr,
849 unsigned long *data, int write_access);
852 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
854 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
855 struct unw_frame_info info;
856 struct ia64_fpreg fpval;
857 struct switch_stack *sw;
859 long ret, retval = 0;
863 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
866 pt = task_pt_regs(child);
867 sw = (struct switch_stack *) (child->thread.ksp + 16);
868 unw_init_from_blocked_task(&info, child);
869 if (unw_unwind_to_user(&info) < 0) {
873 if (((unsigned long) ppr & 0x7) != 0) {
874 dprintk("ptrace:unaligned register address %p\n", ppr);
878 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
879 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
880 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
881 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
882 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
883 || access_uarea(child, PT_CFM, &cfm, 0)
884 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
889 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
890 retval |= __put_user(psr, &ppr->cr_ipsr);
894 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
895 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
896 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
897 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
898 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
899 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
901 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
902 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
903 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
904 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
905 retval |= __put_user(cfm, &ppr->cfm);
909 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
910 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
914 for (i = 4; i < 8; i++) {
915 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
917 retval |= __put_user(val, &ppr->gr[i]);
922 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
926 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
927 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
928 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
932 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
936 retval |= __put_user(pt->b0, &ppr->br[0]);
940 for (i = 1; i < 6; i++) {
941 if (unw_access_br(&info, i, &val, 0) < 0)
943 __put_user(val, &ppr->br[i]);
948 retval |= __put_user(pt->b6, &ppr->br[6]);
949 retval |= __put_user(pt->b7, &ppr->br[7]);
953 for (i = 2; i < 6; i++) {
954 if (unw_get_fr(&info, i, &fpval) < 0)
956 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
961 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
962 sizeof(struct ia64_fpreg) * 6);
964 /* fp scratch regs(12-15) */
966 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
967 sizeof(struct ia64_fpreg) * 4);
971 for (i = 16; i < 32; i++) {
972 if (unw_get_fr(&info, i, &fpval) < 0)
974 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
979 ia64_flush_fph(child);
980 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
981 sizeof(ppr->fr[32]) * 96);
985 retval |= __put_user(pt->pr, &ppr->pr);
989 retval |= __put_user(nat_bits, &ppr->nat);
991 ret = retval ? -EIO : 0;
996 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
998 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
999 struct unw_frame_info info;
1000 struct switch_stack *sw;
1001 struct ia64_fpreg fpval;
1003 long ret, retval = 0;
1006 memset(&fpval, 0, sizeof(fpval));
1008 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1011 pt = task_pt_regs(child);
1012 sw = (struct switch_stack *) (child->thread.ksp + 16);
1013 unw_init_from_blocked_task(&info, child);
1014 if (unw_unwind_to_user(&info) < 0) {
1018 if (((unsigned long) ppr & 0x7) != 0) {
1019 dprintk("ptrace:unaligned register address %p\n", ppr);
1025 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1026 retval |= __get_user(psr, &ppr->cr_ipsr);
1030 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1031 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1032 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1033 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1034 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1035 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1037 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1038 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1039 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1040 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1041 retval |= __get_user(cfm, &ppr->cfm);
1045 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1046 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1050 for (i = 4; i < 8; i++) {
1051 retval |= __get_user(val, &ppr->gr[i]);
1052 /* NaT bit will be set via PT_NAT_BITS: */
1053 if (unw_set_gr(&info, i, val, 0) < 0)
1059 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1063 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1064 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1065 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1069 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1073 retval |= __get_user(pt->b0, &ppr->br[0]);
1077 for (i = 1; i < 6; i++) {
1078 retval |= __get_user(val, &ppr->br[i]);
1079 unw_set_br(&info, i, val);
1084 retval |= __get_user(pt->b6, &ppr->br[6]);
1085 retval |= __get_user(pt->b7, &ppr->br[7]);
1089 for (i = 2; i < 6; i++) {
1090 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1091 if (unw_set_fr(&info, i, fpval) < 0)
1097 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1098 sizeof(ppr->fr[6]) * 6);
1100 /* fp scratch regs(12-15) */
1102 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1103 sizeof(ppr->fr[12]) * 4);
1107 for (i = 16; i < 32; i++) {
1108 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1110 if (unw_set_fr(&info, i, fpval) < 0)
1116 ia64_sync_fph(child);
1117 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1118 sizeof(ppr->fr[32]) * 96);
1122 retval |= __get_user(pt->pr, &ppr->pr);
1126 retval |= __get_user(nat_bits, &ppr->nat);
1128 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1129 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1130 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1131 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1132 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1133 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1134 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1135 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1137 ret = retval ? -EIO : 0;
1142 user_enable_single_step (struct task_struct *child)
1144 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1146 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1151 user_enable_block_step (struct task_struct *child)
1153 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1155 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1160 user_disable_single_step (struct task_struct *child)
1162 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1164 /* make sure the single step/taken-branch trap bits are not set: */
1165 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1171 * Called by kernel/ptrace.c when detaching..
1173 * Make sure the single step bit is not set.
1176 ptrace_disable (struct task_struct *child)
1178 user_disable_single_step(child);
1182 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1185 case PTRACE_PEEKTEXT:
1186 case PTRACE_PEEKDATA:
1187 /* read word at location addr */
1188 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1191 /* ensure return value is not mistaken for error code */
1192 force_successful_syscall_return();
1195 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1196 * by the generic ptrace_request().
1199 case PTRACE_PEEKUSR:
1200 /* read the word at addr in the USER area */
1201 if (access_uarea(child, addr, &data, 0) < 0)
1203 /* ensure return value is not mistaken for error code */
1204 force_successful_syscall_return();
1207 case PTRACE_POKEUSR:
1208 /* write the word at addr in the USER area */
1209 if (access_uarea(child, addr, &data, 1) < 0)
1213 case PTRACE_OLD_GETSIGINFO:
1214 /* for backwards-compatibility */
1215 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1217 case PTRACE_OLD_SETSIGINFO:
1218 /* for backwards-compatibility */
1219 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1221 case PTRACE_GETREGS:
1222 return ptrace_getregs(child,
1223 (struct pt_all_user_regs __user *) data);
1225 case PTRACE_SETREGS:
1226 return ptrace_setregs(child,
1227 (struct pt_all_user_regs __user *) data);
1230 return ptrace_request(child, request, addr, data);
1236 syscall_trace (void)
1239 * The 0x80 provides a way for the tracing parent to
1240 * distinguish between a syscall stop and SIGTRAP delivery.
1242 ptrace_notify(SIGTRAP
1243 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1246 * This isn't the same as continuing with a signal, but it
1247 * will do for normal use. strace only continues with a
1248 * signal if the stopping signal is not SIGTRAP. -brl
1250 if (current->exit_code) {
1251 send_sig(current->exit_code, current, 1);
1252 current->exit_code = 0;
1256 /* "asmlinkage" so the input arguments are preserved... */
1259 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1260 long arg4, long arg5, long arg6, long arg7,
1261 struct pt_regs regs)
1263 if (test_thread_flag(TIF_SYSCALL_TRACE)
1264 && (current->ptrace & PT_PTRACED))
1267 /* copy user rbs to kernel rbs */
1268 if (test_thread_flag(TIF_RESTORE_RSE))
1271 if (unlikely(current->audit_context)) {
1275 if (IS_IA32_PROCESS(®s)) {
1277 arch = AUDIT_ARCH_I386;
1280 arch = AUDIT_ARCH_IA64;
1283 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1288 /* "asmlinkage" so the input arguments are preserved... */
1291 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1292 long arg4, long arg5, long arg6, long arg7,
1293 struct pt_regs regs)
1295 if (unlikely(current->audit_context)) {
1296 int success = AUDITSC_RESULT(regs.r10);
1297 long result = regs.r8;
1299 if (success != AUDITSC_SUCCESS)
1301 audit_syscall_exit(success, result);
1304 if ((test_thread_flag(TIF_SYSCALL_TRACE)
1305 || test_thread_flag(TIF_SINGLESTEP))
1306 && (current->ptrace & PT_PTRACED))
1309 /* copy user rbs to kernel rbs */
1310 if (test_thread_flag(TIF_RESTORE_RSE))
1314 /* Utrace implementation starts here */
1322 const void __user *ubuf;
1325 struct regset_getset {
1326 struct task_struct *target;
1327 const struct user_regset *regset;
1329 struct regset_get get;
1330 struct regset_set set;
1338 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1339 unsigned long addr, unsigned long *data, int write_access)
1342 unsigned long *ptr = NULL;
1346 pt = task_pt_regs(target);
1348 case ELF_GR_OFFSET(1):
1351 case ELF_GR_OFFSET(2):
1352 case ELF_GR_OFFSET(3):
1353 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1355 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1357 /* read NaT bit first: */
1358 unsigned long dummy;
1360 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1364 return unw_access_gr(info, addr/8, data, &nat, write_access);
1365 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1366 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1368 case ELF_GR_OFFSET(12):
1369 case ELF_GR_OFFSET(13):
1370 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1372 case ELF_GR_OFFSET(14):
1375 case ELF_GR_OFFSET(15):
1386 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1387 unsigned long addr, unsigned long *data, int write_access)
1390 unsigned long *ptr = NULL;
1392 pt = task_pt_regs(target);
1394 case ELF_BR_OFFSET(0):
1397 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1398 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1399 data, write_access);
1400 case ELF_BR_OFFSET(6):
1403 case ELF_BR_OFFSET(7):
1414 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1415 unsigned long addr, unsigned long *data, int write_access)
1418 unsigned long cfm, urbs_end;
1419 unsigned long *ptr = NULL;
1421 pt = task_pt_regs(target);
1422 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1424 case ELF_AR_RSC_OFFSET:
1427 pt->ar_rsc = *data | (3 << 2);
1431 case ELF_AR_BSP_OFFSET:
1433 * By convention, we use PT_AR_BSP to refer to
1434 * the end of the user-level backing store.
1435 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1436 * to get the real value of ar.bsp at the time
1437 * the kernel was entered.
1439 * Furthermore, when changing the contents of
1440 * PT_AR_BSP (or PT_CFM) while the task is
1441 * blocked in a system call, convert the state
1442 * so that the non-system-call exit
1443 * path is used. This ensures that the proper
1444 * state will be picked up when resuming
1445 * execution. However, it *also* means that
1446 * once we write PT_AR_BSP/PT_CFM, it won't be
1447 * possible to modify the syscall arguments of
1448 * the pending system call any longer. This
1449 * shouldn't be an issue because modifying
1450 * PT_AR_BSP/PT_CFM generally implies that
1451 * we're either abandoning the pending system
1452 * call or that we defer it's re-execution
1453 * (e.g., due to GDB doing an inferior
1456 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1458 if (*data != urbs_end) {
1460 convert_to_non_syscall(target,
1464 * Simulate user-level write
1468 pt->ar_bspstore = *data;
1473 case ELF_AR_BSPSTORE_OFFSET:
1474 ptr = &pt->ar_bspstore;
1476 case ELF_AR_RNAT_OFFSET:
1479 case ELF_AR_CCV_OFFSET:
1482 case ELF_AR_UNAT_OFFSET:
1485 case ELF_AR_FPSR_OFFSET:
1488 case ELF_AR_PFS_OFFSET:
1491 case ELF_AR_LC_OFFSET:
1492 return unw_access_ar(info, UNW_AR_LC, data,
1494 case ELF_AR_EC_OFFSET:
1495 return unw_access_ar(info, UNW_AR_EC, data,
1497 case ELF_AR_CSD_OFFSET:
1500 case ELF_AR_SSD_OFFSET:
1503 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1505 case ELF_CR_IIP_OFFSET:
1508 case ELF_CFM_OFFSET:
1509 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1511 if (((cfm ^ *data) & PFM_MASK) != 0) {
1513 convert_to_non_syscall(target,
1516 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1517 | (*data & PFM_MASK));
1522 case ELF_CR_IPSR_OFFSET:
1524 unsigned long tmp = *data;
1525 /* psr.ri==3 is a reserved value: SDM 2:25 */
1526 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1527 tmp &= ~IA64_PSR_RI;
1528 pt->cr_ipsr = ((tmp & IPSR_MASK)
1529 | (pt->cr_ipsr & ~IPSR_MASK));
1531 *data = (pt->cr_ipsr & IPSR_MASK);
1534 } else if (addr == ELF_NAT_OFFSET)
1535 return access_nat_bits(target, pt, info,
1536 data, write_access);
1537 else if (addr == ELF_PR_OFFSET)
1551 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1552 unsigned long addr, unsigned long *data, int write_access)
1554 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1555 return access_elf_gpreg(target, info, addr, data, write_access);
1556 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1557 return access_elf_breg(target, info, addr, data, write_access);
1559 return access_elf_areg(target, info, addr, data, write_access);
1562 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1565 struct regset_getset *dst = arg;
1567 unsigned int i, index, min_copy;
1569 if (unw_unwind_to_user(info) < 0)
1575 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1576 * predicate registers (p0-p63)
1579 * ar.rsc ar.bsp ar.bspstore ar.rnat
1580 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1585 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1586 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1589 0, ELF_GR_OFFSET(1));
1590 if (dst->ret || dst->count == 0)
1595 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1596 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1597 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1598 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1599 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1601 if (access_elf_reg(dst->target, info, i,
1602 &tmp[index], 0) < 0) {
1606 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1607 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1608 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1609 if (dst->ret || dst->count == 0)
1614 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1615 pt = task_pt_regs(dst->target);
1616 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1618 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1619 if (dst->ret || dst->count == 0)
1623 /* nat, pr, b0 - b7 */
1624 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1625 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1626 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1627 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1628 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1630 if (access_elf_reg(dst->target, info, i,
1631 &tmp[index], 0) < 0) {
1635 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1636 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1637 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1638 if (dst->ret || dst->count == 0)
1642 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1643 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1645 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1646 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1647 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1648 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1649 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1651 if (access_elf_reg(dst->target, info, i,
1652 &tmp[index], 0) < 0) {
1656 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1657 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1658 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1662 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1665 struct regset_getset *dst = arg;
1667 unsigned int i, index;
1669 if (unw_unwind_to_user(info) < 0)
1673 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1674 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1677 0, ELF_GR_OFFSET(1));
1678 if (dst->ret || dst->count == 0)
1683 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1685 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1686 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1687 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1688 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1691 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1692 if (access_elf_reg(dst->target, info, i,
1693 &tmp[index], 1) < 0) {
1697 if (dst->count == 0)
1702 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1703 pt = task_pt_regs(dst->target);
1704 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1705 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1706 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1707 if (dst->ret || dst->count == 0)
1711 /* nat, pr, b0 - b7 */
1712 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1714 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1715 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1716 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1717 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1720 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1721 if (access_elf_reg(dst->target, info, i,
1722 &tmp[index], 1) < 0) {
1726 if (dst->count == 0)
1730 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1731 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1733 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1735 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1736 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1737 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1738 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1741 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1742 if (access_elf_reg(dst->target, info, i,
1743 &tmp[index], 1) < 0) {
1750 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1752 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1754 struct regset_getset *dst = arg;
1755 struct task_struct *task = dst->target;
1756 elf_fpreg_t tmp[30];
1757 int index, min_copy, i;
1759 if (unw_unwind_to_user(info) < 0)
1762 /* Skip pos 0 and 1 */
1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1764 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1767 0, ELF_FP_OFFSET(2));
1768 if (dst->count == 0 || dst->ret)
1773 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1774 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1776 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1777 dst->pos + dst->count);
1778 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1780 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1785 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1786 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1787 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1788 if (dst->count == 0 || dst->ret)
1793 if (dst->count > 0) {
1794 ia64_flush_fph(dst->target);
1795 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1796 dst->ret = user_regset_copyout(
1797 &dst->pos, &dst->count,
1798 &dst->u.get.kbuf, &dst->u.get.ubuf,
1799 &dst->target->thread.fph,
1800 ELF_FP_OFFSET(32), -1);
1802 /* Zero fill instead. */
1803 dst->ret = user_regset_copyout_zero(
1804 &dst->pos, &dst->count,
1805 &dst->u.get.kbuf, &dst->u.get.ubuf,
1806 ELF_FP_OFFSET(32), -1);
1810 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1812 struct regset_getset *dst = arg;
1813 elf_fpreg_t fpreg, tmp[30];
1814 int index, start, end;
1816 if (unw_unwind_to_user(info) < 0)
1819 /* Skip pos 0 and 1 */
1820 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1821 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1824 0, ELF_FP_OFFSET(2));
1825 if (dst->count == 0 || dst->ret)
1830 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1832 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1833 dst->pos + dst->count);
1834 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1835 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1836 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1840 if (start & 0xF) { /* only write high part */
1841 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1846 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1850 if (end & 0xF) { /* only write low part */
1851 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1856 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1858 end = (end + 0xF) & ~0xFUL;
1861 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1862 index = start / sizeof(elf_fpreg_t);
1863 if (unw_set_fr(info, index, tmp[index - 2])) {
1868 if (dst->ret || dst->count == 0)
1873 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1874 ia64_sync_fph(dst->target);
1875 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1878 &dst->target->thread.fph,
1879 ELF_FP_OFFSET(32), -1);
1884 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1885 struct task_struct *target,
1886 const struct user_regset *regset,
1887 unsigned int pos, unsigned int count,
1888 const void *kbuf, const void __user *ubuf)
1890 struct regset_getset info = { .target = target, .regset = regset,
1891 .pos = pos, .count = count,
1892 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1895 if (target == current)
1896 unw_init_running(call, &info);
1898 struct unw_frame_info ufi;
1899 memset(&ufi, 0, sizeof(ufi));
1900 unw_init_from_blocked_task(&ufi, target);
1901 (*call)(&ufi, &info);
1908 gpregs_get(struct task_struct *target,
1909 const struct user_regset *regset,
1910 unsigned int pos, unsigned int count,
1911 void *kbuf, void __user *ubuf)
1913 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1917 static int gpregs_set(struct task_struct *target,
1918 const struct user_regset *regset,
1919 unsigned int pos, unsigned int count,
1920 const void *kbuf, const void __user *ubuf)
1922 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1926 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1928 do_sync_rbs(info, ia64_sync_user_rbs);
1932 * This is called to write back the register backing store.
1933 * ptrace does this before it stops, so that a tracer reading the user
1934 * memory after the thread stops will get the current register data.
1937 gpregs_writeback(struct task_struct *target,
1938 const struct user_regset *regset,
1941 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1943 tsk_set_notify_resume(target);
1944 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1949 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1951 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1954 static int fpregs_get(struct task_struct *target,
1955 const struct user_regset *regset,
1956 unsigned int pos, unsigned int count,
1957 void *kbuf, void __user *ubuf)
1959 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1963 static int fpregs_set(struct task_struct *target,
1964 const struct user_regset *regset,
1965 unsigned int pos, unsigned int count,
1966 const void *kbuf, const void __user *ubuf)
1968 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1973 access_uarea(struct task_struct *child, unsigned long addr,
1974 unsigned long *data, int write_access)
1976 unsigned int pos = -1; /* an invalid value */
1978 unsigned long *ptr, regnum;
1980 if ((addr & 0x7) != 0) {
1981 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1984 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1985 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1986 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1987 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1988 dprintk("ptrace: rejecting access to register "
1989 "address 0x%lx\n", addr);
1994 case PT_F32 ... (PT_F127 + 15):
1995 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1997 case PT_F2 ... (PT_F5 + 15):
1998 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
2000 case PT_F10 ... (PT_F31 + 15):
2001 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
2003 case PT_F6 ... (PT_F9 + 15):
2004 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
2010 ret = fpregs_set(child, NULL, pos,
2011 sizeof(unsigned long), data, NULL);
2013 ret = fpregs_get(child, NULL, pos,
2014 sizeof(unsigned long), data, NULL);
2022 pos = ELF_NAT_OFFSET;
2024 case PT_R4 ... PT_R7:
2025 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2027 case PT_B1 ... PT_B5:
2028 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2031 pos = ELF_AR_EC_OFFSET;
2034 pos = ELF_AR_LC_OFFSET;
2037 pos = ELF_CR_IPSR_OFFSET;
2040 pos = ELF_CR_IIP_OFFSET;
2043 pos = ELF_CFM_OFFSET;
2046 pos = ELF_AR_UNAT_OFFSET;
2049 pos = ELF_AR_PFS_OFFSET;
2052 pos = ELF_AR_RSC_OFFSET;
2055 pos = ELF_AR_RNAT_OFFSET;
2057 case PT_AR_BSPSTORE:
2058 pos = ELF_AR_BSPSTORE_OFFSET;
2061 pos = ELF_PR_OFFSET;
2064 pos = ELF_BR_OFFSET(6);
2067 pos = ELF_AR_BSP_OFFSET;
2069 case PT_R1 ... PT_R3:
2070 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2072 case PT_R12 ... PT_R15:
2073 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2075 case PT_R8 ... PT_R11:
2076 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2078 case PT_R16 ... PT_R31:
2079 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2082 pos = ELF_AR_CCV_OFFSET;
2085 pos = ELF_AR_FPSR_OFFSET;
2088 pos = ELF_BR_OFFSET(0);
2091 pos = ELF_BR_OFFSET(7);
2094 pos = ELF_AR_CSD_OFFSET;
2097 pos = ELF_AR_SSD_OFFSET;
2103 ret = gpregs_set(child, NULL, pos,
2104 sizeof(unsigned long), data, NULL);
2106 ret = gpregs_get(child, NULL, pos,
2107 sizeof(unsigned long), data, NULL);
2113 /* access debug registers */
2114 if (addr >= PT_IBR) {
2115 regnum = (addr - PT_IBR) >> 3;
2116 ptr = &child->thread.ibr[0];
2118 regnum = (addr - PT_DBR) >> 3;
2119 ptr = &child->thread.dbr[0];
2123 dprintk("ptrace: rejecting access to register "
2124 "address 0x%lx\n", addr);
2127 #ifdef CONFIG_PERFMON
2129 * Check if debug registers are used by perfmon. This
2130 * test must be done once we know that we can do the
2131 * operation, i.e. the arguments are all valid, but
2132 * before we start modifying the state.
2134 * Perfmon needs to keep a count of how many processes
2135 * are trying to modify the debug registers for system
2136 * wide monitoring sessions.
2138 * We also include read access here, because they may
2139 * cause the PMU-installed debug register state
2140 * (dbr[], ibr[]) to be reset. The two arrays are also
2141 * used by perfmon, but we do not use
2142 * IA64_THREAD_DBG_VALID. The registers are restored
2143 * by the PMU context switch code.
2145 if (pfm_use_debug_registers(child))
2149 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2150 child->thread.flags |= IA64_THREAD_DBG_VALID;
2151 memset(child->thread.dbr, 0,
2152 sizeof(child->thread.dbr));
2153 memset(child->thread.ibr, 0,
2154 sizeof(child->thread.ibr));
2159 if ((regnum & 1) && write_access) {
2160 /* don't let the user set kernel-level breakpoints: */
2161 *ptr = *data & ~(7UL << 56);
2171 static const struct user_regset native_regsets[] = {
2173 .core_note_type = NT_PRSTATUS,
2175 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2176 .get = gpregs_get, .set = gpregs_set,
2177 .writeback = gpregs_writeback
2180 .core_note_type = NT_PRFPREG,
2182 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2183 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2187 static const struct user_regset_view user_ia64_view = {
2189 .e_machine = EM_IA_64,
2190 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2193 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2195 #ifdef CONFIG_IA32_SUPPORT
2196 extern const struct user_regset_view user_ia32_view;
2197 if (IS_IA32_PROCESS(task_pt_regs(tsk)))
2198 return &user_ia32_view;
2200 return &user_ia64_view;