Merge branch 'omap-fixes' into fixes
[linux-2.6] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/vmalloc.h>
20 #include <linux/highmem.h>
21 #include <linux/profile.h>
22 #include <asm/desc.h>
23
24 #include "kvm_svm.h"
25 #include "x86_emulate.h"
26
27 MODULE_AUTHOR("Qumranet");
28 MODULE_LICENSE("GPL");
29
30 #define IOPM_ALLOC_ORDER 2
31 #define MSRPM_ALLOC_ORDER 1
32
33 #define DB_VECTOR 1
34 #define UD_VECTOR 6
35 #define GP_VECTOR 13
36
37 #define DR7_GD_MASK (1 << 13)
38 #define DR6_BD_MASK (1 << 13)
39 #define CR4_DE_MASK (1UL << 3)
40
41 #define SEG_TYPE_LDT 2
42 #define SEG_TYPE_BUSY_TSS16 3
43
44 #define KVM_EFER_LMA (1 << 10)
45 #define KVM_EFER_LME (1 << 8)
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_DEATURE_SVML (1 << 2)
50
51 unsigned long iopm_base;
52 unsigned long msrpm_base;
53
54 struct kvm_ldttss_desc {
55         u16 limit0;
56         u16 base0;
57         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
58         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
59         u32 base3;
60         u32 zero1;
61 } __attribute__((packed));
62
63 struct svm_cpu_data {
64         int cpu;
65
66         u64 asid_generation;
67         u32 max_asid;
68         u32 next_asid;
69         struct kvm_ldttss_desc *tss_desc;
70
71         struct page *save_area;
72 };
73
74 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
75 static uint32_t svm_features;
76
77 struct svm_init_data {
78         int cpu;
79         int r;
80 };
81
82 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
83
84 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
85 #define MSRS_RANGE_SIZE 2048
86 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
87
88 #define MAX_INST_SIZE 15
89
90 static inline u32 svm_has(u32 feat)
91 {
92         return svm_features & feat;
93 }
94
95 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
96 {
97         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
98         u16 cs_attrib;
99
100         if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
101                 return 2;
102
103         cs_attrib = sa->cs.attrib;
104
105         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
106                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
107 }
108
109 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
110 {
111         int word_index = __ffs(vcpu->irq_summary);
112         int bit_index = __ffs(vcpu->irq_pending[word_index]);
113         int irq = word_index * BITS_PER_LONG + bit_index;
114
115         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
116         if (!vcpu->irq_pending[word_index])
117                 clear_bit(word_index, &vcpu->irq_summary);
118         return irq;
119 }
120
121 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
122 {
123         set_bit(irq, vcpu->irq_pending);
124         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
125 }
126
127 static inline void clgi(void)
128 {
129         asm volatile (SVM_CLGI);
130 }
131
132 static inline void stgi(void)
133 {
134         asm volatile (SVM_STGI);
135 }
136
137 static inline void invlpga(unsigned long addr, u32 asid)
138 {
139         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
140 }
141
142 static inline unsigned long kvm_read_cr2(void)
143 {
144         unsigned long cr2;
145
146         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
147         return cr2;
148 }
149
150 static inline void kvm_write_cr2(unsigned long val)
151 {
152         asm volatile ("mov %0, %%cr2" :: "r" (val));
153 }
154
155 static inline unsigned long read_dr6(void)
156 {
157         unsigned long dr6;
158
159         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
160         return dr6;
161 }
162
163 static inline void write_dr6(unsigned long val)
164 {
165         asm volatile ("mov %0, %%dr6" :: "r" (val));
166 }
167
168 static inline unsigned long read_dr7(void)
169 {
170         unsigned long dr7;
171
172         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
173         return dr7;
174 }
175
176 static inline void write_dr7(unsigned long val)
177 {
178         asm volatile ("mov %0, %%dr7" :: "r" (val));
179 }
180
181 static inline void force_new_asid(struct kvm_vcpu *vcpu)
182 {
183         vcpu->svm->asid_generation--;
184 }
185
186 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
187 {
188         force_new_asid(vcpu);
189 }
190
191 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
192 {
193         if (!(efer & KVM_EFER_LMA))
194                 efer &= ~KVM_EFER_LME;
195
196         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
197         vcpu->shadow_efer = efer;
198 }
199
200 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
201 {
202         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
203                                                 SVM_EVTINJ_VALID_ERR |
204                                                 SVM_EVTINJ_TYPE_EXEPT |
205                                                 GP_VECTOR;
206         vcpu->svm->vmcb->control.event_inj_err = error_code;
207 }
208
209 static void inject_ud(struct kvm_vcpu *vcpu)
210 {
211         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
212                                                 SVM_EVTINJ_TYPE_EXEPT |
213                                                 UD_VECTOR;
214 }
215
216 static int is_page_fault(uint32_t info)
217 {
218         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
219         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
220 }
221
222 static int is_external_interrupt(u32 info)
223 {
224         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
225         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
226 }
227
228 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
229 {
230         if (!vcpu->svm->next_rip) {
231                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
232                 return;
233         }
234         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
235                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
236                        __FUNCTION__,
237                        vcpu->svm->vmcb->save.rip,
238                        vcpu->svm->next_rip);
239         }
240
241         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
242         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
243
244         vcpu->interrupt_window_open = 1;
245 }
246
247 static int has_svm(void)
248 {
249         uint32_t eax, ebx, ecx, edx;
250
251         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
252                 printk(KERN_INFO "has_svm: not amd\n");
253                 return 0;
254         }
255
256         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
257         if (eax < SVM_CPUID_FUNC) {
258                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
259                 return 0;
260         }
261
262         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
263         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
264                 printk(KERN_DEBUG "has_svm: svm not available\n");
265                 return 0;
266         }
267         return 1;
268 }
269
270 static void svm_hardware_disable(void *garbage)
271 {
272         struct svm_cpu_data *svm_data
273                 = per_cpu(svm_data, raw_smp_processor_id());
274
275         if (svm_data) {
276                 uint64_t efer;
277
278                 wrmsrl(MSR_VM_HSAVE_PA, 0);
279                 rdmsrl(MSR_EFER, efer);
280                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
281                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
282                 __free_page(svm_data->save_area);
283                 kfree(svm_data);
284         }
285 }
286
287 static void svm_hardware_enable(void *garbage)
288 {
289
290         struct svm_cpu_data *svm_data;
291         uint64_t efer;
292 #ifdef CONFIG_X86_64
293         struct desc_ptr gdt_descr;
294 #else
295         struct Xgt_desc_struct gdt_descr;
296 #endif
297         struct desc_struct *gdt;
298         int me = raw_smp_processor_id();
299
300         if (!has_svm()) {
301                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
302                 return;
303         }
304         svm_data = per_cpu(svm_data, me);
305
306         if (!svm_data) {
307                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
308                        me);
309                 return;
310         }
311
312         svm_data->asid_generation = 1;
313         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
314         svm_data->next_asid = svm_data->max_asid + 1;
315         svm_features = cpuid_edx(SVM_CPUID_FUNC);
316
317         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
318         gdt = (struct desc_struct *)gdt_descr.address;
319         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
320
321         rdmsrl(MSR_EFER, efer);
322         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
323
324         wrmsrl(MSR_VM_HSAVE_PA,
325                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
326 }
327
328 static int svm_cpu_init(int cpu)
329 {
330         struct svm_cpu_data *svm_data;
331         int r;
332
333         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
334         if (!svm_data)
335                 return -ENOMEM;
336         svm_data->cpu = cpu;
337         svm_data->save_area = alloc_page(GFP_KERNEL);
338         r = -ENOMEM;
339         if (!svm_data->save_area)
340                 goto err_1;
341
342         per_cpu(svm_data, cpu) = svm_data;
343
344         return 0;
345
346 err_1:
347         kfree(svm_data);
348         return r;
349
350 }
351
352 static int set_msr_interception(u32 *msrpm, unsigned msr,
353                                 int read, int write)
354 {
355         int i;
356
357         for (i = 0; i < NUM_MSR_MAPS; i++) {
358                 if (msr >= msrpm_ranges[i] &&
359                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
360                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
361                                           msrpm_ranges[i]) * 2;
362
363                         u32 *base = msrpm + (msr_offset / 32);
364                         u32 msr_shift = msr_offset % 32;
365                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
366                         *base = (*base & ~(0x3 << msr_shift)) |
367                                 (mask << msr_shift);
368                         return 1;
369                 }
370         }
371         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
372         return 0;
373 }
374
375 static __init int svm_hardware_setup(void)
376 {
377         int cpu;
378         struct page *iopm_pages;
379         struct page *msrpm_pages;
380         void *msrpm_va;
381         int r;
382
383         kvm_emulator_want_group7_invlpg();
384
385         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
386
387         if (!iopm_pages)
388                 return -ENOMEM;
389         memset(page_address(iopm_pages), 0xff,
390                                         PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
391         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
392
393
394         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
395
396         r = -ENOMEM;
397         if (!msrpm_pages)
398                 goto err_1;
399
400         msrpm_va = page_address(msrpm_pages);
401         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
402         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
403
404 #ifdef CONFIG_X86_64
405         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
406         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
407         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
408         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
409         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
410         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
411 #endif
412         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
413         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
414         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
415         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
416
417         for_each_online_cpu(cpu) {
418                 r = svm_cpu_init(cpu);
419                 if (r)
420                         goto err_2;
421         }
422         return 0;
423
424 err_2:
425         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
426         msrpm_base = 0;
427 err_1:
428         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
429         iopm_base = 0;
430         return r;
431 }
432
433 static __exit void svm_hardware_unsetup(void)
434 {
435         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
436         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
437         iopm_base = msrpm_base = 0;
438 }
439
440 static void init_seg(struct vmcb_seg *seg)
441 {
442         seg->selector = 0;
443         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
444                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
445         seg->limit = 0xffff;
446         seg->base = 0;
447 }
448
449 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
450 {
451         seg->selector = 0;
452         seg->attrib = SVM_SELECTOR_P_MASK | type;
453         seg->limit = 0xffff;
454         seg->base = 0;
455 }
456
457 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
458 {
459         return 0;
460 }
461
462 static void init_vmcb(struct vmcb *vmcb)
463 {
464         struct vmcb_control_area *control = &vmcb->control;
465         struct vmcb_save_area *save = &vmcb->save;
466
467         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
468                                         INTERCEPT_CR3_MASK |
469                                         INTERCEPT_CR4_MASK;
470
471         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
472                                         INTERCEPT_CR3_MASK |
473                                         INTERCEPT_CR4_MASK;
474
475         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
476                                         INTERCEPT_DR1_MASK |
477                                         INTERCEPT_DR2_MASK |
478                                         INTERCEPT_DR3_MASK;
479
480         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
481                                         INTERCEPT_DR1_MASK |
482                                         INTERCEPT_DR2_MASK |
483                                         INTERCEPT_DR3_MASK |
484                                         INTERCEPT_DR5_MASK |
485                                         INTERCEPT_DR7_MASK;
486
487         control->intercept_exceptions = 1 << PF_VECTOR;
488
489
490         control->intercept =    (1ULL << INTERCEPT_INTR) |
491                                 (1ULL << INTERCEPT_NMI) |
492                                 (1ULL << INTERCEPT_SMI) |
493                 /*
494                  * selective cr0 intercept bug?
495                  *      0:   0f 22 d8                mov    %eax,%cr3
496                  *      3:   0f 20 c0                mov    %cr0,%eax
497                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
498                  *      b:   0f 22 c0                mov    %eax,%cr0
499                  * set cr3 ->interception
500                  * get cr0 ->interception
501                  * set cr0 -> no interception
502                  */
503                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
504                                 (1ULL << INTERCEPT_CPUID) |
505                                 (1ULL << INTERCEPT_HLT) |
506                                 (1ULL << INTERCEPT_INVLPGA) |
507                                 (1ULL << INTERCEPT_IOIO_PROT) |
508                                 (1ULL << INTERCEPT_MSR_PROT) |
509                                 (1ULL << INTERCEPT_TASK_SWITCH) |
510                                 (1ULL << INTERCEPT_SHUTDOWN) |
511                                 (1ULL << INTERCEPT_VMRUN) |
512                                 (1ULL << INTERCEPT_VMMCALL) |
513                                 (1ULL << INTERCEPT_VMLOAD) |
514                                 (1ULL << INTERCEPT_VMSAVE) |
515                                 (1ULL << INTERCEPT_STGI) |
516                                 (1ULL << INTERCEPT_CLGI) |
517                                 (1ULL << INTERCEPT_SKINIT) |
518                                 (1ULL << INTERCEPT_MONITOR) |
519                                 (1ULL << INTERCEPT_MWAIT);
520
521         control->iopm_base_pa = iopm_base;
522         control->msrpm_base_pa = msrpm_base;
523         control->tsc_offset = 0;
524         control->int_ctl = V_INTR_MASKING_MASK;
525
526         init_seg(&save->es);
527         init_seg(&save->ss);
528         init_seg(&save->ds);
529         init_seg(&save->fs);
530         init_seg(&save->gs);
531
532         save->cs.selector = 0xf000;
533         /* Executable/Readable Code Segment */
534         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
535                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
536         save->cs.limit = 0xffff;
537         /*
538          * cs.base should really be 0xffff0000, but vmx can't handle that, so
539          * be consistent with it.
540          *
541          * Replace when we have real mode working for vmx.
542          */
543         save->cs.base = 0xf0000;
544
545         save->gdtr.limit = 0xffff;
546         save->idtr.limit = 0xffff;
547
548         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
549         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
550
551         save->efer = MSR_EFER_SVME_MASK;
552
553         save->dr6 = 0xffff0ff0;
554         save->dr7 = 0x400;
555         save->rflags = 2;
556         save->rip = 0x0000fff0;
557
558         /*
559          * cr0 val on cpu init should be 0x60000010, we enable cpu
560          * cache by default. the orderly way is to enable cache in bios.
561          */
562         save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
563         save->cr4 = CR4_PAE_MASK;
564         /* rdx = ?? */
565 }
566
567 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
568 {
569         struct page *page;
570         int r;
571
572         r = -ENOMEM;
573         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
574         if (!vcpu->svm)
575                 goto out1;
576         page = alloc_page(GFP_KERNEL);
577         if (!page)
578                 goto out2;
579
580         vcpu->svm->vmcb = page_address(page);
581         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
582         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
583         vcpu->svm->asid_generation = 0;
584         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
585         init_vmcb(vcpu->svm->vmcb);
586
587         fx_init(vcpu);
588         vcpu->fpu_active = 1;
589         vcpu->apic_base = 0xfee00000 |
590                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
591                         MSR_IA32_APICBASE_ENABLE;
592
593         return 0;
594
595 out2:
596         kfree(vcpu->svm);
597 out1:
598         return r;
599 }
600
601 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
602 {
603         if (!vcpu->svm)
604                 return;
605         if (vcpu->svm->vmcb)
606                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
607         kfree(vcpu->svm);
608 }
609
610 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
611 {
612         int cpu, i;
613
614         cpu = get_cpu();
615         if (unlikely(cpu != vcpu->cpu)) {
616                 u64 tsc_this, delta;
617
618                 /*
619                  * Make sure that the guest sees a monotonically
620                  * increasing TSC.
621                  */
622                 rdtscll(tsc_this);
623                 delta = vcpu->host_tsc - tsc_this;
624                 vcpu->svm->vmcb->control.tsc_offset += delta;
625                 vcpu->cpu = cpu;
626         }
627
628         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
629                 rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
630 }
631
632 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
633 {
634         int i;
635
636         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
637                 wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
638
639         rdtscll(vcpu->host_tsc);
640         put_cpu();
641 }
642
643 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
644 {
645 }
646
647 static void svm_cache_regs(struct kvm_vcpu *vcpu)
648 {
649         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
650         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
651         vcpu->rip = vcpu->svm->vmcb->save.rip;
652 }
653
654 static void svm_decache_regs(struct kvm_vcpu *vcpu)
655 {
656         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
657         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
658         vcpu->svm->vmcb->save.rip = vcpu->rip;
659 }
660
661 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
662 {
663         return vcpu->svm->vmcb->save.rflags;
664 }
665
666 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
667 {
668         vcpu->svm->vmcb->save.rflags = rflags;
669 }
670
671 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
672 {
673         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
674
675         switch (seg) {
676         case VCPU_SREG_CS: return &save->cs;
677         case VCPU_SREG_DS: return &save->ds;
678         case VCPU_SREG_ES: return &save->es;
679         case VCPU_SREG_FS: return &save->fs;
680         case VCPU_SREG_GS: return &save->gs;
681         case VCPU_SREG_SS: return &save->ss;
682         case VCPU_SREG_TR: return &save->tr;
683         case VCPU_SREG_LDTR: return &save->ldtr;
684         }
685         BUG();
686         return NULL;
687 }
688
689 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
690 {
691         struct vmcb_seg *s = svm_seg(vcpu, seg);
692
693         return s->base;
694 }
695
696 static void svm_get_segment(struct kvm_vcpu *vcpu,
697                             struct kvm_segment *var, int seg)
698 {
699         struct vmcb_seg *s = svm_seg(vcpu, seg);
700
701         var->base = s->base;
702         var->limit = s->limit;
703         var->selector = s->selector;
704         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
705         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
706         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
707         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
708         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
709         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
710         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
711         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
712         var->unusable = !var->present;
713 }
714
715 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
716 {
717         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
718
719         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
720         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
721 }
722
723 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
724 {
725         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
726         dt->base = vcpu->svm->vmcb->save.idtr.base;
727 }
728
729 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
730 {
731         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
732         vcpu->svm->vmcb->save.idtr.base = dt->base ;
733 }
734
735 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
736 {
737         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
738         dt->base = vcpu->svm->vmcb->save.gdtr.base;
739 }
740
741 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
742 {
743         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
744         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
745 }
746
747 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
748 {
749 }
750
751 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
752 {
753 #ifdef CONFIG_X86_64
754         if (vcpu->shadow_efer & KVM_EFER_LME) {
755                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
756                         vcpu->shadow_efer |= KVM_EFER_LMA;
757                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
758                 }
759
760                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
761                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
762                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
763                 }
764         }
765 #endif
766         if ((vcpu->cr0 & CR0_TS_MASK) && !(cr0 & CR0_TS_MASK)) {
767                 vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
768                 vcpu->fpu_active = 1;
769         }
770
771         vcpu->cr0 = cr0;
772         cr0 |= CR0_PG_MASK | CR0_WP_MASK;
773         cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
774         vcpu->svm->vmcb->save.cr0 = cr0;
775 }
776
777 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
778 {
779        vcpu->cr4 = cr4;
780        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
781 }
782
783 static void svm_set_segment(struct kvm_vcpu *vcpu,
784                             struct kvm_segment *var, int seg)
785 {
786         struct vmcb_seg *s = svm_seg(vcpu, seg);
787
788         s->base = var->base;
789         s->limit = var->limit;
790         s->selector = var->selector;
791         if (var->unusable)
792                 s->attrib = 0;
793         else {
794                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
795                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
796                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
797                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
798                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
799                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
800                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
801                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
802         }
803         if (seg == VCPU_SREG_CS)
804                 vcpu->svm->vmcb->save.cpl
805                         = (vcpu->svm->vmcb->save.cs.attrib
806                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
807
808 }
809
810 /* FIXME:
811
812         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
813         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
814
815 */
816
817 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
818 {
819         return -EOPNOTSUPP;
820 }
821
822 static void load_host_msrs(struct kvm_vcpu *vcpu)
823 {
824 #ifdef CONFIG_X86_64
825         wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
826 #endif
827 }
828
829 static void save_host_msrs(struct kvm_vcpu *vcpu)
830 {
831 #ifdef CONFIG_X86_64
832         rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
833 #endif
834 }
835
836 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
837 {
838         if (svm_data->next_asid > svm_data->max_asid) {
839                 ++svm_data->asid_generation;
840                 svm_data->next_asid = 1;
841                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
842         }
843
844         vcpu->cpu = svm_data->cpu;
845         vcpu->svm->asid_generation = svm_data->asid_generation;
846         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
847 }
848
849 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
850 {
851         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
852 }
853
854 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
855 {
856         return vcpu->svm->db_regs[dr];
857 }
858
859 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
860                        int *exception)
861 {
862         *exception = 0;
863
864         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
865                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
866                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
867                 *exception = DB_VECTOR;
868                 return;
869         }
870
871         switch (dr) {
872         case 0 ... 3:
873                 vcpu->svm->db_regs[dr] = value;
874                 return;
875         case 4 ... 5:
876                 if (vcpu->cr4 & CR4_DE_MASK) {
877                         *exception = UD_VECTOR;
878                         return;
879                 }
880         case 7: {
881                 if (value & ~((1ULL << 32) - 1)) {
882                         *exception = GP_VECTOR;
883                         return;
884                 }
885                 vcpu->svm->vmcb->save.dr7 = value;
886                 return;
887         }
888         default:
889                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
890                        __FUNCTION__, dr);
891                 *exception = UD_VECTOR;
892                 return;
893         }
894 }
895
896 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
897 {
898         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
899         u64 fault_address;
900         u32 error_code;
901         enum emulation_result er;
902         int r;
903
904         if (is_external_interrupt(exit_int_info))
905                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
906
907         spin_lock(&vcpu->kvm->lock);
908
909         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
910         error_code = vcpu->svm->vmcb->control.exit_info_1;
911         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
912         if (r < 0) {
913                 spin_unlock(&vcpu->kvm->lock);
914                 return r;
915         }
916         if (!r) {
917                 spin_unlock(&vcpu->kvm->lock);
918                 return 1;
919         }
920         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
921         spin_unlock(&vcpu->kvm->lock);
922
923         switch (er) {
924         case EMULATE_DONE:
925                 return 1;
926         case EMULATE_DO_MMIO:
927                 ++vcpu->stat.mmio_exits;
928                 kvm_run->exit_reason = KVM_EXIT_MMIO;
929                 return 0;
930         case EMULATE_FAIL:
931                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
932                 break;
933         default:
934                 BUG();
935         }
936
937         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
938         return 0;
939 }
940
941 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
942 {
943        vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
944        if (!(vcpu->cr0 & CR0_TS_MASK))
945                vcpu->svm->vmcb->save.cr0 &= ~CR0_TS_MASK;
946        vcpu->fpu_active = 1;
947
948        return 1;
949 }
950
951 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
952 {
953         /*
954          * VMCB is undefined after a SHUTDOWN intercept
955          * so reinitialize it.
956          */
957         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
958         init_vmcb(vcpu->svm->vmcb);
959
960         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
961         return 0;
962 }
963
964 static int io_get_override(struct kvm_vcpu *vcpu,
965                           struct vmcb_seg **seg,
966                           int *addr_override)
967 {
968         u8 inst[MAX_INST_SIZE];
969         unsigned ins_length;
970         gva_t rip;
971         int i;
972
973         rip =  vcpu->svm->vmcb->save.rip;
974         ins_length = vcpu->svm->next_rip - rip;
975         rip += vcpu->svm->vmcb->save.cs.base;
976
977         if (ins_length > MAX_INST_SIZE)
978                 printk(KERN_DEBUG
979                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
980                        "next rip 0x%llx ins_length %u\n",
981                        __FUNCTION__,
982                        vcpu->svm->vmcb->save.cs.base,
983                        vcpu->svm->vmcb->save.rip,
984                        vcpu->svm->vmcb->control.exit_info_2,
985                        ins_length);
986
987         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
988                 /* #PF */
989                 return 0;
990
991         *addr_override = 0;
992         *seg = NULL;
993         for (i = 0; i < ins_length; i++)
994                 switch (inst[i]) {
995                 case 0xf0:
996                 case 0xf2:
997                 case 0xf3:
998                 case 0x66:
999                         continue;
1000                 case 0x67:
1001                         *addr_override = 1;
1002                         continue;
1003                 case 0x2e:
1004                         *seg = &vcpu->svm->vmcb->save.cs;
1005                         continue;
1006                 case 0x36:
1007                         *seg = &vcpu->svm->vmcb->save.ss;
1008                         continue;
1009                 case 0x3e:
1010                         *seg = &vcpu->svm->vmcb->save.ds;
1011                         continue;
1012                 case 0x26:
1013                         *seg = &vcpu->svm->vmcb->save.es;
1014                         continue;
1015                 case 0x64:
1016                         *seg = &vcpu->svm->vmcb->save.fs;
1017                         continue;
1018                 case 0x65:
1019                         *seg = &vcpu->svm->vmcb->save.gs;
1020                         continue;
1021                 default:
1022                         return 1;
1023                 }
1024         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1025         return 0;
1026 }
1027
1028 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1029 {
1030         unsigned long addr_mask;
1031         unsigned long *reg;
1032         struct vmcb_seg *seg;
1033         int addr_override;
1034         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1035         u16 cs_attrib = save_area->cs.attrib;
1036         unsigned addr_size = get_addr_size(vcpu);
1037
1038         if (!io_get_override(vcpu, &seg, &addr_override))
1039                 return 0;
1040
1041         if (addr_override)
1042                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1043
1044         if (ins) {
1045                 reg = &vcpu->regs[VCPU_REGS_RDI];
1046                 seg = &vcpu->svm->vmcb->save.es;
1047         } else {
1048                 reg = &vcpu->regs[VCPU_REGS_RSI];
1049                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1050         }
1051
1052         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1053
1054         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1055             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1056                 *address = (*reg & addr_mask);
1057                 return addr_mask;
1058         }
1059
1060         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1061                 svm_inject_gp(vcpu, 0);
1062                 return 0;
1063         }
1064
1065         *address = (*reg & addr_mask) + seg->base;
1066         return addr_mask;
1067 }
1068
1069 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1070 {
1071         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1072         int size, down, in, string, rep;
1073         unsigned port;
1074         unsigned long count;
1075         gva_t address = 0;
1076
1077         ++vcpu->stat.io_exits;
1078
1079         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1080
1081         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1082         port = io_info >> 16;
1083         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1084         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1085         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1086         count = 1;
1087         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1088
1089         if (string) {
1090                 unsigned addr_mask;
1091
1092                 addr_mask = io_adress(vcpu, in, &address);
1093                 if (!addr_mask) {
1094                         printk(KERN_DEBUG "%s: get io address failed\n",
1095                                __FUNCTION__);
1096                         return 1;
1097                 }
1098
1099                 if (rep)
1100                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1101         }
1102         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1103                              address, rep, port);
1104 }
1105
1106 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1107 {
1108         return 1;
1109 }
1110
1111 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1112 {
1113         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1114         skip_emulated_instruction(vcpu);
1115         if (vcpu->irq_summary)
1116                 return 1;
1117
1118         kvm_run->exit_reason = KVM_EXIT_HLT;
1119         ++vcpu->stat.halt_exits;
1120         return 0;
1121 }
1122
1123 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1124 {
1125         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1126         skip_emulated_instruction(vcpu);
1127         return kvm_hypercall(vcpu, kvm_run);
1128 }
1129
1130 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1131 {
1132         inject_ud(vcpu);
1133         return 1;
1134 }
1135
1136 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1137 {
1138         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1139         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1140         return 0;
1141 }
1142
1143 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1144 {
1145         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1146         kvm_emulate_cpuid(vcpu);
1147         return 1;
1148 }
1149
1150 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1151 {
1152         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1153                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1154         return 1;
1155 }
1156
1157 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1158 {
1159         switch (ecx) {
1160         case MSR_IA32_TIME_STAMP_COUNTER: {
1161                 u64 tsc;
1162
1163                 rdtscll(tsc);
1164                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1165                 break;
1166         }
1167         case MSR_K6_STAR:
1168                 *data = vcpu->svm->vmcb->save.star;
1169                 break;
1170 #ifdef CONFIG_X86_64
1171         case MSR_LSTAR:
1172                 *data = vcpu->svm->vmcb->save.lstar;
1173                 break;
1174         case MSR_CSTAR:
1175                 *data = vcpu->svm->vmcb->save.cstar;
1176                 break;
1177         case MSR_KERNEL_GS_BASE:
1178                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1179                 break;
1180         case MSR_SYSCALL_MASK:
1181                 *data = vcpu->svm->vmcb->save.sfmask;
1182                 break;
1183 #endif
1184         case MSR_IA32_SYSENTER_CS:
1185                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1186                 break;
1187         case MSR_IA32_SYSENTER_EIP:
1188                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1189                 break;
1190         case MSR_IA32_SYSENTER_ESP:
1191                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1192                 break;
1193         default:
1194                 return kvm_get_msr_common(vcpu, ecx, data);
1195         }
1196         return 0;
1197 }
1198
1199 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1200 {
1201         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1202         u64 data;
1203
1204         if (svm_get_msr(vcpu, ecx, &data))
1205                 svm_inject_gp(vcpu, 0);
1206         else {
1207                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1208                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1209                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1210                 skip_emulated_instruction(vcpu);
1211         }
1212         return 1;
1213 }
1214
1215 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1216 {
1217         switch (ecx) {
1218         case MSR_IA32_TIME_STAMP_COUNTER: {
1219                 u64 tsc;
1220
1221                 rdtscll(tsc);
1222                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1223                 break;
1224         }
1225         case MSR_K6_STAR:
1226                 vcpu->svm->vmcb->save.star = data;
1227                 break;
1228 #ifdef CONFIG_X86_64
1229         case MSR_LSTAR:
1230                 vcpu->svm->vmcb->save.lstar = data;
1231                 break;
1232         case MSR_CSTAR:
1233                 vcpu->svm->vmcb->save.cstar = data;
1234                 break;
1235         case MSR_KERNEL_GS_BASE:
1236                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1237                 break;
1238         case MSR_SYSCALL_MASK:
1239                 vcpu->svm->vmcb->save.sfmask = data;
1240                 break;
1241 #endif
1242         case MSR_IA32_SYSENTER_CS:
1243                 vcpu->svm->vmcb->save.sysenter_cs = data;
1244                 break;
1245         case MSR_IA32_SYSENTER_EIP:
1246                 vcpu->svm->vmcb->save.sysenter_eip = data;
1247                 break;
1248         case MSR_IA32_SYSENTER_ESP:
1249                 vcpu->svm->vmcb->save.sysenter_esp = data;
1250                 break;
1251         default:
1252                 return kvm_set_msr_common(vcpu, ecx, data);
1253         }
1254         return 0;
1255 }
1256
1257 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1258 {
1259         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1260         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1261                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1262         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1263         if (svm_set_msr(vcpu, ecx, data))
1264                 svm_inject_gp(vcpu, 0);
1265         else
1266                 skip_emulated_instruction(vcpu);
1267         return 1;
1268 }
1269
1270 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1271 {
1272         if (vcpu->svm->vmcb->control.exit_info_1)
1273                 return wrmsr_interception(vcpu, kvm_run);
1274         else
1275                 return rdmsr_interception(vcpu, kvm_run);
1276 }
1277
1278 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1279                                    struct kvm_run *kvm_run)
1280 {
1281         /*
1282          * If the user space waits to inject interrupts, exit as soon as
1283          * possible
1284          */
1285         if (kvm_run->request_interrupt_window &&
1286             !vcpu->irq_summary) {
1287                 ++vcpu->stat.irq_window_exits;
1288                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1289                 return 0;
1290         }
1291
1292         return 1;
1293 }
1294
1295 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1296                                       struct kvm_run *kvm_run) = {
1297         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1298         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1299         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1300         /* for now: */
1301         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1302         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1303         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1304         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1305         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1306         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1307         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1308         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1309         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1310         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1311         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1312         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1313         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1314         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1315         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1316         [SVM_EXIT_INTR]                         = nop_on_interception,
1317         [SVM_EXIT_NMI]                          = nop_on_interception,
1318         [SVM_EXIT_SMI]                          = nop_on_interception,
1319         [SVM_EXIT_INIT]                         = nop_on_interception,
1320         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1321         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1322         [SVM_EXIT_CPUID]                        = cpuid_interception,
1323         [SVM_EXIT_HLT]                          = halt_interception,
1324         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1325         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1326         [SVM_EXIT_IOIO]                         = io_interception,
1327         [SVM_EXIT_MSR]                          = msr_interception,
1328         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1329         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1330         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1331         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1332         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1333         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1334         [SVM_EXIT_STGI]                         = invalid_op_interception,
1335         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1336         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1337         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1338         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1339 };
1340
1341
1342 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1343 {
1344         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1345
1346         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1347             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1348                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1349                        "exit_code 0x%x\n",
1350                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1351                        exit_code);
1352
1353         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1354             || svm_exit_handlers[exit_code] == 0) {
1355                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1356                 kvm_run->hw.hardware_exit_reason = exit_code;
1357                 return 0;
1358         }
1359
1360         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1361 }
1362
1363 static void reload_tss(struct kvm_vcpu *vcpu)
1364 {
1365         int cpu = raw_smp_processor_id();
1366
1367         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1368         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1369         load_TR_desc();
1370 }
1371
1372 static void pre_svm_run(struct kvm_vcpu *vcpu)
1373 {
1374         int cpu = raw_smp_processor_id();
1375
1376         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1377
1378         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1379         if (vcpu->cpu != cpu ||
1380             vcpu->svm->asid_generation != svm_data->asid_generation)
1381                 new_asid(vcpu, svm_data);
1382 }
1383
1384
1385 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1386 {
1387         struct vmcb_control_area *control;
1388
1389         control = &vcpu->svm->vmcb->control;
1390         control->int_vector = pop_irq(vcpu);
1391         control->int_ctl &= ~V_INTR_PRIO_MASK;
1392         control->int_ctl |= V_IRQ_MASK |
1393                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1394 }
1395
1396 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1397 {
1398         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1399
1400         if (control->int_ctl & V_IRQ_MASK) {
1401                 control->int_ctl &= ~V_IRQ_MASK;
1402                 push_irq(vcpu, control->int_vector);
1403         }
1404
1405         vcpu->interrupt_window_open =
1406                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1407 }
1408
1409 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1410                                        struct kvm_run *kvm_run)
1411 {
1412         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1413
1414         vcpu->interrupt_window_open =
1415                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1416                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1417
1418         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1419                 /*
1420                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1421                  */
1422                 kvm_do_inject_irq(vcpu);
1423
1424         /*
1425          * Interrupts blocked.  Wait for unblock.
1426          */
1427         if (!vcpu->interrupt_window_open &&
1428             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1429                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1430         } else
1431                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1432 }
1433
1434 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1435                               struct kvm_run *kvm_run)
1436 {
1437         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1438                                                   vcpu->irq_summary == 0);
1439         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1440         kvm_run->cr8 = vcpu->cr8;
1441         kvm_run->apic_base = vcpu->apic_base;
1442 }
1443
1444 /*
1445  * Check if userspace requested an interrupt window, and that the
1446  * interrupt window is open.
1447  *
1448  * No need to exit to userspace if we already have an interrupt queued.
1449  */
1450 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1451                                           struct kvm_run *kvm_run)
1452 {
1453         return (!vcpu->irq_summary &&
1454                 kvm_run->request_interrupt_window &&
1455                 vcpu->interrupt_window_open &&
1456                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1457 }
1458
1459 static void save_db_regs(unsigned long *db_regs)
1460 {
1461         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1462         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1463         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1464         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1465 }
1466
1467 static void load_db_regs(unsigned long *db_regs)
1468 {
1469         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1470         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1471         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1472         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1473 }
1474
1475 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1476 {
1477         u16 fs_selector;
1478         u16 gs_selector;
1479         u16 ldt_selector;
1480         int r;
1481
1482 again:
1483         if (!vcpu->mmio_read_completed)
1484                 do_interrupt_requests(vcpu, kvm_run);
1485
1486         clgi();
1487
1488         pre_svm_run(vcpu);
1489
1490         save_host_msrs(vcpu);
1491         fs_selector = read_fs();
1492         gs_selector = read_gs();
1493         ldt_selector = read_ldt();
1494         vcpu->svm->host_cr2 = kvm_read_cr2();
1495         vcpu->svm->host_dr6 = read_dr6();
1496         vcpu->svm->host_dr7 = read_dr7();
1497         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1498
1499         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1500                 write_dr7(0);
1501                 save_db_regs(vcpu->svm->host_db_regs);
1502                 load_db_regs(vcpu->svm->db_regs);
1503         }
1504
1505         if (vcpu->fpu_active) {
1506                 fx_save(vcpu->host_fx_image);
1507                 fx_restore(vcpu->guest_fx_image);
1508         }
1509
1510         asm volatile (
1511 #ifdef CONFIG_X86_64
1512                 "push %%rbx; push %%rcx; push %%rdx;"
1513                 "push %%rsi; push %%rdi; push %%rbp;"
1514                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1515                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1516 #else
1517                 "push %%ebx; push %%ecx; push %%edx;"
1518                 "push %%esi; push %%edi; push %%ebp;"
1519 #endif
1520
1521 #ifdef CONFIG_X86_64
1522                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1523                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1524                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1525                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1526                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1527                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1528                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1529                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1530                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1531                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1532                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1533                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1534                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1535                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1536 #else
1537                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1538                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1539                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1540                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1541                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1542                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1543 #endif
1544
1545 #ifdef CONFIG_X86_64
1546                 /* Enter guest mode */
1547                 "push %%rax \n\t"
1548                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1549                 "mov %c[vmcb](%%rax), %%rax \n\t"
1550                 SVM_VMLOAD "\n\t"
1551                 SVM_VMRUN "\n\t"
1552                 SVM_VMSAVE "\n\t"
1553                 "pop %%rax \n\t"
1554 #else
1555                 /* Enter guest mode */
1556                 "push %%eax \n\t"
1557                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1558                 "mov %c[vmcb](%%eax), %%eax \n\t"
1559                 SVM_VMLOAD "\n\t"
1560                 SVM_VMRUN "\n\t"
1561                 SVM_VMSAVE "\n\t"
1562                 "pop %%eax \n\t"
1563 #endif
1564
1565                 /* Save guest registers, load host registers */
1566 #ifdef CONFIG_X86_64
1567                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1568                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1569                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1570                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1571                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1572                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1573                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1574                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1575                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1576                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1577                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1578                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1579                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1580                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1581
1582                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1583                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1584                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1585                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1586 #else
1587                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1588                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1589                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1590                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1591                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1592                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1593
1594                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1595                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1596 #endif
1597                 :
1598                 : [vcpu]"a"(vcpu),
1599                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1600                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1601                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1602                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1603                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1604                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1605                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1606                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1607 #ifdef CONFIG_X86_64
1608                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1609                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1610                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1611                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1612                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1613                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1614                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1615                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1616 #endif
1617                 : "cc", "memory" );
1618
1619         if (vcpu->fpu_active) {
1620                 fx_save(vcpu->guest_fx_image);
1621                 fx_restore(vcpu->host_fx_image);
1622         }
1623
1624         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1625                 load_db_regs(vcpu->svm->host_db_regs);
1626
1627         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1628
1629         write_dr6(vcpu->svm->host_dr6);
1630         write_dr7(vcpu->svm->host_dr7);
1631         kvm_write_cr2(vcpu->svm->host_cr2);
1632
1633         load_fs(fs_selector);
1634         load_gs(gs_selector);
1635         load_ldt(ldt_selector);
1636         load_host_msrs(vcpu);
1637
1638         reload_tss(vcpu);
1639
1640         /*
1641          * Profile KVM exit RIPs:
1642          */
1643         if (unlikely(prof_on == KVM_PROFILING))
1644                 profile_hit(KVM_PROFILING,
1645                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1646
1647         stgi();
1648
1649         kvm_reput_irq(vcpu);
1650
1651         vcpu->svm->next_rip = 0;
1652
1653         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1654                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1655                 kvm_run->fail_entry.hardware_entry_failure_reason
1656                         = vcpu->svm->vmcb->control.exit_code;
1657                 post_kvm_run_save(vcpu, kvm_run);
1658                 return 0;
1659         }
1660
1661         r = handle_exit(vcpu, kvm_run);
1662         if (r > 0) {
1663                 if (signal_pending(current)) {
1664                         ++vcpu->stat.signal_exits;
1665                         post_kvm_run_save(vcpu, kvm_run);
1666                         kvm_run->exit_reason = KVM_EXIT_INTR;
1667                         return -EINTR;
1668                 }
1669
1670                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1671                         ++vcpu->stat.request_irq_exits;
1672                         post_kvm_run_save(vcpu, kvm_run);
1673                         kvm_run->exit_reason = KVM_EXIT_INTR;
1674                         return -EINTR;
1675                 }
1676                 kvm_resched(vcpu);
1677                 goto again;
1678         }
1679         post_kvm_run_save(vcpu, kvm_run);
1680         return r;
1681 }
1682
1683 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1684 {
1685         force_new_asid(vcpu);
1686 }
1687
1688 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1689 {
1690         vcpu->svm->vmcb->save.cr3 = root;
1691         force_new_asid(vcpu);
1692
1693         if (vcpu->fpu_active) {
1694                 vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1695                 vcpu->svm->vmcb->save.cr0 |= CR0_TS_MASK;
1696                 vcpu->fpu_active = 0;
1697         }
1698 }
1699
1700 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1701                                   unsigned long  addr,
1702                                   uint32_t err_code)
1703 {
1704         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1705
1706         ++vcpu->stat.pf_guest;
1707
1708         if (is_page_fault(exit_int_info)) {
1709
1710                 vcpu->svm->vmcb->control.event_inj_err = 0;
1711                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1712                                                         SVM_EVTINJ_VALID_ERR |
1713                                                         SVM_EVTINJ_TYPE_EXEPT |
1714                                                         DF_VECTOR;
1715                 return;
1716         }
1717         vcpu->cr2 = addr;
1718         vcpu->svm->vmcb->save.cr2 = addr;
1719         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1720                                                 SVM_EVTINJ_VALID_ERR |
1721                                                 SVM_EVTINJ_TYPE_EXEPT |
1722                                                 PF_VECTOR;
1723         vcpu->svm->vmcb->control.event_inj_err = err_code;
1724 }
1725
1726
1727 static int is_disabled(void)
1728 {
1729         return 0;
1730 }
1731
1732 static void
1733 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1734 {
1735         /*
1736          * Patch in the VMMCALL instruction:
1737          */
1738         hypercall[0] = 0x0f;
1739         hypercall[1] = 0x01;
1740         hypercall[2] = 0xd9;
1741         hypercall[3] = 0xc3;
1742 }
1743
1744 static struct kvm_arch_ops svm_arch_ops = {
1745         .cpu_has_kvm_support = has_svm,
1746         .disabled_by_bios = is_disabled,
1747         .hardware_setup = svm_hardware_setup,
1748         .hardware_unsetup = svm_hardware_unsetup,
1749         .hardware_enable = svm_hardware_enable,
1750         .hardware_disable = svm_hardware_disable,
1751
1752         .vcpu_create = svm_create_vcpu,
1753         .vcpu_free = svm_free_vcpu,
1754
1755         .vcpu_load = svm_vcpu_load,
1756         .vcpu_put = svm_vcpu_put,
1757         .vcpu_decache = svm_vcpu_decache,
1758
1759         .set_guest_debug = svm_guest_debug,
1760         .get_msr = svm_get_msr,
1761         .set_msr = svm_set_msr,
1762         .get_segment_base = svm_get_segment_base,
1763         .get_segment = svm_get_segment,
1764         .set_segment = svm_set_segment,
1765         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1766         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1767         .set_cr0 = svm_set_cr0,
1768         .set_cr3 = svm_set_cr3,
1769         .set_cr4 = svm_set_cr4,
1770         .set_efer = svm_set_efer,
1771         .get_idt = svm_get_idt,
1772         .set_idt = svm_set_idt,
1773         .get_gdt = svm_get_gdt,
1774         .set_gdt = svm_set_gdt,
1775         .get_dr = svm_get_dr,
1776         .set_dr = svm_set_dr,
1777         .cache_regs = svm_cache_regs,
1778         .decache_regs = svm_decache_regs,
1779         .get_rflags = svm_get_rflags,
1780         .set_rflags = svm_set_rflags,
1781
1782         .invlpg = svm_invlpg,
1783         .tlb_flush = svm_flush_tlb,
1784         .inject_page_fault = svm_inject_page_fault,
1785
1786         .inject_gp = svm_inject_gp,
1787
1788         .run = svm_vcpu_run,
1789         .skip_emulated_instruction = skip_emulated_instruction,
1790         .vcpu_setup = svm_vcpu_setup,
1791         .patch_hypercall = svm_patch_hypercall,
1792 };
1793
1794 static int __init svm_init(void)
1795 {
1796         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1797 }
1798
1799 static void __exit svm_exit(void)
1800 {
1801         kvm_exit_arch();
1802 }
1803
1804 module_init(svm_init)
1805 module_exit(svm_exit)