Merge branch 'omap-fixes' into fixes
[linux-2.6] / net / 8021q / vlan_dev.c
1 /* -*- linux-c -*-
2  * INET         802.1Q VLAN
3  *              Ethernet-type device handling.
4  *
5  * Authors:     Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  *
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *
16  *
17  *              This program is free software; you can redistribute it and/or
18  *              modify it under the terms of the GNU General Public License
19  *              as published by the Free Software Foundation; either version
20  *              2 of the License, or (at your option) any later version.
21  */
22
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39
40 /*
41  *      Rebuild the Ethernet MAC header. This is called after an ARP
42  *      (or in future other address resolution) has completed on this
43  *      sk_buff. We now let ARP fill in the other fields.
44  *
45  *      This routine CANNOT use cached dst->neigh!
46  *      Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52         struct net_device *dev = skb->dev;
53         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54
55         switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57         case __constant_htons(ETH_P_IP):
58
59                 /* TODO:  Confirm this will work with VLAN headers... */
60                 return arp_find(veth->h_dest, skb);
61 #endif
62         default:
63                 printk(VLAN_DBG
64                        "%s: unable to resolve type %X addresses.\n",
65                        dev->name, ntohs(veth->h_vlan_encapsulated_proto));
66
67                 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68                 break;
69         }
70
71         return 0;
72 }
73
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76         if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77                 if (skb_shared(skb) || skb_cloned(skb)) {
78                         struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79                         kfree_skb(skb);
80                         skb = nskb;
81                 }
82                 if (skb) {
83                         /* Lifted from Gleb's VLAN code... */
84                         memmove(skb->data - ETH_HLEN,
85                                 skb->data - VLAN_ETH_HLEN, 12);
86                         skb->mac_header += VLAN_HLEN;
87                 }
88         }
89
90         return skb;
91 }
92
93 /*
94  *      Determine the packet's protocol ID. The rule here is that we
95  *      assume 802.3 if the type field is short enough to be a length.
96  *      This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118         unsigned char *rawp = NULL;
119         struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120         unsigned short vid;
121         struct net_device_stats *stats;
122         unsigned short vlan_TCI;
123         __be16 proto;
124
125         /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126         vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127
128         vid = (vlan_TCI & VLAN_VID_MASK);
129
130 #ifdef VLAN_DEBUG
131         printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132                 __FUNCTION__, skb, vid);
133 #endif
134
135         /* Ok, we will find the correct VLAN device, strip the header,
136          * and then go on as usual.
137          */
138
139         /* We have 12 bits of vlan ID.
140          *
141          * We must not drop allow preempt until we hold a
142          * reference to the device (netif_rx does that) or we
143          * fail.
144          */
145
146         rcu_read_lock();
147         skb->dev = __find_vlan_dev(dev, vid);
148         if (!skb->dev) {
149                 rcu_read_unlock();
150
151 #ifdef VLAN_DEBUG
152                 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153                         __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155                 kfree_skb(skb);
156                 return -1;
157         }
158
159         skb->dev->last_rx = jiffies;
160
161         /* Bump the rx counters for the VLAN device. */
162         stats = vlan_dev_get_stats(skb->dev);
163         stats->rx_packets++;
164         stats->rx_bytes += skb->len;
165
166         /* Take off the VLAN header (4 bytes currently) */
167         skb_pull_rcsum(skb, VLAN_HLEN);
168
169         /* Ok, lets check to make sure the device (dev) we
170          * came in on is what this VLAN is attached to.
171          */
172
173         if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
174                 rcu_read_unlock();
175
176 #ifdef VLAN_DEBUG
177                 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
178                         __FUNCTION__, skb, dev->name,
179                         VLAN_DEV_INFO(skb->dev)->real_dev->name,
180                         skb->dev->name);
181 #endif
182                 kfree_skb(skb);
183                 stats->rx_errors++;
184                 return -1;
185         }
186
187         /*
188          * Deal with ingress priority mapping.
189          */
190         skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
191
192 #ifdef VLAN_DEBUG
193         printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
194                 __FUNCTION__, (unsigned long)(skb->priority),
195                 ntohs(vhdr->h_vlan_TCI));
196 #endif
197
198         /* The ethernet driver already did the pkt_type calculations
199          * for us...
200          */
201         switch (skb->pkt_type) {
202         case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
203                 // stats->broadcast ++; // no such counter :-(
204                 break;
205
206         case PACKET_MULTICAST:
207                 stats->multicast++;
208                 break;
209
210         case PACKET_OTHERHOST:
211                 /* Our lower layer thinks this is not local, let's make sure.
212                  * This allows the VLAN to have a different MAC than the underlying
213                  * device, and still route correctly.
214                  */
215                 if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
216                         /* It is for our (changed) MAC-address! */
217                         skb->pkt_type = PACKET_HOST;
218                 }
219                 break;
220         default:
221                 break;
222         }
223
224         /*  Was a VLAN packet, grab the encapsulated protocol, which the layer
225          * three protocols care about.
226          */
227         /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
228         proto = vhdr->h_vlan_encapsulated_proto;
229
230         skb->protocol = proto;
231         if (ntohs(proto) >= 1536) {
232                 /* place it back on the queue to be handled by
233                  * true layer 3 protocols.
234                  */
235
236                 /* See if we are configured to re-write the VLAN header
237                  * to make it look like ethernet...
238                  */
239                 skb = vlan_check_reorder_header(skb);
240
241                 /* Can be null if skb-clone fails when re-ordering */
242                 if (skb) {
243                         netif_rx(skb);
244                 } else {
245                         /* TODO:  Add a more specific counter here. */
246                         stats->rx_errors++;
247                 }
248                 rcu_read_unlock();
249                 return 0;
250         }
251
252         rawp = skb->data;
253
254         /*
255          * This is a magic hack to spot IPX packets. Older Novell breaks
256          * the protocol design and runs IPX over 802.3 without an 802.2 LLC
257          * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
258          * won't work for fault tolerant netware but does for the rest.
259          */
260         if (*(unsigned short *)rawp == 0xFFFF) {
261                 skb->protocol = htons(ETH_P_802_3);
262                 /* place it back on the queue to be handled by true layer 3 protocols.
263                  */
264
265                 /* See if we are configured to re-write the VLAN header
266                  * to make it look like ethernet...
267                  */
268                 skb = vlan_check_reorder_header(skb);
269
270                 /* Can be null if skb-clone fails when re-ordering */
271                 if (skb) {
272                         netif_rx(skb);
273                 } else {
274                         /* TODO:  Add a more specific counter here. */
275                         stats->rx_errors++;
276                 }
277                 rcu_read_unlock();
278                 return 0;
279         }
280
281         /*
282          *      Real 802.2 LLC
283          */
284         skb->protocol = htons(ETH_P_802_2);
285         /* place it back on the queue to be handled by upper layer protocols.
286          */
287
288         /* See if we are configured to re-write the VLAN header
289          * to make it look like ethernet...
290          */
291         skb = vlan_check_reorder_header(skb);
292
293         /* Can be null if skb-clone fails when re-ordering */
294         if (skb) {
295                 netif_rx(skb);
296         } else {
297                 /* TODO:  Add a more specific counter here. */
298                 stats->rx_errors++;
299         }
300         rcu_read_unlock();
301         return 0;
302 }
303
304 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
305                                                           struct sk_buff* skb)
306 {
307         struct vlan_priority_tci_mapping *mp =
308                 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
309
310         while (mp) {
311                 if (mp->priority == skb->priority) {
312                         return mp->vlan_qos; /* This should already be shifted to mask
313                                               * correctly with the VLAN's TCI
314                                               */
315                 }
316                 mp = mp->next;
317         }
318         return 0;
319 }
320
321 /*
322  *      Create the VLAN header for an arbitrary protocol layer
323  *
324  *      saddr=NULL      means use device source address
325  *      daddr=NULL      means leave destination address (eg unresolved arp)
326  *
327  *  This is called when the SKB is moving down the stack towards the
328  *  physical devices.
329  */
330 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
331                          unsigned short type, void *daddr, void *saddr,
332                          unsigned len)
333 {
334         struct vlan_hdr *vhdr;
335         unsigned short veth_TCI = 0;
336         int rc = 0;
337         int build_vlan_header = 0;
338         struct net_device *vdev = dev; /* save this for the bottom of the method */
339
340 #ifdef VLAN_DEBUG
341         printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
342                 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
343 #endif
344
345         /* build vlan header only if re_order_header flag is NOT set.  This
346          * fixes some programs that get confused when they see a VLAN device
347          * sending a frame that is VLAN encoded (the consensus is that the VLAN
348          * device should look completely like an Ethernet device when the
349          * REORDER_HEADER flag is set)  The drawback to this is some extra
350          * header shuffling in the hard_start_xmit.  Users can turn off this
351          * REORDER behaviour with the vconfig tool.
352          */
353         build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
354
355         if (build_vlan_header) {
356                 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
357
358                 /* build the four bytes that make this a VLAN header. */
359
360                 /* Now, construct the second two bytes. This field looks something
361                  * like:
362                  * usr_priority: 3 bits  (high bits)
363                  * CFI           1 bit
364                  * VLAN ID       12 bits (low bits)
365                  *
366                  */
367                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
368                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
369
370                 vhdr->h_vlan_TCI = htons(veth_TCI);
371
372                 /*
373                  *  Set the protocol type.
374                  *  For a packet of type ETH_P_802_3 we put the length in here instead.
375                  *  It is up to the 802.2 layer to carry protocol information.
376                  */
377
378                 if (type != ETH_P_802_3) {
379                         vhdr->h_vlan_encapsulated_proto = htons(type);
380                 } else {
381                         vhdr->h_vlan_encapsulated_proto = htons(len);
382                 }
383
384                 skb->protocol = htons(ETH_P_8021Q);
385                 skb_reset_network_header(skb);
386         }
387
388         /* Before delegating work to the lower layer, enter our MAC-address */
389         if (saddr == NULL)
390                 saddr = dev->dev_addr;
391
392         dev = VLAN_DEV_INFO(dev)->real_dev;
393
394         /* MPLS can send us skbuffs w/out enough space.  This check will grow the
395          * skb if it doesn't have enough headroom.  Not a beautiful solution, so
396          * I'll tick a counter so that users can know it's happening...  If they
397          * care...
398          */
399
400         /* NOTE:  This may still break if the underlying device is not the final
401          * device (and thus there are more headers to add...)  It should work for
402          * good-ole-ethernet though.
403          */
404         if (skb_headroom(skb) < dev->hard_header_len) {
405                 struct sk_buff *sk_tmp = skb;
406                 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
407                 kfree_skb(sk_tmp);
408                 if (skb == NULL) {
409                         struct net_device_stats *stats = vlan_dev_get_stats(vdev);
410                         stats->tx_dropped++;
411                         return -ENOMEM;
412                 }
413                 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
414 #ifdef VLAN_DEBUG
415                 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
416 #endif
417         }
418
419         if (build_vlan_header) {
420                 /* Now make the underlying real hard header */
421                 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
422
423                 if (rc > 0) {
424                         rc += VLAN_HLEN;
425                 } else if (rc < 0) {
426                         rc -= VLAN_HLEN;
427                 }
428         } else {
429                 /* If here, then we'll just make a normal looking ethernet frame,
430                  * but, the hard_start_xmit method will insert the tag (it has to
431                  * be able to do this for bridged and other skbs that don't come
432                  * down the protocol stack in an orderly manner.
433                  */
434                 rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
435         }
436
437         return rc;
438 }
439
440 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
441 {
442         struct net_device_stats *stats = vlan_dev_get_stats(dev);
443         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
444
445         /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
446          *
447          * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
448          * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
449          */
450
451         if (veth->h_vlan_proto != htons(ETH_P_8021Q)) {
452                 int orig_headroom = skb_headroom(skb);
453                 unsigned short veth_TCI;
454
455                 /* This is not a VLAN frame...but we can fix that! */
456                 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
457
458 #ifdef VLAN_DEBUG
459                 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
460                         __FUNCTION__, htons(veth->h_vlan_proto));
461 #endif
462                 /* Construct the second two bytes. This field looks something
463                  * like:
464                  * usr_priority: 3 bits  (high bits)
465                  * CFI           1 bit
466                  * VLAN ID       12 bits (low bits)
467                  */
468                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
469                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
470
471                 skb = __vlan_put_tag(skb, veth_TCI);
472                 if (!skb) {
473                         stats->tx_dropped++;
474                         return 0;
475                 }
476
477                 if (orig_headroom < VLAN_HLEN) {
478                         VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
479                 }
480         }
481
482 #ifdef VLAN_DEBUG
483         printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
484                 __FUNCTION__, skb, skb->dev->name);
485         printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
486                veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
487                veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
488                veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
489 #endif
490
491         stats->tx_packets++; /* for statics only */
492         stats->tx_bytes += skb->len;
493
494         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
495         dev_queue_xmit(skb);
496
497         return 0;
498 }
499
500 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
501 {
502         struct net_device_stats *stats = vlan_dev_get_stats(dev);
503         unsigned short veth_TCI;
504
505         /* Construct the second two bytes. This field looks something
506          * like:
507          * usr_priority: 3 bits  (high bits)
508          * CFI           1 bit
509          * VLAN ID       12 bits (low bits)
510          */
511         veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
512         veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
513         skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
514
515         stats->tx_packets++;
516         stats->tx_bytes += skb->len;
517
518         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
519         dev_queue_xmit(skb);
520
521         return 0;
522 }
523
524 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
525 {
526         /* TODO: gotta make sure the underlying layer can handle it,
527          * maybe an IFF_VLAN_CAPABLE flag for devices?
528          */
529         if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
530                 return -ERANGE;
531
532         dev->mtu = new_mtu;
533
534         return 0;
535 }
536
537 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
538 {
539         struct net_device *dev = dev_get_by_name(dev_name);
540
541         if (dev) {
542                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
543                         /* see if a priority mapping exists.. */
544                         VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
545                         dev_put(dev);
546                         return 0;
547                 }
548
549                 dev_put(dev);
550         }
551         return -EINVAL;
552 }
553
554 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
555 {
556         struct net_device *dev = dev_get_by_name(dev_name);
557         struct vlan_priority_tci_mapping *mp = NULL;
558         struct vlan_priority_tci_mapping *np;
559
560         if (dev) {
561                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
562                         /* See if a priority mapping exists.. */
563                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
564                         while (mp) {
565                                 if (mp->priority == skb_prio) {
566                                         mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
567                                         dev_put(dev);
568                                         return 0;
569                                 }
570                                 mp = mp->next;
571                         }
572
573                         /* Create a new mapping then. */
574                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
575                         np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
576                         if (np) {
577                                 np->next = mp;
578                                 np->priority = skb_prio;
579                                 np->vlan_qos = ((vlan_prio << 13) & 0xE000);
580                                 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
581                                 dev_put(dev);
582                                 return 0;
583                         } else {
584                                 dev_put(dev);
585                                 return -ENOBUFS;
586                         }
587                 }
588                 dev_put(dev);
589         }
590         return -EINVAL;
591 }
592
593 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
594 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
595 {
596         struct net_device *dev = dev_get_by_name(dev_name);
597
598         if (dev) {
599                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
600                         /* verify flag is supported */
601                         if (flag == 1) {
602                                 if (flag_val) {
603                                         VLAN_DEV_INFO(dev)->flags |= 1;
604                                 } else {
605                                         VLAN_DEV_INFO(dev)->flags &= ~1;
606                                 }
607                                 dev_put(dev);
608                                 return 0;
609                         } else {
610                                 printk(KERN_ERR  "%s: flag %i is not valid.\n",
611                                         __FUNCTION__, (int)(flag));
612                                 dev_put(dev);
613                                 return -EINVAL;
614                         }
615                 } else {
616                         printk(KERN_ERR
617                                "%s: %s is not a vlan device, priv_flags: %hX.\n",
618                                __FUNCTION__, dev->name, dev->priv_flags);
619                         dev_put(dev);
620                 }
621         } else {
622                 printk(KERN_ERR  "%s: Could not find device: %s\n",
623                         __FUNCTION__, dev_name);
624         }
625
626         return -EINVAL;
627 }
628
629
630 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
631 {
632         struct net_device *dev = dev_get_by_name(dev_name);
633         int rv = 0;
634         if (dev) {
635                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
636                         strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
637                         rv = 0;
638                 } else {
639                         rv = -EINVAL;
640                 }
641                 dev_put(dev);
642         } else {
643                 rv = -ENODEV;
644         }
645         return rv;
646 }
647
648 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
649 {
650         struct net_device *dev = dev_get_by_name(dev_name);
651         int rv = 0;
652         if (dev) {
653                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
654                         *result = VLAN_DEV_INFO(dev)->vlan_id;
655                         rv = 0;
656                 } else {
657                         rv = -EINVAL;
658                 }
659                 dev_put(dev);
660         } else {
661                 rv = -ENODEV;
662         }
663         return rv;
664 }
665
666
667 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
668 {
669         struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
670         int i;
671
672         if (netif_running(dev))
673                 return -EBUSY;
674
675         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
676
677         printk("%s: Setting MAC address to ", dev->name);
678         for (i = 0; i < 6; i++)
679                 printk(" %2.2x", dev->dev_addr[i]);
680         printk(".\n");
681
682         if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
683                    dev->dev_addr,
684                    dev->addr_len) != 0) {
685                 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
686                         int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
687
688                         /* Increment our in-use promiscuity counter */
689                         dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
690
691                         /* Make PROMISC visible to the user. */
692                         flgs |= IFF_PROMISC;
693                         printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
694                                dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
695                         dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
696                 }
697         } else {
698                 printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
699                        dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
700         }
701
702         return 0;
703 }
704
705 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
706                                   struct dev_mc_list *dmi2)
707 {
708         return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
709                 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
710 }
711
712 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
713  *  an entire list, and we'll iterate through it.
714  */
715 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
716 {
717         struct dev_mc_list *idmi;
718
719         for (idmi = mc_list; idmi != NULL; ) {
720                 if (vlan_dmi_equals(dmi, idmi)) {
721                         if (dmi->dmi_users > idmi->dmi_users)
722                                 return 1;
723                         else
724                                 return 0;
725                 } else {
726                         idmi = idmi->next;
727                 }
728         }
729
730         return 1;
731 }
732
733 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
734 {
735         struct dev_mc_list *dmi = mc_list;
736         struct dev_mc_list *next;
737
738         while(dmi) {
739                 next = dmi->next;
740                 kfree(dmi);
741                 dmi = next;
742         }
743 }
744
745 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
746 {
747         struct dev_mc_list *dmi, *new_dmi;
748
749         vlan_destroy_mc_list(vlan_info->old_mc_list);
750         vlan_info->old_mc_list = NULL;
751
752         for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
753                 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
754                 if (new_dmi == NULL) {
755                         printk(KERN_ERR "vlan: cannot allocate memory. "
756                                "Multicast may not work properly from now.\n");
757                         return;
758                 }
759
760                 /* Copy whole structure, then make new 'next' pointer */
761                 *new_dmi = *dmi;
762                 new_dmi->next = vlan_info->old_mc_list;
763                 vlan_info->old_mc_list = new_dmi;
764         }
765 }
766
767 static void vlan_flush_mc_list(struct net_device *dev)
768 {
769         struct dev_mc_list *dmi = dev->mc_list;
770
771         while (dmi) {
772                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
773                        dev->name,
774                        dmi->dmi_addr[0],
775                        dmi->dmi_addr[1],
776                        dmi->dmi_addr[2],
777                        dmi->dmi_addr[3],
778                        dmi->dmi_addr[4],
779                        dmi->dmi_addr[5]);
780                 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
781                 dmi = dev->mc_list;
782         }
783
784         /* dev->mc_list is NULL by the time we get here. */
785         vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
786         VLAN_DEV_INFO(dev)->old_mc_list = NULL;
787 }
788
789 int vlan_dev_open(struct net_device *dev)
790 {
791         if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
792                 return -ENETDOWN;
793
794         return 0;
795 }
796
797 int vlan_dev_stop(struct net_device *dev)
798 {
799         vlan_flush_mc_list(dev);
800         return 0;
801 }
802
803 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
804 {
805         struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
806         struct ifreq ifrr;
807         int err = -EOPNOTSUPP;
808
809         strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
810         ifrr.ifr_ifru = ifr->ifr_ifru;
811
812         switch(cmd) {
813         case SIOCGMIIPHY:
814         case SIOCGMIIREG:
815         case SIOCSMIIREG:
816                 if (real_dev->do_ioctl && netif_device_present(real_dev))
817                         err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
818                 break;
819
820         case SIOCETHTOOL:
821                 err = dev_ethtool(&ifrr);
822         }
823
824         if (!err)
825                 ifr->ifr_ifru = ifrr.ifr_ifru;
826
827         return err;
828 }
829
830 /** Taken from Gleb + Lennert's VLAN code, and modified... */
831 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
832 {
833         struct dev_mc_list *dmi;
834         struct net_device *real_dev;
835         int inc;
836
837         if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
838                 /* Then it's a real vlan device, as far as we can tell.. */
839                 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
840
841                 /* compare the current promiscuity to the last promisc we had.. */
842                 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
843                 if (inc) {
844                         printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
845                                vlan_dev->name, inc);
846                         dev_set_promiscuity(real_dev, inc); /* found in dev.c */
847                         VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
848                 }
849
850                 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
851                 if (inc) {
852                         printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
853                                vlan_dev->name, inc);
854                         dev_set_allmulti(real_dev, inc); /* dev.c */
855                         VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
856                 }
857
858                 /* looking for addresses to add to master's list */
859                 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
860                         if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
861                                 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
862                                 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
863                                        vlan_dev->name,
864                                        dmi->dmi_addr[0],
865                                        dmi->dmi_addr[1],
866                                        dmi->dmi_addr[2],
867                                        dmi->dmi_addr[3],
868                                        dmi->dmi_addr[4],
869                                        dmi->dmi_addr[5]);
870                         }
871                 }
872
873                 /* looking for addresses to delete from master's list */
874                 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
875                         if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
876                                 /* if we think we should add it to the new list, then we should really
877                                  * delete it from the real list on the underlying device.
878                                  */
879                                 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
880                                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
881                                        vlan_dev->name,
882                                        dmi->dmi_addr[0],
883                                        dmi->dmi_addr[1],
884                                        dmi->dmi_addr[2],
885                                        dmi->dmi_addr[3],
886                                        dmi->dmi_addr[4],
887                                        dmi->dmi_addr[5]);
888                         }
889                 }
890
891                 /* save multicast list */
892                 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
893         }
894 }