Btrfs: subvolumes
[linux-2.6] / fs / btrfs / disk-io.c
1 #include <linux/module.h>
2 #include <linux/fs.h>
3 #include <linux/blkdev.h>
4 #include <linux/crypto.h>
5 #include <linux/scatterlist.h>
6 #include <linux/swap.h>
7 #include <linux/radix-tree.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "transaction.h"
11 #include "btrfs_inode.h"
12
13 static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
14 {
15         struct btrfs_node *node = btrfs_buffer_node(buf);
16         if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
17                 BUG();
18         }
19         return 0;
20 }
21
22 struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
23 {
24         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
25         int blockbits = root->fs_info->sb->s_blocksize_bits;
26         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
27         struct page *page;
28         struct buffer_head *bh;
29         struct buffer_head *head;
30         struct buffer_head *ret = NULL;
31
32
33         page = find_lock_page(mapping, index);
34         if (!page)
35                 return NULL;
36
37         if (!page_has_buffers(page))
38                 goto out_unlock;
39
40         head = page_buffers(page);
41         bh = head;
42         do {
43                 if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
44                         ret = bh;
45                         get_bh(bh);
46                         goto out_unlock;
47                 }
48                 bh = bh->b_this_page;
49         } while (bh != head);
50 out_unlock:
51         unlock_page(page);
52         if (ret) {
53                 touch_buffer(ret);
54         }
55         page_cache_release(page);
56         return ret;
57 }
58
59 struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
60                                                  u64 blocknr)
61 {
62         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
63         int blockbits = root->fs_info->sb->s_blocksize_bits;
64         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
65         struct page *page;
66         struct buffer_head *bh;
67         struct buffer_head *head;
68         struct buffer_head *ret = NULL;
69         u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
70
71         page = grab_cache_page(mapping, index);
72         if (!page)
73                 return NULL;
74
75         if (!page_has_buffers(page))
76                 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
77         head = page_buffers(page);
78         bh = head;
79         do {
80                 if (!buffer_mapped(bh)) {
81                         bh->b_bdev = root->fs_info->sb->s_bdev;
82                         bh->b_blocknr = first_block;
83                         set_buffer_mapped(bh);
84                 }
85                 if (bh->b_blocknr == blocknr) {
86                         ret = bh;
87                         get_bh(bh);
88                         goto out_unlock;
89                 }
90                 bh = bh->b_this_page;
91                 first_block++;
92         } while (bh != head);
93 out_unlock:
94         unlock_page(page);
95         if (ret)
96                 touch_buffer(ret);
97         page_cache_release(page);
98         return ret;
99 }
100
101 static sector_t max_block(struct block_device *bdev)
102 {
103         sector_t retval = ~((sector_t)0);
104         loff_t sz = i_size_read(bdev->bd_inode);
105
106         if (sz) {
107                 unsigned int size = block_size(bdev);
108                 unsigned int sizebits = blksize_bits(size);
109                 retval = (sz >> sizebits);
110         }
111         return retval;
112 }
113
114 static int btree_get_block(struct inode *inode, sector_t iblock,
115                            struct buffer_head *bh, int create)
116 {
117         if (iblock >= max_block(inode->i_sb->s_bdev)) {
118                 if (create)
119                         return -EIO;
120
121                 /*
122                  * for reads, we're just trying to fill a partial page.
123                  * return a hole, they will have to call get_block again
124                  * before they can fill it, and they will get -EIO at that
125                  * time
126                  */
127                 return 0;
128         }
129         bh->b_bdev = inode->i_sb->s_bdev;
130         bh->b_blocknr = iblock;
131         set_buffer_mapped(bh);
132         return 0;
133 }
134
135 int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len,
136                     char *result)
137 {
138         struct scatterlist sg;
139         struct crypto_hash *tfm = root->fs_info->hash_tfm;
140         struct hash_desc desc;
141         int ret;
142
143         desc.tfm = tfm;
144         desc.flags = 0;
145         sg_init_one(&sg, data, len);
146         spin_lock(&root->fs_info->hash_lock);
147         ret = crypto_hash_digest(&desc, &sg, 1, result);
148         spin_unlock(&root->fs_info->hash_lock);
149         if (ret) {
150                 printk("sha256 digest failed\n");
151         }
152         return ret;
153 }
154 static int csum_tree_block(struct btrfs_root *root, struct buffer_head *bh,
155                            int verify)
156 {
157         char result[BTRFS_CSUM_SIZE];
158         int ret;
159         struct btrfs_node *node;
160
161         ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE,
162                               bh->b_size - BTRFS_CSUM_SIZE, result);
163         if (ret)
164                 return ret;
165         if (verify) {
166                 if (memcmp(bh->b_data, result, BTRFS_CSUM_SIZE)) {
167                         printk("checksum verify failed on %lu\n",
168                                bh->b_blocknr);
169                         return 1;
170                 }
171         } else {
172                 node = btrfs_buffer_node(bh);
173                 memcpy(node->header.csum, result, BTRFS_CSUM_SIZE);
174         }
175         return 0;
176 }
177
178 static int btree_writepage(struct page *page, struct writeback_control *wbc)
179 {
180         struct buffer_head *bh;
181         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
182         struct buffer_head *head;
183         if (!page_has_buffers(page)) {
184                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
185                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
186         }
187         head = page_buffers(page);
188         bh = head;
189         do {
190                 if (buffer_dirty(bh))
191                         csum_tree_block(root, bh, 0);
192                 bh = bh->b_this_page;
193         } while (bh != head);
194         return block_write_full_page(page, btree_get_block, wbc);
195 }
196
197 static int btree_readpage(struct file * file, struct page * page)
198 {
199         return block_read_full_page(page, btree_get_block);
200 }
201
202 static struct address_space_operations btree_aops = {
203         .readpage       = btree_readpage,
204         .writepage      = btree_writepage,
205         .sync_page      = block_sync_page,
206 };
207
208 struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
209 {
210         struct buffer_head *bh = NULL;
211
212         bh = btrfs_find_create_tree_block(root, blocknr);
213         if (!bh)
214                 return bh;
215         if (buffer_uptodate(bh))
216                 goto uptodate;
217         lock_buffer(bh);
218         if (!buffer_uptodate(bh)) {
219                 get_bh(bh);
220                 bh->b_end_io = end_buffer_read_sync;
221                 submit_bh(READ, bh);
222                 wait_on_buffer(bh);
223                 if (!buffer_uptodate(bh))
224                         goto fail;
225                 csum_tree_block(root, bh, 1);
226         } else {
227                 unlock_buffer(bh);
228         }
229 uptodate:
230         if (check_tree_block(root, bh))
231                 BUG();
232         return bh;
233 fail:
234         brelse(bh);
235         return NULL;
236 }
237
238 int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
239                      struct buffer_head *buf)
240 {
241         WARN_ON(atomic_read(&buf->b_count) == 0);
242         mark_buffer_dirty(buf);
243         return 0;
244 }
245
246 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
247                      struct buffer_head *buf)
248 {
249         WARN_ON(atomic_read(&buf->b_count) == 0);
250         clear_buffer_dirty(buf);
251         return 0;
252 }
253
254 static int __setup_root(int blocksize,
255                         struct btrfs_root *root,
256                         struct btrfs_fs_info *fs_info,
257                         u64 objectid)
258 {
259         root->node = NULL;
260         root->inode = NULL;
261         root->commit_root = NULL;
262         root->blocksize = blocksize;
263         root->ref_cows = 0;
264         root->fs_info = fs_info;
265         root->objectid = objectid;
266         root->last_trans = 0;
267         root->highest_inode = 0;
268         root->last_inode_alloc = 0;
269         memset(&root->root_key, 0, sizeof(root->root_key));
270         memset(&root->root_item, 0, sizeof(root->root_item));
271         return 0;
272 }
273
274 static int find_and_setup_root(int blocksize,
275                                struct btrfs_root *tree_root,
276                                struct btrfs_fs_info *fs_info,
277                                u64 objectid,
278                                struct btrfs_root *root)
279 {
280         int ret;
281
282         __setup_root(blocksize, root, fs_info, objectid);
283         ret = btrfs_find_last_root(tree_root, objectid,
284                                    &root->root_item, &root->root_key);
285         BUG_ON(ret);
286
287         root->node = read_tree_block(root,
288                                      btrfs_root_blocknr(&root->root_item));
289         BUG_ON(!root->node);
290         return 0;
291 }
292
293 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
294                                       struct btrfs_key *location)
295 {
296         struct btrfs_root *root;
297         struct btrfs_root *tree_root = fs_info->tree_root;
298         struct btrfs_path *path;
299         struct btrfs_leaf *l;
300         u64 highest_inode;
301         int ret = 0;
302
303 printk("read_fs_root looking for %Lu %Lu %u\n", location->objectid, location->offset, location->flags);
304         root = radix_tree_lookup(&fs_info->fs_roots_radix,
305                                  (unsigned long)location->objectid);
306         if (root) {
307 printk("found %p in cache\n", root);
308                 return root;
309         }
310         root = kmalloc(sizeof(*root), GFP_NOFS);
311         if (!root) {
312 printk("failed1\n");
313                 return ERR_PTR(-ENOMEM);
314         }
315         if (location->offset == (u64)-1) {
316                 ret = find_and_setup_root(fs_info->sb->s_blocksize,
317                                           fs_info->tree_root, fs_info,
318                                           location->objectid, root);
319                 if (ret) {
320 printk("failed2\n");
321                         kfree(root);
322                         return ERR_PTR(ret);
323                 }
324                 goto insert;
325         }
326
327         __setup_root(fs_info->sb->s_blocksize, root, fs_info,
328                      location->objectid);
329
330         path = btrfs_alloc_path();
331         BUG_ON(!path);
332         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
333         if (ret != 0) {
334 printk("internal search_slot gives us %d\n", ret);
335                 if (ret > 0)
336                         ret = -ENOENT;
337                 goto out;
338         }
339         l = btrfs_buffer_leaf(path->nodes[0]);
340         memcpy(&root->root_item,
341                btrfs_item_ptr(l, path->slots[0], struct btrfs_root_item),
342                sizeof(root->root_item));
343         memcpy(&root->root_key, location, sizeof(*location));
344         ret = 0;
345 out:
346         btrfs_release_path(root, path);
347         btrfs_free_path(path);
348         if (ret) {
349                 kfree(root);
350                 return ERR_PTR(ret);
351         }
352         root->node = read_tree_block(root,
353                                      btrfs_root_blocknr(&root->root_item));
354         BUG_ON(!root->node);
355 insert:
356 printk("inserting %p\n", root);
357         root->ref_cows = 1;
358         ret = radix_tree_insert(&fs_info->fs_roots_radix,
359                                 (unsigned long)root->root_key.objectid,
360                                 root);
361         if (ret) {
362 printk("radix_tree_insert gives us %d\n", ret);
363                 brelse(root->node);
364                 kfree(root);
365                 return ERR_PTR(ret);
366         }
367         ret = btrfs_find_highest_inode(root, &highest_inode);
368         if (ret == 0) {
369                 root->highest_inode = highest_inode;
370                 root->last_inode_alloc = highest_inode;
371 printk("highest inode is %Lu\n", highest_inode);
372         }
373 printk("all worked\n");
374         return root;
375 }
376
377 struct btrfs_root *open_ctree(struct super_block *sb)
378 {
379         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
380                                                  GFP_NOFS);
381         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
382                                                GFP_NOFS);
383         struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
384                                                 GFP_NOFS);
385         int ret;
386         struct btrfs_super_block *disk_super;
387
388         init_bit_radix(&fs_info->pinned_radix);
389         init_bit_radix(&fs_info->pending_del_radix);
390         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
391         sb_set_blocksize(sb, 4096);
392         fs_info->running_transaction = NULL;
393         fs_info->tree_root = tree_root;
394         fs_info->extent_root = extent_root;
395         fs_info->sb = sb;
396         fs_info->btree_inode = new_inode(sb);
397         fs_info->btree_inode->i_ino = 1;
398         fs_info->btree_inode->i_nlink = 1;
399         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
400         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
401         BTRFS_I(fs_info->btree_inode)->root = tree_root;
402         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
403                sizeof(struct btrfs_key));
404         insert_inode_hash(fs_info->btree_inode);
405         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
406         fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
407         spin_lock_init(&fs_info->hash_lock);
408         if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
409                 printk("failed to allocate sha256 hash\n");
410                 return NULL;
411         }
412         mutex_init(&fs_info->trans_mutex);
413         mutex_init(&fs_info->fs_mutex);
414         memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
415         memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
416
417         __setup_root(sb->s_blocksize, tree_root,
418                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
419         fs_info->sb_buffer = read_tree_block(tree_root,
420                                              BTRFS_SUPER_INFO_OFFSET /
421                                              sb->s_blocksize);
422
423         if (!fs_info->sb_buffer)
424                 return NULL;
425         disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
426         if (!btrfs_super_root(disk_super))
427                 return NULL;
428
429         fs_info->disk_super = disk_super;
430         tree_root->node = read_tree_block(tree_root,
431                                           btrfs_super_root(disk_super));
432         BUG_ON(!tree_root->node);
433
434         mutex_lock(&fs_info->fs_mutex);
435         ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info,
436                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
437         BUG_ON(ret);
438
439         fs_info->generation = btrfs_super_generation(disk_super) + 1;
440         memset(&fs_info->kobj, 0, sizeof(fs_info->kobj));
441         kobj_set_kset_s(fs_info, btrfs_subsys);
442         kobject_set_name(&fs_info->kobj, "%s", sb->s_id);
443         kobject_register(&fs_info->kobj);
444         mutex_unlock(&fs_info->fs_mutex);
445         return tree_root;
446 }
447
448 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
449                       *root)
450 {
451         struct buffer_head *bh = root->fs_info->sb_buffer;
452
453         btrfs_set_super_root(root->fs_info->disk_super,
454                              root->fs_info->tree_root->node->b_blocknr);
455         lock_buffer(bh);
456         WARN_ON(atomic_read(&bh->b_count) < 1);
457         clear_buffer_dirty(bh);
458         csum_tree_block(root, bh, 0);
459         bh->b_end_io = end_buffer_write_sync;
460         get_bh(bh);
461         submit_bh(WRITE, bh);
462         wait_on_buffer(bh);
463         if (!buffer_uptodate(bh)) {
464                 WARN_ON(1);
465                 return -EIO;
466         }
467         return 0;
468 }
469
470 static int free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
471 {
472         radix_tree_delete(&fs_info->fs_roots_radix,
473                           (unsigned long)root->root_key.objectid);
474         if (root->inode)
475                 iput(root->inode);
476         if (root->node)
477                 brelse(root->node);
478         if (root->commit_root)
479                 brelse(root->commit_root);
480         kfree(root);
481         return 0;
482 }
483
484 int del_fs_roots(struct btrfs_fs_info *fs_info)
485 {
486         int ret;
487         struct btrfs_root *gang[8];
488         int i;
489
490         while(1) {
491                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
492                                              (void **)gang, 0,
493                                              ARRAY_SIZE(gang));
494                 if (!ret)
495                         break;
496                 for (i = 0; i < ret; i++)
497                         free_fs_root(fs_info, gang[i]);
498         }
499         return 0;
500 }
501
502 int close_ctree(struct btrfs_root *root)
503 {
504         int ret;
505         struct btrfs_trans_handle *trans;
506         struct btrfs_fs_info *fs_info = root->fs_info;
507
508         mutex_lock(&fs_info->fs_mutex);
509         trans = btrfs_start_transaction(root, 1);
510         btrfs_commit_transaction(trans, root);
511         /* run commit again to  drop the original snapshot */
512         trans = btrfs_start_transaction(root, 1);
513         btrfs_commit_transaction(trans, root);
514         ret = btrfs_write_and_wait_transaction(NULL, root);
515         BUG_ON(ret);
516         write_ctree_super(NULL, root);
517         mutex_unlock(&fs_info->fs_mutex);
518
519         if (fs_info->extent_root->node)
520                 btrfs_block_release(fs_info->extent_root,
521                                     fs_info->extent_root->node);
522         if (fs_info->tree_root->node)
523                 btrfs_block_release(fs_info->tree_root,
524                                     fs_info->tree_root->node);
525         btrfs_block_release(root, fs_info->sb_buffer);
526         crypto_free_hash(fs_info->hash_tfm);
527         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
528         iput(fs_info->btree_inode);
529         del_fs_roots(fs_info);
530         kfree(fs_info->extent_root);
531         kfree(fs_info->tree_root);
532         kobject_unregister(&fs_info->kobj);
533         return 0;
534 }
535
536 void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
537 {
538         brelse(buf);
539 }
540