4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
73 #define PFX "ipmi_si: "
75 /* Measure times between events in the driver. */
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR 0x01
87 #define IPMI_BMC_EVT_MSG_INTR 0x02
88 #define IPMI_BMC_EVT_MSG_BUFF 0x04
89 #define IPMI_BMC_SYS_LOG 0x08
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
98 SI_ENABLE_INTERRUPTS1,
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
111 SI_KCS, SI_SMIC, SI_BT
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct platform_driver ipmi_driver = {
120 .bus = &platform_bus_type
126 * Indexes into stats[] in smi_info below.
128 enum si_stat_indexes {
130 * Number of times the driver requested a timer while an operation
133 SI_STAT_short_timeouts = 0,
136 * Number of times the driver requested a timer while nothing was in
139 SI_STAT_long_timeouts,
141 /* Number of times the interface was idle while being polled. */
144 /* Number of interrupts the driver handled. */
147 /* Number of time the driver got an ATTN from the hardware. */
150 /* Number of times the driver requested flags from the hardware. */
151 SI_STAT_flag_fetches,
153 /* Number of times the hardware didn't follow the state machine. */
156 /* Number of completed messages. */
157 SI_STAT_complete_transactions,
159 /* Number of IPMI events received from the hardware. */
162 /* Number of watchdog pretimeouts. */
163 SI_STAT_watchdog_pretimeouts,
165 /* Number of asyncronous messages received. */
166 SI_STAT_incoming_messages,
169 /* This *must* remain last, add new values above this. */
176 struct si_sm_data *si_sm;
177 struct si_sm_handlers *handlers;
178 enum si_type si_type;
181 struct list_head xmit_msgs;
182 struct list_head hp_xmit_msgs;
183 struct ipmi_smi_msg *curr_msg;
184 enum si_intf_state si_state;
187 * Used to handle the various types of I/O that can occur with
191 int (*io_setup)(struct smi_info *info);
192 void (*io_cleanup)(struct smi_info *info);
193 int (*irq_setup)(struct smi_info *info);
194 void (*irq_cleanup)(struct smi_info *info);
195 unsigned int io_size;
196 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
197 void (*addr_source_cleanup)(struct smi_info *info);
198 void *addr_source_data;
201 * Per-OEM handler, called from handle_flags(). Returns 1
202 * when handle_flags() needs to be re-run or 0 indicating it
203 * set si_state itself.
205 int (*oem_data_avail_handler)(struct smi_info *smi_info);
208 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
209 * is set to hold the flags until we are done handling everything
212 #define RECEIVE_MSG_AVAIL 0x01
213 #define EVENT_MSG_BUFFER_FULL 0x02
214 #define WDT_PRE_TIMEOUT_INT 0x08
215 #define OEM0_DATA_AVAIL 0x20
216 #define OEM1_DATA_AVAIL 0x40
217 #define OEM2_DATA_AVAIL 0x80
218 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
221 unsigned char msg_flags;
224 * If set to true, this will request events the next time the
225 * state machine is idle.
230 * If true, run the state machine to completion on every send
231 * call. Generally used after a panic to make sure stuff goes
234 int run_to_completion;
236 /* The I/O port of an SI interface. */
240 * The space between start addresses of the two ports. For
241 * instance, if the first port is 0xca2 and the spacing is 4, then
242 * the second port is 0xca6.
244 unsigned int spacing;
246 /* zero if no irq; */
249 /* The timer for this si. */
250 struct timer_list si_timer;
252 /* The time (in jiffies) the last timeout occurred at. */
253 unsigned long last_timeout_jiffies;
255 /* Used to gracefully stop the timer without race conditions. */
256 atomic_t stop_operation;
259 * The driver will disable interrupts when it gets into a
260 * situation where it cannot handle messages due to lack of
261 * memory. Once that situation clears up, it will re-enable
264 int interrupt_disabled;
266 /* From the get device id response... */
267 struct ipmi_device_id device_id;
269 /* Driver model stuff. */
271 struct platform_device *pdev;
274 * True if we allocated the device, false if it came from
275 * someplace else (like PCI).
279 /* Slave address, could be reported from DMI. */
280 unsigned char slave_addr;
282 /* Counters and things for the proc filesystem. */
283 atomic_t stats[SI_NUM_STATS];
285 struct task_struct *thread;
287 struct list_head link;
290 #define smi_inc_stat(smi, stat) \
291 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
292 #define smi_get_stat(smi, stat) \
293 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
295 #define SI_MAX_PARMS 4
297 static int force_kipmid[SI_MAX_PARMS];
298 static int num_force_kipmid;
300 static int unload_when_empty = 1;
302 static int try_smi_init(struct smi_info *smi);
303 static void cleanup_one_si(struct smi_info *to_clean);
305 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
306 static int register_xaction_notifier(struct notifier_block *nb)
308 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
311 static void deliver_recv_msg(struct smi_info *smi_info,
312 struct ipmi_smi_msg *msg)
314 /* Deliver the message to the upper layer with the lock
316 spin_unlock(&(smi_info->si_lock));
317 ipmi_smi_msg_received(smi_info->intf, msg);
318 spin_lock(&(smi_info->si_lock));
321 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
323 struct ipmi_smi_msg *msg = smi_info->curr_msg;
325 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
326 cCode = IPMI_ERR_UNSPECIFIED;
327 /* else use it as is */
329 /* Make it a reponse */
330 msg->rsp[0] = msg->data[0] | 4;
331 msg->rsp[1] = msg->data[1];
335 smi_info->curr_msg = NULL;
336 deliver_recv_msg(smi_info, msg);
339 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
342 struct list_head *entry = NULL;
348 * No need to save flags, we aleady have interrupts off and we
349 * already hold the SMI lock.
351 if (!smi_info->run_to_completion)
352 spin_lock(&(smi_info->msg_lock));
354 /* Pick the high priority queue first. */
355 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
356 entry = smi_info->hp_xmit_msgs.next;
357 } else if (!list_empty(&(smi_info->xmit_msgs))) {
358 entry = smi_info->xmit_msgs.next;
362 smi_info->curr_msg = NULL;
368 smi_info->curr_msg = list_entry(entry,
373 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
375 err = atomic_notifier_call_chain(&xaction_notifier_list,
377 if (err & NOTIFY_STOP_MASK) {
378 rv = SI_SM_CALL_WITHOUT_DELAY;
381 err = smi_info->handlers->start_transaction(
383 smi_info->curr_msg->data,
384 smi_info->curr_msg->data_size);
386 return_hosed_msg(smi_info, err);
388 rv = SI_SM_CALL_WITHOUT_DELAY;
391 if (!smi_info->run_to_completion)
392 spin_unlock(&(smi_info->msg_lock));
397 static void start_enable_irq(struct smi_info *smi_info)
399 unsigned char msg[2];
402 * If we are enabling interrupts, we have to tell the
405 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
406 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
409 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
412 static void start_disable_irq(struct smi_info *smi_info)
414 unsigned char msg[2];
416 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
419 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
420 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
423 static void start_clear_flags(struct smi_info *smi_info)
425 unsigned char msg[3];
427 /* Make sure the watchdog pre-timeout flag is not set at startup. */
428 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
429 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
430 msg[2] = WDT_PRE_TIMEOUT_INT;
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
433 smi_info->si_state = SI_CLEARING_FLAGS;
437 * When we have a situtaion where we run out of memory and cannot
438 * allocate messages, we just leave them in the BMC and run the system
439 * polled until we can allocate some memory. Once we have some
440 * memory, we will re-enable the interrupt.
442 static inline void disable_si_irq(struct smi_info *smi_info)
444 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
445 start_disable_irq(smi_info);
446 smi_info->interrupt_disabled = 1;
450 static inline void enable_si_irq(struct smi_info *smi_info)
452 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
453 start_enable_irq(smi_info);
454 smi_info->interrupt_disabled = 0;
458 static void handle_flags(struct smi_info *smi_info)
461 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
462 /* Watchdog pre-timeout */
463 smi_inc_stat(smi_info, watchdog_pretimeouts);
465 start_clear_flags(smi_info);
466 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
467 spin_unlock(&(smi_info->si_lock));
468 ipmi_smi_watchdog_pretimeout(smi_info->intf);
469 spin_lock(&(smi_info->si_lock));
470 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
471 /* Messages available. */
472 smi_info->curr_msg = ipmi_alloc_smi_msg();
473 if (!smi_info->curr_msg) {
474 disable_si_irq(smi_info);
475 smi_info->si_state = SI_NORMAL;
478 enable_si_irq(smi_info);
480 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
482 smi_info->curr_msg->data_size = 2;
484 smi_info->handlers->start_transaction(
486 smi_info->curr_msg->data,
487 smi_info->curr_msg->data_size);
488 smi_info->si_state = SI_GETTING_MESSAGES;
489 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
490 /* Events available. */
491 smi_info->curr_msg = ipmi_alloc_smi_msg();
492 if (!smi_info->curr_msg) {
493 disable_si_irq(smi_info);
494 smi_info->si_state = SI_NORMAL;
497 enable_si_irq(smi_info);
499 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
500 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
501 smi_info->curr_msg->data_size = 2;
503 smi_info->handlers->start_transaction(
505 smi_info->curr_msg->data,
506 smi_info->curr_msg->data_size);
507 smi_info->si_state = SI_GETTING_EVENTS;
508 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
509 smi_info->oem_data_avail_handler) {
510 if (smi_info->oem_data_avail_handler(smi_info))
513 smi_info->si_state = SI_NORMAL;
516 static void handle_transaction_done(struct smi_info *smi_info)
518 struct ipmi_smi_msg *msg;
523 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
525 switch (smi_info->si_state) {
527 if (!smi_info->curr_msg)
530 smi_info->curr_msg->rsp_size
531 = smi_info->handlers->get_result(
533 smi_info->curr_msg->rsp,
534 IPMI_MAX_MSG_LENGTH);
537 * Do this here becase deliver_recv_msg() releases the
538 * lock, and a new message can be put in during the
539 * time the lock is released.
541 msg = smi_info->curr_msg;
542 smi_info->curr_msg = NULL;
543 deliver_recv_msg(smi_info, msg);
546 case SI_GETTING_FLAGS:
548 unsigned char msg[4];
551 /* We got the flags from the SMI, now handle them. */
552 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
554 /* Error fetching flags, just give up for now. */
555 smi_info->si_state = SI_NORMAL;
556 } else if (len < 4) {
558 * Hmm, no flags. That's technically illegal, but
559 * don't use uninitialized data.
561 smi_info->si_state = SI_NORMAL;
563 smi_info->msg_flags = msg[3];
564 handle_flags(smi_info);
569 case SI_CLEARING_FLAGS:
570 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
572 unsigned char msg[3];
574 /* We cleared the flags. */
575 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
577 /* Error clearing flags */
579 "ipmi_si: Error clearing flags: %2.2x\n",
582 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
583 start_enable_irq(smi_info);
585 smi_info->si_state = SI_NORMAL;
589 case SI_GETTING_EVENTS:
591 smi_info->curr_msg->rsp_size
592 = smi_info->handlers->get_result(
594 smi_info->curr_msg->rsp,
595 IPMI_MAX_MSG_LENGTH);
598 * Do this here becase deliver_recv_msg() releases the
599 * lock, and a new message can be put in during the
600 * time the lock is released.
602 msg = smi_info->curr_msg;
603 smi_info->curr_msg = NULL;
604 if (msg->rsp[2] != 0) {
605 /* Error getting event, probably done. */
608 /* Take off the event flag. */
609 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
610 handle_flags(smi_info);
612 smi_inc_stat(smi_info, events);
615 * Do this before we deliver the message
616 * because delivering the message releases the
617 * lock and something else can mess with the
620 handle_flags(smi_info);
622 deliver_recv_msg(smi_info, msg);
627 case SI_GETTING_MESSAGES:
629 smi_info->curr_msg->rsp_size
630 = smi_info->handlers->get_result(
632 smi_info->curr_msg->rsp,
633 IPMI_MAX_MSG_LENGTH);
636 * Do this here becase deliver_recv_msg() releases the
637 * lock, and a new message can be put in during the
638 * time the lock is released.
640 msg = smi_info->curr_msg;
641 smi_info->curr_msg = NULL;
642 if (msg->rsp[2] != 0) {
643 /* Error getting event, probably done. */
646 /* Take off the msg flag. */
647 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
648 handle_flags(smi_info);
650 smi_inc_stat(smi_info, incoming_messages);
653 * Do this before we deliver the message
654 * because delivering the message releases the
655 * lock and something else can mess with the
658 handle_flags(smi_info);
660 deliver_recv_msg(smi_info, msg);
665 case SI_ENABLE_INTERRUPTS1:
667 unsigned char msg[4];
669 /* We got the flags from the SMI, now handle them. */
670 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
673 "ipmi_si: Could not enable interrupts"
674 ", failed get, using polled mode.\n");
675 smi_info->si_state = SI_NORMAL;
677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
680 IPMI_BMC_RCV_MSG_INTR |
681 IPMI_BMC_EVT_MSG_INTR);
682 smi_info->handlers->start_transaction(
683 smi_info->si_sm, msg, 3);
684 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
689 case SI_ENABLE_INTERRUPTS2:
691 unsigned char msg[4];
693 /* We got the flags from the SMI, now handle them. */
694 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 "ipmi_si: Could not enable interrupts"
698 ", failed set, using polled mode.\n");
700 smi_info->si_state = SI_NORMAL;
704 case SI_DISABLE_INTERRUPTS1:
706 unsigned char msg[4];
708 /* We got the flags from the SMI, now handle them. */
709 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
712 "ipmi_si: Could not disable interrupts"
714 smi_info->si_state = SI_NORMAL;
716 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
717 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719 ~(IPMI_BMC_RCV_MSG_INTR |
720 IPMI_BMC_EVT_MSG_INTR));
721 smi_info->handlers->start_transaction(
722 smi_info->si_sm, msg, 3);
723 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
728 case SI_DISABLE_INTERRUPTS2:
730 unsigned char msg[4];
732 /* We got the flags from the SMI, now handle them. */
733 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 "ipmi_si: Could not disable interrupts"
739 smi_info->si_state = SI_NORMAL;
746 * Called on timeouts and events. Timeouts should pass the elapsed
747 * time, interrupts should pass in zero. Must be called with
748 * si_lock held and interrupts disabled.
750 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
753 enum si_sm_result si_sm_result;
757 * There used to be a loop here that waited a little while
758 * (around 25us) before giving up. That turned out to be
759 * pointless, the minimum delays I was seeing were in the 300us
760 * range, which is far too long to wait in an interrupt. So
761 * we just run until the state machine tells us something
762 * happened or it needs a delay.
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
766 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
767 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
770 smi_inc_stat(smi_info, complete_transactions);
772 handle_transaction_done(smi_info);
773 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
774 } else if (si_sm_result == SI_SM_HOSED) {
775 smi_inc_stat(smi_info, hosed_count);
778 * Do the before return_hosed_msg, because that
781 smi_info->si_state = SI_NORMAL;
782 if (smi_info->curr_msg != NULL) {
784 * If we were handling a user message, format
785 * a response to send to the upper layer to
786 * tell it about the error.
788 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
794 * We prefer handling attn over new messages. But don't do
795 * this if there is not yet an upper layer to handle anything.
797 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
798 unsigned char msg[2];
800 smi_inc_stat(smi_info, attentions);
803 * Got a attn, send down a get message flags to see
804 * what's causing it. It would be better to handle
805 * this in the upper layer, but due to the way
806 * interrupts work with the SMI, that's not really
809 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
810 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
812 smi_info->handlers->start_transaction(
813 smi_info->si_sm, msg, 2);
814 smi_info->si_state = SI_GETTING_FLAGS;
818 /* If we are currently idle, try to start the next message. */
819 if (si_sm_result == SI_SM_IDLE) {
820 smi_inc_stat(smi_info, idles);
822 si_sm_result = start_next_msg(smi_info);
823 if (si_sm_result != SI_SM_IDLE)
827 if ((si_sm_result == SI_SM_IDLE)
828 && (atomic_read(&smi_info->req_events))) {
830 * We are idle and the upper layer requested that I fetch
833 atomic_set(&smi_info->req_events, 0);
835 smi_info->curr_msg = ipmi_alloc_smi_msg();
836 if (!smi_info->curr_msg)
839 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
840 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
841 smi_info->curr_msg->data_size = 2;
843 smi_info->handlers->start_transaction(
845 smi_info->curr_msg->data,
846 smi_info->curr_msg->data_size);
847 smi_info->si_state = SI_GETTING_EVENTS;
854 static void sender(void *send_info,
855 struct ipmi_smi_msg *msg,
858 struct smi_info *smi_info = send_info;
859 enum si_sm_result result;
865 if (atomic_read(&smi_info->stop_operation)) {
866 msg->rsp[0] = msg->data[0] | 4;
867 msg->rsp[1] = msg->data[1];
868 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
870 deliver_recv_msg(smi_info, msg);
876 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
879 if (smi_info->run_to_completion) {
881 * If we are running to completion, then throw it in
882 * the list and run transactions until everything is
883 * clear. Priority doesn't matter here.
887 * Run to completion means we are single-threaded, no
890 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
892 result = smi_event_handler(smi_info, 0);
893 while (result != SI_SM_IDLE) {
894 udelay(SI_SHORT_TIMEOUT_USEC);
895 result = smi_event_handler(smi_info,
896 SI_SHORT_TIMEOUT_USEC);
901 spin_lock_irqsave(&smi_info->msg_lock, flags);
903 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
905 list_add_tail(&msg->link, &smi_info->xmit_msgs);
906 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
908 spin_lock_irqsave(&smi_info->si_lock, flags);
909 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
910 start_next_msg(smi_info);
911 spin_unlock_irqrestore(&smi_info->si_lock, flags);
914 static void set_run_to_completion(void *send_info, int i_run_to_completion)
916 struct smi_info *smi_info = send_info;
917 enum si_sm_result result;
919 smi_info->run_to_completion = i_run_to_completion;
920 if (i_run_to_completion) {
921 result = smi_event_handler(smi_info, 0);
922 while (result != SI_SM_IDLE) {
923 udelay(SI_SHORT_TIMEOUT_USEC);
924 result = smi_event_handler(smi_info,
925 SI_SHORT_TIMEOUT_USEC);
930 static int ipmi_thread(void *data)
932 struct smi_info *smi_info = data;
934 enum si_sm_result smi_result;
936 set_user_nice(current, 19);
937 while (!kthread_should_stop()) {
938 spin_lock_irqsave(&(smi_info->si_lock), flags);
939 smi_result = smi_event_handler(smi_info, 0);
940 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
941 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
943 else if (smi_result == SI_SM_CALL_WITH_DELAY)
946 schedule_timeout_interruptible(1);
952 static void poll(void *send_info)
954 struct smi_info *smi_info = send_info;
958 * Make sure there is some delay in the poll loop so we can
959 * drive time forward and timeout things.
962 spin_lock_irqsave(&smi_info->si_lock, flags);
963 smi_event_handler(smi_info, 10);
964 spin_unlock_irqrestore(&smi_info->si_lock, flags);
967 static void request_events(void *send_info)
969 struct smi_info *smi_info = send_info;
971 if (atomic_read(&smi_info->stop_operation))
974 atomic_set(&smi_info->req_events, 1);
977 static int initialized;
979 static void smi_timeout(unsigned long data)
981 struct smi_info *smi_info = (struct smi_info *) data;
982 enum si_sm_result smi_result;
984 unsigned long jiffies_now;
990 spin_lock_irqsave(&(smi_info->si_lock), flags);
993 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
995 jiffies_now = jiffies;
996 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
997 * SI_USEC_PER_JIFFY);
998 smi_result = smi_event_handler(smi_info, time_diff);
1000 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1002 smi_info->last_timeout_jiffies = jiffies_now;
1004 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1005 /* Running with interrupts, only do long timeouts. */
1006 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1007 smi_inc_stat(smi_info, long_timeouts);
1012 * If the state machine asks for a short delay, then shorten
1013 * the timer timeout.
1015 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1016 smi_inc_stat(smi_info, short_timeouts);
1017 smi_info->si_timer.expires = jiffies + 1;
1019 smi_inc_stat(smi_info, long_timeouts);
1020 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1024 add_timer(&(smi_info->si_timer));
1027 static irqreturn_t si_irq_handler(int irq, void *data)
1029 struct smi_info *smi_info = data;
1030 unsigned long flags;
1035 spin_lock_irqsave(&(smi_info->si_lock), flags);
1037 smi_inc_stat(smi_info, interrupts);
1040 do_gettimeofday(&t);
1041 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1043 smi_event_handler(smi_info, 0);
1044 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1048 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1050 struct smi_info *smi_info = data;
1051 /* We need to clear the IRQ flag for the BT interface. */
1052 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1053 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1054 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1055 return si_irq_handler(irq, data);
1058 static int smi_start_processing(void *send_info,
1061 struct smi_info *new_smi = send_info;
1064 new_smi->intf = intf;
1066 /* Try to claim any interrupts. */
1067 if (new_smi->irq_setup)
1068 new_smi->irq_setup(new_smi);
1070 /* Set up the timer that drives the interface. */
1071 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1072 new_smi->last_timeout_jiffies = jiffies;
1073 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1076 * Check if the user forcefully enabled the daemon.
1078 if (new_smi->intf_num < num_force_kipmid)
1079 enable = force_kipmid[new_smi->intf_num];
1081 * The BT interface is efficient enough to not need a thread,
1082 * and there is no need for a thread if we have interrupts.
1084 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1088 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1089 "kipmi%d", new_smi->intf_num);
1090 if (IS_ERR(new_smi->thread)) {
1091 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1092 " kernel thread due to error %ld, only using"
1093 " timers to drive the interface\n",
1094 PTR_ERR(new_smi->thread));
1095 new_smi->thread = NULL;
1102 static void set_maintenance_mode(void *send_info, int enable)
1104 struct smi_info *smi_info = send_info;
1107 atomic_set(&smi_info->req_events, 0);
1110 static struct ipmi_smi_handlers handlers = {
1111 .owner = THIS_MODULE,
1112 .start_processing = smi_start_processing,
1114 .request_events = request_events,
1115 .set_maintenance_mode = set_maintenance_mode,
1116 .set_run_to_completion = set_run_to_completion,
1121 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1122 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1125 static LIST_HEAD(smi_infos);
1126 static DEFINE_MUTEX(smi_infos_lock);
1127 static int smi_num; /* Used to sequence the SMIs */
1129 #define DEFAULT_REGSPACING 1
1130 #define DEFAULT_REGSIZE 1
1132 static int si_trydefaults = 1;
1133 static char *si_type[SI_MAX_PARMS];
1134 #define MAX_SI_TYPE_STR 30
1135 static char si_type_str[MAX_SI_TYPE_STR];
1136 static unsigned long addrs[SI_MAX_PARMS];
1137 static unsigned int num_addrs;
1138 static unsigned int ports[SI_MAX_PARMS];
1139 static unsigned int num_ports;
1140 static int irqs[SI_MAX_PARMS];
1141 static unsigned int num_irqs;
1142 static int regspacings[SI_MAX_PARMS];
1143 static unsigned int num_regspacings;
1144 static int regsizes[SI_MAX_PARMS];
1145 static unsigned int num_regsizes;
1146 static int regshifts[SI_MAX_PARMS];
1147 static unsigned int num_regshifts;
1148 static int slave_addrs[SI_MAX_PARMS];
1149 static unsigned int num_slave_addrs;
1151 #define IPMI_IO_ADDR_SPACE 0
1152 #define IPMI_MEM_ADDR_SPACE 1
1153 static char *addr_space_to_str[] = { "i/o", "mem" };
1155 static int hotmod_handler(const char *val, struct kernel_param *kp);
1157 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1158 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1159 " Documentation/IPMI.txt in the kernel sources for the"
1162 module_param_named(trydefaults, si_trydefaults, bool, 0);
1163 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1164 " default scan of the KCS and SMIC interface at the standard"
1166 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1167 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1168 " interface separated by commas. The types are 'kcs',"
1169 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1170 " the first interface to kcs and the second to bt");
1171 module_param_array(addrs, ulong, &num_addrs, 0);
1172 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1173 " addresses separated by commas. Only use if an interface"
1174 " is in memory. Otherwise, set it to zero or leave"
1176 module_param_array(ports, uint, &num_ports, 0);
1177 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1178 " addresses separated by commas. Only use if an interface"
1179 " is a port. Otherwise, set it to zero or leave"
1181 module_param_array(irqs, int, &num_irqs, 0);
1182 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1183 " addresses separated by commas. Only use if an interface"
1184 " has an interrupt. Otherwise, set it to zero or leave"
1186 module_param_array(regspacings, int, &num_regspacings, 0);
1187 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1188 " and each successive register used by the interface. For"
1189 " instance, if the start address is 0xca2 and the spacing"
1190 " is 2, then the second address is at 0xca4. Defaults"
1192 module_param_array(regsizes, int, &num_regsizes, 0);
1193 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1194 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1195 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1196 " the 8-bit IPMI register has to be read from a larger"
1198 module_param_array(regshifts, int, &num_regshifts, 0);
1199 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1200 " IPMI register, in bits. For instance, if the data"
1201 " is read from a 32-bit word and the IPMI data is in"
1202 " bit 8-15, then the shift would be 8");
1203 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1204 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1205 " the controller. Normally this is 0x20, but can be"
1206 " overridden by this parm. This is an array indexed"
1207 " by interface number.");
1208 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1209 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1210 " disabled(0). Normally the IPMI driver auto-detects"
1211 " this, but the value may be overridden by this parm.");
1212 module_param(unload_when_empty, int, 0);
1213 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1214 " specified or found, default is 1. Setting to 0"
1215 " is useful for hot add of devices using hotmod.");
1218 static void std_irq_cleanup(struct smi_info *info)
1220 if (info->si_type == SI_BT)
1221 /* Disable the interrupt in the BT interface. */
1222 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1223 free_irq(info->irq, info);
1226 static int std_irq_setup(struct smi_info *info)
1233 if (info->si_type == SI_BT) {
1234 rv = request_irq(info->irq,
1236 IRQF_SHARED | IRQF_DISABLED,
1240 /* Enable the interrupt in the BT interface. */
1241 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1242 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1244 rv = request_irq(info->irq,
1246 IRQF_SHARED | IRQF_DISABLED,
1251 "ipmi_si: %s unable to claim interrupt %d,"
1252 " running polled\n",
1253 DEVICE_NAME, info->irq);
1256 info->irq_cleanup = std_irq_cleanup;
1257 printk(" Using irq %d\n", info->irq);
1263 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1265 unsigned int addr = io->addr_data;
1267 return inb(addr + (offset * io->regspacing));
1270 static void port_outb(struct si_sm_io *io, unsigned int offset,
1273 unsigned int addr = io->addr_data;
1275 outb(b, addr + (offset * io->regspacing));
1278 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1280 unsigned int addr = io->addr_data;
1282 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1285 static void port_outw(struct si_sm_io *io, unsigned int offset,
1288 unsigned int addr = io->addr_data;
1290 outw(b << io->regshift, addr + (offset * io->regspacing));
1293 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1295 unsigned int addr = io->addr_data;
1297 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1300 static void port_outl(struct si_sm_io *io, unsigned int offset,
1303 unsigned int addr = io->addr_data;
1305 outl(b << io->regshift, addr+(offset * io->regspacing));
1308 static void port_cleanup(struct smi_info *info)
1310 unsigned int addr = info->io.addr_data;
1314 for (idx = 0; idx < info->io_size; idx++)
1315 release_region(addr + idx * info->io.regspacing,
1320 static int port_setup(struct smi_info *info)
1322 unsigned int addr = info->io.addr_data;
1328 info->io_cleanup = port_cleanup;
1331 * Figure out the actual inb/inw/inl/etc routine to use based
1332 * upon the register size.
1334 switch (info->io.regsize) {
1336 info->io.inputb = port_inb;
1337 info->io.outputb = port_outb;
1340 info->io.inputb = port_inw;
1341 info->io.outputb = port_outw;
1344 info->io.inputb = port_inl;
1345 info->io.outputb = port_outl;
1348 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1354 * Some BIOSes reserve disjoint I/O regions in their ACPI
1355 * tables. This causes problems when trying to register the
1356 * entire I/O region. Therefore we must register each I/O
1359 for (idx = 0; idx < info->io_size; idx++) {
1360 if (request_region(addr + idx * info->io.regspacing,
1361 info->io.regsize, DEVICE_NAME) == NULL) {
1362 /* Undo allocations */
1364 release_region(addr + idx * info->io.regspacing,
1373 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1375 return readb((io->addr)+(offset * io->regspacing));
1378 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1381 writeb(b, (io->addr)+(offset * io->regspacing));
1384 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1386 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1390 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1393 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1396 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1398 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1402 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1405 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1409 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1411 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1415 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1418 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1422 static void mem_cleanup(struct smi_info *info)
1424 unsigned long addr = info->io.addr_data;
1427 if (info->io.addr) {
1428 iounmap(info->io.addr);
1430 mapsize = ((info->io_size * info->io.regspacing)
1431 - (info->io.regspacing - info->io.regsize));
1433 release_mem_region(addr, mapsize);
1437 static int mem_setup(struct smi_info *info)
1439 unsigned long addr = info->io.addr_data;
1445 info->io_cleanup = mem_cleanup;
1448 * Figure out the actual readb/readw/readl/etc routine to use based
1449 * upon the register size.
1451 switch (info->io.regsize) {
1453 info->io.inputb = intf_mem_inb;
1454 info->io.outputb = intf_mem_outb;
1457 info->io.inputb = intf_mem_inw;
1458 info->io.outputb = intf_mem_outw;
1461 info->io.inputb = intf_mem_inl;
1462 info->io.outputb = intf_mem_outl;
1466 info->io.inputb = mem_inq;
1467 info->io.outputb = mem_outq;
1471 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1477 * Calculate the total amount of memory to claim. This is an
1478 * unusual looking calculation, but it avoids claiming any
1479 * more memory than it has to. It will claim everything
1480 * between the first address to the end of the last full
1483 mapsize = ((info->io_size * info->io.regspacing)
1484 - (info->io.regspacing - info->io.regsize));
1486 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1489 info->io.addr = ioremap(addr, mapsize);
1490 if (info->io.addr == NULL) {
1491 release_mem_region(addr, mapsize);
1498 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1499 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1507 enum hotmod_op { HM_ADD, HM_REMOVE };
1508 struct hotmod_vals {
1512 static struct hotmod_vals hotmod_ops[] = {
1514 { "remove", HM_REMOVE },
1517 static struct hotmod_vals hotmod_si[] = {
1519 { "smic", SI_SMIC },
1523 static struct hotmod_vals hotmod_as[] = {
1524 { "mem", IPMI_MEM_ADDR_SPACE },
1525 { "i/o", IPMI_IO_ADDR_SPACE },
1529 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1534 s = strchr(*curr, ',');
1536 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1541 for (i = 0; hotmod_ops[i].name; i++) {
1542 if (strcmp(*curr, v[i].name) == 0) {
1549 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1553 static int check_hotmod_int_op(const char *curr, const char *option,
1554 const char *name, int *val)
1558 if (strcmp(curr, name) == 0) {
1560 printk(KERN_WARNING PFX
1561 "No option given for '%s'\n",
1565 *val = simple_strtoul(option, &n, 0);
1566 if ((*n != '\0') || (*option == '\0')) {
1567 printk(KERN_WARNING PFX
1568 "Bad option given for '%s'\n",
1577 static int hotmod_handler(const char *val, struct kernel_param *kp)
1579 char *str = kstrdup(val, GFP_KERNEL);
1581 char *next, *curr, *s, *n, *o;
1583 enum si_type si_type;
1593 struct smi_info *info;
1598 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1601 while ((ival >= 0) && isspace(str[ival])) {
1606 for (curr = str; curr; curr = next) {
1613 next = strchr(curr, ':');
1619 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1624 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1629 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1633 s = strchr(curr, ',');
1638 addr = simple_strtoul(curr, &n, 0);
1639 if ((*n != '\0') || (*curr == '\0')) {
1640 printk(KERN_WARNING PFX "Invalid hotmod address"
1647 s = strchr(curr, ',');
1652 o = strchr(curr, '=');
1657 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1662 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1667 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1672 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1677 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1684 printk(KERN_WARNING PFX
1685 "Invalid hotmod option '%s'\n",
1691 info = kzalloc(sizeof(*info), GFP_KERNEL);
1697 info->addr_source = "hotmod";
1698 info->si_type = si_type;
1699 info->io.addr_data = addr;
1700 info->io.addr_type = addr_space;
1701 if (addr_space == IPMI_MEM_ADDR_SPACE)
1702 info->io_setup = mem_setup;
1704 info->io_setup = port_setup;
1706 info->io.addr = NULL;
1707 info->io.regspacing = regspacing;
1708 if (!info->io.regspacing)
1709 info->io.regspacing = DEFAULT_REGSPACING;
1710 info->io.regsize = regsize;
1711 if (!info->io.regsize)
1712 info->io.regsize = DEFAULT_REGSPACING;
1713 info->io.regshift = regshift;
1716 info->irq_setup = std_irq_setup;
1717 info->slave_addr = ipmb;
1722 struct smi_info *e, *tmp_e;
1724 mutex_lock(&smi_infos_lock);
1725 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1726 if (e->io.addr_type != addr_space)
1728 if (e->si_type != si_type)
1730 if (e->io.addr_data == addr)
1733 mutex_unlock(&smi_infos_lock);
1742 static __devinit void hardcode_find_bmc(void)
1745 struct smi_info *info;
1747 for (i = 0; i < SI_MAX_PARMS; i++) {
1748 if (!ports[i] && !addrs[i])
1751 info = kzalloc(sizeof(*info), GFP_KERNEL);
1755 info->addr_source = "hardcoded";
1757 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1758 info->si_type = SI_KCS;
1759 } else if (strcmp(si_type[i], "smic") == 0) {
1760 info->si_type = SI_SMIC;
1761 } else if (strcmp(si_type[i], "bt") == 0) {
1762 info->si_type = SI_BT;
1765 "ipmi_si: Interface type specified "
1766 "for interface %d, was invalid: %s\n",
1774 info->io_setup = port_setup;
1775 info->io.addr_data = ports[i];
1776 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1777 } else if (addrs[i]) {
1779 info->io_setup = mem_setup;
1780 info->io.addr_data = addrs[i];
1781 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1784 "ipmi_si: Interface type specified "
1785 "for interface %d, "
1786 "but port and address were not set or "
1787 "set to zero.\n", i);
1792 info->io.addr = NULL;
1793 info->io.regspacing = regspacings[i];
1794 if (!info->io.regspacing)
1795 info->io.regspacing = DEFAULT_REGSPACING;
1796 info->io.regsize = regsizes[i];
1797 if (!info->io.regsize)
1798 info->io.regsize = DEFAULT_REGSPACING;
1799 info->io.regshift = regshifts[i];
1800 info->irq = irqs[i];
1802 info->irq_setup = std_irq_setup;
1810 #include <linux/acpi.h>
1813 * Once we get an ACPI failure, we don't try any more, because we go
1814 * through the tables sequentially. Once we don't find a table, there
1817 static int acpi_failure;
1819 /* For GPE-type interrupts. */
1820 static u32 ipmi_acpi_gpe(void *context)
1822 struct smi_info *smi_info = context;
1823 unsigned long flags;
1828 spin_lock_irqsave(&(smi_info->si_lock), flags);
1830 smi_inc_stat(smi_info, interrupts);
1833 do_gettimeofday(&t);
1834 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1836 smi_event_handler(smi_info, 0);
1837 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1839 return ACPI_INTERRUPT_HANDLED;
1842 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1847 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1850 static int acpi_gpe_irq_setup(struct smi_info *info)
1857 /* FIXME - is level triggered right? */
1858 status = acpi_install_gpe_handler(NULL,
1860 ACPI_GPE_LEVEL_TRIGGERED,
1863 if (status != AE_OK) {
1865 "ipmi_si: %s unable to claim ACPI GPE %d,"
1866 " running polled\n",
1867 DEVICE_NAME, info->irq);
1871 info->irq_cleanup = acpi_gpe_irq_cleanup;
1872 printk(" Using ACPI GPE %d\n", info->irq);
1879 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1880 * Docs/TechPapers/IA64/hpspmi.pdf
1891 s8 CreatorRevision[4];
1894 s16 SpecificationRevision;
1897 * Bit 0 - SCI interrupt supported
1898 * Bit 1 - I/O APIC/SAPIC
1903 * If bit 0 of InterruptType is set, then this is the SCI
1904 * interrupt in the GPEx_STS register.
1911 * If bit 1 of InterruptType is set, then this is the I/O
1912 * APIC/SAPIC interrupt.
1914 u32 GlobalSystemInterrupt;
1916 /* The actual register address. */
1917 struct acpi_generic_address addr;
1921 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1924 static __devinit int try_init_acpi(struct SPMITable *spmi)
1926 struct smi_info *info;
1929 if (spmi->IPMIlegacy != 1) {
1930 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1934 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1935 addr_space = IPMI_MEM_ADDR_SPACE;
1937 addr_space = IPMI_IO_ADDR_SPACE;
1939 info = kzalloc(sizeof(*info), GFP_KERNEL);
1941 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1945 info->addr_source = "ACPI";
1947 /* Figure out the interface type. */
1948 switch (spmi->InterfaceType) {
1950 info->si_type = SI_KCS;
1953 info->si_type = SI_SMIC;
1956 info->si_type = SI_BT;
1959 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1960 spmi->InterfaceType);
1965 if (spmi->InterruptType & 1) {
1966 /* We've got a GPE interrupt. */
1967 info->irq = spmi->GPE;
1968 info->irq_setup = acpi_gpe_irq_setup;
1969 } else if (spmi->InterruptType & 2) {
1970 /* We've got an APIC/SAPIC interrupt. */
1971 info->irq = spmi->GlobalSystemInterrupt;
1972 info->irq_setup = std_irq_setup;
1974 /* Use the default interrupt setting. */
1976 info->irq_setup = NULL;
1979 if (spmi->addr.bit_width) {
1980 /* A (hopefully) properly formed register bit width. */
1981 info->io.regspacing = spmi->addr.bit_width / 8;
1983 info->io.regspacing = DEFAULT_REGSPACING;
1985 info->io.regsize = info->io.regspacing;
1986 info->io.regshift = spmi->addr.bit_offset;
1988 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1989 info->io_setup = mem_setup;
1990 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1991 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1992 info->io_setup = port_setup;
1993 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1997 "ipmi_si: Unknown ACPI I/O Address type\n");
2000 info->io.addr_data = spmi->addr.address;
2007 static __devinit void acpi_find_bmc(void)
2010 struct SPMITable *spmi;
2019 for (i = 0; ; i++) {
2020 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2021 (struct acpi_table_header **)&spmi);
2022 if (status != AE_OK)
2025 try_init_acpi(spmi);
2031 struct dmi_ipmi_data {
2034 unsigned long base_addr;
2040 static int __devinit decode_dmi(const struct dmi_header *dm,
2041 struct dmi_ipmi_data *dmi)
2043 const u8 *data = (const u8 *)dm;
2044 unsigned long base_addr;
2046 u8 len = dm->length;
2048 dmi->type = data[4];
2050 memcpy(&base_addr, data+8, sizeof(unsigned long));
2052 if (base_addr & 1) {
2054 base_addr &= 0xFFFE;
2055 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2058 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2060 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2062 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2064 dmi->irq = data[0x11];
2066 /* The top two bits of byte 0x10 hold the register spacing. */
2067 reg_spacing = (data[0x10] & 0xC0) >> 6;
2068 switch (reg_spacing) {
2069 case 0x00: /* Byte boundaries */
2072 case 0x01: /* 32-bit boundaries */
2075 case 0x02: /* 16-byte boundaries */
2079 /* Some other interface, just ignore it. */
2085 * Note that technically, the lower bit of the base
2086 * address should be 1 if the address is I/O and 0 if
2087 * the address is in memory. So many systems get that
2088 * wrong (and all that I have seen are I/O) so we just
2089 * ignore that bit and assume I/O. Systems that use
2090 * memory should use the newer spec, anyway.
2092 dmi->base_addr = base_addr & 0xfffe;
2093 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2097 dmi->slave_addr = data[6];
2102 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2104 struct smi_info *info;
2106 info = kzalloc(sizeof(*info), GFP_KERNEL);
2109 "ipmi_si: Could not allocate SI data\n");
2113 info->addr_source = "SMBIOS";
2115 switch (ipmi_data->type) {
2116 case 0x01: /* KCS */
2117 info->si_type = SI_KCS;
2119 case 0x02: /* SMIC */
2120 info->si_type = SI_SMIC;
2123 info->si_type = SI_BT;
2130 switch (ipmi_data->addr_space) {
2131 case IPMI_MEM_ADDR_SPACE:
2132 info->io_setup = mem_setup;
2133 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2136 case IPMI_IO_ADDR_SPACE:
2137 info->io_setup = port_setup;
2138 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2144 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2145 ipmi_data->addr_space);
2148 info->io.addr_data = ipmi_data->base_addr;
2150 info->io.regspacing = ipmi_data->offset;
2151 if (!info->io.regspacing)
2152 info->io.regspacing = DEFAULT_REGSPACING;
2153 info->io.regsize = DEFAULT_REGSPACING;
2154 info->io.regshift = 0;
2156 info->slave_addr = ipmi_data->slave_addr;
2158 info->irq = ipmi_data->irq;
2160 info->irq_setup = std_irq_setup;
2165 static void __devinit dmi_find_bmc(void)
2167 const struct dmi_device *dev = NULL;
2168 struct dmi_ipmi_data data;
2171 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2172 memset(&data, 0, sizeof(data));
2173 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2176 try_init_dmi(&data);
2179 #endif /* CONFIG_DMI */
2183 #define PCI_ERMC_CLASSCODE 0x0C0700
2184 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2185 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2186 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2187 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2188 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2190 #define PCI_HP_VENDOR_ID 0x103C
2191 #define PCI_MMC_DEVICE_ID 0x121A
2192 #define PCI_MMC_ADDR_CW 0x10
2194 static void ipmi_pci_cleanup(struct smi_info *info)
2196 struct pci_dev *pdev = info->addr_source_data;
2198 pci_disable_device(pdev);
2201 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2202 const struct pci_device_id *ent)
2205 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2206 struct smi_info *info;
2207 int first_reg_offset = 0;
2209 info = kzalloc(sizeof(*info), GFP_KERNEL);
2213 info->addr_source = "PCI";
2215 switch (class_type) {
2216 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2217 info->si_type = SI_SMIC;
2220 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2221 info->si_type = SI_KCS;
2224 case PCI_ERMC_CLASSCODE_TYPE_BT:
2225 info->si_type = SI_BT;
2230 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2231 pci_name(pdev), class_type);
2235 rv = pci_enable_device(pdev);
2237 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2243 info->addr_source_cleanup = ipmi_pci_cleanup;
2244 info->addr_source_data = pdev;
2246 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2247 first_reg_offset = 1;
2249 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2250 info->io_setup = port_setup;
2251 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2253 info->io_setup = mem_setup;
2254 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2256 info->io.addr_data = pci_resource_start(pdev, 0);
2258 info->io.regspacing = DEFAULT_REGSPACING;
2259 info->io.regsize = DEFAULT_REGSPACING;
2260 info->io.regshift = 0;
2262 info->irq = pdev->irq;
2264 info->irq_setup = std_irq_setup;
2266 info->dev = &pdev->dev;
2267 pci_set_drvdata(pdev, info);
2269 return try_smi_init(info);
2272 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2274 struct smi_info *info = pci_get_drvdata(pdev);
2275 cleanup_one_si(info);
2279 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2284 static int ipmi_pci_resume(struct pci_dev *pdev)
2290 static struct pci_device_id ipmi_pci_devices[] = {
2291 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2292 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2295 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2297 static struct pci_driver ipmi_pci_driver = {
2298 .name = DEVICE_NAME,
2299 .id_table = ipmi_pci_devices,
2300 .probe = ipmi_pci_probe,
2301 .remove = __devexit_p(ipmi_pci_remove),
2303 .suspend = ipmi_pci_suspend,
2304 .resume = ipmi_pci_resume,
2307 #endif /* CONFIG_PCI */
2310 #ifdef CONFIG_PPC_OF
2311 static int __devinit ipmi_of_probe(struct of_device *dev,
2312 const struct of_device_id *match)
2314 struct smi_info *info;
2315 struct resource resource;
2316 const int *regsize, *regspacing, *regshift;
2317 struct device_node *np = dev->node;
2321 dev_info(&dev->dev, PFX "probing via device tree\n");
2323 ret = of_address_to_resource(np, 0, &resource);
2325 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2329 regsize = of_get_property(np, "reg-size", &proplen);
2330 if (regsize && proplen != 4) {
2331 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2335 regspacing = of_get_property(np, "reg-spacing", &proplen);
2336 if (regspacing && proplen != 4) {
2337 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2341 regshift = of_get_property(np, "reg-shift", &proplen);
2342 if (regshift && proplen != 4) {
2343 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2347 info = kzalloc(sizeof(*info), GFP_KERNEL);
2351 PFX "could not allocate memory for OF probe\n");
2355 info->si_type = (enum si_type) match->data;
2356 info->addr_source = "device-tree";
2357 info->irq_setup = std_irq_setup;
2359 if (resource.flags & IORESOURCE_IO) {
2360 info->io_setup = port_setup;
2361 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2363 info->io_setup = mem_setup;
2364 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2367 info->io.addr_data = resource.start;
2369 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2370 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2371 info->io.regshift = regshift ? *regshift : 0;
2373 info->irq = irq_of_parse_and_map(dev->node, 0);
2374 info->dev = &dev->dev;
2376 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2377 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380 dev->dev.driver_data = (void *) info;
2382 return try_smi_init(info);
2385 static int __devexit ipmi_of_remove(struct of_device *dev)
2387 cleanup_one_si(dev->dev.driver_data);
2391 static struct of_device_id ipmi_match[] =
2393 { .type = "ipmi", .compatible = "ipmi-kcs",
2394 .data = (void *)(unsigned long) SI_KCS },
2395 { .type = "ipmi", .compatible = "ipmi-smic",
2396 .data = (void *)(unsigned long) SI_SMIC },
2397 { .type = "ipmi", .compatible = "ipmi-bt",
2398 .data = (void *)(unsigned long) SI_BT },
2402 static struct of_platform_driver ipmi_of_platform_driver = {
2404 .match_table = ipmi_match,
2405 .probe = ipmi_of_probe,
2406 .remove = __devexit_p(ipmi_of_remove),
2408 #endif /* CONFIG_PPC_OF */
2411 static int try_get_dev_id(struct smi_info *smi_info)
2413 unsigned char msg[2];
2414 unsigned char *resp;
2415 unsigned long resp_len;
2416 enum si_sm_result smi_result;
2419 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2424 * Do a Get Device ID command, since it comes back with some
2427 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2428 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2431 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2433 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2434 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2435 schedule_timeout_uninterruptible(1);
2436 smi_result = smi_info->handlers->event(
2437 smi_info->si_sm, 100);
2438 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2439 smi_result = smi_info->handlers->event(
2440 smi_info->si_sm, 0);
2444 if (smi_result == SI_SM_HOSED) {
2446 * We couldn't get the state machine to run, so whatever's at
2447 * the port is probably not an IPMI SMI interface.
2453 /* Otherwise, we got some data. */
2454 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2455 resp, IPMI_MAX_MSG_LENGTH);
2457 /* Check and record info from the get device id, in case we need it. */
2458 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2465 static int type_file_read_proc(char *page, char **start, off_t off,
2466 int count, int *eof, void *data)
2468 struct smi_info *smi = data;
2470 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2473 static int stat_file_read_proc(char *page, char **start, off_t off,
2474 int count, int *eof, void *data)
2476 char *out = (char *) page;
2477 struct smi_info *smi = data;
2479 out += sprintf(out, "interrupts_enabled: %d\n",
2480 smi->irq && !smi->interrupt_disabled);
2481 out += sprintf(out, "short_timeouts: %u\n",
2482 smi_get_stat(smi, short_timeouts));
2483 out += sprintf(out, "long_timeouts: %u\n",
2484 smi_get_stat(smi, long_timeouts));
2485 out += sprintf(out, "idles: %u\n",
2486 smi_get_stat(smi, idles));
2487 out += sprintf(out, "interrupts: %u\n",
2488 smi_get_stat(smi, interrupts));
2489 out += sprintf(out, "attentions: %u\n",
2490 smi_get_stat(smi, attentions));
2491 out += sprintf(out, "flag_fetches: %u\n",
2492 smi_get_stat(smi, flag_fetches));
2493 out += sprintf(out, "hosed_count: %u\n",
2494 smi_get_stat(smi, hosed_count));
2495 out += sprintf(out, "complete_transactions: %u\n",
2496 smi_get_stat(smi, complete_transactions));
2497 out += sprintf(out, "events: %u\n",
2498 smi_get_stat(smi, events));
2499 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2500 smi_get_stat(smi, watchdog_pretimeouts));
2501 out += sprintf(out, "incoming_messages: %u\n",
2502 smi_get_stat(smi, incoming_messages));
2507 static int param_read_proc(char *page, char **start, off_t off,
2508 int count, int *eof, void *data)
2510 struct smi_info *smi = data;
2512 return sprintf(page,
2513 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2514 si_to_str[smi->si_type],
2515 addr_space_to_str[smi->io.addr_type],
2525 * oem_data_avail_to_receive_msg_avail
2526 * @info - smi_info structure with msg_flags set
2528 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2529 * Returns 1 indicating need to re-run handle_flags().
2531 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2533 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2539 * setup_dell_poweredge_oem_data_handler
2540 * @info - smi_info.device_id must be populated
2542 * Systems that match, but have firmware version < 1.40 may assert
2543 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2544 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2545 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2546 * as RECEIVE_MSG_AVAIL instead.
2548 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2549 * assert the OEM[012] bits, and if it did, the driver would have to
2550 * change to handle that properly, we don't actually check for the
2552 * Device ID = 0x20 BMC on PowerEdge 8G servers
2553 * Device Revision = 0x80
2554 * Firmware Revision1 = 0x01 BMC version 1.40
2555 * Firmware Revision2 = 0x40 BCD encoded
2556 * IPMI Version = 0x51 IPMI 1.5
2557 * Manufacturer ID = A2 02 00 Dell IANA
2559 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2560 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2563 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2564 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2565 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2566 #define DELL_IANA_MFR_ID 0x0002a2
2567 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2569 struct ipmi_device_id *id = &smi_info->device_id;
2570 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2571 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2572 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2573 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2574 smi_info->oem_data_avail_handler =
2575 oem_data_avail_to_receive_msg_avail;
2576 } else if (ipmi_version_major(id) < 1 ||
2577 (ipmi_version_major(id) == 1 &&
2578 ipmi_version_minor(id) < 5)) {
2579 smi_info->oem_data_avail_handler =
2580 oem_data_avail_to_receive_msg_avail;
2585 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2586 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2588 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2590 /* Make it a reponse */
2591 msg->rsp[0] = msg->data[0] | 4;
2592 msg->rsp[1] = msg->data[1];
2593 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2595 smi_info->curr_msg = NULL;
2596 deliver_recv_msg(smi_info, msg);
2600 * dell_poweredge_bt_xaction_handler
2601 * @info - smi_info.device_id must be populated
2603 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2604 * not respond to a Get SDR command if the length of the data
2605 * requested is exactly 0x3A, which leads to command timeouts and no
2606 * data returned. This intercepts such commands, and causes userspace
2607 * callers to try again with a different-sized buffer, which succeeds.
2610 #define STORAGE_NETFN 0x0A
2611 #define STORAGE_CMD_GET_SDR 0x23
2612 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2613 unsigned long unused,
2616 struct smi_info *smi_info = in;
2617 unsigned char *data = smi_info->curr_msg->data;
2618 unsigned int size = smi_info->curr_msg->data_size;
2620 (data[0]>>2) == STORAGE_NETFN &&
2621 data[1] == STORAGE_CMD_GET_SDR &&
2623 return_hosed_msg_badsize(smi_info);
2629 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2630 .notifier_call = dell_poweredge_bt_xaction_handler,
2634 * setup_dell_poweredge_bt_xaction_handler
2635 * @info - smi_info.device_id must be filled in already
2637 * Fills in smi_info.device_id.start_transaction_pre_hook
2638 * when we know what function to use there.
2641 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2643 struct ipmi_device_id *id = &smi_info->device_id;
2644 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2645 smi_info->si_type == SI_BT)
2646 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2650 * setup_oem_data_handler
2651 * @info - smi_info.device_id must be filled in already
2653 * Fills in smi_info.device_id.oem_data_available_handler
2654 * when we know what function to use there.
2657 static void setup_oem_data_handler(struct smi_info *smi_info)
2659 setup_dell_poweredge_oem_data_handler(smi_info);
2662 static void setup_xaction_handlers(struct smi_info *smi_info)
2664 setup_dell_poweredge_bt_xaction_handler(smi_info);
2667 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2669 if (smi_info->intf) {
2671 * The timer and thread are only running if the
2672 * interface has been started up and registered.
2674 if (smi_info->thread != NULL)
2675 kthread_stop(smi_info->thread);
2676 del_timer_sync(&smi_info->si_timer);
2680 static __devinitdata struct ipmi_default_vals
2686 { .type = SI_KCS, .port = 0xca2 },
2687 { .type = SI_SMIC, .port = 0xca9 },
2688 { .type = SI_BT, .port = 0xe4 },
2692 static __devinit void default_find_bmc(void)
2694 struct smi_info *info;
2697 for (i = 0; ; i++) {
2698 if (!ipmi_defaults[i].port)
2701 if (check_legacy_ioport(ipmi_defaults[i].port))
2704 info = kzalloc(sizeof(*info), GFP_KERNEL);
2708 info->addr_source = NULL;
2710 info->si_type = ipmi_defaults[i].type;
2711 info->io_setup = port_setup;
2712 info->io.addr_data = ipmi_defaults[i].port;
2713 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2715 info->io.addr = NULL;
2716 info->io.regspacing = DEFAULT_REGSPACING;
2717 info->io.regsize = DEFAULT_REGSPACING;
2718 info->io.regshift = 0;
2720 if (try_smi_init(info) == 0) {
2722 printk(KERN_INFO "ipmi_si: Found default %s state"
2723 " machine at %s address 0x%lx\n",
2724 si_to_str[info->si_type],
2725 addr_space_to_str[info->io.addr_type],
2726 info->io.addr_data);
2732 static int is_new_interface(struct smi_info *info)
2736 list_for_each_entry(e, &smi_infos, link) {
2737 if (e->io.addr_type != info->io.addr_type)
2739 if (e->io.addr_data == info->io.addr_data)
2746 static int try_smi_init(struct smi_info *new_smi)
2751 if (new_smi->addr_source) {
2752 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2753 " machine at %s address 0x%lx, slave address 0x%x,"
2755 new_smi->addr_source,
2756 si_to_str[new_smi->si_type],
2757 addr_space_to_str[new_smi->io.addr_type],
2758 new_smi->io.addr_data,
2759 new_smi->slave_addr, new_smi->irq);
2762 mutex_lock(&smi_infos_lock);
2763 if (!is_new_interface(new_smi)) {
2764 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2769 /* So we know not to free it unless we have allocated one. */
2770 new_smi->intf = NULL;
2771 new_smi->si_sm = NULL;
2772 new_smi->handlers = NULL;
2774 switch (new_smi->si_type) {
2776 new_smi->handlers = &kcs_smi_handlers;
2780 new_smi->handlers = &smic_smi_handlers;
2784 new_smi->handlers = &bt_smi_handlers;
2788 /* No support for anything else yet. */
2793 /* Allocate the state machine's data and initialize it. */
2794 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2795 if (!new_smi->si_sm) {
2796 printk(KERN_ERR "Could not allocate state machine memory\n");
2800 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2803 /* Now that we know the I/O size, we can set up the I/O. */
2804 rv = new_smi->io_setup(new_smi);
2806 printk(KERN_ERR "Could not set up I/O space\n");
2810 spin_lock_init(&(new_smi->si_lock));
2811 spin_lock_init(&(new_smi->msg_lock));
2813 /* Do low-level detection first. */
2814 if (new_smi->handlers->detect(new_smi->si_sm)) {
2815 if (new_smi->addr_source)
2816 printk(KERN_INFO "ipmi_si: Interface detection"
2823 * Attempt a get device id command. If it fails, we probably
2824 * don't have a BMC here.
2826 rv = try_get_dev_id(new_smi);
2828 if (new_smi->addr_source)
2829 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2830 " at this location\n");
2834 setup_oem_data_handler(new_smi);
2835 setup_xaction_handlers(new_smi);
2837 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2838 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2839 new_smi->curr_msg = NULL;
2840 atomic_set(&new_smi->req_events, 0);
2841 new_smi->run_to_completion = 0;
2842 for (i = 0; i < SI_NUM_STATS; i++)
2843 atomic_set(&new_smi->stats[i], 0);
2845 new_smi->interrupt_disabled = 0;
2846 atomic_set(&new_smi->stop_operation, 0);
2847 new_smi->intf_num = smi_num;
2851 * Start clearing the flags before we enable interrupts or the
2852 * timer to avoid racing with the timer.
2854 start_clear_flags(new_smi);
2855 /* IRQ is defined to be set when non-zero. */
2857 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2859 if (!new_smi->dev) {
2861 * If we don't already have a device from something
2862 * else (like PCI), then register a new one.
2864 new_smi->pdev = platform_device_alloc("ipmi_si",
2869 " Unable to allocate platform device\n");
2872 new_smi->dev = &new_smi->pdev->dev;
2873 new_smi->dev->driver = &ipmi_driver.driver;
2875 rv = platform_device_add(new_smi->pdev);
2879 " Unable to register system interface device:"
2884 new_smi->dev_registered = 1;
2887 rv = ipmi_register_smi(&handlers,
2889 &new_smi->device_id,
2892 new_smi->slave_addr);
2895 "ipmi_si: Unable to register device: error %d\n",
2897 goto out_err_stop_timer;
2900 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2901 type_file_read_proc,
2905 "ipmi_si: Unable to create proc entry: %d\n",
2907 goto out_err_stop_timer;
2910 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2911 stat_file_read_proc,
2915 "ipmi_si: Unable to create proc entry: %d\n",
2917 goto out_err_stop_timer;
2920 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2925 "ipmi_si: Unable to create proc entry: %d\n",
2927 goto out_err_stop_timer;
2930 list_add_tail(&new_smi->link, &smi_infos);
2932 mutex_unlock(&smi_infos_lock);
2934 printk(KERN_INFO "IPMI %s interface initialized\n",
2935 si_to_str[new_smi->si_type]);
2940 atomic_inc(&new_smi->stop_operation);
2941 wait_for_timer_and_thread(new_smi);
2945 ipmi_unregister_smi(new_smi->intf);
2947 if (new_smi->irq_cleanup)
2948 new_smi->irq_cleanup(new_smi);
2951 * Wait until we know that we are out of any interrupt
2952 * handlers might have been running before we freed the
2955 synchronize_sched();
2957 if (new_smi->si_sm) {
2958 if (new_smi->handlers)
2959 new_smi->handlers->cleanup(new_smi->si_sm);
2960 kfree(new_smi->si_sm);
2962 if (new_smi->addr_source_cleanup)
2963 new_smi->addr_source_cleanup(new_smi);
2964 if (new_smi->io_cleanup)
2965 new_smi->io_cleanup(new_smi);
2967 if (new_smi->dev_registered)
2968 platform_device_unregister(new_smi->pdev);
2972 mutex_unlock(&smi_infos_lock);
2977 static __devinit int init_ipmi_si(void)
2987 /* Register the device drivers. */
2988 rv = driver_register(&ipmi_driver.driver);
2991 "init_ipmi_si: Unable to register driver: %d\n",
2997 /* Parse out the si_type string into its components. */
3000 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3002 str = strchr(str, ',');
3012 printk(KERN_INFO "IPMI System Interface driver.\n");
3014 hardcode_find_bmc();
3025 rv = pci_register_driver(&ipmi_pci_driver);
3028 "init_ipmi_si: Unable to register PCI driver: %d\n",
3032 #ifdef CONFIG_PPC_OF
3033 of_register_platform_driver(&ipmi_of_platform_driver);
3036 if (si_trydefaults) {
3037 mutex_lock(&smi_infos_lock);
3038 if (list_empty(&smi_infos)) {
3039 /* No BMC was found, try defaults. */
3040 mutex_unlock(&smi_infos_lock);
3043 mutex_unlock(&smi_infos_lock);
3047 mutex_lock(&smi_infos_lock);
3048 if (unload_when_empty && list_empty(&smi_infos)) {
3049 mutex_unlock(&smi_infos_lock);
3051 pci_unregister_driver(&ipmi_pci_driver);
3054 #ifdef CONFIG_PPC_OF
3055 of_unregister_platform_driver(&ipmi_of_platform_driver);
3057 driver_unregister(&ipmi_driver.driver);
3059 "ipmi_si: Unable to find any System Interface(s)\n");
3062 mutex_unlock(&smi_infos_lock);
3066 module_init(init_ipmi_si);
3068 static void cleanup_one_si(struct smi_info *to_clean)
3071 unsigned long flags;
3076 list_del(&to_clean->link);
3078 /* Tell the driver that we are shutting down. */
3079 atomic_inc(&to_clean->stop_operation);
3082 * Make sure the timer and thread are stopped and will not run
3085 wait_for_timer_and_thread(to_clean);
3088 * Timeouts are stopped, now make sure the interrupts are off
3089 * for the device. A little tricky with locks to make sure
3090 * there are no races.
3092 spin_lock_irqsave(&to_clean->si_lock, flags);
3093 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3094 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3096 schedule_timeout_uninterruptible(1);
3097 spin_lock_irqsave(&to_clean->si_lock, flags);
3099 disable_si_irq(to_clean);
3100 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3101 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3103 schedule_timeout_uninterruptible(1);
3106 /* Clean up interrupts and make sure that everything is done. */
3107 if (to_clean->irq_cleanup)
3108 to_clean->irq_cleanup(to_clean);
3109 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3111 schedule_timeout_uninterruptible(1);
3114 rv = ipmi_unregister_smi(to_clean->intf);
3117 "ipmi_si: Unable to unregister device: errno=%d\n",
3121 to_clean->handlers->cleanup(to_clean->si_sm);
3123 kfree(to_clean->si_sm);
3125 if (to_clean->addr_source_cleanup)
3126 to_clean->addr_source_cleanup(to_clean);
3127 if (to_clean->io_cleanup)
3128 to_clean->io_cleanup(to_clean);
3130 if (to_clean->dev_registered)
3131 platform_device_unregister(to_clean->pdev);
3136 static __exit void cleanup_ipmi_si(void)
3138 struct smi_info *e, *tmp_e;
3144 pci_unregister_driver(&ipmi_pci_driver);
3147 #ifdef CONFIG_PPC_OF
3148 of_unregister_platform_driver(&ipmi_of_platform_driver);
3151 mutex_lock(&smi_infos_lock);
3152 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3154 mutex_unlock(&smi_infos_lock);
3156 driver_unregister(&ipmi_driver.driver);
3158 module_exit(cleanup_ipmi_si);
3160 MODULE_LICENSE("GPL");
3161 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3162 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3163 " system interfaces.");