4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/version.h>
42 #include "intelfbhw.h"
45 intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
50 if (!pdev || !name || !chipset || !mobile)
53 switch (pdev->device) {
54 case PCI_DEVICE_ID_INTEL_830M:
55 *name = "Intel(R) 830M";
56 *chipset = INTEL_830M;
59 case PCI_DEVICE_ID_INTEL_845G:
60 *name = "Intel(R) 845G";
61 *chipset = INTEL_845G;
64 case PCI_DEVICE_ID_INTEL_85XGM:
67 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
68 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
69 INTEL_85X_VARIANT_MASK) {
70 case INTEL_VAR_855GME:
71 *name = "Intel(R) 855GME";
72 *chipset = INTEL_855GME;
75 *name = "Intel(R) 855GM";
76 *chipset = INTEL_855GM;
78 case INTEL_VAR_852GME:
79 *name = "Intel(R) 852GME";
80 *chipset = INTEL_852GME;
83 *name = "Intel(R) 852GM";
84 *chipset = INTEL_852GM;
87 *name = "Intel(R) 852GM/855GM";
88 *chipset = INTEL_85XGM;
92 case PCI_DEVICE_ID_INTEL_865G:
93 *name = "Intel(R) 865G";
94 *chipset = INTEL_865G;
97 case PCI_DEVICE_ID_INTEL_915G:
98 *name = "Intel(R) 915G";
99 *chipset = INTEL_915G;
108 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
111 struct pci_dev *bridge_dev;
114 if (!pdev || !aperture_size || !stolen_size)
117 /* Find the bridge device. It is always 0:0.0 */
118 if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
119 ERR_MSG("cannot find bridge device\n");
123 /* Get the fb aperture size and "stolen" memory amount. */
125 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
126 switch (pdev->device) {
127 case PCI_DEVICE_ID_INTEL_830M:
128 case PCI_DEVICE_ID_INTEL_845G:
129 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
130 *aperture_size = MB(64);
132 *aperture_size = MB(128);
133 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
134 case INTEL_830_GMCH_GMS_STOLEN_512:
135 *stolen_size = KB(512) - KB(132);
137 case INTEL_830_GMCH_GMS_STOLEN_1024:
138 *stolen_size = MB(1) - KB(132);
140 case INTEL_830_GMCH_GMS_STOLEN_8192:
141 *stolen_size = MB(8) - KB(132);
143 case INTEL_830_GMCH_GMS_LOCAL:
144 ERR_MSG("only local memory found\n");
146 case INTEL_830_GMCH_GMS_DISABLED:
147 ERR_MSG("video memory is disabled\n");
150 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
151 tmp & INTEL_830_GMCH_GMS_MASK);
156 *aperture_size = MB(128);
157 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
158 case INTEL_855_GMCH_GMS_STOLEN_1M:
159 *stolen_size = MB(1) - KB(132);
161 case INTEL_855_GMCH_GMS_STOLEN_4M:
162 *stolen_size = MB(4) - KB(132);
164 case INTEL_855_GMCH_GMS_STOLEN_8M:
165 *stolen_size = MB(8) - KB(132);
167 case INTEL_855_GMCH_GMS_STOLEN_16M:
168 *stolen_size = MB(16) - KB(132);
170 case INTEL_855_GMCH_GMS_STOLEN_32M:
171 *stolen_size = MB(32) - KB(132);
173 case INTEL_915G_GMCH_GMS_STOLEN_48M:
174 *stolen_size = MB(48) - KB(132);
176 case INTEL_915G_GMCH_GMS_STOLEN_64M:
177 *stolen_size = MB(64) - KB(132);
179 case INTEL_855_GMCH_GMS_DISABLED:
180 ERR_MSG("video memory is disabled\n");
183 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
184 tmp & INTEL_855_GMCH_GMS_MASK);
191 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
195 if (INREG(LVDS) & PORT_ENABLE)
197 if (INREG(DVOA) & PORT_ENABLE)
199 if (INREG(DVOB) & PORT_ENABLE)
201 if (INREG(DVOC) & PORT_ENABLE)
208 intelfbhw_dvo_to_string(int dvo)
212 else if (dvo & DVOB_PORT)
214 else if (dvo & DVOC_PORT)
216 else if (dvo & LVDS_PORT)
224 intelfbhw_validate_mode(struct intelfb_info *dinfo,
225 struct fb_var_screeninfo *var)
231 DBG_MSG("intelfbhw_validate_mode\n");
234 bytes_per_pixel = var->bits_per_pixel / 8;
235 if (bytes_per_pixel == 3)
238 /* Check if enough video memory. */
239 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
240 if (tmp > dinfo->fb.size) {
241 WRN_MSG("Not enough video ram for mode "
242 "(%d KByte vs %d KByte).\n",
243 BtoKB(tmp), BtoKB(dinfo->fb.size));
247 /* Check if x/y limits are OK. */
248 if (var->xres - 1 > HACTIVE_MASK) {
249 WRN_MSG("X resolution too large (%d vs %d).\n",
250 var->xres, HACTIVE_MASK + 1);
253 if (var->yres - 1 > VACTIVE_MASK) {
254 WRN_MSG("Y resolution too large (%d vs %d).\n",
255 var->yres, VACTIVE_MASK + 1);
259 /* Check for interlaced/doublescan modes. */
260 if (var->vmode & FB_VMODE_INTERLACED) {
261 WRN_MSG("Mode is interlaced.\n");
264 if (var->vmode & FB_VMODE_DOUBLE) {
265 WRN_MSG("Mode is double-scan.\n");
269 /* Check if clock is OK. */
270 tmp = 1000000000 / var->pixclock;
271 if (tmp < MIN_CLOCK) {
272 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
273 (tmp + 500) / 1000, MIN_CLOCK / 1000);
276 if (tmp > MAX_CLOCK) {
277 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
278 (tmp + 500) / 1000, MAX_CLOCK / 1000);
286 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
288 struct intelfb_info *dinfo = GET_DINFO(info);
289 u32 offset, xoffset, yoffset;
292 DBG_MSG("intelfbhw_pan_display\n");
295 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
296 yoffset = var->yoffset;
298 if ((xoffset + var->xres > var->xres_virtual) ||
299 (yoffset + var->yres > var->yres_virtual))
302 offset = (yoffset * dinfo->pitch) +
303 (xoffset * var->bits_per_pixel) / 8;
305 offset += dinfo->fb.offset << 12;
307 OUTREG(DSPABASE, offset);
312 /* Blank the screen. */
314 intelfbhw_do_blank(int blank, struct fb_info *info)
316 struct intelfb_info *dinfo = GET_DINFO(info);
320 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
323 /* Turn plane A on or off */
324 tmp = INREG(DSPACNTR);
326 tmp &= ~DISPPLANE_PLANE_ENABLE;
328 tmp |= DISPPLANE_PLANE_ENABLE;
329 OUTREG(DSPACNTR, tmp);
331 tmp = INREG(DSPABASE);
332 OUTREG(DSPABASE, tmp);
334 /* Turn off/on the HW cursor */
336 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
338 if (dinfo->cursor_on) {
340 intelfbhw_cursor_hide(dinfo);
342 intelfbhw_cursor_show(dinfo);
344 dinfo->cursor_on = 1;
346 dinfo->cursor_blanked = blank;
349 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
351 case FB_BLANK_UNBLANK:
352 case FB_BLANK_NORMAL:
355 case FB_BLANK_VSYNC_SUSPEND:
358 case FB_BLANK_HSYNC_SUSPEND:
361 case FB_BLANK_POWERDOWN:
372 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
373 unsigned red, unsigned green, unsigned blue,
377 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
378 regno, red, green, blue);
381 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
382 PALETTE_A : PALETTE_B;
384 OUTREG(palette_reg + (regno << 2),
385 (red << PALETTE_8_RED_SHIFT) |
386 (green << PALETTE_8_GREEN_SHIFT) |
387 (blue << PALETTE_8_BLUE_SHIFT));
392 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
398 DBG_MSG("intelfbhw_read_hw_state\n");
404 /* Read in as much of the HW state as possible. */
405 hw->vga0_divisor = INREG(VGA0_DIVISOR);
406 hw->vga1_divisor = INREG(VGA1_DIVISOR);
407 hw->vga_pd = INREG(VGAPD);
408 hw->dpll_a = INREG(DPLL_A);
409 hw->dpll_b = INREG(DPLL_B);
410 hw->fpa0 = INREG(FPA0);
411 hw->fpa1 = INREG(FPA1);
412 hw->fpb0 = INREG(FPB0);
413 hw->fpb1 = INREG(FPB1);
419 /* This seems to be a problem with the 852GM/855GM */
420 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
421 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
422 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
429 hw->htotal_a = INREG(HTOTAL_A);
430 hw->hblank_a = INREG(HBLANK_A);
431 hw->hsync_a = INREG(HSYNC_A);
432 hw->vtotal_a = INREG(VTOTAL_A);
433 hw->vblank_a = INREG(VBLANK_A);
434 hw->vsync_a = INREG(VSYNC_A);
435 hw->src_size_a = INREG(SRC_SIZE_A);
436 hw->bclrpat_a = INREG(BCLRPAT_A);
437 hw->htotal_b = INREG(HTOTAL_B);
438 hw->hblank_b = INREG(HBLANK_B);
439 hw->hsync_b = INREG(HSYNC_B);
440 hw->vtotal_b = INREG(VTOTAL_B);
441 hw->vblank_b = INREG(VBLANK_B);
442 hw->vsync_b = INREG(VSYNC_B);
443 hw->src_size_b = INREG(SRC_SIZE_B);
444 hw->bclrpat_b = INREG(BCLRPAT_B);
449 hw->adpa = INREG(ADPA);
450 hw->dvoa = INREG(DVOA);
451 hw->dvob = INREG(DVOB);
452 hw->dvoc = INREG(DVOC);
453 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
454 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
455 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
456 hw->lvds = INREG(LVDS);
461 hw->pipe_a_conf = INREG(PIPEACONF);
462 hw->pipe_b_conf = INREG(PIPEBCONF);
463 hw->disp_arb = INREG(DISPARB);
468 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
469 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
470 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
471 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
476 for (i = 0; i < 4; i++) {
477 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
478 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
484 hw->cursor_size = INREG(CURSOR_SIZE);
489 hw->disp_a_ctrl = INREG(DSPACNTR);
490 hw->disp_b_ctrl = INREG(DSPBCNTR);
491 hw->disp_a_base = INREG(DSPABASE);
492 hw->disp_b_base = INREG(DSPBBASE);
493 hw->disp_a_stride = INREG(DSPASTRIDE);
494 hw->disp_b_stride = INREG(DSPBSTRIDE);
499 hw->vgacntrl = INREG(VGACNTRL);
504 hw->add_id = INREG(ADD_ID);
509 for (i = 0; i < 7; i++) {
510 hw->swf0x[i] = INREG(SWF00 + (i << 2));
511 hw->swf1x[i] = INREG(SWF10 + (i << 2));
513 hw->swf3x[i] = INREG(SWF30 + (i << 2));
516 for (i = 0; i < 8; i++)
517 hw->fence[i] = INREG(FENCE + (i << 2));
519 hw->instpm = INREG(INSTPM);
520 hw->mem_mode = INREG(MEM_MODE);
521 hw->fw_blc_0 = INREG(FW_BLC_0);
522 hw->fw_blc_1 = INREG(FW_BLC_1);
529 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
532 int i, m1, m2, n, p1, p2;
534 DBG_MSG("intelfbhw_print_hw_state\n");
538 /* Read in as much of the HW state as possible. */
539 printk("hw state dump start\n");
540 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
541 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
542 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
543 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
544 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
545 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
546 if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
549 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
550 p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
551 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
553 printk(" VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
555 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
556 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
557 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
558 if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
561 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
562 p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
563 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
565 printk(" VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
567 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
568 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
569 printk(" FPA0: 0x%08x\n", hw->fpa0);
570 printk(" FPA1: 0x%08x\n", hw->fpa1);
571 printk(" FPB0: 0x%08x\n", hw->fpb0);
572 printk(" FPB1: 0x%08x\n", hw->fpb1);
574 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
575 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
576 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
577 if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
580 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
581 p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
582 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
584 printk(" PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
586 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
587 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
588 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
589 if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
592 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
593 p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
594 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
596 printk(" PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
599 printk(" PALETTE_A:\n");
600 for (i = 0; i < PALETTE_8_ENTRIES)
601 printk(" %3d: 0x%08x\n", i, hw->palette_a[i];
602 printk(" PALETTE_B:\n");
603 for (i = 0; i < PALETTE_8_ENTRIES)
604 printk(" %3d: 0x%08x\n", i, hw->palette_b[i];
607 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
608 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
609 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
610 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
611 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
612 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
613 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
614 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
615 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
616 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
617 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
618 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
619 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
620 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
621 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
622 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
624 printk(" ADPA: 0x%08x\n", hw->adpa);
625 printk(" DVOA: 0x%08x\n", hw->dvoa);
626 printk(" DVOB: 0x%08x\n", hw->dvob);
627 printk(" DVOC: 0x%08x\n", hw->dvoc);
628 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
629 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
630 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
631 printk(" LVDS: 0x%08x\n", hw->lvds);
633 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
634 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
635 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
637 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
638 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
639 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
640 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
642 printk(" CURSOR_A_PALETTE: ");
643 for (i = 0; i < 4; i++) {
644 printk("0x%08x", hw->cursor_a_palette[i]);
649 printk(" CURSOR_B_PALETTE: ");
650 for (i = 0; i < 4; i++) {
651 printk("0x%08x", hw->cursor_b_palette[i]);
657 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
659 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
660 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
661 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
662 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
663 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
664 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
666 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
667 printk(" ADD_ID: 0x%08x\n", hw->add_id);
669 for (i = 0; i < 7; i++) {
670 printk(" SWF0%d 0x%08x\n", i,
673 for (i = 0; i < 7; i++) {
674 printk(" SWF1%d 0x%08x\n", i,
677 for (i = 0; i < 3; i++) {
678 printk(" SWF3%d 0x%08x\n", i,
681 for (i = 0; i < 8; i++)
682 printk(" FENCE%d 0x%08x\n", i,
685 printk(" INSTPM 0x%08x\n", hw->instpm);
686 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
687 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
688 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
690 printk("hw state dump end\n");
694 /* Split the M parameter into M1 and M2. */
696 splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
700 m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
705 m2 = m - 5 * (m1 + 2) - 2;
706 if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
709 *retm1 = (unsigned int)m1;
710 *retm2 = (unsigned int)m2;
715 /* Split the P parameter into P1 and P2. */
717 splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
725 p1 = (p / (1 << (p2 + 1))) - 2;
726 if (p % 4 == 0 && p1 < MIN_P1) {
728 p1 = (p / (1 << (p2 + 1))) - 2;
730 if (p1 < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
733 *retp1 = (unsigned int)p1;
734 *retp2 = (unsigned int)p2;
740 calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
741 u32 *retp2, u32 *retclock)
743 u32 m1, m2, n, p1, p2, n1;
744 u32 f_vco, p, p_best = 0, m, f_out;
745 u32 err_max, err_target, err_best = 10000000;
746 u32 n_best = 0, m_best = 0, f_best, f_err;
747 u32 p_min, p_max, p_inc, div_min, div_max;
749 /* Accept 0.5% difference, but aim for 0.1% */
750 err_max = 5 * clock / 1000;
751 err_target = clock / 1000;
753 DBG_MSG("Clock is %d\n", clock);
755 div_max = MAX_VCO_FREQ / clock;
756 div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;
758 if (clock <= P_TRANSITION_CLOCK)
762 p_min = ROUND_UP_TO(div_min, p_inc);
763 p_max = ROUND_DOWN_TO(div_max, p_inc);
769 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
773 if (splitp(p, &p1, &p2)) {
774 WRN_MSG("cannot split p = %d\n", p);
782 m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
787 f_out = CALC_VCLOCK3(m, n, p);
788 if (splitm(m, &m1, &m2)) {
789 WRN_MSG("cannot split m = %d\n", m);
794 f_err = clock - f_out;
796 f_err = f_out - clock;
798 if (f_err < err_best) {
806 } while ((n <= MAX_N) && (f_out >= clock));
808 } while ((p <= p_max));
811 WRN_MSG("cannot find parameters for clock %d\n", clock);
821 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
822 "f: %d (%d), VCO: %d\n",
823 m, m1, m2, n, n1, p, p1, p2,
824 CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
825 CALC_VCLOCK3(m, n, p) * p);
831 *retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
836 static __inline__ int
837 check_overflow(u32 value, u32 limit, const char *description)
840 WRN_MSG("%s value %d exceeds limit %d\n",
841 description, value, limit);
847 /* It is assumed that hw is filled in with the initial state information. */
849 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
850 struct fb_var_screeninfo *var)
853 u32 *dpll, *fp0, *fp1;
854 u32 m1, m2, n, p1, p2, clock_target, clock;
855 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
856 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
857 u32 vsync_pol, hsync_pol;
858 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
860 DBG_MSG("intelfbhw_mode_to_hw\n");
863 hw->vgacntrl |= VGA_DISABLE;
865 /* Check whether pipe A or pipe B is enabled. */
866 if (hw->pipe_a_conf & PIPECONF_ENABLE)
868 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
871 /* Set which pipe's registers will be set. */
872 if (pipe == PIPE_B) {
882 ss = &hw->src_size_b;
883 pipe_conf = &hw->pipe_b_conf;
894 ss = &hw->src_size_a;
895 pipe_conf = &hw->pipe_a_conf;
898 /* Use ADPA register for sync control. */
899 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
902 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
903 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
904 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
905 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
906 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
907 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
908 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
909 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
911 /* Connect correct pipe to the analog port DAC */
912 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
913 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
915 /* Set DPMS state to D0 (on) */
916 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
917 hw->adpa |= ADPA_DPMS_D0;
919 hw->adpa |= ADPA_DAC_ENABLE;
921 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
922 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
923 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
925 /* Desired clock in kHz */
926 clock_target = 1000000000 / var->pixclock;
928 if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
929 WRN_MSG("calc_pll_params failed\n");
933 /* Check for overflow. */
934 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
936 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
938 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
940 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
942 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
945 *dpll &= ~DPLL_P1_FORCE_DIV2;
946 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
947 (DPLL_P1_MASK << DPLL_P1_SHIFT));
948 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
949 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
950 (m1 << FP_M1_DIVISOR_SHIFT) |
951 (m2 << FP_M2_DIVISOR_SHIFT);
954 hw->dvob &= ~PORT_ENABLE;
955 hw->dvoc &= ~PORT_ENABLE;
957 /* Use display plane A. */
958 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
959 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
960 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
961 switch (intelfb_var_to_depth(var)) {
963 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
966 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
969 hw->disp_a_ctrl |= DISPPLANE_16BPP;
972 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
975 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
976 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
978 /* Set CRTC registers. */
980 hsync_start = hactive + var->right_margin;
981 hsync_end = hsync_start + var->hsync_len;
982 htotal = hsync_end + var->left_margin;
983 hblank_start = hactive;
986 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
987 hactive, hsync_start, hsync_end, htotal, hblank_start,
991 vsync_start = vactive + var->lower_margin;
992 vsync_end = vsync_start + var->vsync_len;
993 vtotal = vsync_end + var->upper_margin;
994 vblank_start = vactive;
996 vblank_end = vsync_end + 1;
998 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
999 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1002 /* Adjust for register values, and check for overflow. */
1004 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1007 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1010 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1013 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1016 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1019 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1023 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1026 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1029 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1032 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1035 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1038 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1041 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1042 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1043 (hblank_end << HSYNCEND_SHIFT);
1044 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1046 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1047 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1048 (vblank_end << VSYNCEND_SHIFT);
1049 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1050 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1051 (vactive << SRC_SIZE_VERT_SHIFT);
1053 hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1054 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1056 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1057 var->xoffset * var->bits_per_pixel / 8;
1059 hw->disp_a_base += dinfo->fb.offset << 12;
1061 /* Check stride alignment. */
1062 if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1063 WRN_MSG("display stride %d has bad alignment %d\n",
1064 hw->disp_a_stride, STRIDE_ALIGNMENT);
1068 /* Set the palette to 8-bit mode. */
1069 *pipe_conf &= ~PIPECONF_GAMMA;
1073 /* Program a (non-VGA) video mode. */
1075 intelfbhw_program_mode(struct intelfb_info *dinfo,
1076 const struct intelfb_hwstate *hw, int blank)
1080 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1081 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1082 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1083 u32 hsync_reg, htotal_reg, hblank_reg;
1084 u32 vsync_reg, vtotal_reg, vblank_reg;
1087 /* Assume single pipe, display plane A, analog CRT. */
1090 DBG_MSG("intelfbhw_program_mode\n");
1094 tmp = INREG(VGACNTRL);
1096 OUTREG(VGACNTRL, tmp);
1098 /* Check whether pipe A or pipe B is enabled. */
1099 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1101 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1106 if (pipe == PIPE_B) {
1110 pipe_conf = &hw->pipe_b_conf;
1117 ss = &hw->src_size_b;
1121 pipe_conf_reg = PIPEBCONF;
1122 hsync_reg = HSYNC_B;
1123 htotal_reg = HTOTAL_B;
1124 hblank_reg = HBLANK_B;
1125 vsync_reg = VSYNC_B;
1126 vtotal_reg = VTOTAL_B;
1127 vblank_reg = VBLANK_B;
1128 src_size_reg = SRC_SIZE_B;
1133 pipe_conf = &hw->pipe_a_conf;
1140 ss = &hw->src_size_a;
1144 pipe_conf_reg = PIPEACONF;
1145 hsync_reg = HSYNC_A;
1146 htotal_reg = HTOTAL_A;
1147 hblank_reg = HBLANK_A;
1148 vsync_reg = VSYNC_A;
1149 vtotal_reg = VTOTAL_A;
1150 vblank_reg = VBLANK_A;
1151 src_size_reg = SRC_SIZE_A;
1154 /* Disable planes A and B. */
1155 tmp = INREG(DSPACNTR);
1156 tmp &= ~DISPPLANE_PLANE_ENABLE;
1157 OUTREG(DSPACNTR, tmp);
1158 tmp = INREG(DSPBCNTR);
1159 tmp &= ~DISPPLANE_PLANE_ENABLE;
1160 OUTREG(DSPBCNTR, tmp);
1162 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1167 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1168 tmp |= ADPA_DPMS_D3;
1172 tmp = INREG(pipe_conf_reg);
1173 tmp &= ~PIPECONF_ENABLE;
1174 OUTREG(pipe_conf_reg, tmp);
1177 tmp = INREG(dpll_reg);
1178 dpll_reg &= ~DPLL_VCO_ENABLE;
1179 OUTREG(dpll_reg, tmp);
1181 /* Set PLL parameters */
1182 OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1183 OUTREG(fp0_reg, *fp0);
1184 OUTREG(fp1_reg, *fp1);
1186 /* Set pipe parameters */
1187 OUTREG(hsync_reg, *hs);
1188 OUTREG(hblank_reg, *hb);
1189 OUTREG(htotal_reg, *ht);
1190 OUTREG(vsync_reg, *vs);
1191 OUTREG(vblank_reg, *vb);
1192 OUTREG(vtotal_reg, *vt);
1193 OUTREG(src_size_reg, *ss);
1196 OUTREG(DVOB, hw->dvob);
1197 OUTREG(DVOC, hw->dvoc);
1200 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1203 tmp = INREG(dpll_reg);
1204 tmp |= DPLL_VCO_ENABLE;
1205 OUTREG(dpll_reg, tmp);
1208 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1212 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1213 tmp |= ADPA_DPMS_D0;
1216 /* setup display plane */
1217 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1219 * i830M errata: the display plane must be enabled
1220 * to allow writes to the other bits in the plane
1223 tmp = INREG(DSPACNTR);
1224 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1225 tmp |= DISPPLANE_PLANE_ENABLE;
1226 OUTREG(DSPACNTR, tmp);
1228 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1233 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1234 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1235 OUTREG(DSPABASE, hw->disp_a_base);
1239 tmp = INREG(DSPACNTR);
1240 tmp |= DISPPLANE_PLANE_ENABLE;
1241 OUTREG(DSPACNTR, tmp);
1242 OUTREG(DSPABASE, hw->disp_a_base);
1248 /* forward declarations */
1249 static void refresh_ring(struct intelfb_info *dinfo);
1250 static void reset_state(struct intelfb_info *dinfo);
1251 static void do_flush(struct intelfb_info *dinfo);
1254 wait_ring(struct intelfb_info *dinfo, int n)
1258 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1261 DBG_MSG("wait_ring: %d\n", n);
1264 end = jiffies + (HZ * 3);
1265 while (dinfo->ring_space < n) {
1266 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1268 if (dinfo->ring_tail + RING_MIN_FREE <
1269 (u32 __iomem) dinfo->ring_head)
1270 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1271 - (dinfo->ring_tail + RING_MIN_FREE);
1273 dinfo->ring_space = (dinfo->ring.size +
1274 (u32 __iomem) dinfo->ring_head)
1275 - (dinfo->ring_tail + RING_MIN_FREE);
1276 if ((u32 __iomem) dinfo->ring_head != last_head) {
1277 end = jiffies + (HZ * 3);
1278 last_head = (u32 __iomem) dinfo->ring_head;
1281 if (time_before(end, jiffies)) {
1285 refresh_ring(dinfo);
1287 end = jiffies + (HZ * 3);
1290 WRN_MSG("ring buffer : space: %d wanted %d\n",
1291 dinfo->ring_space, n);
1292 WRN_MSG("lockup - turning off hardware "
1294 dinfo->ring_lockup = 1;
1304 do_flush(struct intelfb_info *dinfo) {
1306 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1312 intelfbhw_do_sync(struct intelfb_info *dinfo)
1315 DBG_MSG("intelfbhw_do_sync\n");
1322 * Send a flush, then wait until the ring is empty. This is what
1323 * the XFree86 driver does, and actually it doesn't seem a lot worse
1324 * than the recommended method (both have problems).
1327 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1328 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1332 refresh_ring(struct intelfb_info *dinfo)
1335 DBG_MSG("refresh_ring\n");
1338 dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1340 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1341 if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1342 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1343 - (dinfo->ring_tail + RING_MIN_FREE);
1345 dinfo->ring_space = (dinfo->ring.size +
1346 (u32 __iomem) dinfo->ring_head)
1347 - (dinfo->ring_tail + RING_MIN_FREE);
1351 reset_state(struct intelfb_info *dinfo)
1357 DBG_MSG("reset_state\n");
1360 for (i = 0; i < FENCE_NUM; i++)
1361 OUTREG(FENCE + (i << 2), 0);
1363 /* Flush the ring buffer if it's enabled. */
1364 tmp = INREG(PRI_RING_LENGTH);
1365 if (tmp & RING_ENABLE) {
1367 DBG_MSG("reset_state: ring was enabled\n");
1369 refresh_ring(dinfo);
1370 intelfbhw_do_sync(dinfo);
1374 OUTREG(PRI_RING_LENGTH, 0);
1375 OUTREG(PRI_RING_HEAD, 0);
1376 OUTREG(PRI_RING_TAIL, 0);
1377 OUTREG(PRI_RING_START, 0);
1380 /* Stop the 2D engine, and turn off the ring buffer. */
1382 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1385 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1386 dinfo->ring_active);
1392 dinfo->ring_active = 0;
1397 * Enable the ring buffer, and initialise the 2D engine.
1398 * It is assumed that the graphics engine has been stopped by previously
1399 * calling intelfb_2d_stop().
1402 intelfbhw_2d_start(struct intelfb_info *dinfo)
1405 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1406 dinfo->accel, dinfo->ring_active);
1412 /* Initialise the primary ring buffer. */
1413 OUTREG(PRI_RING_LENGTH, 0);
1414 OUTREG(PRI_RING_TAIL, 0);
1415 OUTREG(PRI_RING_HEAD, 0);
1417 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1418 OUTREG(PRI_RING_LENGTH,
1419 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1420 RING_NO_REPORT | RING_ENABLE);
1421 refresh_ring(dinfo);
1422 dinfo->ring_active = 1;
1425 /* 2D fillrect (solid fill or invert) */
1427 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1428 u32 color, u32 pitch, u32 bpp, u32 rop)
1430 u32 br00, br09, br13, br14, br16;
1433 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1434 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1437 br00 = COLOR_BLT_CMD;
1438 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1439 br13 = (rop << ROP_SHIFT) | pitch;
1440 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1445 br13 |= COLOR_DEPTH_8;
1448 br13 |= COLOR_DEPTH_16;
1451 br13 |= COLOR_DEPTH_32;
1452 br00 |= WRITE_ALPHA | WRITE_RGB;
1466 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1467 dinfo->ring_tail, dinfo->ring_space);
1472 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1473 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1475 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1478 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1479 curx, cury, dstx, dsty, w, h, pitch, bpp);
1482 br00 = XY_SRC_COPY_BLT_CMD;
1483 br09 = dinfo->fb_start;
1484 br11 = (pitch << PITCH_SHIFT);
1485 br12 = dinfo->fb_start;
1486 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1487 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1488 br23 = ((dstx + w) << WIDTH_SHIFT) |
1489 ((dsty + h) << HEIGHT_SHIFT);
1490 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1494 br13 |= COLOR_DEPTH_8;
1497 br13 |= COLOR_DEPTH_16;
1500 br13 |= COLOR_DEPTH_32;
1501 br00 |= WRITE_ALPHA | WRITE_RGB;
1518 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1519 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1521 int nbytes, ndwords, pad, tmp;
1522 u32 br00, br09, br13, br18, br19, br22, br23;
1523 int dat, ix, iy, iw;
1527 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1530 /* size in bytes of a padded scanline */
1531 nbytes = ROUND_UP_TO(w, 16) / 8;
1533 /* Total bytes of padded scanline data to write out. */
1534 nbytes = nbytes * h;
1537 * Check if the glyph data exceeds the immediate mode limit.
1538 * It would take a large font (1K pixels) to hit this limit.
1540 if (nbytes > MAX_MONO_IMM_SIZE)
1543 /* Src data is packaged a dword (32-bit) at a time. */
1544 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1547 * Ring has to be padded to a quad word. But because the command starts
1548 with 7 bytes, pad only if there is an even number of ndwords
1550 pad = !(ndwords % 2);
1552 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1553 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1554 br09 = dinfo->fb_start;
1555 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1558 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1559 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1563 br13 |= COLOR_DEPTH_8;
1566 br13 |= COLOR_DEPTH_16;
1569 br13 |= COLOR_DEPTH_32;
1570 br00 |= WRITE_ALPHA | WRITE_RGB;
1574 START_RING(8 + ndwords);
1583 iw = ROUND_UP_TO(w, 8) / 8;
1586 for (j = 0; j < 2; ++j) {
1587 for (i = 0; i < 2; ++i) {
1588 if (ix != iw || i == 0)
1589 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1591 if (ix == iw && iy != (h-1)) {
1605 /* HW cursor functions. */
1607 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1612 DBG_MSG("intelfbhw_cursor_init\n");
1615 if (dinfo->mobile) {
1616 if (!dinfo->cursor.physical)
1618 tmp = INREG(CURSOR_A_CONTROL);
1619 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1620 CURSOR_MEM_TYPE_LOCAL |
1621 (1 << CURSOR_PIPE_SELECT_SHIFT));
1622 tmp |= CURSOR_MODE_DISABLE;
1623 OUTREG(CURSOR_A_CONTROL, tmp);
1624 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1626 tmp = INREG(CURSOR_CONTROL);
1627 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1628 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1629 tmp = CURSOR_FORMAT_3C;
1630 OUTREG(CURSOR_CONTROL, tmp);
1631 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1632 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1633 (64 << CURSOR_SIZE_V_SHIFT);
1634 OUTREG(CURSOR_SIZE, tmp);
1639 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1644 DBG_MSG("intelfbhw_cursor_hide\n");
1647 dinfo->cursor_on = 0;
1648 if (dinfo->mobile) {
1649 if (!dinfo->cursor.physical)
1651 tmp = INREG(CURSOR_A_CONTROL);
1652 tmp &= ~CURSOR_MODE_MASK;
1653 tmp |= CURSOR_MODE_DISABLE;
1654 OUTREG(CURSOR_A_CONTROL, tmp);
1656 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1658 tmp = INREG(CURSOR_CONTROL);
1659 tmp &= ~CURSOR_ENABLE;
1660 OUTREG(CURSOR_CONTROL, tmp);
1665 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1670 DBG_MSG("intelfbhw_cursor_show\n");
1673 dinfo->cursor_on = 1;
1675 if (dinfo->cursor_blanked)
1678 if (dinfo->mobile) {
1679 if (!dinfo->cursor.physical)
1681 tmp = INREG(CURSOR_A_CONTROL);
1682 tmp &= ~CURSOR_MODE_MASK;
1683 tmp |= CURSOR_MODE_64_4C_AX;
1684 OUTREG(CURSOR_A_CONTROL, tmp);
1686 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1688 tmp = INREG(CURSOR_CONTROL);
1689 tmp |= CURSOR_ENABLE;
1690 OUTREG(CURSOR_CONTROL, tmp);
1695 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1700 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1704 * Sets the position. The coordinates are assumed to already
1705 * have any offset adjusted. Assume that the cursor is never
1706 * completely off-screen, and that x, y are always >= 0.
1709 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1710 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1711 OUTREG(CURSOR_A_POSITION, tmp);
1715 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1718 DBG_MSG("intelfbhw_cursor_setcolor\n");
1721 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1722 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1723 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1724 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1728 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1731 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1732 int i, j, w = width / 8;
1733 int mod = width % 8, t_mask, d_mask;
1736 DBG_MSG("intelfbhw_cursor_load\n");
1739 if (!dinfo->cursor.virtual)
1742 t_mask = 0xff >> mod;
1743 d_mask = ~(0xff >> mod);
1744 for (i = height; i--; ) {
1745 for (j = 0; j < w; j++) {
1746 writeb(0x00, addr + j);
1747 writeb(*(data++), addr + j+8);
1750 writeb(t_mask, addr + j);
1751 writeb(*(data++) & d_mask, addr + j+8);
1758 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1759 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1763 DBG_MSG("intelfbhw_cursor_reset\n");
1766 if (!dinfo->cursor.virtual)
1769 for (i = 64; i--; ) {
1770 for (j = 0; j < 8; j++) {
1771 writeb(0xff, addr + j+0);
1772 writeb(0x00, addr + j+8);