x86: change var types in __inquire_remote_apic
[linux-2.6] / arch / x86 / kernel / irq_32.c
1 /*
2  *      Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3  *
4  * This file contains the lowest level x86-specific interrupt
5  * entry, irq-stacks and irq statistics code. All the remaining
6  * irq logic is done by the generic kernel/irq/ code and
7  * by the x86-specific irq controller code. (e.g. i8259.c and
8  * io_apic.c.)
9  */
10
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27
28 /*
29  * 'what should we do if we get a hw irq event on an illegal vector'.
30  * each architecture has to answer this themselves.
31  */
32 void ack_bad_irq(unsigned int irq)
33 {
34         printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37         /*
38          * Currently unexpected vectors happen only on SMP and APIC.
39          * We _must_ ack these because every local APIC has only N
40          * irq slots per priority level, and a 'hanging, unacked' IRQ
41          * holds up an irq slot - in excessive cases (when multiple
42          * unexpected vectors occur) that might lock up the APIC
43          * completely.
44          * But only ack when the APIC is enabled -AK
45          */
46         if (cpu_has_apic)
47                 ack_APIC_irq();
48 #endif
49 }
50
51 #ifdef CONFIG_4KSTACKS
52 /*
53  * per-CPU IRQ handling contexts (thread information and stack)
54  */
55 union irq_ctx {
56         struct thread_info      tinfo;
57         u32                     stack[THREAD_SIZE/sizeof(u32)];
58 };
59
60 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
61 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
62 #endif
63
64 /*
65  * do_IRQ handles all normal device IRQ's (the special
66  * SMP cross-CPU interrupts have their own specific
67  * handlers).
68  */
69 unsigned int do_IRQ(struct pt_regs *regs)
70 {       
71         struct pt_regs *old_regs;
72         /* high bit used in ret_from_ code */
73         int irq = ~regs->orig_ax;
74         struct irq_desc *desc = irq_desc + irq;
75 #ifdef CONFIG_4KSTACKS
76         union irq_ctx *curctx, *irqctx;
77         u32 *isp;
78 #endif
79
80         if (unlikely((unsigned)irq >= NR_IRQS)) {
81                 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
82                                         __func__, irq);
83                 BUG();
84         }
85
86         old_regs = set_irq_regs(regs);
87         irq_enter();
88 #ifdef CONFIG_DEBUG_STACKOVERFLOW
89         /* Debugging check for stack overflow: is there less than 1KB free? */
90         {
91                 long sp;
92
93                 __asm__ __volatile__("andl %%esp,%0" :
94                                         "=r" (sp) : "0" (THREAD_SIZE - 1));
95                 if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
96                         printk("do_IRQ: stack overflow: %ld\n",
97                                 sp - sizeof(struct thread_info));
98                         dump_stack();
99                 }
100         }
101 #endif
102
103 #ifdef CONFIG_4KSTACKS
104
105         curctx = (union irq_ctx *) current_thread_info();
106         irqctx = hardirq_ctx[smp_processor_id()];
107
108         /*
109          * this is where we switch to the IRQ stack. However, if we are
110          * already using the IRQ stack (because we interrupted a hardirq
111          * handler) we can't do that and just have to keep using the
112          * current stack (which is the irq stack already after all)
113          */
114         if (curctx != irqctx) {
115                 int arg1, arg2, bx;
116
117                 /* build the stack frame on the IRQ stack */
118                 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
119                 irqctx->tinfo.task = curctx->tinfo.task;
120                 irqctx->tinfo.previous_esp = current_stack_pointer;
121
122                 /*
123                  * Copy the softirq bits in preempt_count so that the
124                  * softirq checks work in the hardirq context.
125                  */
126                 irqctx->tinfo.preempt_count =
127                         (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
128                         (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
129
130                 asm volatile(
131                         "       xchgl  %%ebx,%%esp    \n"
132                         "       call   *%%edi         \n"
133                         "       movl   %%ebx,%%esp    \n"
134                         : "=a" (arg1), "=d" (arg2), "=b" (bx)
135                         :  "0" (irq),   "1" (desc),  "2" (isp),
136                            "D" (desc->handle_irq)
137                         : "memory", "cc"
138                 );
139         } else
140 #endif
141                 desc->handle_irq(irq, desc);
142
143         irq_exit();
144         set_irq_regs(old_regs);
145         return 1;
146 }
147
148 #ifdef CONFIG_4KSTACKS
149
150 static char softirq_stack[NR_CPUS * THREAD_SIZE]
151                 __attribute__((__section__(".bss.page_aligned")));
152
153 static char hardirq_stack[NR_CPUS * THREAD_SIZE]
154                 __attribute__((__section__(".bss.page_aligned")));
155
156 /*
157  * allocate per-cpu stacks for hardirq and for softirq processing
158  */
159 void irq_ctx_init(int cpu)
160 {
161         union irq_ctx *irqctx;
162
163         if (hardirq_ctx[cpu])
164                 return;
165
166         irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
167         irqctx->tinfo.task              = NULL;
168         irqctx->tinfo.exec_domain       = NULL;
169         irqctx->tinfo.cpu               = cpu;
170         irqctx->tinfo.preempt_count     = HARDIRQ_OFFSET;
171         irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);
172
173         hardirq_ctx[cpu] = irqctx;
174
175         irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
176         irqctx->tinfo.task              = NULL;
177         irqctx->tinfo.exec_domain       = NULL;
178         irqctx->tinfo.cpu               = cpu;
179         irqctx->tinfo.preempt_count     = 0;
180         irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);
181
182         softirq_ctx[cpu] = irqctx;
183
184         printk("CPU %u irqstacks, hard=%p soft=%p\n",
185                 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
186 }
187
188 void irq_ctx_exit(int cpu)
189 {
190         hardirq_ctx[cpu] = NULL;
191 }
192
193 extern asmlinkage void __do_softirq(void);
194
195 asmlinkage void do_softirq(void)
196 {
197         unsigned long flags;
198         struct thread_info *curctx;
199         union irq_ctx *irqctx;
200         u32 *isp;
201
202         if (in_interrupt())
203                 return;
204
205         local_irq_save(flags);
206
207         if (local_softirq_pending()) {
208                 curctx = current_thread_info();
209                 irqctx = softirq_ctx[smp_processor_id()];
210                 irqctx->tinfo.task = curctx->task;
211                 irqctx->tinfo.previous_esp = current_stack_pointer;
212
213                 /* build the stack frame on the softirq stack */
214                 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
215
216                 asm volatile(
217                         "       xchgl   %%ebx,%%esp     \n"
218                         "       call    __do_softirq    \n"
219                         "       movl    %%ebx,%%esp     \n"
220                         : "=b"(isp)
221                         : "0"(isp)
222                         : "memory", "cc", "edx", "ecx", "eax"
223                 );
224                 /*
225                  * Shouldnt happen, we returned above if in_interrupt():
226                  */
227                 WARN_ON_ONCE(softirq_count());
228         }
229
230         local_irq_restore(flags);
231 }
232 #endif
233
234 /*
235  * Interrupt statistics:
236  */
237
238 atomic_t irq_err_count;
239
240 /*
241  * /proc/interrupts printing:
242  */
243
244 int show_interrupts(struct seq_file *p, void *v)
245 {
246         int i = *(loff_t *) v, j;
247         struct irqaction * action;
248         unsigned long flags;
249
250         if (i == 0) {
251                 seq_printf(p, "           ");
252                 for_each_online_cpu(j)
253                         seq_printf(p, "CPU%-8d",j);
254                 seq_putc(p, '\n');
255         }
256
257         if (i < NR_IRQS) {
258                 unsigned any_count = 0;
259
260                 spin_lock_irqsave(&irq_desc[i].lock, flags);
261 #ifndef CONFIG_SMP
262                 any_count = kstat_irqs(i);
263 #else
264                 for_each_online_cpu(j)
265                         any_count |= kstat_cpu(j).irqs[i];
266 #endif
267                 action = irq_desc[i].action;
268                 if (!action && !any_count)
269                         goto skip;
270                 seq_printf(p, "%3d: ",i);
271 #ifndef CONFIG_SMP
272                 seq_printf(p, "%10u ", kstat_irqs(i));
273 #else
274                 for_each_online_cpu(j)
275                         seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
276 #endif
277                 seq_printf(p, " %8s", irq_desc[i].chip->name);
278                 seq_printf(p, "-%-8s", irq_desc[i].name);
279
280                 if (action) {
281                         seq_printf(p, "  %s", action->name);
282                         while ((action = action->next) != NULL)
283                                 seq_printf(p, ", %s", action->name);
284                 }
285
286                 seq_putc(p, '\n');
287 skip:
288                 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
289         } else if (i == NR_IRQS) {
290                 seq_printf(p, "NMI: ");
291                 for_each_online_cpu(j)
292                         seq_printf(p, "%10u ", nmi_count(j));
293                 seq_printf(p, "  Non-maskable interrupts\n");
294 #ifdef CONFIG_X86_LOCAL_APIC
295                 seq_printf(p, "LOC: ");
296                 for_each_online_cpu(j)
297                         seq_printf(p, "%10u ",
298                                 per_cpu(irq_stat,j).apic_timer_irqs);
299                 seq_printf(p, "  Local timer interrupts\n");
300 #endif
301 #ifdef CONFIG_SMP
302                 seq_printf(p, "RES: ");
303                 for_each_online_cpu(j)
304                         seq_printf(p, "%10u ",
305                                 per_cpu(irq_stat,j).irq_resched_count);
306                 seq_printf(p, "  Rescheduling interrupts\n");
307                 seq_printf(p, "CAL: ");
308                 for_each_online_cpu(j)
309                         seq_printf(p, "%10u ",
310                                 per_cpu(irq_stat,j).irq_call_count);
311                 seq_printf(p, "  function call interrupts\n");
312                 seq_printf(p, "TLB: ");
313                 for_each_online_cpu(j)
314                         seq_printf(p, "%10u ",
315                                 per_cpu(irq_stat,j).irq_tlb_count);
316                 seq_printf(p, "  TLB shootdowns\n");
317 #endif
318                 seq_printf(p, "TRM: ");
319                 for_each_online_cpu(j)
320                         seq_printf(p, "%10u ",
321                                 per_cpu(irq_stat,j).irq_thermal_count);
322                 seq_printf(p, "  Thermal event interrupts\n");
323                 seq_printf(p, "SPU: ");
324                 for_each_online_cpu(j)
325                         seq_printf(p, "%10u ",
326                                 per_cpu(irq_stat,j).irq_spurious_count);
327                 seq_printf(p, "  Spurious interrupts\n");
328                 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
329 #if defined(CONFIG_X86_IO_APIC)
330                 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
331 #endif
332         }
333         return 0;
334 }
335
336 #ifdef CONFIG_HOTPLUG_CPU
337 #include <mach_apic.h>
338
339 void fixup_irqs(cpumask_t map)
340 {
341         unsigned int irq;
342         static int warned;
343
344         for (irq = 0; irq < NR_IRQS; irq++) {
345                 cpumask_t mask;
346                 if (irq == 2)
347                         continue;
348
349                 cpus_and(mask, irq_desc[irq].affinity, map);
350                 if (any_online_cpu(mask) == NR_CPUS) {
351                         printk("Breaking affinity for irq %i\n", irq);
352                         mask = map;
353                 }
354                 if (irq_desc[irq].chip->set_affinity)
355                         irq_desc[irq].chip->set_affinity(irq, mask);
356                 else if (irq_desc[irq].action && !(warned++))
357                         printk("Cannot set affinity for irq %i\n", irq);
358         }
359
360 #if 0
361         barrier();
362         /* Ingo Molnar says: "after the IO-APIC masks have been redirected
363            [note the nop - the interrupt-enable boundary on x86 is two
364            instructions from sti] - to flush out pending hardirqs and
365            IPIs. After this point nothing is supposed to reach this CPU." */
366         __asm__ __volatile__("sti; nop; cli");
367         barrier();
368 #else
369         /* That doesn't seem sufficient.  Give it 1ms. */
370         local_irq_enable();
371         mdelay(1);
372         local_irq_disable();
373 #endif
374 }
375 #endif
376