1 /* Driver for SanDisk SDDR-09 SmartMedia reader
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 * Known vendor commands: 12 bytes, first byte is opcode
32 * E7: read scatter gather
40 * EF: compute checksum (?)
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
52 #include "transport.h"
57 static int usb_stor_sddr09_dpcm_init(struct us_data *us);
58 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
59 static int usb_stor_sddr09_init(struct us_data *us);
63 * The table of devices
65 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
66 vendorName, productName, useProtocol, useTransport, \
67 initFunction, flags) \
68 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
69 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
71 struct usb_device_id sddr09_usb_ids[] = {
72 # include "unusual_sddr09.h"
73 { } /* Terminating entry */
75 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
82 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
83 vendor_name, product_name, use_protocol, use_transport, \
84 init_function, Flags) \
86 .vendorName = vendor_name, \
87 .productName = product_name, \
88 .useProtocol = use_protocol, \
89 .useTransport = use_transport, \
90 .initFunction = init_function, \
93 static struct us_unusual_dev sddr09_unusual_dev_list[] = {
94 # include "unusual_sddr09.h"
95 { } /* Terminating entry */
101 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
102 #define LSB_of(s) ((s)&0xFF)
103 #define MSB_of(s) ((s)>>8)
105 /* #define US_DEBUGP printk */
108 * First some stuff that does not belong here:
109 * data on SmartMedia and other cards, completely
110 * unrelated to this driver.
111 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
114 struct nand_flash_dev {
116 int chipshift; /* 1<<cs bytes total capacity */
117 char pageshift; /* 1<<ps bytes in a page */
118 char blockshift; /* 1<<bs pages in an erase block */
119 char zoneshift; /* 1<<zs blocks in a zone */
120 /* # of logical blocks is 125/128 of this */
121 char pageadrlen; /* length of an address in bytes - 1 */
125 * NAND Flash Manufacturer ID Codes
127 #define NAND_MFR_AMD 0x01
128 #define NAND_MFR_NATSEMI 0x8f
129 #define NAND_MFR_TOSHIBA 0x98
130 #define NAND_MFR_SAMSUNG 0xec
132 static inline char *nand_flash_manufacturer(int manuf_id) {
136 case NAND_MFR_NATSEMI:
138 case NAND_MFR_TOSHIBA:
140 case NAND_MFR_SAMSUNG:
148 * It looks like it is unnecessary to attach manufacturer to the
149 * remaining data: SSFDC prescribes manufacturer-independent id codes.
151 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
154 static struct nand_flash_dev nand_flash_ids[] = {
156 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
157 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
158 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
159 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
160 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
161 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
162 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
163 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
164 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
165 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
166 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
167 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
168 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
171 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
172 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
173 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
174 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
175 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
179 static struct nand_flash_dev *
180 nand_find_id(unsigned char id) {
183 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
184 if (nand_flash_ids[i].model_id == id)
185 return &(nand_flash_ids[i]);
192 static unsigned char parity[256];
193 static unsigned char ecc2[256];
195 static void nand_init_ecc(void) {
199 for (i = 1; i < 256; i++)
200 parity[i] = (parity[i&(i-1)] ^ 1);
202 for (i = 0; i < 256; i++) {
204 for (j = 0; j < 8; j++) {
214 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
218 /* compute 3-byte ecc on 256 bytes */
219 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
221 unsigned char par, bit, bits[8];
224 for (j = 0; j < 8; j++)
227 /* collect 16 checksum bits */
228 for (i = 0; i < 256; i++) {
230 bit = parity[data[i]];
231 for (j = 0; j < 8; j++)
232 if ((i & (1<<j)) == 0)
236 /* put 4+4+4 = 12 bits in the ecc */
237 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
238 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
241 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
246 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
247 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
250 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
251 memcpy(data, ecc, 3);
255 * The actual driver starts here.
258 struct sddr09_card_info {
259 unsigned long capacity; /* Size of card in bytes */
260 int pagesize; /* Size of page in bytes */
261 int pageshift; /* log2 of pagesize */
262 int blocksize; /* Size of block in pages */
263 int blockshift; /* log2 of blocksize */
264 int blockmask; /* 2^blockshift - 1 */
265 int *lba_to_pba; /* logical to physical map */
266 int *pba_to_lba; /* physical to logical map */
267 int lbact; /* number of available pages */
269 #define SDDR09_WP 1 /* write protected */
273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
275 * so the reader makes up the remaining 48. Don't know whether these numbers
276 * depend on the card. For now a constant.
278 #define CONTROL_SHIFT 6
281 * On my Combo CF/SM reader, the SM reader has LUN 1.
282 * (and things fail with LUN 0).
283 * It seems LUN is irrelevant for others.
286 #define LUNBITS (LUN << 5)
289 * LBA and PBA are unsigned ints. Special values.
291 #define UNDEF 0xffffffff
292 #define SPARE 0xfffffffe
293 #define UNUSABLE 0xfffffffd
295 static const int erase_bad_lba_entries = 0;
297 /* send vendor interface command (0x41) */
298 /* called for requests 0, 1, 8 */
300 sddr09_send_command(struct us_data *us,
301 unsigned char request,
302 unsigned char direction,
303 unsigned char *xfer_data,
304 unsigned int xfer_len) {
306 unsigned char requesttype = (0x41 | direction);
309 // Get the receive or send control pipe number
311 if (direction == USB_DIR_IN)
312 pipe = us->recv_ctrl_pipe;
314 pipe = us->send_ctrl_pipe;
316 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
317 0, 0, xfer_data, xfer_len);
319 case USB_STOR_XFER_GOOD: return 0;
320 case USB_STOR_XFER_STALLED: return -EPIPE;
321 default: return -EIO;
326 sddr09_send_scsi_command(struct us_data *us,
327 unsigned char *command,
328 unsigned int command_len) {
329 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
334 * Test Unit Ready Command: 12 bytes.
338 sddr09_test_unit_ready(struct us_data *us) {
339 unsigned char *command = us->iobuf;
342 memset(command, 0, 6);
343 command[1] = LUNBITS;
345 result = sddr09_send_scsi_command(us, command, 6);
347 US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
354 * Request Sense Command: 12 bytes.
356 * byte 4: data length
359 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
360 unsigned char *command = us->iobuf;
363 memset(command, 0, 12);
365 command[1] = LUNBITS;
368 result = sddr09_send_scsi_command(us, command, 12);
372 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
373 sensebuf, buflen, NULL);
374 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
378 * Read Command: 12 bytes.
380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
381 * 10: read both, 11: read pagewise control.
382 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
383 * bytes 2-5: address (interpretation depends on byte 1, see below)
384 * bytes 10-11: count (idem)
386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
387 * A read data command gets data in 512-byte pages.
388 * A read control command gets control in 64-byte chunks.
389 * A read both command gets data+control in 576-byte chunks.
391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
392 * next block, while read pagewise control jumps to the next page after
393 * reading a group of 64 control bytes.
394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
400 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
401 int nr_of_pages, int bulklen, unsigned char *buf,
404 unsigned char *command = us->iobuf;
408 command[1] = LUNBITS | x;
409 command[2] = MSB_of(fromaddress>>16);
410 command[3] = LSB_of(fromaddress>>16);
411 command[4] = MSB_of(fromaddress & 0xFFFF);
412 command[5] = LSB_of(fromaddress & 0xFFFF);
417 command[10] = MSB_of(nr_of_pages);
418 command[11] = LSB_of(nr_of_pages);
420 result = sddr09_send_scsi_command(us, command, 12);
423 US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
428 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
429 buf, bulklen, use_sg, NULL);
431 if (result != USB_STOR_XFER_GOOD) {
432 US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
442 * fromaddress counts data shorts:
443 * increasing it by 256 shifts the bytestream by 512 bytes;
444 * the last 8 bits are ignored.
446 * nr_of_pages counts pages of size (1 << pageshift).
449 sddr09_read20(struct us_data *us, unsigned long fromaddress,
450 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
451 int bulklen = nr_of_pages << pageshift;
453 /* The last 8 bits of fromaddress are ignored. */
454 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
459 * Read Blockwise Control
461 * fromaddress gives the starting position (as in read data;
462 * the last 8 bits are ignored); increasing it by 32*256 shifts
463 * the output stream by 64 bytes.
465 * count counts control groups of size (1 << controlshift).
466 * For me, controlshift = 6. Is this constant?
468 * After getting one control group, jump to the next block
469 * (fromaddress += 8192).
472 sddr09_read21(struct us_data *us, unsigned long fromaddress,
473 int count, int controlshift, unsigned char *buf, int use_sg) {
475 int bulklen = (count << controlshift);
476 return sddr09_readX(us, 1, fromaddress, count, bulklen,
481 * Read both Data and Control
483 * fromaddress counts data shorts, ignoring control:
484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
485 * the last 8 bits are ignored.
487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
490 sddr09_read22(struct us_data *us, unsigned long fromaddress,
491 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
494 US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
495 nr_of_pages, bulklen);
496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
502 * Read Pagewise Control
504 * fromaddress gives the starting position (as in read data;
505 * the last 8 bits are ignored); increasing it by 256 shifts
506 * the output stream by 64 bytes.
508 * count counts control groups of size (1 << controlshift).
509 * For me, controlshift = 6. Is this constant?
511 * After getting one control group, jump to the next page
512 * (fromaddress += 256).
515 sddr09_read23(struct us_data *us, unsigned long fromaddress,
516 int count, int controlshift, unsigned char *buf, int use_sg) {
518 int bulklen = (count << controlshift);
519 return sddr09_readX(us, 3, fromaddress, count, bulklen,
525 * Erase Command: 12 bytes.
527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
530 * The byte address being erased is 2*Eaddress.
531 * The CIS cannot be erased.
534 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
535 unsigned char *command = us->iobuf;
538 US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
540 memset(command, 0, 12);
542 command[1] = LUNBITS;
543 command[6] = MSB_of(Eaddress>>16);
544 command[7] = LSB_of(Eaddress>>16);
545 command[8] = MSB_of(Eaddress & 0xFFFF);
546 command[9] = LSB_of(Eaddress & 0xFFFF);
548 result = sddr09_send_scsi_command(us, command, 12);
551 US_DEBUGP("Result for send_control in sddr09_erase %d\n",
558 * Write CIS Command: 12 bytes.
560 * bytes 2-5: write address in shorts
561 * bytes 10-11: sector count
563 * This writes at the indicated address. Don't know how it differs
564 * from E9. Maybe it does not erase? However, it will also write to
567 * When two such commands on the same page follow each other directly,
568 * the second one is not done.
572 * Write Command: 12 bytes.
574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
578 * If write address equals erase address, the erase is done first,
579 * otherwise the write is done first. When erase address equals zero
583 sddr09_writeX(struct us_data *us,
584 unsigned long Waddress, unsigned long Eaddress,
585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
587 unsigned char *command = us->iobuf;
591 command[1] = LUNBITS;
593 command[2] = MSB_of(Waddress>>16);
594 command[3] = LSB_of(Waddress>>16);
595 command[4] = MSB_of(Waddress & 0xFFFF);
596 command[5] = LSB_of(Waddress & 0xFFFF);
598 command[6] = MSB_of(Eaddress>>16);
599 command[7] = LSB_of(Eaddress>>16);
600 command[8] = MSB_of(Eaddress & 0xFFFF);
601 command[9] = LSB_of(Eaddress & 0xFFFF);
603 command[10] = MSB_of(nr_of_pages);
604 command[11] = LSB_of(nr_of_pages);
606 result = sddr09_send_scsi_command(us, command, 12);
609 US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
615 buf, bulklen, use_sg, NULL);
617 if (result != USB_STOR_XFER_GOOD) {
618 US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
625 /* erase address, write same address */
627 sddr09_write_inplace(struct us_data *us, unsigned long address,
628 int nr_of_pages, int pageshift, unsigned char *buf,
630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
637 * Read Scatter Gather Command: 3+4n bytes.
640 * bytes 4i-1,4i,4i+1: page address
641 * byte 4i+2: page count
644 * This reads several pages from the card to a single memory buffer.
645 * The last two bits of byte 1 have the same meaning as for E8.
648 sddr09_read_sg_test_only(struct us_data *us) {
649 unsigned char *command = us->iobuf;
650 int result, bulklen, nsg, ct;
652 unsigned long address;
656 command[1] = LUNBITS;
658 address = 040000; ct = 1;
660 bulklen += (ct << 9);
661 command[4*nsg+2] = ct;
662 command[4*nsg+1] = ((address >> 9) & 0xFF);
663 command[4*nsg+0] = ((address >> 17) & 0xFF);
664 command[4*nsg-1] = ((address >> 25) & 0xFF);
666 address = 0340000; ct = 1;
668 bulklen += (ct << 9);
669 command[4*nsg+2] = ct;
670 command[4*nsg+1] = ((address >> 9) & 0xFF);
671 command[4*nsg+0] = ((address >> 17) & 0xFF);
672 command[4*nsg-1] = ((address >> 25) & 0xFF);
674 address = 01000000; ct = 2;
676 bulklen += (ct << 9);
677 command[4*nsg+2] = ct;
678 command[4*nsg+1] = ((address >> 9) & 0xFF);
679 command[4*nsg+0] = ((address >> 17) & 0xFF);
680 command[4*nsg-1] = ((address >> 25) & 0xFF);
684 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
687 US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
692 buf = kmalloc(bulklen, GFP_NOIO);
696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
699 if (result != USB_STOR_XFER_GOOD) {
700 US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
710 * Read Status Command: 12 bytes.
713 * Returns 64 bytes, all zero except for the first.
715 * bit 5: 1: Suspended
717 * bit 7: 1: Not write-protected
721 sddr09_read_status(struct us_data *us, unsigned char *status) {
723 unsigned char *command = us->iobuf;
724 unsigned char *data = us->iobuf;
727 US_DEBUGP("Reading status...\n");
729 memset(command, 0, 12);
731 command[1] = LUNBITS;
733 result = sddr09_send_scsi_command(us, command, 12);
737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
744 sddr09_read_data(struct us_data *us,
745 unsigned long address,
746 unsigned int sectors) {
748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
749 unsigned char *buffer;
750 unsigned int lba, maxlba, pba;
751 unsigned int page, pages;
752 unsigned int len, offset;
753 struct scatterlist *sg;
756 // Figure out the initial LBA and page
757 lba = address >> info->blockshift;
758 page = (address & info->blockmask);
759 maxlba = info->capacity >> (info->pageshift + info->blockshift);
763 // Since we only read in one block at a time, we have to create
764 // a bounce buffer and move the data a piece at a time between the
765 // bounce buffer and the actual transfer buffer.
767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
768 buffer = kmalloc(len, GFP_NOIO);
769 if (buffer == NULL) {
770 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
774 // This could be made much more efficient by checking for
775 // contiguous LBA's. Another exercise left to the student.
781 while (sectors > 0) {
783 /* Find number of pages we can read in this block */
784 pages = min(sectors, info->blocksize - page);
785 len = pages << info->pageshift;
787 /* Not overflowing capacity? */
789 US_DEBUGP("Error: Requested lba %u exceeds "
790 "maximum %u\n", lba, maxlba);
795 /* Find where this lba lives on disk */
796 pba = info->lba_to_pba[lba];
798 if (pba == UNDEF) { /* this lba was never written */
800 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
803 /* This is not really an error. It just means
804 that the block has never been written.
805 Instead of returning an error
806 it is better to return all zero data. */
808 memset(buffer, 0, len);
811 US_DEBUGP("Read %d pages, from PBA %d"
812 " (LBA %d) page %d\n",
813 pages, pba, lba, page);
815 address = ((pba << info->blockshift) + page) <<
818 result = sddr09_read20(us, address>>1,
819 pages, info->pageshift, buffer, 0);
824 // Store the data in the transfer buffer
825 usb_stor_access_xfer_buf(buffer, len, us->srb,
826 &sg, &offset, TO_XFER_BUF);
838 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
839 static unsigned int lastpba = 1;
840 int zonestart, end, i;
842 zonestart = (lba/1000) << 10;
843 end = info->capacity >> (info->blockshift + info->pageshift);
848 for (i = lastpba+1; i < end; i++) {
849 if (info->pba_to_lba[zonestart+i] == UNDEF) {
854 for (i = 0; i <= lastpba; i++) {
855 if (info->pba_to_lba[zonestart+i] == UNDEF) {
864 sddr09_write_lba(struct us_data *us, unsigned int lba,
865 unsigned int page, unsigned int pages,
866 unsigned char *ptr, unsigned char *blockbuffer) {
868 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
869 unsigned long address;
870 unsigned int pba, lbap;
871 unsigned int pagelen;
872 unsigned char *bptr, *cptr, *xptr;
873 unsigned char ecc[3];
874 int i, result, isnew;
876 lbap = ((lba % 1000) << 1) | 0x1000;
877 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
879 pba = info->lba_to_pba[lba];
883 pba = sddr09_find_unused_pba(info, lba);
886 "sddr09_write_lba: Out of unused blocks\n");
889 info->pba_to_lba[pba] = lba;
890 info->lba_to_pba[lba] = pba;
895 /* Maybe it is impossible to write to PBA 1.
896 Fake success, but don't do anything. */
897 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
901 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
903 /* read old contents */
904 address = (pba << (info->pageshift + info->blockshift));
905 result = sddr09_read22(us, address>>1, info->blocksize,
906 info->pageshift, blockbuffer, 0);
910 /* check old contents and fill lba */
911 for (i = 0; i < info->blocksize; i++) {
912 bptr = blockbuffer + i*pagelen;
913 cptr = bptr + info->pagesize;
914 nand_compute_ecc(bptr, ecc);
915 if (!nand_compare_ecc(cptr+13, ecc)) {
916 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
918 nand_store_ecc(cptr+13, ecc);
920 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
921 if (!nand_compare_ecc(cptr+8, ecc)) {
922 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
924 nand_store_ecc(cptr+8, ecc);
926 cptr[6] = cptr[11] = MSB_of(lbap);
927 cptr[7] = cptr[12] = LSB_of(lbap);
930 /* copy in new stuff and compute ECC */
932 for (i = page; i < page+pages; i++) {
933 bptr = blockbuffer + i*pagelen;
934 cptr = bptr + info->pagesize;
935 memcpy(bptr, xptr, info->pagesize);
936 xptr += info->pagesize;
937 nand_compute_ecc(bptr, ecc);
938 nand_store_ecc(cptr+13, ecc);
939 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
940 nand_store_ecc(cptr+8, ecc);
943 US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
945 result = sddr09_write_inplace(us, address>>1, info->blocksize,
946 info->pageshift, blockbuffer, 0);
948 US_DEBUGP("sddr09_write_inplace returns %d\n", result);
952 unsigned char status = 0;
953 int result2 = sddr09_read_status(us, &status);
955 US_DEBUGP("sddr09_write_inplace: cannot read status\n");
956 else if (status != 0xc0)
957 US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
964 int result2 = sddr09_test_unit_ready(us);
972 sddr09_write_data(struct us_data *us,
973 unsigned long address,
974 unsigned int sectors) {
976 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
977 unsigned int lba, maxlba, page, pages;
978 unsigned int pagelen, blocklen;
979 unsigned char *blockbuffer;
980 unsigned char *buffer;
981 unsigned int len, offset;
982 struct scatterlist *sg;
985 // Figure out the initial LBA and page
986 lba = address >> info->blockshift;
987 page = (address & info->blockmask);
988 maxlba = info->capacity >> (info->pageshift + info->blockshift);
992 // blockbuffer is used for reading in the old data, overwriting
993 // with the new data, and performing ECC calculations
995 /* TODO: instead of doing kmalloc/kfree for each write,
996 add a bufferpointer to the info structure */
998 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
999 blocklen = (pagelen << info->blockshift);
1000 blockbuffer = kmalloc(blocklen, GFP_NOIO);
1002 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006 // Since we don't write the user data directly to the device,
1007 // we have to create a bounce buffer and move the data a piece
1008 // at a time between the bounce buffer and the actual transfer buffer.
1010 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1011 buffer = kmalloc(len, GFP_NOIO);
1012 if (buffer == NULL) {
1013 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1022 while (sectors > 0) {
1024 // Write as many sectors as possible in this block
1026 pages = min(sectors, info->blocksize - page);
1027 len = (pages << info->pageshift);
1029 /* Not overflowing capacity? */
1030 if (lba >= maxlba) {
1031 US_DEBUGP("Error: Requested lba %u exceeds "
1032 "maximum %u\n", lba, maxlba);
1037 // Get the data from the transfer buffer
1038 usb_stor_access_xfer_buf(buffer, len, us->srb,
1039 &sg, &offset, FROM_XFER_BUF);
1041 result = sddr09_write_lba(us, lba, page, pages,
1042 buffer, blockbuffer);
1058 sddr09_read_control(struct us_data *us,
1059 unsigned long address,
1060 unsigned int blocks,
1061 unsigned char *content,
1064 US_DEBUGP("Read control address %lu, blocks %d\n",
1067 return sddr09_read21(us, address, blocks,
1068 CONTROL_SHIFT, content, use_sg);
1072 * Read Device ID Command: 12 bytes.
1073 * byte 0: opcode: ED
1075 * Returns 2 bytes: Manufacturer ID and Device ID.
1076 * On more recent cards 3 bytes: the third byte is an option code A5
1077 * signifying that the secret command to read an 128-bit ID is available.
1078 * On still more recent cards 4 bytes: the fourth byte C0 means that
1079 * a second read ID cmd is available.
1082 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1083 unsigned char *command = us->iobuf;
1084 unsigned char *content = us->iobuf;
1087 memset(command, 0, 12);
1089 command[1] = LUNBITS;
1091 result = sddr09_send_scsi_command(us, command, 12);
1095 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1098 for (i = 0; i < 4; i++)
1099 deviceID[i] = content[i];
1101 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1107 unsigned char status;
1109 result = sddr09_read_status(us, &status);
1111 US_DEBUGP("sddr09_get_wp: read_status fails\n");
1114 US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1115 if ((status & 0x80) == 0) {
1116 info->flags |= SDDR09_WP; /* write protected */
1120 US_DEBUGP(" Ready");
1121 if (status & LUNBITS)
1122 US_DEBUGP(" Suspended");
1124 US_DEBUGP(" Error");
1131 * Reset Command: 12 bytes.
1132 * byte 0: opcode: EB
1135 sddr09_reset(struct us_data *us) {
1137 unsigned char *command = us->iobuf;
1139 memset(command, 0, 12);
1141 command[1] = LUNBITS;
1143 return sddr09_send_scsi_command(us, command, 12);
1147 static struct nand_flash_dev *
1148 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1149 struct nand_flash_dev *cardinfo;
1150 unsigned char deviceID[4];
1154 US_DEBUGP("Reading capacity...\n");
1156 result = sddr09_read_deviceID(us, deviceID);
1159 US_DEBUGP("Result of read_deviceID is %d\n", result);
1160 printk(KERN_WARNING "sddr09: could not read card info\n");
1164 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1165 deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1167 /* Byte 0 is the manufacturer */
1168 sprintf(blurbtxt + strlen(blurbtxt),
1170 nand_flash_manufacturer(deviceID[0]));
1172 /* Byte 1 is the device type */
1173 cardinfo = nand_find_id(deviceID[1]);
1175 /* MB or MiB? It is neither. A 16 MB card has
1176 17301504 raw bytes, of which 16384000 are
1177 usable for user data. */
1178 sprintf(blurbtxt + strlen(blurbtxt),
1179 ", %d MB", 1<<(cardinfo->chipshift - 20));
1181 sprintf(blurbtxt + strlen(blurbtxt),
1182 ", type unrecognized");
1185 /* Byte 2 is code to signal availability of 128-bit ID */
1186 if (deviceID[2] == 0xa5) {
1187 sprintf(blurbtxt + strlen(blurbtxt),
1191 /* Byte 3 announces the availability of another read ID command */
1192 if (deviceID[3] == 0xc0) {
1193 sprintf(blurbtxt + strlen(blurbtxt),
1197 if (flags & SDDR09_WP)
1198 sprintf(blurbtxt + strlen(blurbtxt),
1201 printk(KERN_WARNING "%s\n", blurbtxt);
1207 sddr09_read_map(struct us_data *us) {
1209 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1210 int numblocks, alloc_len, alloc_blocks;
1212 unsigned char *buffer, *buffer_end, *ptr;
1213 unsigned int lba, lbact;
1215 if (!info->capacity)
1218 // size of a block is 1 << (blockshift + pageshift) bytes
1219 // divide into the total capacity to get the number of blocks
1221 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1223 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1224 // but only use a 64 KB buffer
1225 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1226 #define SDDR09_READ_MAP_BUFSZ 65536
1228 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1229 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1230 buffer = kmalloc(alloc_len, GFP_NOIO);
1231 if (buffer == NULL) {
1232 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236 buffer_end = buffer + alloc_len;
1238 #undef SDDR09_READ_MAP_BUFSZ
1240 kfree(info->lba_to_pba);
1241 kfree(info->pba_to_lba);
1242 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1243 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1245 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1246 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1251 for (i = 0; i < numblocks; i++)
1252 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1255 * Define lba-pba translation table
1259 for (i = 0; i < numblocks; i++) {
1260 ptr += (1 << CONTROL_SHIFT);
1261 if (ptr >= buffer_end) {
1262 unsigned long address;
1264 address = i << (info->pageshift + info->blockshift);
1265 result = sddr09_read_control(
1267 min(alloc_blocks, numblocks - i),
1276 if (i == 0 || i == 1) {
1277 info->pba_to_lba[i] = UNUSABLE;
1281 /* special PBAs have control field 0^16 */
1282 for (j = 0; j < 16; j++)
1285 info->pba_to_lba[i] = UNUSABLE;
1286 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1291 /* unwritten PBAs have control field FF^16 */
1292 for (j = 0; j < 16; j++)
1298 /* normal PBAs start with six FFs */
1301 "sddr09: PBA %d has no logical mapping: "
1302 "reserved area = %02X%02X%02X%02X "
1303 "data status %02X block status %02X\n",
1304 i, ptr[0], ptr[1], ptr[2], ptr[3],
1306 info->pba_to_lba[i] = UNUSABLE;
1310 if ((ptr[6] >> 4) != 0x01) {
1312 "sddr09: PBA %d has invalid address field "
1313 "%02X%02X/%02X%02X\n",
1314 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1315 info->pba_to_lba[i] = UNUSABLE;
1319 /* check even parity */
1320 if (parity[ptr[6] ^ ptr[7]]) {
1322 "sddr09: Bad parity in LBA for block %d"
1323 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1324 info->pba_to_lba[i] = UNUSABLE;
1328 lba = short_pack(ptr[7], ptr[6]);
1329 lba = (lba & 0x07FF) >> 1;
1332 * Every 1024 physical blocks ("zone"), the LBA numbers
1333 * go back to zero, but are within a higher block of LBA's.
1334 * Also, there is a maximum of 1000 LBA's per zone.
1335 * In other words, in PBA 1024-2047 you will find LBA 0-999
1336 * which are really LBA 1000-1999. This allows for 24 bad
1337 * or special physical blocks per zone.
1342 "sddr09: Bad low LBA %d for block %d\n",
1344 goto possibly_erase;
1347 lba += 1000*(i/0x400);
1349 if (info->lba_to_pba[lba] != UNDEF) {
1351 "sddr09: LBA %d seen for PBA %d and %d\n",
1352 lba, info->lba_to_pba[lba], i);
1353 goto possibly_erase;
1356 info->pba_to_lba[i] = lba;
1357 info->lba_to_pba[lba] = i;
1361 if (erase_bad_lba_entries) {
1362 unsigned long address;
1364 address = (i << (info->pageshift + info->blockshift));
1365 sddr09_erase(us, address>>1);
1366 info->pba_to_lba[i] = UNDEF;
1368 info->pba_to_lba[i] = UNUSABLE;
1372 * Approximate capacity. This is not entirely correct yet,
1373 * since a zone with less than 1000 usable pages leads to
1374 * missing LBAs. Especially if it is the last zone, some
1375 * LBAs can be past capacity.
1378 for (i = 0; i < numblocks; i += 1024) {
1381 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1382 if (info->pba_to_lba[i+j] != UNUSABLE) {
1384 info->pba_to_lba[i+j] = SPARE;
1391 info->lbact = lbact;
1392 US_DEBUGP("Found %d LBA's\n", lbact);
1397 kfree(info->lba_to_pba);
1398 kfree(info->pba_to_lba);
1399 info->lba_to_pba = NULL;
1400 info->pba_to_lba = NULL;
1407 sddr09_card_info_destructor(void *extra) {
1408 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1413 kfree(info->lba_to_pba);
1414 kfree(info->pba_to_lba);
1418 sddr09_common_init(struct us_data *us) {
1421 /* set the configuration -- STALL is an acceptable response here */
1422 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1423 US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1424 ->actconfig->desc.bConfigurationValue);
1428 result = usb_reset_configuration(us->pusb_dev);
1429 US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1430 if (result == -EPIPE) {
1431 US_DEBUGP("-- stall on control interface\n");
1432 } else if (result != 0) {
1433 /* it's not a stall, but another error -- time to bail */
1434 US_DEBUGP("-- Unknown error. Rejecting device\n");
1438 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1441 us->extra_destructor = sddr09_card_info_destructor;
1449 * This is needed at a very early stage. If this is not listed in the
1450 * unusual devices list but called from here then LUN 0 of the combo reader
1451 * is not recognized. But I do not know what precisely these calls do.
1454 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1456 unsigned char *data = us->iobuf;
1458 result = sddr09_common_init(us);
1462 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1464 US_DEBUGP("sddr09_init: send_command fails\n");
1468 US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1471 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1473 US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477 US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1480 result = sddr09_request_sense(us, data, 18);
1481 if (result == 0 && data[2] != 0) {
1483 for (j=0; j<18; j++)
1484 printk(" %02X", data[j]);
1486 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1487 // 70: current command
1488 // sense key 0, sense code 0, extd sense code 0
1489 // additional transfer length * = sizeof(data) - 7
1490 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1491 // sense key 06, sense code 28: unit attention,
1492 // not ready to ready transition
1497 return 0; /* not result */
1501 * Transport for the Microtech DPCM-USB
1503 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507 US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1509 switch (srb->device->lun) {
1513 * LUN 0 corresponds to the CompactFlash card reader.
1515 ret = usb_stor_CB_transport(srb, us);
1521 * LUN 1 corresponds to the SmartMedia card reader.
1525 * Set the LUN to 0 (just in case).
1527 srb->device->lun = 0;
1528 ret = sddr09_transport(srb, us);
1529 srb->device->lun = 1;
1533 US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1535 ret = USB_STOR_TRANSPORT_ERROR;
1543 * Transport for the Sandisk SDDR-09
1545 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1547 static unsigned char sensekey = 0, sensecode = 0;
1548 static unsigned char havefakesense = 0;
1550 unsigned char *ptr = us->iobuf;
1551 unsigned long capacity;
1552 unsigned int page, pages;
1554 struct sddr09_card_info *info;
1556 static unsigned char inquiry_response[8] = {
1557 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1560 /* note: no block descriptor support */
1561 static unsigned char mode_page_01[19] = {
1562 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1564 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1567 info = (struct sddr09_card_info *)us->extra;
1569 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1570 /* for a faked command, we have to follow with a faked sense */
1575 ptr[12] = sensecode;
1576 usb_stor_set_xfer_buf(ptr, 18, srb);
1577 sensekey = sensecode = havefakesense = 0;
1578 return USB_STOR_TRANSPORT_GOOD;
1583 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1584 respond to INQUIRY commands */
1586 if (srb->cmnd[0] == INQUIRY) {
1587 memcpy(ptr, inquiry_response, 8);
1588 fill_inquiry_response(us, ptr, 36);
1589 return USB_STOR_TRANSPORT_GOOD;
1592 if (srb->cmnd[0] == READ_CAPACITY) {
1593 struct nand_flash_dev *cardinfo;
1595 sddr09_get_wp(us, info); /* read WP bit */
1597 cardinfo = sddr09_get_cardinfo(us, info->flags);
1599 /* probably no media */
1601 sensekey = 0x02; /* not ready */
1602 sensecode = 0x3a; /* medium not present */
1603 return USB_STOR_TRANSPORT_FAILED;
1606 info->capacity = (1 << cardinfo->chipshift);
1607 info->pageshift = cardinfo->pageshift;
1608 info->pagesize = (1 << info->pageshift);
1609 info->blockshift = cardinfo->blockshift;
1610 info->blocksize = (1 << info->blockshift);
1611 info->blockmask = info->blocksize - 1;
1613 // map initialization, must follow get_cardinfo()
1614 if (sddr09_read_map(us)) {
1615 /* probably out of memory */
1621 capacity = (info->lbact << info->blockshift) - 1;
1623 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1628 usb_stor_set_xfer_buf(ptr, 8, srb);
1630 return USB_STOR_TRANSPORT_GOOD;
1633 if (srb->cmnd[0] == MODE_SENSE_10) {
1634 int modepage = (srb->cmnd[2] & 0x3F);
1636 /* They ask for the Read/Write error recovery page,
1637 or for all pages. */
1638 /* %% We should check DBD %% */
1639 if (modepage == 0x01 || modepage == 0x3F) {
1640 US_DEBUGP("SDDR09: Dummy up request for "
1641 "mode page 0x%x\n", modepage);
1643 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1644 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1645 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1646 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1647 return USB_STOR_TRANSPORT_GOOD;
1650 sensekey = 0x05; /* illegal request */
1651 sensecode = 0x24; /* invalid field in CDB */
1652 return USB_STOR_TRANSPORT_FAILED;
1655 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1656 return USB_STOR_TRANSPORT_GOOD;
1660 if (srb->cmnd[0] == READ_10) {
1662 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1664 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1665 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1667 US_DEBUGP("READ_10: read page %d pagect %d\n",
1670 result = sddr09_read_data(us, page, pages);
1671 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1672 USB_STOR_TRANSPORT_ERROR);
1675 if (srb->cmnd[0] == WRITE_10) {
1677 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1679 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1680 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1682 US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1685 result = sddr09_write_data(us, page, pages);
1686 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1687 USB_STOR_TRANSPORT_ERROR);
1690 /* catch-all for all other commands, except
1691 * pass TEST_UNIT_READY and REQUEST_SENSE through
1693 if (srb->cmnd[0] != TEST_UNIT_READY &&
1694 srb->cmnd[0] != REQUEST_SENSE) {
1695 sensekey = 0x05; /* illegal request */
1696 sensecode = 0x20; /* invalid command */
1698 return USB_STOR_TRANSPORT_FAILED;
1701 for (; srb->cmd_len<12; srb->cmd_len++)
1702 srb->cmnd[srb->cmd_len] = 0;
1704 srb->cmnd[1] = LUNBITS;
1707 for (i=0; i<12; i++)
1708 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1710 US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1712 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1714 US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1715 "returns %d\n", result);
1716 return USB_STOR_TRANSPORT_ERROR;
1719 if (scsi_bufflen(srb) == 0)
1720 return USB_STOR_TRANSPORT_GOOD;
1722 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1723 srb->sc_data_direction == DMA_FROM_DEVICE) {
1724 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1725 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1727 US_DEBUGP("SDDR09: %s %d bytes\n",
1728 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1729 "sending" : "receiving",
1732 result = usb_stor_bulk_srb(us, pipe, srb);
1734 return (result == USB_STOR_XFER_GOOD ?
1735 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1738 return USB_STOR_TRANSPORT_GOOD;
1742 * Initialization routine for the sddr09 subdriver
1745 usb_stor_sddr09_init(struct us_data *us) {
1746 return sddr09_common_init(us);
1749 static int sddr09_probe(struct usb_interface *intf,
1750 const struct usb_device_id *id)
1755 result = usb_stor_probe1(&us, intf, id,
1756 (id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1760 if (us->protocol == US_PR_DPCM_USB) {
1761 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762 us->transport = dpcm_transport;
1763 us->transport_reset = usb_stor_CB_reset;
1766 us->transport_name = "EUSB/SDDR09";
1767 us->transport = sddr09_transport;
1768 us->transport_reset = usb_stor_CB_reset;
1772 result = usb_stor_probe2(us);
1776 static struct usb_driver sddr09_driver = {
1777 .name = "ums-sddr09",
1778 .probe = sddr09_probe,
1779 .disconnect = usb_stor_disconnect,
1780 .suspend = usb_stor_suspend,
1781 .resume = usb_stor_resume,
1782 .reset_resume = usb_stor_reset_resume,
1783 .pre_reset = usb_stor_pre_reset,
1784 .post_reset = usb_stor_post_reset,
1785 .id_table = sddr09_usb_ids,
1789 static int __init sddr09_init(void)
1791 return usb_register(&sddr09_driver);
1794 static void __exit sddr09_exit(void)
1796 usb_deregister(&sddr09_driver);
1799 module_init(sddr09_init);
1800 module_exit(sddr09_exit);