Merge branch 'linus' into timers/hpet
[linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251         if (status)
252                 return status;
253         switch (type) {
254         case MAC_ADDR_TYPE_MULTI_MAC:
255         case MAC_ADDR_TYPE_CAM_MAC:
256                 {
257                         status =
258                             ql_wait_reg_rdy(qdev,
259                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260                         if (status)
261                                 goto exit;
262                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
264                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265                         status =
266                             ql_wait_reg_rdy(qdev,
267                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268                         if (status)
269                                 goto exit;
270                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271                         status =
272                             ql_wait_reg_rdy(qdev,
273                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274                         if (status)
275                                 goto exit;
276                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
278                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279                         status =
280                             ql_wait_reg_rdy(qdev,
281                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282                         if (status)
283                                 goto exit;
284                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
286                                 status =
287                                     ql_wait_reg_rdy(qdev,
288                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                                 if (status)
290                                         goto exit;
291                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                                 status =
295                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296                                                     MAC_ADDR_MR, 0);
297                                 if (status)
298                                         goto exit;
299                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         }
301                         break;
302                 }
303         case MAC_ADDR_TYPE_VLAN:
304         case MAC_ADDR_TYPE_MULTI_FLTR:
305         default:
306                 QPRINTK(qdev, IFUP, CRIT,
307                         "Address type %d not yet supported.\n", type);
308                 status = -EPERM;
309         }
310 exit:
311         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312         return status;
313 }
314
315 /* Set up a MAC, multicast or VLAN address for the
316  * inbound frame matching.
317  */
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319                                u16 index)
320 {
321         u32 offset = 0;
322         int status = 0;
323
324         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325         if (status)
326                 return status;
327         switch (type) {
328         case MAC_ADDR_TYPE_MULTI_MAC:
329         case MAC_ADDR_TYPE_CAM_MAC:
330                 {
331                         u32 cam_output;
332                         u32 upper = (addr[0] << 8) | addr[1];
333                         u32 lower =
334                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335                             (addr[5]);
336
337                         QPRINTK(qdev, IFUP, INFO,
338                                 "Adding %s address %pM"
339                                 " at index %d in the CAM.\n",
340                                 ((type ==
341                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342                                  "UNICAST"), addr, index);
343
344                         status =
345                             ql_wait_reg_rdy(qdev,
346                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347                         if (status)
348                                 goto exit;
349                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
351                                    type);       /* type */
352                         ql_write32(qdev, MAC_ADDR_DATA, lower);
353                         status =
354                             ql_wait_reg_rdy(qdev,
355                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356                         if (status)
357                                 goto exit;
358                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
360                                    type);       /* type */
361                         ql_write32(qdev, MAC_ADDR_DATA, upper);
362                         status =
363                             ql_wait_reg_rdy(qdev,
364                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365                         if (status)
366                                 goto exit;
367                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
368                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
369                                    type);       /* type */
370                         /* This field should also include the queue id
371                            and possibly the function id.  Right now we hardcode
372                            the route field to NIC core.
373                          */
374                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
375                                 cam_output = (CAM_OUT_ROUTE_NIC |
376                                               (qdev->
377                                                func << CAM_OUT_FUNC_SHIFT) |
378                                               (qdev->
379                                                rss_ring_first_cq_id <<
380                                                CAM_OUT_CQ_ID_SHIFT));
381                                 if (qdev->vlgrp)
382                                         cam_output |= CAM_OUT_RV;
383                                 /* route to NIC core */
384                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385                         }
386                         break;
387                 }
388         case MAC_ADDR_TYPE_VLAN:
389                 {
390                         u32 enable_bit = *((u32 *) &addr[0]);
391                         /* For VLAN, the addr actually holds a bit that
392                          * either enables or disables the vlan id we are
393                          * addressing. It's either MAC_ADDR_E on or off.
394                          * That's bit-27 we're talking about.
395                          */
396                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397                                 (enable_bit ? "Adding" : "Removing"),
398                                 index, (enable_bit ? "to" : "from"));
399
400                         status =
401                             ql_wait_reg_rdy(qdev,
402                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
403                         if (status)
404                                 goto exit;
405                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
407                                    type |       /* type */
408                                    enable_bit); /* enable/disable */
409                         break;
410                 }
411         case MAC_ADDR_TYPE_MULTI_FLTR:
412         default:
413                 QPRINTK(qdev, IFUP, CRIT,
414                         "Address type %d not yet supported.\n", type);
415                 status = -EPERM;
416         }
417 exit:
418         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419         return status;
420 }
421
422 /* Get a specific frame routing value from the CAM.
423  * Used for debug and reg dump.
424  */
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426 {
427         int status = 0;
428
429         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430         if (status)
431                 goto exit;
432
433         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
434         if (status)
435                 goto exit;
436
437         ql_write32(qdev, RT_IDX,
438                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
440         if (status)
441                 goto exit;
442         *value = ql_read32(qdev, RT_DATA);
443 exit:
444         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445         return status;
446 }
447
448 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
449  * to route different frame types to various inbound queues.  We send broadcast/
450  * multicast/error frames to the default queue for slow handling,
451  * and CAM hit/RSS frames to the fast handling queues.
452  */
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454                               int enable)
455 {
456         int status;
457         u32 value = 0;
458
459         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460         if (status)
461                 return status;
462
463         QPRINTK(qdev, IFUP, DEBUG,
464                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465                 (enable ? "Adding" : "Removing"),
466                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468                 ((index ==
469                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483                 (enable ? "to" : "from"));
484
485         switch (mask) {
486         case RT_IDX_CAM_HIT:
487                 {
488                         value = RT_IDX_DST_CAM_Q |      /* dest */
489                             RT_IDX_TYPE_NICQ |  /* type */
490                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491                         break;
492                 }
493         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
494                 {
495                         value = RT_IDX_DST_DFLT_Q |     /* dest */
496                             RT_IDX_TYPE_NICQ |  /* type */
497                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498                         break;
499                 }
500         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
501                 {
502                         value = RT_IDX_DST_DFLT_Q |     /* dest */
503                             RT_IDX_TYPE_NICQ |  /* type */
504                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505                         break;
506                 }
507         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
508                 {
509                         value = RT_IDX_DST_DFLT_Q |     /* dest */
510                             RT_IDX_TYPE_NICQ |  /* type */
511                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512                         break;
513                 }
514         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
515                 {
516                         value = RT_IDX_DST_CAM_Q |      /* dest */
517                             RT_IDX_TYPE_NICQ |  /* type */
518                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519                         break;
520                 }
521         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
522                 {
523                         value = RT_IDX_DST_CAM_Q |      /* dest */
524                             RT_IDX_TYPE_NICQ |  /* type */
525                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526                         break;
527                 }
528         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
529                 {
530                         value = RT_IDX_DST_RSS |        /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case 0:         /* Clear the E-bit on an entry. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (index << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         default:
543                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544                         mask);
545                 status = -EPERM;
546                 goto exit;
547         }
548
549         if (value) {
550                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551                 if (status)
552                         goto exit;
553                 value |= (enable ? RT_IDX_E : 0);
554                 ql_write32(qdev, RT_IDX, value);
555                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556         }
557 exit:
558         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559         return status;
560 }
561
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
563 {
564         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565 }
566
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
568 {
569         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570 }
571
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573  * Otherwise, we may have multiple outstanding workers and don't want to
574  * enable until the last one finishes. In this case, the irq_cnt gets
575  * incremented everytime we queue a worker and decremented everytime
576  * a worker finishes.  Once it hits zero we enable the interrupt.
577  */
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
579 {
580         u32 var = 0;
581         unsigned long hw_flags = 0;
582         struct intr_context *ctx = qdev->intr_context + intr;
583
584         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585                 /* Always enable if we're MSIX multi interrupts and
586                  * it's not the default (zeroeth) interrupt.
587                  */
588                 ql_write32(qdev, INTR_EN,
589                            ctx->intr_en_mask);
590                 var = ql_read32(qdev, STS);
591                 return var;
592         }
593
594         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595         if (atomic_dec_and_test(&ctx->irq_cnt)) {
596                 ql_write32(qdev, INTR_EN,
597                            ctx->intr_en_mask);
598                 var = ql_read32(qdev, STS);
599         }
600         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601         return var;
602 }
603
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605 {
606         u32 var = 0;
607         unsigned long hw_flags;
608         struct intr_context *ctx;
609
610         /* HW disables for us if we're MSIX multi interrupts and
611          * it's not the default (zeroeth) interrupt.
612          */
613         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614                 return 0;
615
616         ctx = qdev->intr_context + intr;
617         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618         if (!atomic_read(&ctx->irq_cnt)) {
619                 ql_write32(qdev, INTR_EN,
620                 ctx->intr_dis_mask);
621                 var = ql_read32(qdev, STS);
622         }
623         atomic_inc(&ctx->irq_cnt);
624         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
625         return var;
626 }
627
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629 {
630         int i;
631         for (i = 0; i < qdev->intr_count; i++) {
632                 /* The enable call does a atomic_dec_and_test
633                  * and enables only if the result is zero.
634                  * So we precharge it here.
635                  */
636                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637                         i == 0))
638                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639                 ql_enable_completion_interrupt(qdev, i);
640         }
641
642 }
643
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
645 {
646         int status = 0;
647         /* wait for reg to come ready */
648         status = ql_wait_reg_rdy(qdev,
649                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650         if (status)
651                 goto exit;
652         /* set up for reg read */
653         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654         /* wait for reg to come ready */
655         status = ql_wait_reg_rdy(qdev,
656                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657         if (status)
658                 goto exit;
659          /* This data is stored on flash as an array of
660          * __le32.  Since ql_read32() returns cpu endian
661          * we need to swap it back.
662          */
663         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
664 exit:
665         return status;
666 }
667
668 static int ql_get_flash_params(struct ql_adapter *qdev)
669 {
670         int i;
671         int status;
672         __le32 *p = (__le32 *)&qdev->flash;
673         u32 offset = 0;
674
675         /* Second function's parameters follow the first
676          * function's.
677          */
678         if (qdev->func)
679                 offset = sizeof(qdev->flash) / sizeof(u32);
680
681         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682                 return -ETIMEDOUT;
683
684         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685                 status = ql_read_flash_word(qdev, i+offset, p);
686                 if (status) {
687                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688                         goto exit;
689                 }
690
691         }
692 exit:
693         ql_sem_unlock(qdev, SEM_FLASH_MASK);
694         return status;
695 }
696
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698  * register pair.  Each read/write requires us to wait for the ready
699  * bit before reading/writing the data.
700  */
701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702 {
703         int status;
704         /* wait for reg to come ready */
705         status = ql_wait_reg_rdy(qdev,
706                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707         if (status)
708                 return status;
709         /* write the data to the data reg */
710         ql_write32(qdev, XGMAC_DATA, data);
711         /* trigger the write */
712         ql_write32(qdev, XGMAC_ADDR, reg);
713         return status;
714 }
715
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717  * register pair.  Each read/write requires us to wait for the ready
718  * bit before reading/writing the data.
719  */
720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733         if (status)
734                 goto exit;
735         /* get the data */
736         *data = ql_read32(qdev, XGMAC_DATA);
737 exit:
738         return status;
739 }
740
741 /* This is used for reading the 64-bit statistics regs. */
742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743 {
744         int status = 0;
745         u32 hi = 0;
746         u32 lo = 0;
747
748         status = ql_read_xgmac_reg(qdev, reg, &lo);
749         if (status)
750                 goto exit;
751
752         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753         if (status)
754                 goto exit;
755
756         *data = (u64) lo | ((u64) hi << 32);
757
758 exit:
759         return status;
760 }
761
762 /* Take the MAC Core out of reset.
763  * Enable statistics counting.
764  * Take the transmitter/receiver out of reset.
765  * This functionality may be done in the MPI firmware at a
766  * later date.
767  */
768 static int ql_port_initialize(struct ql_adapter *qdev)
769 {
770         int status = 0;
771         u32 data;
772
773         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774                 /* Another function has the semaphore, so
775                  * wait for the port init bit to come ready.
776                  */
777                 QPRINTK(qdev, LINK, INFO,
778                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780                 if (status) {
781                         QPRINTK(qdev, LINK, CRIT,
782                                 "Port initialize timed out.\n");
783                 }
784                 return status;
785         }
786
787         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788         /* Set the core reset. */
789         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790         if (status)
791                 goto end;
792         data |= GLOBAL_CFG_RESET;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Clear the core reset and turn on jumbo for receiver. */
798         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
799         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
800         data |= GLOBAL_CFG_TX_STAT_EN;
801         data |= GLOBAL_CFG_RX_STAT_EN;
802         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803         if (status)
804                 goto end;
805
806         /* Enable transmitter, and clear it's reset. */
807         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808         if (status)
809                 goto end;
810         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
811         data |= TX_CFG_EN;      /* Enable the transmitter. */
812         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813         if (status)
814                 goto end;
815
816         /* Enable receiver and clear it's reset. */
817         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818         if (status)
819                 goto end;
820         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
821         data |= RX_CFG_EN;      /* Enable the receiver. */
822         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823         if (status)
824                 goto end;
825
826         /* Turn on jumbo. */
827         status =
828             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829         if (status)
830                 goto end;
831         status =
832             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833         if (status)
834                 goto end;
835
836         /* Signal to the world that the port is enabled.        */
837         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838 end:
839         ql_sem_unlock(qdev, qdev->xg_sem_mask);
840         return status;
841 }
842
843 /* Get the next large buffer. */
844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
845 {
846         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847         rx_ring->lbq_curr_idx++;
848         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849                 rx_ring->lbq_curr_idx = 0;
850         rx_ring->lbq_free_cnt++;
851         return lbq_desc;
852 }
853
854 /* Get the next small buffer. */
855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
856 {
857         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858         rx_ring->sbq_curr_idx++;
859         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860                 rx_ring->sbq_curr_idx = 0;
861         rx_ring->sbq_free_cnt++;
862         return sbq_desc;
863 }
864
865 /* Update an rx ring index. */
866 static void ql_update_cq(struct rx_ring *rx_ring)
867 {
868         rx_ring->cnsmr_idx++;
869         rx_ring->curr_entry++;
870         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871                 rx_ring->cnsmr_idx = 0;
872                 rx_ring->curr_entry = rx_ring->cq_base;
873         }
874 }
875
876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
877 {
878         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879 }
880
881 /* Process (refill) a large buffer queue. */
882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883 {
884         int clean_idx = rx_ring->lbq_clean_idx;
885         struct bq_desc *lbq_desc;
886         u64 map;
887         int i;
888
889         while (rx_ring->lbq_free_cnt > 16) {
890                 for (i = 0; i < 16; i++) {
891                         QPRINTK(qdev, RX_STATUS, DEBUG,
892                                 "lbq: try cleaning clean_idx = %d.\n",
893                                 clean_idx);
894                         lbq_desc = &rx_ring->lbq[clean_idx];
895                         if (lbq_desc->p.lbq_page == NULL) {
896                                 QPRINTK(qdev, RX_STATUS, DEBUG,
897                                         "lbq: getting new page for index %d.\n",
898                                         lbq_desc->index);
899                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900                                 if (lbq_desc->p.lbq_page == NULL) {
901                                         rx_ring->lbq_clean_idx = clean_idx;
902                                         QPRINTK(qdev, RX_STATUS, ERR,
903                                                 "Couldn't get a page.\n");
904                                         return;
905                                 }
906                                 map = pci_map_page(qdev->pdev,
907                                                    lbq_desc->p.lbq_page,
908                                                    0, PAGE_SIZE,
909                                                    PCI_DMA_FROMDEVICE);
910                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
911                                         rx_ring->lbq_clean_idx = clean_idx;
912                                         put_page(lbq_desc->p.lbq_page);
913                                         lbq_desc->p.lbq_page = NULL;
914                                         QPRINTK(qdev, RX_STATUS, ERR,
915                                                 "PCI mapping failed.\n");
916                                         return;
917                                 }
918                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
919                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
920                                 *lbq_desc->addr = cpu_to_le64(map);
921                         }
922                         clean_idx++;
923                         if (clean_idx == rx_ring->lbq_len)
924                                 clean_idx = 0;
925                 }
926
927                 rx_ring->lbq_clean_idx = clean_idx;
928                 rx_ring->lbq_prod_idx += 16;
929                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
930                         rx_ring->lbq_prod_idx = 0;
931                 QPRINTK(qdev, RX_STATUS, DEBUG,
932                         "lbq: updating prod idx = %d.\n",
933                         rx_ring->lbq_prod_idx);
934                 ql_write_db_reg(rx_ring->lbq_prod_idx,
935                                 rx_ring->lbq_prod_idx_db_reg);
936                 rx_ring->lbq_free_cnt -= 16;
937         }
938 }
939
940 /* Process (refill) a small buffer queue. */
941 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
942 {
943         int clean_idx = rx_ring->sbq_clean_idx;
944         struct bq_desc *sbq_desc;
945         u64 map;
946         int i;
947
948         while (rx_ring->sbq_free_cnt > 16) {
949                 for (i = 0; i < 16; i++) {
950                         sbq_desc = &rx_ring->sbq[clean_idx];
951                         QPRINTK(qdev, RX_STATUS, DEBUG,
952                                 "sbq: try cleaning clean_idx = %d.\n",
953                                 clean_idx);
954                         if (sbq_desc->p.skb == NULL) {
955                                 QPRINTK(qdev, RX_STATUS, DEBUG,
956                                         "sbq: getting new skb for index %d.\n",
957                                         sbq_desc->index);
958                                 sbq_desc->p.skb =
959                                     netdev_alloc_skb(qdev->ndev,
960                                                      rx_ring->sbq_buf_size);
961                                 if (sbq_desc->p.skb == NULL) {
962                                         QPRINTK(qdev, PROBE, ERR,
963                                                 "Couldn't get an skb.\n");
964                                         rx_ring->sbq_clean_idx = clean_idx;
965                                         return;
966                                 }
967                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
968                                 map = pci_map_single(qdev->pdev,
969                                                      sbq_desc->p.skb->data,
970                                                      rx_ring->sbq_buf_size /
971                                                      2, PCI_DMA_FROMDEVICE);
972                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
973                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
974                                         rx_ring->sbq_clean_idx = clean_idx;
975                                         dev_kfree_skb_any(sbq_desc->p.skb);
976                                         sbq_desc->p.skb = NULL;
977                                         return;
978                                 }
979                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
980                                 pci_unmap_len_set(sbq_desc, maplen,
981                                                   rx_ring->sbq_buf_size / 2);
982                                 *sbq_desc->addr = cpu_to_le64(map);
983                         }
984
985                         clean_idx++;
986                         if (clean_idx == rx_ring->sbq_len)
987                                 clean_idx = 0;
988                 }
989                 rx_ring->sbq_clean_idx = clean_idx;
990                 rx_ring->sbq_prod_idx += 16;
991                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
992                         rx_ring->sbq_prod_idx = 0;
993                 QPRINTK(qdev, RX_STATUS, DEBUG,
994                         "sbq: updating prod idx = %d.\n",
995                         rx_ring->sbq_prod_idx);
996                 ql_write_db_reg(rx_ring->sbq_prod_idx,
997                                 rx_ring->sbq_prod_idx_db_reg);
998
999                 rx_ring->sbq_free_cnt -= 16;
1000         }
1001 }
1002
1003 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1004                                     struct rx_ring *rx_ring)
1005 {
1006         ql_update_sbq(qdev, rx_ring);
1007         ql_update_lbq(qdev, rx_ring);
1008 }
1009
1010 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1011  * fails at some stage, or from the interrupt when a tx completes.
1012  */
1013 static void ql_unmap_send(struct ql_adapter *qdev,
1014                           struct tx_ring_desc *tx_ring_desc, int mapped)
1015 {
1016         int i;
1017         for (i = 0; i < mapped; i++) {
1018                 if (i == 0 || (i == 7 && mapped > 7)) {
1019                         /*
1020                          * Unmap the skb->data area, or the
1021                          * external sglist (AKA the Outbound
1022                          * Address List (OAL)).
1023                          * If its the zeroeth element, then it's
1024                          * the skb->data area.  If it's the 7th
1025                          * element and there is more than 6 frags,
1026                          * then its an OAL.
1027                          */
1028                         if (i == 7) {
1029                                 QPRINTK(qdev, TX_DONE, DEBUG,
1030                                         "unmapping OAL area.\n");
1031                         }
1032                         pci_unmap_single(qdev->pdev,
1033                                          pci_unmap_addr(&tx_ring_desc->map[i],
1034                                                         mapaddr),
1035                                          pci_unmap_len(&tx_ring_desc->map[i],
1036                                                        maplen),
1037                                          PCI_DMA_TODEVICE);
1038                 } else {
1039                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1040                                 i);
1041                         pci_unmap_page(qdev->pdev,
1042                                        pci_unmap_addr(&tx_ring_desc->map[i],
1043                                                       mapaddr),
1044                                        pci_unmap_len(&tx_ring_desc->map[i],
1045                                                      maplen), PCI_DMA_TODEVICE);
1046                 }
1047         }
1048
1049 }
1050
1051 /* Map the buffers for this transmit.  This will return
1052  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1053  */
1054 static int ql_map_send(struct ql_adapter *qdev,
1055                        struct ob_mac_iocb_req *mac_iocb_ptr,
1056                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1057 {
1058         int len = skb_headlen(skb);
1059         dma_addr_t map;
1060         int frag_idx, err, map_idx = 0;
1061         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1062         int frag_cnt = skb_shinfo(skb)->nr_frags;
1063
1064         if (frag_cnt) {
1065                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1066         }
1067         /*
1068          * Map the skb buffer first.
1069          */
1070         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1071
1072         err = pci_dma_mapping_error(qdev->pdev, map);
1073         if (err) {
1074                 QPRINTK(qdev, TX_QUEUED, ERR,
1075                         "PCI mapping failed with error: %d\n", err);
1076
1077                 return NETDEV_TX_BUSY;
1078         }
1079
1080         tbd->len = cpu_to_le32(len);
1081         tbd->addr = cpu_to_le64(map);
1082         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1083         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1084         map_idx++;
1085
1086         /*
1087          * This loop fills the remainder of the 8 address descriptors
1088          * in the IOCB.  If there are more than 7 fragments, then the
1089          * eighth address desc will point to an external list (OAL).
1090          * When this happens, the remainder of the frags will be stored
1091          * in this list.
1092          */
1093         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1094                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1095                 tbd++;
1096                 if (frag_idx == 6 && frag_cnt > 7) {
1097                         /* Let's tack on an sglist.
1098                          * Our control block will now
1099                          * look like this:
1100                          * iocb->seg[0] = skb->data
1101                          * iocb->seg[1] = frag[0]
1102                          * iocb->seg[2] = frag[1]
1103                          * iocb->seg[3] = frag[2]
1104                          * iocb->seg[4] = frag[3]
1105                          * iocb->seg[5] = frag[4]
1106                          * iocb->seg[6] = frag[5]
1107                          * iocb->seg[7] = ptr to OAL (external sglist)
1108                          * oal->seg[0] = frag[6]
1109                          * oal->seg[1] = frag[7]
1110                          * oal->seg[2] = frag[8]
1111                          * oal->seg[3] = frag[9]
1112                          * oal->seg[4] = frag[10]
1113                          *      etc...
1114                          */
1115                         /* Tack on the OAL in the eighth segment of IOCB. */
1116                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1117                                              sizeof(struct oal),
1118                                              PCI_DMA_TODEVICE);
1119                         err = pci_dma_mapping_error(qdev->pdev, map);
1120                         if (err) {
1121                                 QPRINTK(qdev, TX_QUEUED, ERR,
1122                                         "PCI mapping outbound address list with error: %d\n",
1123                                         err);
1124                                 goto map_error;
1125                         }
1126
1127                         tbd->addr = cpu_to_le64(map);
1128                         /*
1129                          * The length is the number of fragments
1130                          * that remain to be mapped times the length
1131                          * of our sglist (OAL).
1132                          */
1133                         tbd->len =
1134                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1135                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1136                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1137                                            map);
1138                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1139                                           sizeof(struct oal));
1140                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1141                         map_idx++;
1142                 }
1143
1144                 map =
1145                     pci_map_page(qdev->pdev, frag->page,
1146                                  frag->page_offset, frag->size,
1147                                  PCI_DMA_TODEVICE);
1148
1149                 err = pci_dma_mapping_error(qdev->pdev, map);
1150                 if (err) {
1151                         QPRINTK(qdev, TX_QUEUED, ERR,
1152                                 "PCI mapping frags failed with error: %d.\n",
1153                                 err);
1154                         goto map_error;
1155                 }
1156
1157                 tbd->addr = cpu_to_le64(map);
1158                 tbd->len = cpu_to_le32(frag->size);
1159                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1160                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1161                                   frag->size);
1162
1163         }
1164         /* Save the number of segments we've mapped. */
1165         tx_ring_desc->map_cnt = map_idx;
1166         /* Terminate the last segment. */
1167         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1168         return NETDEV_TX_OK;
1169
1170 map_error:
1171         /*
1172          * If the first frag mapping failed, then i will be zero.
1173          * This causes the unmap of the skb->data area.  Otherwise
1174          * we pass in the number of frags that mapped successfully
1175          * so they can be umapped.
1176          */
1177         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1178         return NETDEV_TX_BUSY;
1179 }
1180
1181 static void ql_realign_skb(struct sk_buff *skb, int len)
1182 {
1183         void *temp_addr = skb->data;
1184
1185         /* Undo the skb_reserve(skb,32) we did before
1186          * giving to hardware, and realign data on
1187          * a 2-byte boundary.
1188          */
1189         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1190         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1191         skb_copy_to_linear_data(skb, temp_addr,
1192                 (unsigned int)len);
1193 }
1194
1195 /*
1196  * This function builds an skb for the given inbound
1197  * completion.  It will be rewritten for readability in the near
1198  * future, but for not it works well.
1199  */
1200 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1201                                        struct rx_ring *rx_ring,
1202                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1203 {
1204         struct bq_desc *lbq_desc;
1205         struct bq_desc *sbq_desc;
1206         struct sk_buff *skb = NULL;
1207         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1208        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1209
1210         /*
1211          * Handle the header buffer if present.
1212          */
1213         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1214             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1215                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1216                 /*
1217                  * Headers fit nicely into a small buffer.
1218                  */
1219                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1220                 pci_unmap_single(qdev->pdev,
1221                                 pci_unmap_addr(sbq_desc, mapaddr),
1222                                 pci_unmap_len(sbq_desc, maplen),
1223                                 PCI_DMA_FROMDEVICE);
1224                 skb = sbq_desc->p.skb;
1225                 ql_realign_skb(skb, hdr_len);
1226                 skb_put(skb, hdr_len);
1227                 sbq_desc->p.skb = NULL;
1228         }
1229
1230         /*
1231          * Handle the data buffer(s).
1232          */
1233         if (unlikely(!length)) {        /* Is there data too? */
1234                 QPRINTK(qdev, RX_STATUS, DEBUG,
1235                         "No Data buffer in this packet.\n");
1236                 return skb;
1237         }
1238
1239         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1240                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1241                         QPRINTK(qdev, RX_STATUS, DEBUG,
1242                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1243                         /*
1244                          * Data is less than small buffer size so it's
1245                          * stuffed in a small buffer.
1246                          * For this case we append the data
1247                          * from the "data" small buffer to the "header" small
1248                          * buffer.
1249                          */
1250                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1251                         pci_dma_sync_single_for_cpu(qdev->pdev,
1252                                                     pci_unmap_addr
1253                                                     (sbq_desc, mapaddr),
1254                                                     pci_unmap_len
1255                                                     (sbq_desc, maplen),
1256                                                     PCI_DMA_FROMDEVICE);
1257                         memcpy(skb_put(skb, length),
1258                                sbq_desc->p.skb->data, length);
1259                         pci_dma_sync_single_for_device(qdev->pdev,
1260                                                        pci_unmap_addr
1261                                                        (sbq_desc,
1262                                                         mapaddr),
1263                                                        pci_unmap_len
1264                                                        (sbq_desc,
1265                                                         maplen),
1266                                                        PCI_DMA_FROMDEVICE);
1267                 } else {
1268                         QPRINTK(qdev, RX_STATUS, DEBUG,
1269                                 "%d bytes in a single small buffer.\n", length);
1270                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1271                         skb = sbq_desc->p.skb;
1272                         ql_realign_skb(skb, length);
1273                         skb_put(skb, length);
1274                         pci_unmap_single(qdev->pdev,
1275                                          pci_unmap_addr(sbq_desc,
1276                                                         mapaddr),
1277                                          pci_unmap_len(sbq_desc,
1278                                                        maplen),
1279                                          PCI_DMA_FROMDEVICE);
1280                         sbq_desc->p.skb = NULL;
1281                 }
1282         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1283                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1284                         QPRINTK(qdev, RX_STATUS, DEBUG,
1285                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1286                         /*
1287                          * The data is in a single large buffer.  We
1288                          * chain it to the header buffer's skb and let
1289                          * it rip.
1290                          */
1291                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1292                         pci_unmap_page(qdev->pdev,
1293                                        pci_unmap_addr(lbq_desc,
1294                                                       mapaddr),
1295                                        pci_unmap_len(lbq_desc, maplen),
1296                                        PCI_DMA_FROMDEVICE);
1297                         QPRINTK(qdev, RX_STATUS, DEBUG,
1298                                 "Chaining page to skb.\n");
1299                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1300                                            0, length);
1301                         skb->len += length;
1302                         skb->data_len += length;
1303                         skb->truesize += length;
1304                         lbq_desc->p.lbq_page = NULL;
1305                 } else {
1306                         /*
1307                          * The headers and data are in a single large buffer. We
1308                          * copy it to a new skb and let it go. This can happen with
1309                          * jumbo mtu on a non-TCP/UDP frame.
1310                          */
1311                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1312                         skb = netdev_alloc_skb(qdev->ndev, length);
1313                         if (skb == NULL) {
1314                                 QPRINTK(qdev, PROBE, DEBUG,
1315                                         "No skb available, drop the packet.\n");
1316                                 return NULL;
1317                         }
1318                         pci_unmap_page(qdev->pdev,
1319                                        pci_unmap_addr(lbq_desc,
1320                                                       mapaddr),
1321                                        pci_unmap_len(lbq_desc, maplen),
1322                                        PCI_DMA_FROMDEVICE);
1323                         skb_reserve(skb, NET_IP_ALIGN);
1324                         QPRINTK(qdev, RX_STATUS, DEBUG,
1325                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1326                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1327                                            0, length);
1328                         skb->len += length;
1329                         skb->data_len += length;
1330                         skb->truesize += length;
1331                         length -= length;
1332                         lbq_desc->p.lbq_page = NULL;
1333                         __pskb_pull_tail(skb,
1334                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1335                                 VLAN_ETH_HLEN : ETH_HLEN);
1336                 }
1337         } else {
1338                 /*
1339                  * The data is in a chain of large buffers
1340                  * pointed to by a small buffer.  We loop
1341                  * thru and chain them to the our small header
1342                  * buffer's skb.
1343                  * frags:  There are 18 max frags and our small
1344                  *         buffer will hold 32 of them. The thing is,
1345                  *         we'll use 3 max for our 9000 byte jumbo
1346                  *         frames.  If the MTU goes up we could
1347                  *          eventually be in trouble.
1348                  */
1349                 int size, offset, i = 0;
1350                 __le64 *bq, bq_array[8];
1351                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1352                 pci_unmap_single(qdev->pdev,
1353                                  pci_unmap_addr(sbq_desc, mapaddr),
1354                                  pci_unmap_len(sbq_desc, maplen),
1355                                  PCI_DMA_FROMDEVICE);
1356                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1357                         /*
1358                          * This is an non TCP/UDP IP frame, so
1359                          * the headers aren't split into a small
1360                          * buffer.  We have to use the small buffer
1361                          * that contains our sg list as our skb to
1362                          * send upstairs. Copy the sg list here to
1363                          * a local buffer and use it to find the
1364                          * pages to chain.
1365                          */
1366                         QPRINTK(qdev, RX_STATUS, DEBUG,
1367                                 "%d bytes of headers & data in chain of large.\n", length);
1368                         skb = sbq_desc->p.skb;
1369                         bq = &bq_array[0];
1370                         memcpy(bq, skb->data, sizeof(bq_array));
1371                         sbq_desc->p.skb = NULL;
1372                         skb_reserve(skb, NET_IP_ALIGN);
1373                 } else {
1374                         QPRINTK(qdev, RX_STATUS, DEBUG,
1375                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1376                         bq = (__le64 *)sbq_desc->p.skb->data;
1377                 }
1378                 while (length > 0) {
1379                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1380                         pci_unmap_page(qdev->pdev,
1381                                        pci_unmap_addr(lbq_desc,
1382                                                       mapaddr),
1383                                        pci_unmap_len(lbq_desc,
1384                                                      maplen),
1385                                        PCI_DMA_FROMDEVICE);
1386                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1387                         offset = 0;
1388
1389                         QPRINTK(qdev, RX_STATUS, DEBUG,
1390                                 "Adding page %d to skb for %d bytes.\n",
1391                                 i, size);
1392                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1393                                            offset, size);
1394                         skb->len += size;
1395                         skb->data_len += size;
1396                         skb->truesize += size;
1397                         length -= size;
1398                         lbq_desc->p.lbq_page = NULL;
1399                         bq++;
1400                         i++;
1401                 }
1402                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1403                                 VLAN_ETH_HLEN : ETH_HLEN);
1404         }
1405         return skb;
1406 }
1407
1408 /* Process an inbound completion from an rx ring. */
1409 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1410                                    struct rx_ring *rx_ring,
1411                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1412 {
1413         struct net_device *ndev = qdev->ndev;
1414         struct sk_buff *skb = NULL;
1415
1416         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1417
1418         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1419         if (unlikely(!skb)) {
1420                 QPRINTK(qdev, RX_STATUS, DEBUG,
1421                         "No skb available, drop packet.\n");
1422                 return;
1423         }
1424
1425         prefetch(skb->data);
1426         skb->dev = ndev;
1427         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1428                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1429                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1431                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1432                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1433                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1434                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1435         }
1436         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1437                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1438         }
1439         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1440                 QPRINTK(qdev, RX_STATUS, ERR,
1441                         "Bad checksum for this %s packet.\n",
1442                         ((ib_mac_rsp->
1443                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1444                 skb->ip_summed = CHECKSUM_NONE;
1445         } else if (qdev->rx_csum &&
1446                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1447                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1448                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1449                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1450                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1451         }
1452         qdev->stats.rx_packets++;
1453         qdev->stats.rx_bytes += skb->len;
1454         skb->protocol = eth_type_trans(skb, ndev);
1455         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1456                 QPRINTK(qdev, RX_STATUS, DEBUG,
1457                         "Passing a VLAN packet upstream.\n");
1458                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1459                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1460         } else {
1461                 QPRINTK(qdev, RX_STATUS, DEBUG,
1462                         "Passing a normal packet upstream.\n");
1463                 netif_receive_skb(skb);
1464         }
1465 }
1466
1467 /* Process an outbound completion from an rx ring. */
1468 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1469                                    struct ob_mac_iocb_rsp *mac_rsp)
1470 {
1471         struct tx_ring *tx_ring;
1472         struct tx_ring_desc *tx_ring_desc;
1473
1474         QL_DUMP_OB_MAC_RSP(mac_rsp);
1475         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1476         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1477         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1478         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1479         qdev->stats.tx_packets++;
1480         dev_kfree_skb(tx_ring_desc->skb);
1481         tx_ring_desc->skb = NULL;
1482
1483         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1484                                         OB_MAC_IOCB_RSP_S |
1485                                         OB_MAC_IOCB_RSP_L |
1486                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1487                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1488                         QPRINTK(qdev, TX_DONE, WARNING,
1489                                 "Total descriptor length did not match transfer length.\n");
1490                 }
1491                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1492                         QPRINTK(qdev, TX_DONE, WARNING,
1493                                 "Frame too short to be legal, not sent.\n");
1494                 }
1495                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1496                         QPRINTK(qdev, TX_DONE, WARNING,
1497                                 "Frame too long, but sent anyway.\n");
1498                 }
1499                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1500                         QPRINTK(qdev, TX_DONE, WARNING,
1501                                 "PCI backplane error. Frame not sent.\n");
1502                 }
1503         }
1504         atomic_inc(&tx_ring->tx_count);
1505 }
1506
1507 /* Fire up a handler to reset the MPI processor. */
1508 void ql_queue_fw_error(struct ql_adapter *qdev)
1509 {
1510         netif_stop_queue(qdev->ndev);
1511         netif_carrier_off(qdev->ndev);
1512         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1513 }
1514
1515 void ql_queue_asic_error(struct ql_adapter *qdev)
1516 {
1517         netif_stop_queue(qdev->ndev);
1518         netif_carrier_off(qdev->ndev);
1519         ql_disable_interrupts(qdev);
1520         /* Clear adapter up bit to signal the recovery
1521          * process that it shouldn't kill the reset worker
1522          * thread
1523          */
1524         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1525         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1526 }
1527
1528 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1529                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1530 {
1531         switch (ib_ae_rsp->event) {
1532         case MGMT_ERR_EVENT:
1533                 QPRINTK(qdev, RX_ERR, ERR,
1534                         "Management Processor Fatal Error.\n");
1535                 ql_queue_fw_error(qdev);
1536                 return;
1537
1538         case CAM_LOOKUP_ERR_EVENT:
1539                 QPRINTK(qdev, LINK, ERR,
1540                         "Multiple CAM hits lookup occurred.\n");
1541                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1542                 ql_queue_asic_error(qdev);
1543                 return;
1544
1545         case SOFT_ECC_ERROR_EVENT:
1546                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1547                 ql_queue_asic_error(qdev);
1548                 break;
1549
1550         case PCI_ERR_ANON_BUF_RD:
1551                 QPRINTK(qdev, RX_ERR, ERR,
1552                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1553                         ib_ae_rsp->q_id);
1554                 ql_queue_asic_error(qdev);
1555                 break;
1556
1557         default:
1558                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1559                         ib_ae_rsp->event);
1560                 ql_queue_asic_error(qdev);
1561                 break;
1562         }
1563 }
1564
1565 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1566 {
1567         struct ql_adapter *qdev = rx_ring->qdev;
1568         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1569         struct ob_mac_iocb_rsp *net_rsp = NULL;
1570         int count = 0;
1571
1572         /* While there are entries in the completion queue. */
1573         while (prod != rx_ring->cnsmr_idx) {
1574
1575                 QPRINTK(qdev, RX_STATUS, DEBUG,
1576                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1577                         prod, rx_ring->cnsmr_idx);
1578
1579                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1580                 rmb();
1581                 switch (net_rsp->opcode) {
1582
1583                 case OPCODE_OB_MAC_TSO_IOCB:
1584                 case OPCODE_OB_MAC_IOCB:
1585                         ql_process_mac_tx_intr(qdev, net_rsp);
1586                         break;
1587                 default:
1588                         QPRINTK(qdev, RX_STATUS, DEBUG,
1589                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1590                                 net_rsp->opcode);
1591                 }
1592                 count++;
1593                 ql_update_cq(rx_ring);
1594                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1595         }
1596         ql_write_cq_idx(rx_ring);
1597         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1598                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1599                 if (atomic_read(&tx_ring->queue_stopped) &&
1600                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1601                         /*
1602                          * The queue got stopped because the tx_ring was full.
1603                          * Wake it up, because it's now at least 25% empty.
1604                          */
1605                         netif_wake_queue(qdev->ndev);
1606         }
1607
1608         return count;
1609 }
1610
1611 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1612 {
1613         struct ql_adapter *qdev = rx_ring->qdev;
1614         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1615         struct ql_net_rsp_iocb *net_rsp;
1616         int count = 0;
1617
1618         /* While there are entries in the completion queue. */
1619         while (prod != rx_ring->cnsmr_idx) {
1620
1621                 QPRINTK(qdev, RX_STATUS, DEBUG,
1622                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1623                         prod, rx_ring->cnsmr_idx);
1624
1625                 net_rsp = rx_ring->curr_entry;
1626                 rmb();
1627                 switch (net_rsp->opcode) {
1628                 case OPCODE_IB_MAC_IOCB:
1629                         ql_process_mac_rx_intr(qdev, rx_ring,
1630                                                (struct ib_mac_iocb_rsp *)
1631                                                net_rsp);
1632                         break;
1633
1634                 case OPCODE_IB_AE_IOCB:
1635                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1636                                                 net_rsp);
1637                         break;
1638                 default:
1639                         {
1640                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1641                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1642                                         net_rsp->opcode);
1643                         }
1644                 }
1645                 count++;
1646                 ql_update_cq(rx_ring);
1647                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1648                 if (count == budget)
1649                         break;
1650         }
1651         ql_update_buffer_queues(qdev, rx_ring);
1652         ql_write_cq_idx(rx_ring);
1653         return count;
1654 }
1655
1656 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1657 {
1658         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1659         struct ql_adapter *qdev = rx_ring->qdev;
1660         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1661
1662         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1663                 rx_ring->cq_id);
1664
1665         if (work_done < budget) {
1666                 __netif_rx_complete(napi);
1667                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1668         }
1669         return work_done;
1670 }
1671
1672 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1673 {
1674         struct ql_adapter *qdev = netdev_priv(ndev);
1675
1676         qdev->vlgrp = grp;
1677         if (grp) {
1678                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1679                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1680                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1681         } else {
1682                 QPRINTK(qdev, IFUP, DEBUG,
1683                         "Turning off VLAN in NIC_RCV_CFG.\n");
1684                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1685         }
1686 }
1687
1688 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1689 {
1690         struct ql_adapter *qdev = netdev_priv(ndev);
1691         u32 enable_bit = MAC_ADDR_E;
1692
1693         spin_lock(&qdev->hw_lock);
1694         if (ql_set_mac_addr_reg
1695             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1696                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1697         }
1698         spin_unlock(&qdev->hw_lock);
1699 }
1700
1701 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1702 {
1703         struct ql_adapter *qdev = netdev_priv(ndev);
1704         u32 enable_bit = 0;
1705
1706         spin_lock(&qdev->hw_lock);
1707         if (ql_set_mac_addr_reg
1708             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1709                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1710         }
1711         spin_unlock(&qdev->hw_lock);
1712
1713 }
1714
1715 /* Worker thread to process a given rx_ring that is dedicated
1716  * to outbound completions.
1717  */
1718 static void ql_tx_clean(struct work_struct *work)
1719 {
1720         struct rx_ring *rx_ring =
1721             container_of(work, struct rx_ring, rx_work.work);
1722         ql_clean_outbound_rx_ring(rx_ring);
1723         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1724
1725 }
1726
1727 /* Worker thread to process a given rx_ring that is dedicated
1728  * to inbound completions.
1729  */
1730 static void ql_rx_clean(struct work_struct *work)
1731 {
1732         struct rx_ring *rx_ring =
1733             container_of(work, struct rx_ring, rx_work.work);
1734         ql_clean_inbound_rx_ring(rx_ring, 64);
1735         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1736 }
1737
1738 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1739 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1740 {
1741         struct rx_ring *rx_ring = dev_id;
1742         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1743                               &rx_ring->rx_work, 0);
1744         return IRQ_HANDLED;
1745 }
1746
1747 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1748 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1749 {
1750         struct rx_ring *rx_ring = dev_id;
1751         netif_rx_schedule(&rx_ring->napi);
1752         return IRQ_HANDLED;
1753 }
1754
1755 /* This handles a fatal error, MPI activity, and the default
1756  * rx_ring in an MSI-X multiple vector environment.
1757  * In MSI/Legacy environment it also process the rest of
1758  * the rx_rings.
1759  */
1760 static irqreturn_t qlge_isr(int irq, void *dev_id)
1761 {
1762         struct rx_ring *rx_ring = dev_id;
1763         struct ql_adapter *qdev = rx_ring->qdev;
1764         struct intr_context *intr_context = &qdev->intr_context[0];
1765         u32 var;
1766         int i;
1767         int work_done = 0;
1768
1769         spin_lock(&qdev->hw_lock);
1770         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1771                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1772                 spin_unlock(&qdev->hw_lock);
1773                 return IRQ_NONE;
1774         }
1775         spin_unlock(&qdev->hw_lock);
1776
1777         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1778
1779         /*
1780          * Check for fatal error.
1781          */
1782         if (var & STS_FE) {
1783                 ql_queue_asic_error(qdev);
1784                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1785                 var = ql_read32(qdev, ERR_STS);
1786                 QPRINTK(qdev, INTR, ERR,
1787                         "Resetting chip. Error Status Register = 0x%x\n", var);
1788                 return IRQ_HANDLED;
1789         }
1790
1791         /*
1792          * Check MPI processor activity.
1793          */
1794         if (var & STS_PI) {
1795                 /*
1796                  * We've got an async event or mailbox completion.
1797                  * Handle it and clear the source of the interrupt.
1798                  */
1799                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1800                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1801                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1802                                       &qdev->mpi_work, 0);
1803                 work_done++;
1804         }
1805
1806         /*
1807          * Check the default queue and wake handler if active.
1808          */
1809         rx_ring = &qdev->rx_ring[0];
1810         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1811                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1812                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1813                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1814                                       &rx_ring->rx_work, 0);
1815                 work_done++;
1816         }
1817
1818         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1819                 /*
1820                  * Start the DPC for each active queue.
1821                  */
1822                 for (i = 1; i < qdev->rx_ring_count; i++) {
1823                         rx_ring = &qdev->rx_ring[i];
1824                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1825                             rx_ring->cnsmr_idx) {
1826                                 QPRINTK(qdev, INTR, INFO,
1827                                         "Waking handler for rx_ring[%d].\n", i);
1828                                 ql_disable_completion_interrupt(qdev,
1829                                                                 intr_context->
1830                                                                 intr);
1831                                 if (i < qdev->rss_ring_first_cq_id)
1832                                         queue_delayed_work_on(rx_ring->cpu,
1833                                                               qdev->q_workqueue,
1834                                                               &rx_ring->rx_work,
1835                                                               0);
1836                                 else
1837                                         netif_rx_schedule(&rx_ring->napi);
1838                                 work_done++;
1839                         }
1840                 }
1841         }
1842         ql_enable_completion_interrupt(qdev, intr_context->intr);
1843         return work_done ? IRQ_HANDLED : IRQ_NONE;
1844 }
1845
1846 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1847 {
1848
1849         if (skb_is_gso(skb)) {
1850                 int err;
1851                 if (skb_header_cloned(skb)) {
1852                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1853                         if (err)
1854                                 return err;
1855                 }
1856
1857                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1858                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1859                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1860                 mac_iocb_ptr->total_hdrs_len =
1861                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1862                 mac_iocb_ptr->net_trans_offset =
1863                     cpu_to_le16(skb_network_offset(skb) |
1864                                 skb_transport_offset(skb)
1865                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1866                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1867                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1868                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1869                         struct iphdr *iph = ip_hdr(skb);
1870                         iph->check = 0;
1871                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1872                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1873                                                                  iph->daddr, 0,
1874                                                                  IPPROTO_TCP,
1875                                                                  0);
1876                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1877                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1878                         tcp_hdr(skb)->check =
1879                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1880                                              &ipv6_hdr(skb)->daddr,
1881                                              0, IPPROTO_TCP, 0);
1882                 }
1883                 return 1;
1884         }
1885         return 0;
1886 }
1887
1888 static void ql_hw_csum_setup(struct sk_buff *skb,
1889                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1890 {
1891         int len;
1892         struct iphdr *iph = ip_hdr(skb);
1893         __sum16 *check;
1894         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1895         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1896         mac_iocb_ptr->net_trans_offset =
1897                 cpu_to_le16(skb_network_offset(skb) |
1898                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1899
1900         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1901         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1902         if (likely(iph->protocol == IPPROTO_TCP)) {
1903                 check = &(tcp_hdr(skb)->check);
1904                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1905                 mac_iocb_ptr->total_hdrs_len =
1906                     cpu_to_le16(skb_transport_offset(skb) +
1907                                 (tcp_hdr(skb)->doff << 2));
1908         } else {
1909                 check = &(udp_hdr(skb)->check);
1910                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1911                 mac_iocb_ptr->total_hdrs_len =
1912                     cpu_to_le16(skb_transport_offset(skb) +
1913                                 sizeof(struct udphdr));
1914         }
1915         *check = ~csum_tcpudp_magic(iph->saddr,
1916                                     iph->daddr, len, iph->protocol, 0);
1917 }
1918
1919 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1920 {
1921         struct tx_ring_desc *tx_ring_desc;
1922         struct ob_mac_iocb_req *mac_iocb_ptr;
1923         struct ql_adapter *qdev = netdev_priv(ndev);
1924         int tso;
1925         struct tx_ring *tx_ring;
1926         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1927
1928         tx_ring = &qdev->tx_ring[tx_ring_idx];
1929
1930         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1931                 QPRINTK(qdev, TX_QUEUED, INFO,
1932                         "%s: shutting down tx queue %d du to lack of resources.\n",
1933                         __func__, tx_ring_idx);
1934                 netif_stop_queue(ndev);
1935                 atomic_inc(&tx_ring->queue_stopped);
1936                 return NETDEV_TX_BUSY;
1937         }
1938         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1939         mac_iocb_ptr = tx_ring_desc->queue_entry;
1940         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1941
1942         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1943         mac_iocb_ptr->tid = tx_ring_desc->index;
1944         /* We use the upper 32-bits to store the tx queue for this IO.
1945          * When we get the completion we can use it to establish the context.
1946          */
1947         mac_iocb_ptr->txq_idx = tx_ring_idx;
1948         tx_ring_desc->skb = skb;
1949
1950         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1951
1952         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1953                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1954                         vlan_tx_tag_get(skb));
1955                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1956                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1957         }
1958         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1959         if (tso < 0) {
1960                 dev_kfree_skb_any(skb);
1961                 return NETDEV_TX_OK;
1962         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1963                 ql_hw_csum_setup(skb,
1964                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1965         }
1966         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1967                         NETDEV_TX_OK) {
1968                 QPRINTK(qdev, TX_QUEUED, ERR,
1969                                 "Could not map the segments.\n");
1970                 return NETDEV_TX_BUSY;
1971         }
1972         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1973         tx_ring->prod_idx++;
1974         if (tx_ring->prod_idx == tx_ring->wq_len)
1975                 tx_ring->prod_idx = 0;
1976         wmb();
1977
1978         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1979         ndev->trans_start = jiffies;
1980         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1981                 tx_ring->prod_idx, skb->len);
1982
1983         atomic_dec(&tx_ring->tx_count);
1984         return NETDEV_TX_OK;
1985 }
1986
1987 static void ql_free_shadow_space(struct ql_adapter *qdev)
1988 {
1989         if (qdev->rx_ring_shadow_reg_area) {
1990                 pci_free_consistent(qdev->pdev,
1991                                     PAGE_SIZE,
1992                                     qdev->rx_ring_shadow_reg_area,
1993                                     qdev->rx_ring_shadow_reg_dma);
1994                 qdev->rx_ring_shadow_reg_area = NULL;
1995         }
1996         if (qdev->tx_ring_shadow_reg_area) {
1997                 pci_free_consistent(qdev->pdev,
1998                                     PAGE_SIZE,
1999                                     qdev->tx_ring_shadow_reg_area,
2000                                     qdev->tx_ring_shadow_reg_dma);
2001                 qdev->tx_ring_shadow_reg_area = NULL;
2002         }
2003 }
2004
2005 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2006 {
2007         qdev->rx_ring_shadow_reg_area =
2008             pci_alloc_consistent(qdev->pdev,
2009                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2010         if (qdev->rx_ring_shadow_reg_area == NULL) {
2011                 QPRINTK(qdev, IFUP, ERR,
2012                         "Allocation of RX shadow space failed.\n");
2013                 return -ENOMEM;
2014         }
2015         qdev->tx_ring_shadow_reg_area =
2016             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2017                                  &qdev->tx_ring_shadow_reg_dma);
2018         if (qdev->tx_ring_shadow_reg_area == NULL) {
2019                 QPRINTK(qdev, IFUP, ERR,
2020                         "Allocation of TX shadow space failed.\n");
2021                 goto err_wqp_sh_area;
2022         }
2023         return 0;
2024
2025 err_wqp_sh_area:
2026         pci_free_consistent(qdev->pdev,
2027                             PAGE_SIZE,
2028                             qdev->rx_ring_shadow_reg_area,
2029                             qdev->rx_ring_shadow_reg_dma);
2030         return -ENOMEM;
2031 }
2032
2033 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2034 {
2035         struct tx_ring_desc *tx_ring_desc;
2036         int i;
2037         struct ob_mac_iocb_req *mac_iocb_ptr;
2038
2039         mac_iocb_ptr = tx_ring->wq_base;
2040         tx_ring_desc = tx_ring->q;
2041         for (i = 0; i < tx_ring->wq_len; i++) {
2042                 tx_ring_desc->index = i;
2043                 tx_ring_desc->skb = NULL;
2044                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2045                 mac_iocb_ptr++;
2046                 tx_ring_desc++;
2047         }
2048         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2049         atomic_set(&tx_ring->queue_stopped, 0);
2050 }
2051
2052 static void ql_free_tx_resources(struct ql_adapter *qdev,
2053                                  struct tx_ring *tx_ring)
2054 {
2055         if (tx_ring->wq_base) {
2056                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2057                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2058                 tx_ring->wq_base = NULL;
2059         }
2060         kfree(tx_ring->q);
2061         tx_ring->q = NULL;
2062 }
2063
2064 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2065                                  struct tx_ring *tx_ring)
2066 {
2067         tx_ring->wq_base =
2068             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2069                                  &tx_ring->wq_base_dma);
2070
2071         if ((tx_ring->wq_base == NULL)
2072             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2073                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2074                 return -ENOMEM;
2075         }
2076         tx_ring->q =
2077             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2078         if (tx_ring->q == NULL)
2079                 goto err;
2080
2081         return 0;
2082 err:
2083         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2084                             tx_ring->wq_base, tx_ring->wq_base_dma);
2085         return -ENOMEM;
2086 }
2087
2088 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2089 {
2090         int i;
2091         struct bq_desc *lbq_desc;
2092
2093         for (i = 0; i < rx_ring->lbq_len; i++) {
2094                 lbq_desc = &rx_ring->lbq[i];
2095                 if (lbq_desc->p.lbq_page) {
2096                         pci_unmap_page(qdev->pdev,
2097                                        pci_unmap_addr(lbq_desc, mapaddr),
2098                                        pci_unmap_len(lbq_desc, maplen),
2099                                        PCI_DMA_FROMDEVICE);
2100
2101                         put_page(lbq_desc->p.lbq_page);
2102                         lbq_desc->p.lbq_page = NULL;
2103                 }
2104         }
2105 }
2106
2107 /*
2108  * Allocate and map a page for each element of the lbq.
2109  */
2110 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2111                                 struct rx_ring *rx_ring)
2112 {
2113         int i;
2114         struct bq_desc *lbq_desc;
2115         u64 map;
2116         __le64 *bq = rx_ring->lbq_base;
2117
2118         for (i = 0; i < rx_ring->lbq_len; i++) {
2119                 lbq_desc = &rx_ring->lbq[i];
2120                 memset(lbq_desc, 0, sizeof(lbq_desc));
2121                 lbq_desc->addr = bq;
2122                 lbq_desc->index = i;
2123                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2124                 if (unlikely(!lbq_desc->p.lbq_page)) {
2125                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2126                         goto mem_error;
2127                 } else {
2128                         map = pci_map_page(qdev->pdev,
2129                                            lbq_desc->p.lbq_page,
2130                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2131                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2132                                 QPRINTK(qdev, IFUP, ERR,
2133                                         "PCI mapping failed.\n");
2134                                 goto mem_error;
2135                         }
2136                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2137                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2138                         *lbq_desc->addr = cpu_to_le64(map);
2139                 }
2140                 bq++;
2141         }
2142         return 0;
2143 mem_error:
2144         ql_free_lbq_buffers(qdev, rx_ring);
2145         return -ENOMEM;
2146 }
2147
2148 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2149 {
2150         int i;
2151         struct bq_desc *sbq_desc;
2152
2153         for (i = 0; i < rx_ring->sbq_len; i++) {
2154                 sbq_desc = &rx_ring->sbq[i];
2155                 if (sbq_desc == NULL) {
2156                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2157                         return;
2158                 }
2159                 if (sbq_desc->p.skb) {
2160                         pci_unmap_single(qdev->pdev,
2161                                          pci_unmap_addr(sbq_desc, mapaddr),
2162                                          pci_unmap_len(sbq_desc, maplen),
2163                                          PCI_DMA_FROMDEVICE);
2164                         dev_kfree_skb(sbq_desc->p.skb);
2165                         sbq_desc->p.skb = NULL;
2166                 }
2167         }
2168 }
2169
2170 /* Allocate and map an skb for each element of the sbq. */
2171 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2172                                 struct rx_ring *rx_ring)
2173 {
2174         int i;
2175         struct bq_desc *sbq_desc;
2176         struct sk_buff *skb;
2177         u64 map;
2178         __le64 *bq = rx_ring->sbq_base;
2179
2180         for (i = 0; i < rx_ring->sbq_len; i++) {
2181                 sbq_desc = &rx_ring->sbq[i];
2182                 memset(sbq_desc, 0, sizeof(sbq_desc));
2183                 sbq_desc->index = i;
2184                 sbq_desc->addr = bq;
2185                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2186                 if (unlikely(!skb)) {
2187                         /* Better luck next round */
2188                         QPRINTK(qdev, IFUP, ERR,
2189                                 "small buff alloc failed for %d bytes at index %d.\n",
2190                                 rx_ring->sbq_buf_size, i);
2191                         goto mem_err;
2192                 }
2193                 skb_reserve(skb, QLGE_SB_PAD);
2194                 sbq_desc->p.skb = skb;
2195                 /*
2196                  * Map only half the buffer. Because the
2197                  * other half may get some data copied to it
2198                  * when the completion arrives.
2199                  */
2200                 map = pci_map_single(qdev->pdev,
2201                                      skb->data,
2202                                      rx_ring->sbq_buf_size / 2,
2203                                      PCI_DMA_FROMDEVICE);
2204                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2205                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2206                         goto mem_err;
2207                 }
2208                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2209                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2210                 *sbq_desc->addr = cpu_to_le64(map);
2211                 bq++;
2212         }
2213         return 0;
2214 mem_err:
2215         ql_free_sbq_buffers(qdev, rx_ring);
2216         return -ENOMEM;
2217 }
2218
2219 static void ql_free_rx_resources(struct ql_adapter *qdev,
2220                                  struct rx_ring *rx_ring)
2221 {
2222         if (rx_ring->sbq_len)
2223                 ql_free_sbq_buffers(qdev, rx_ring);
2224         if (rx_ring->lbq_len)
2225                 ql_free_lbq_buffers(qdev, rx_ring);
2226
2227         /* Free the small buffer queue. */
2228         if (rx_ring->sbq_base) {
2229                 pci_free_consistent(qdev->pdev,
2230                                     rx_ring->sbq_size,
2231                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2232                 rx_ring->sbq_base = NULL;
2233         }
2234
2235         /* Free the small buffer queue control blocks. */
2236         kfree(rx_ring->sbq);
2237         rx_ring->sbq = NULL;
2238
2239         /* Free the large buffer queue. */
2240         if (rx_ring->lbq_base) {
2241                 pci_free_consistent(qdev->pdev,
2242                                     rx_ring->lbq_size,
2243                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2244                 rx_ring->lbq_base = NULL;
2245         }
2246
2247         /* Free the large buffer queue control blocks. */
2248         kfree(rx_ring->lbq);
2249         rx_ring->lbq = NULL;
2250
2251         /* Free the rx queue. */
2252         if (rx_ring->cq_base) {
2253                 pci_free_consistent(qdev->pdev,
2254                                     rx_ring->cq_size,
2255                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2256                 rx_ring->cq_base = NULL;
2257         }
2258 }
2259
2260 /* Allocate queues and buffers for this completions queue based
2261  * on the values in the parameter structure. */
2262 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2263                                  struct rx_ring *rx_ring)
2264 {
2265
2266         /*
2267          * Allocate the completion queue for this rx_ring.
2268          */
2269         rx_ring->cq_base =
2270             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2271                                  &rx_ring->cq_base_dma);
2272
2273         if (rx_ring->cq_base == NULL) {
2274                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2275                 return -ENOMEM;
2276         }
2277
2278         if (rx_ring->sbq_len) {
2279                 /*
2280                  * Allocate small buffer queue.
2281                  */
2282                 rx_ring->sbq_base =
2283                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2284                                          &rx_ring->sbq_base_dma);
2285
2286                 if (rx_ring->sbq_base == NULL) {
2287                         QPRINTK(qdev, IFUP, ERR,
2288                                 "Small buffer queue allocation failed.\n");
2289                         goto err_mem;
2290                 }
2291
2292                 /*
2293                  * Allocate small buffer queue control blocks.
2294                  */
2295                 rx_ring->sbq =
2296                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2297                             GFP_KERNEL);
2298                 if (rx_ring->sbq == NULL) {
2299                         QPRINTK(qdev, IFUP, ERR,
2300                                 "Small buffer queue control block allocation failed.\n");
2301                         goto err_mem;
2302                 }
2303
2304                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2305                         QPRINTK(qdev, IFUP, ERR,
2306                                 "Small buffer allocation failed.\n");
2307                         goto err_mem;
2308                 }
2309         }
2310
2311         if (rx_ring->lbq_len) {
2312                 /*
2313                  * Allocate large buffer queue.
2314                  */
2315                 rx_ring->lbq_base =
2316                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2317                                          &rx_ring->lbq_base_dma);
2318
2319                 if (rx_ring->lbq_base == NULL) {
2320                         QPRINTK(qdev, IFUP, ERR,
2321                                 "Large buffer queue allocation failed.\n");
2322                         goto err_mem;
2323                 }
2324                 /*
2325                  * Allocate large buffer queue control blocks.
2326                  */
2327                 rx_ring->lbq =
2328                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2329                             GFP_KERNEL);
2330                 if (rx_ring->lbq == NULL) {
2331                         QPRINTK(qdev, IFUP, ERR,
2332                                 "Large buffer queue control block allocation failed.\n");
2333                         goto err_mem;
2334                 }
2335
2336                 /*
2337                  * Allocate the buffers.
2338                  */
2339                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2340                         QPRINTK(qdev, IFUP, ERR,
2341                                 "Large buffer allocation failed.\n");
2342                         goto err_mem;
2343                 }
2344         }
2345
2346         return 0;
2347
2348 err_mem:
2349         ql_free_rx_resources(qdev, rx_ring);
2350         return -ENOMEM;
2351 }
2352
2353 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2354 {
2355         struct tx_ring *tx_ring;
2356         struct tx_ring_desc *tx_ring_desc;
2357         int i, j;
2358
2359         /*
2360          * Loop through all queues and free
2361          * any resources.
2362          */
2363         for (j = 0; j < qdev->tx_ring_count; j++) {
2364                 tx_ring = &qdev->tx_ring[j];
2365                 for (i = 0; i < tx_ring->wq_len; i++) {
2366                         tx_ring_desc = &tx_ring->q[i];
2367                         if (tx_ring_desc && tx_ring_desc->skb) {
2368                                 QPRINTK(qdev, IFDOWN, ERR,
2369                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2370                                         tx_ring_desc->skb, j,
2371                                         tx_ring_desc->index);
2372                                 ql_unmap_send(qdev, tx_ring_desc,
2373                                               tx_ring_desc->map_cnt);
2374                                 dev_kfree_skb(tx_ring_desc->skb);
2375                                 tx_ring_desc->skb = NULL;
2376                         }
2377                 }
2378         }
2379 }
2380
2381 static void ql_free_mem_resources(struct ql_adapter *qdev)
2382 {
2383         int i;
2384
2385         for (i = 0; i < qdev->tx_ring_count; i++)
2386                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2387         for (i = 0; i < qdev->rx_ring_count; i++)
2388                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2389         ql_free_shadow_space(qdev);
2390 }
2391
2392 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2393 {
2394         int i;
2395
2396         /* Allocate space for our shadow registers and such. */
2397         if (ql_alloc_shadow_space(qdev))
2398                 return -ENOMEM;
2399
2400         for (i = 0; i < qdev->rx_ring_count; i++) {
2401                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2402                         QPRINTK(qdev, IFUP, ERR,
2403                                 "RX resource allocation failed.\n");
2404                         goto err_mem;
2405                 }
2406         }
2407         /* Allocate tx queue resources */
2408         for (i = 0; i < qdev->tx_ring_count; i++) {
2409                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2410                         QPRINTK(qdev, IFUP, ERR,
2411                                 "TX resource allocation failed.\n");
2412                         goto err_mem;
2413                 }
2414         }
2415         return 0;
2416
2417 err_mem:
2418         ql_free_mem_resources(qdev);
2419         return -ENOMEM;
2420 }
2421
2422 /* Set up the rx ring control block and pass it to the chip.
2423  * The control block is defined as
2424  * "Completion Queue Initialization Control Block", or cqicb.
2425  */
2426 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2427 {
2428         struct cqicb *cqicb = &rx_ring->cqicb;
2429         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2430             (rx_ring->cq_id * sizeof(u64) * 4);
2431         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2432             (rx_ring->cq_id * sizeof(u64) * 4);
2433         void __iomem *doorbell_area =
2434             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2435         int err = 0;
2436         u16 bq_len;
2437
2438         /* Set up the shadow registers for this ring. */
2439         rx_ring->prod_idx_sh_reg = shadow_reg;
2440         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2441         shadow_reg += sizeof(u64);
2442         shadow_reg_dma += sizeof(u64);
2443         rx_ring->lbq_base_indirect = shadow_reg;
2444         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2445         shadow_reg += sizeof(u64);
2446         shadow_reg_dma += sizeof(u64);
2447         rx_ring->sbq_base_indirect = shadow_reg;
2448         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2449
2450         /* PCI doorbell mem area + 0x00 for consumer index register */
2451         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2452         rx_ring->cnsmr_idx = 0;
2453         rx_ring->curr_entry = rx_ring->cq_base;
2454
2455         /* PCI doorbell mem area + 0x04 for valid register */
2456         rx_ring->valid_db_reg = doorbell_area + 0x04;
2457
2458         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2459         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2460
2461         /* PCI doorbell mem area + 0x1c */
2462         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2463
2464         memset((void *)cqicb, 0, sizeof(struct cqicb));
2465         cqicb->msix_vect = rx_ring->irq;
2466
2467         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2468         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2469
2470         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2471
2472         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2473
2474         /*
2475          * Set up the control block load flags.
2476          */
2477         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2478             FLAGS_LV |          /* Load MSI-X vector */
2479             FLAGS_LI;           /* Load irq delay values */
2480         if (rx_ring->lbq_len) {
2481                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2482                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2483                 cqicb->lbq_addr =
2484                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2485                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2486                         (u16) rx_ring->lbq_buf_size;
2487                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2488                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2489                         (u16) rx_ring->lbq_len;
2490                 cqicb->lbq_len = cpu_to_le16(bq_len);
2491                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2492                 rx_ring->lbq_curr_idx = 0;
2493                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2494                 rx_ring->lbq_free_cnt = 16;
2495         }
2496         if (rx_ring->sbq_len) {
2497                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2498                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2499                 cqicb->sbq_addr =
2500                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2501                 cqicb->sbq_buf_size =
2502                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2503                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2504                         (u16) rx_ring->sbq_len;
2505                 cqicb->sbq_len = cpu_to_le16(bq_len);
2506                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2507                 rx_ring->sbq_curr_idx = 0;
2508                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2509                 rx_ring->sbq_free_cnt = 16;
2510         }
2511         switch (rx_ring->type) {
2512         case TX_Q:
2513                 /* If there's only one interrupt, then we use
2514                  * worker threads to process the outbound
2515                  * completion handling rx_rings. We do this so
2516                  * they can be run on multiple CPUs. There is
2517                  * room to play with this more where we would only
2518                  * run in a worker if there are more than x number
2519                  * of outbound completions on the queue and more
2520                  * than one queue active.  Some threshold that
2521                  * would indicate a benefit in spite of the cost
2522                  * of a context switch.
2523                  * If there's more than one interrupt, then the
2524                  * outbound completions are processed in the ISR.
2525                  */
2526                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2527                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2528                 else {
2529                         /* With all debug warnings on we see a WARN_ON message
2530                          * when we free the skb in the interrupt context.
2531                          */
2532                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2533                 }
2534                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2535                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2536                 break;
2537         case DEFAULT_Q:
2538                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2539                 cqicb->irq_delay = 0;
2540                 cqicb->pkt_delay = 0;
2541                 break;
2542         case RX_Q:
2543                 /* Inbound completion handling rx_rings run in
2544                  * separate NAPI contexts.
2545                  */
2546                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2547                                64);
2548                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2549                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2550                 break;
2551         default:
2552                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2553                         rx_ring->type);
2554         }
2555         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2556         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2557                            CFG_LCQ, rx_ring->cq_id);
2558         if (err) {
2559                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2560                 return err;
2561         }
2562         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2563         /*
2564          * Advance the producer index for the buffer queues.
2565          */
2566         wmb();
2567         if (rx_ring->lbq_len)
2568                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2569                                 rx_ring->lbq_prod_idx_db_reg);
2570         if (rx_ring->sbq_len)
2571                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2572                                 rx_ring->sbq_prod_idx_db_reg);
2573         return err;
2574 }
2575
2576 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2577 {
2578         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2579         void __iomem *doorbell_area =
2580             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2581         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2582             (tx_ring->wq_id * sizeof(u64));
2583         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2584             (tx_ring->wq_id * sizeof(u64));
2585         int err = 0;
2586
2587         /*
2588          * Assign doorbell registers for this tx_ring.
2589          */
2590         /* TX PCI doorbell mem area for tx producer index */
2591         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2592         tx_ring->prod_idx = 0;
2593         /* TX PCI doorbell mem area + 0x04 */
2594         tx_ring->valid_db_reg = doorbell_area + 0x04;
2595
2596         /*
2597          * Assign shadow registers for this tx_ring.
2598          */
2599         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2600         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2601
2602         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2603         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2604                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2605         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2606         wqicb->rid = 0;
2607         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2608
2609         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2610
2611         ql_init_tx_ring(qdev, tx_ring);
2612
2613         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2614                            (u16) tx_ring->wq_id);
2615         if (err) {
2616                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2617                 return err;
2618         }
2619         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2620         return err;
2621 }
2622
2623 static void ql_disable_msix(struct ql_adapter *qdev)
2624 {
2625         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2626                 pci_disable_msix(qdev->pdev);
2627                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2628                 kfree(qdev->msi_x_entry);
2629                 qdev->msi_x_entry = NULL;
2630         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2631                 pci_disable_msi(qdev->pdev);
2632                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2633         }
2634 }
2635
2636 static void ql_enable_msix(struct ql_adapter *qdev)
2637 {
2638         int i;
2639
2640         qdev->intr_count = 1;
2641         /* Get the MSIX vectors. */
2642         if (irq_type == MSIX_IRQ) {
2643                 /* Try to alloc space for the msix struct,
2644                  * if it fails then go to MSI/legacy.
2645                  */
2646                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2647                                             sizeof(struct msix_entry),
2648                                             GFP_KERNEL);
2649                 if (!qdev->msi_x_entry) {
2650                         irq_type = MSI_IRQ;
2651                         goto msi;
2652                 }
2653
2654                 for (i = 0; i < qdev->rx_ring_count; i++)
2655                         qdev->msi_x_entry[i].entry = i;
2656
2657                 if (!pci_enable_msix
2658                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2659                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2660                         qdev->intr_count = qdev->rx_ring_count;
2661                         QPRINTK(qdev, IFUP, INFO,
2662                                 "MSI-X Enabled, got %d vectors.\n",
2663                                 qdev->intr_count);
2664                         return;
2665                 } else {
2666                         kfree(qdev->msi_x_entry);
2667                         qdev->msi_x_entry = NULL;
2668                         QPRINTK(qdev, IFUP, WARNING,
2669                                 "MSI-X Enable failed, trying MSI.\n");
2670                         irq_type = MSI_IRQ;
2671                 }
2672         }
2673 msi:
2674         if (irq_type == MSI_IRQ) {
2675                 if (!pci_enable_msi(qdev->pdev)) {
2676                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2677                         QPRINTK(qdev, IFUP, INFO,
2678                                 "Running with MSI interrupts.\n");
2679                         return;
2680                 }
2681         }
2682         irq_type = LEG_IRQ;
2683         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2684 }
2685
2686 /*
2687  * Here we build the intr_context structures based on
2688  * our rx_ring count and intr vector count.
2689  * The intr_context structure is used to hook each vector
2690  * to possibly different handlers.
2691  */
2692 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2693 {
2694         int i = 0;
2695         struct intr_context *intr_context = &qdev->intr_context[0];
2696
2697         ql_enable_msix(qdev);
2698
2699         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2700                 /* Each rx_ring has it's
2701                  * own intr_context since we have separate
2702                  * vectors for each queue.
2703                  * This only true when MSI-X is enabled.
2704                  */
2705                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2706                         qdev->rx_ring[i].irq = i;
2707                         intr_context->intr = i;
2708                         intr_context->qdev = qdev;
2709                         /*
2710                          * We set up each vectors enable/disable/read bits so
2711                          * there's no bit/mask calculations in the critical path.
2712                          */
2713                         intr_context->intr_en_mask =
2714                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2715                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2716                             | i;
2717                         intr_context->intr_dis_mask =
2718                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2719                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2720                             INTR_EN_IHD | i;
2721                         intr_context->intr_read_mask =
2722                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2723                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2724                             i;
2725
2726                         if (i == 0) {
2727                                 /*
2728                                  * Default queue handles bcast/mcast plus
2729                                  * async events.  Needs buffers.
2730                                  */
2731                                 intr_context->handler = qlge_isr;
2732                                 sprintf(intr_context->name, "%s-default-queue",
2733                                         qdev->ndev->name);
2734                         } else if (i < qdev->rss_ring_first_cq_id) {
2735                                 /*
2736                                  * Outbound queue is for outbound completions only.
2737                                  */
2738                                 intr_context->handler = qlge_msix_tx_isr;
2739                                 sprintf(intr_context->name, "%s-tx-%d",
2740                                         qdev->ndev->name, i);
2741                         } else {
2742                                 /*
2743                                  * Inbound queues handle unicast frames only.
2744                                  */
2745                                 intr_context->handler = qlge_msix_rx_isr;
2746                                 sprintf(intr_context->name, "%s-rx-%d",
2747                                         qdev->ndev->name, i);
2748                         }
2749                 }
2750         } else {
2751                 /*
2752                  * All rx_rings use the same intr_context since
2753                  * there is only one vector.
2754                  */
2755                 intr_context->intr = 0;
2756                 intr_context->qdev = qdev;
2757                 /*
2758                  * We set up each vectors enable/disable/read bits so
2759                  * there's no bit/mask calculations in the critical path.
2760                  */
2761                 intr_context->intr_en_mask =
2762                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2763                 intr_context->intr_dis_mask =
2764                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2765                     INTR_EN_TYPE_DISABLE;
2766                 intr_context->intr_read_mask =
2767                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2768                 /*
2769                  * Single interrupt means one handler for all rings.
2770                  */
2771                 intr_context->handler = qlge_isr;
2772                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2773                 for (i = 0; i < qdev->rx_ring_count; i++)
2774                         qdev->rx_ring[i].irq = 0;
2775         }
2776 }
2777
2778 static void ql_free_irq(struct ql_adapter *qdev)
2779 {
2780         int i;
2781         struct intr_context *intr_context = &qdev->intr_context[0];
2782
2783         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2784                 if (intr_context->hooked) {
2785                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2786                                 free_irq(qdev->msi_x_entry[i].vector,
2787                                          &qdev->rx_ring[i]);
2788                                 QPRINTK(qdev, IFDOWN, ERR,
2789                                         "freeing msix interrupt %d.\n", i);
2790                         } else {
2791                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2792                                 QPRINTK(qdev, IFDOWN, ERR,
2793                                         "freeing msi interrupt %d.\n", i);
2794                         }
2795                 }
2796         }
2797         ql_disable_msix(qdev);
2798 }
2799
2800 static int ql_request_irq(struct ql_adapter *qdev)
2801 {
2802         int i;
2803         int status = 0;
2804         struct pci_dev *pdev = qdev->pdev;
2805         struct intr_context *intr_context = &qdev->intr_context[0];
2806
2807         ql_resolve_queues_to_irqs(qdev);
2808
2809         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2810                 atomic_set(&intr_context->irq_cnt, 0);
2811                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2812                         status = request_irq(qdev->msi_x_entry[i].vector,
2813                                              intr_context->handler,
2814                                              0,
2815                                              intr_context->name,
2816                                              &qdev->rx_ring[i]);
2817                         if (status) {
2818                                 QPRINTK(qdev, IFUP, ERR,
2819                                         "Failed request for MSIX interrupt %d.\n",
2820                                         i);
2821                                 goto err_irq;
2822                         } else {
2823                                 QPRINTK(qdev, IFUP, INFO,
2824                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2825                                         i,
2826                                         qdev->rx_ring[i].type ==
2827                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2828                                         qdev->rx_ring[i].type ==
2829                                         TX_Q ? "TX_Q" : "",
2830                                         qdev->rx_ring[i].type ==
2831                                         RX_Q ? "RX_Q" : "", intr_context->name);
2832                         }
2833                 } else {
2834                         QPRINTK(qdev, IFUP, DEBUG,
2835                                 "trying msi or legacy interrupts.\n");
2836                         QPRINTK(qdev, IFUP, DEBUG,
2837                                 "%s: irq = %d.\n", __func__, pdev->irq);
2838                         QPRINTK(qdev, IFUP, DEBUG,
2839                                 "%s: context->name = %s.\n", __func__,
2840                                intr_context->name);
2841                         QPRINTK(qdev, IFUP, DEBUG,
2842                                 "%s: dev_id = 0x%p.\n", __func__,
2843                                &qdev->rx_ring[0]);
2844                         status =
2845                             request_irq(pdev->irq, qlge_isr,
2846                                         test_bit(QL_MSI_ENABLED,
2847                                                  &qdev->
2848                                                  flags) ? 0 : IRQF_SHARED,
2849                                         intr_context->name, &qdev->rx_ring[0]);
2850                         if (status)
2851                                 goto err_irq;
2852
2853                         QPRINTK(qdev, IFUP, ERR,
2854                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2855                                 i,
2856                                 qdev->rx_ring[0].type ==
2857                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2858                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2859                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2860                                 intr_context->name);
2861                 }
2862                 intr_context->hooked = 1;
2863         }
2864         return status;
2865 err_irq:
2866         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2867         ql_free_irq(qdev);
2868         return status;
2869 }
2870
2871 static int ql_start_rss(struct ql_adapter *qdev)
2872 {
2873         struct ricb *ricb = &qdev->ricb;
2874         int status = 0;
2875         int i;
2876         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2877
2878         memset((void *)ricb, 0, sizeof(ricb));
2879
2880         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2881         ricb->flags =
2882             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2883              RSS_RT6);
2884         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2885
2886         /*
2887          * Fill out the Indirection Table.
2888          */
2889         for (i = 0; i < 256; i++)
2890                 hash_id[i] = i & (qdev->rss_ring_count - 1);
2891
2892         /*
2893          * Random values for the IPv6 and IPv4 Hash Keys.
2894          */
2895         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2896         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2897
2898         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2899
2900         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2901         if (status) {
2902                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2903                 return status;
2904         }
2905         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2906         return status;
2907 }
2908
2909 /* Initialize the frame-to-queue routing. */
2910 static int ql_route_initialize(struct ql_adapter *qdev)
2911 {
2912         int status = 0;
2913         int i;
2914
2915         /* Clear all the entries in the routing table. */
2916         for (i = 0; i < 16; i++) {
2917                 status = ql_set_routing_reg(qdev, i, 0, 0);
2918                 if (status) {
2919                         QPRINTK(qdev, IFUP, ERR,
2920                                 "Failed to init routing register for CAM packets.\n");
2921                         return status;
2922                 }
2923         }
2924
2925         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2926         if (status) {
2927                 QPRINTK(qdev, IFUP, ERR,
2928                         "Failed to init routing register for error packets.\n");
2929                 return status;
2930         }
2931         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2932         if (status) {
2933                 QPRINTK(qdev, IFUP, ERR,
2934                         "Failed to init routing register for broadcast packets.\n");
2935                 return status;
2936         }
2937         /* If we have more than one inbound queue, then turn on RSS in the
2938          * routing block.
2939          */
2940         if (qdev->rss_ring_count > 1) {
2941                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2942                                         RT_IDX_RSS_MATCH, 1);
2943                 if (status) {
2944                         QPRINTK(qdev, IFUP, ERR,
2945                                 "Failed to init routing register for MATCH RSS packets.\n");
2946                         return status;
2947                 }
2948         }
2949
2950         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2951                                     RT_IDX_CAM_HIT, 1);
2952         if (status) {
2953                 QPRINTK(qdev, IFUP, ERR,
2954                         "Failed to init routing register for CAM packets.\n");
2955                 return status;
2956         }
2957         return status;
2958 }
2959
2960 static int ql_adapter_initialize(struct ql_adapter *qdev)
2961 {
2962         u32 value, mask;
2963         int i;
2964         int status = 0;
2965
2966         /*
2967          * Set up the System register to halt on errors.
2968          */
2969         value = SYS_EFE | SYS_FAE;
2970         mask = value << 16;
2971         ql_write32(qdev, SYS, mask | value);
2972
2973         /* Set the default queue. */
2974         value = NIC_RCV_CFG_DFQ;
2975         mask = NIC_RCV_CFG_DFQ_MASK;
2976         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2977
2978         /* Set the MPI interrupt to enabled. */
2979         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2980
2981         /* Enable the function, set pagesize, enable error checking. */
2982         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2983             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2984
2985         /* Set/clear header splitting. */
2986         mask = FSC_VM_PAGESIZE_MASK |
2987             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2988         ql_write32(qdev, FSC, mask | value);
2989
2990         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2991                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2992
2993         /* Start up the rx queues. */
2994         for (i = 0; i < qdev->rx_ring_count; i++) {
2995                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2996                 if (status) {
2997                         QPRINTK(qdev, IFUP, ERR,
2998                                 "Failed to start rx ring[%d].\n", i);
2999                         return status;
3000                 }
3001         }
3002
3003         /* If there is more than one inbound completion queue
3004          * then download a RICB to configure RSS.
3005          */
3006         if (qdev->rss_ring_count > 1) {
3007                 status = ql_start_rss(qdev);
3008                 if (status) {
3009                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3010                         return status;
3011                 }
3012         }
3013
3014         /* Start up the tx queues. */
3015         for (i = 0; i < qdev->tx_ring_count; i++) {
3016                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3017                 if (status) {
3018                         QPRINTK(qdev, IFUP, ERR,
3019                                 "Failed to start tx ring[%d].\n", i);
3020                         return status;
3021                 }
3022         }
3023
3024         status = ql_port_initialize(qdev);
3025         if (status) {
3026                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3027                 return status;
3028         }
3029
3030         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3031                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3032         if (status) {
3033                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3034                 return status;
3035         }
3036
3037         status = ql_route_initialize(qdev);
3038         if (status) {
3039                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3040                 return status;
3041         }
3042
3043         /* Start NAPI for the RSS queues. */
3044         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3045                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3046                         i);
3047                 napi_enable(&qdev->rx_ring[i].napi);
3048         }
3049
3050         return status;
3051 }
3052
3053 /* Issue soft reset to chip. */
3054 static int ql_adapter_reset(struct ql_adapter *qdev)
3055 {
3056         u32 value;
3057         int max_wait_time;
3058         int status = 0;
3059         int resetCnt = 0;
3060
3061 #define MAX_RESET_CNT   1
3062 issueReset:
3063         resetCnt++;
3064         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3065         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3066         /* Wait for reset to complete. */
3067         max_wait_time = 3;
3068         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3069                 max_wait_time);
3070         do {
3071                 value = ql_read32(qdev, RST_FO);
3072                 if ((value & RST_FO_FR) == 0)
3073                         break;
3074
3075                 ssleep(1);
3076         } while ((--max_wait_time));
3077         if (value & RST_FO_FR) {
3078                 QPRINTK(qdev, IFDOWN, ERR,
3079                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3080                 if (resetCnt < MAX_RESET_CNT)
3081                         goto issueReset;
3082         }
3083         if (max_wait_time == 0) {
3084                 status = -ETIMEDOUT;
3085                 QPRINTK(qdev, IFDOWN, ERR,
3086                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3087         }
3088
3089         return status;
3090 }
3091
3092 static void ql_display_dev_info(struct net_device *ndev)
3093 {
3094         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3095
3096         QPRINTK(qdev, PROBE, INFO,
3097                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3098                 "XG Roll = %d, XG Rev = %d.\n",
3099                 qdev->func,
3100                 qdev->chip_rev_id & 0x0000000f,
3101                 qdev->chip_rev_id >> 4 & 0x0000000f,
3102                 qdev->chip_rev_id >> 8 & 0x0000000f,
3103                 qdev->chip_rev_id >> 12 & 0x0000000f);
3104         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3105 }
3106
3107 static int ql_adapter_down(struct ql_adapter *qdev)
3108 {
3109         struct net_device *ndev = qdev->ndev;
3110         int i, status = 0;
3111         struct rx_ring *rx_ring;
3112
3113         netif_stop_queue(ndev);
3114         netif_carrier_off(ndev);
3115
3116         /* Don't kill the reset worker thread if we
3117          * are in the process of recovery.
3118          */
3119         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3120                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3121         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3122         cancel_delayed_work_sync(&qdev->mpi_work);
3123
3124         /* The default queue at index 0 is always processed in
3125          * a workqueue.
3126          */
3127         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3128
3129         /* The rest of the rx_rings are processed in
3130          * a workqueue only if it's a single interrupt
3131          * environment (MSI/Legacy).
3132          */
3133         for (i = 1; i < qdev->rx_ring_count; i++) {
3134                 rx_ring = &qdev->rx_ring[i];
3135                 /* Only the RSS rings use NAPI on multi irq
3136                  * environment.  Outbound completion processing
3137                  * is done in interrupt context.
3138                  */
3139                 if (i >= qdev->rss_ring_first_cq_id) {
3140                         napi_disable(&rx_ring->napi);
3141                 } else {
3142                         cancel_delayed_work_sync(&rx_ring->rx_work);
3143                 }
3144         }
3145
3146         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3147
3148         ql_disable_interrupts(qdev);
3149
3150         ql_tx_ring_clean(qdev);
3151
3152         spin_lock(&qdev->hw_lock);
3153         status = ql_adapter_reset(qdev);
3154         if (status)
3155                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3156                         qdev->func);
3157         spin_unlock(&qdev->hw_lock);
3158         return status;
3159 }
3160
3161 static int ql_adapter_up(struct ql_adapter *qdev)
3162 {
3163         int err = 0;
3164
3165         spin_lock(&qdev->hw_lock);
3166         err = ql_adapter_initialize(qdev);
3167         if (err) {
3168                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3169                 spin_unlock(&qdev->hw_lock);
3170                 goto err_init;
3171         }
3172         spin_unlock(&qdev->hw_lock);
3173         set_bit(QL_ADAPTER_UP, &qdev->flags);
3174         ql_enable_interrupts(qdev);
3175         ql_enable_all_completion_interrupts(qdev);
3176         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3177                 netif_carrier_on(qdev->ndev);
3178                 netif_start_queue(qdev->ndev);
3179         }
3180
3181         return 0;
3182 err_init:
3183         ql_adapter_reset(qdev);
3184         return err;
3185 }
3186
3187 static int ql_cycle_adapter(struct ql_adapter *qdev)
3188 {
3189         int status;
3190
3191         status = ql_adapter_down(qdev);
3192         if (status)
3193                 goto error;
3194
3195         status = ql_adapter_up(qdev);
3196         if (status)
3197                 goto error;
3198
3199         return status;
3200 error:
3201         QPRINTK(qdev, IFUP, ALERT,
3202                 "Driver up/down cycle failed, closing device\n");
3203         rtnl_lock();
3204         dev_close(qdev->ndev);
3205         rtnl_unlock();
3206         return status;
3207 }
3208
3209 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3210 {
3211         ql_free_mem_resources(qdev);
3212         ql_free_irq(qdev);
3213 }
3214
3215 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3216 {
3217         int status = 0;
3218
3219         if (ql_alloc_mem_resources(qdev)) {
3220                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3221                 return -ENOMEM;
3222         }
3223         status = ql_request_irq(qdev);
3224         if (status)
3225                 goto err_irq;
3226         return status;
3227 err_irq:
3228         ql_free_mem_resources(qdev);
3229         return status;
3230 }
3231
3232 static int qlge_close(struct net_device *ndev)
3233 {
3234         struct ql_adapter *qdev = netdev_priv(ndev);
3235
3236         /*
3237          * Wait for device to recover from a reset.
3238          * (Rarely happens, but possible.)
3239          */
3240         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3241                 msleep(1);
3242         ql_adapter_down(qdev);
3243         ql_release_adapter_resources(qdev);
3244         return 0;
3245 }
3246
3247 static int ql_configure_rings(struct ql_adapter *qdev)
3248 {
3249         int i;
3250         struct rx_ring *rx_ring;
3251         struct tx_ring *tx_ring;
3252         int cpu_cnt = num_online_cpus();
3253
3254         /*
3255          * For each processor present we allocate one
3256          * rx_ring for outbound completions, and one
3257          * rx_ring for inbound completions.  Plus there is
3258          * always the one default queue.  For the CPU
3259          * counts we end up with the following rx_rings:
3260          * rx_ring count =
3261          *  one default queue +
3262          *  (CPU count * outbound completion rx_ring) +
3263          *  (CPU count * inbound (RSS) completion rx_ring)
3264          * To keep it simple we limit the total number of
3265          * queues to < 32, so we truncate CPU to 8.
3266          * This limitation can be removed when requested.
3267          */
3268
3269         if (cpu_cnt > MAX_CPUS)
3270                 cpu_cnt = MAX_CPUS;
3271
3272         /*
3273          * rx_ring[0] is always the default queue.
3274          */
3275         /* Allocate outbound completion ring for each CPU. */
3276         qdev->tx_ring_count = cpu_cnt;
3277         /* Allocate inbound completion (RSS) ring for each CPU. */
3278         qdev->rss_ring_count = cpu_cnt;
3279         /* cq_id for the first inbound ring handler. */
3280         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3281         /*
3282          * qdev->rx_ring_count:
3283          * Total number of rx_rings.  This includes the one
3284          * default queue, a number of outbound completion
3285          * handler rx_rings, and the number of inbound
3286          * completion handler rx_rings.
3287          */
3288         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3289
3290         for (i = 0; i < qdev->tx_ring_count; i++) {
3291                 tx_ring = &qdev->tx_ring[i];
3292                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3293                 tx_ring->qdev = qdev;
3294                 tx_ring->wq_id = i;
3295                 tx_ring->wq_len = qdev->tx_ring_size;
3296                 tx_ring->wq_size =
3297                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3298
3299                 /*
3300                  * The completion queue ID for the tx rings start
3301                  * immediately after the default Q ID, which is zero.
3302                  */
3303                 tx_ring->cq_id = i + 1;
3304         }
3305
3306         for (i = 0; i < qdev->rx_ring_count; i++) {
3307                 rx_ring = &qdev->rx_ring[i];
3308                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3309                 rx_ring->qdev = qdev;
3310                 rx_ring->cq_id = i;
3311                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3312                 if (i == 0) {   /* Default queue at index 0. */
3313                         /*
3314                          * Default queue handles bcast/mcast plus
3315                          * async events.  Needs buffers.
3316                          */
3317                         rx_ring->cq_len = qdev->rx_ring_size;
3318                         rx_ring->cq_size =
3319                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3320                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3321                         rx_ring->lbq_size =
3322                             rx_ring->lbq_len * sizeof(__le64);
3323                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3324                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3325                         rx_ring->sbq_size =
3326                             rx_ring->sbq_len * sizeof(__le64);
3327                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3328                         rx_ring->type = DEFAULT_Q;
3329                 } else if (i < qdev->rss_ring_first_cq_id) {
3330                         /*
3331                          * Outbound queue handles outbound completions only.
3332                          */
3333                         /* outbound cq is same size as tx_ring it services. */
3334                         rx_ring->cq_len = qdev->tx_ring_size;
3335                         rx_ring->cq_size =
3336                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3337                         rx_ring->lbq_len = 0;
3338                         rx_ring->lbq_size = 0;
3339                         rx_ring->lbq_buf_size = 0;
3340                         rx_ring->sbq_len = 0;
3341                         rx_ring->sbq_size = 0;
3342                         rx_ring->sbq_buf_size = 0;
3343                         rx_ring->type = TX_Q;
3344                 } else {        /* Inbound completions (RSS) queues */
3345                         /*
3346                          * Inbound queues handle unicast frames only.
3347                          */
3348                         rx_ring->cq_len = qdev->rx_ring_size;
3349                         rx_ring->cq_size =
3350                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3351                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3352                         rx_ring->lbq_size =
3353                             rx_ring->lbq_len * sizeof(__le64);
3354                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3355                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3356                         rx_ring->sbq_size =
3357                             rx_ring->sbq_len * sizeof(__le64);
3358                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3359                         rx_ring->type = RX_Q;
3360                 }
3361         }
3362         return 0;
3363 }
3364
3365 static int qlge_open(struct net_device *ndev)
3366 {
3367         int err = 0;
3368         struct ql_adapter *qdev = netdev_priv(ndev);
3369
3370         err = ql_configure_rings(qdev);
3371         if (err)
3372                 return err;
3373
3374         err = ql_get_adapter_resources(qdev);
3375         if (err)
3376                 goto error_up;
3377
3378         err = ql_adapter_up(qdev);
3379         if (err)
3380                 goto error_up;
3381
3382         return err;
3383
3384 error_up:
3385         ql_release_adapter_resources(qdev);
3386         return err;
3387 }
3388
3389 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3390 {
3391         struct ql_adapter *qdev = netdev_priv(ndev);
3392
3393         if (ndev->mtu == 1500 && new_mtu == 9000) {
3394                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3395         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3396                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3397         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3398                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3399                 return 0;
3400         } else
3401                 return -EINVAL;
3402         ndev->mtu = new_mtu;
3403         return 0;
3404 }
3405
3406 static struct net_device_stats *qlge_get_stats(struct net_device
3407                                                *ndev)
3408 {
3409         struct ql_adapter *qdev = netdev_priv(ndev);
3410         return &qdev->stats;
3411 }
3412
3413 static void qlge_set_multicast_list(struct net_device *ndev)
3414 {
3415         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3416         struct dev_mc_list *mc_ptr;
3417         int i;
3418
3419         spin_lock(&qdev->hw_lock);
3420         /*
3421          * Set or clear promiscuous mode if a
3422          * transition is taking place.
3423          */
3424         if (ndev->flags & IFF_PROMISC) {
3425                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3426                         if (ql_set_routing_reg
3427                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3428                                 QPRINTK(qdev, HW, ERR,
3429                                         "Failed to set promiscous mode.\n");
3430                         } else {
3431                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3432                         }
3433                 }
3434         } else {
3435                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3436                         if (ql_set_routing_reg
3437                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3438                                 QPRINTK(qdev, HW, ERR,
3439                                         "Failed to clear promiscous mode.\n");
3440                         } else {
3441                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3442                         }
3443                 }
3444         }
3445
3446         /*
3447          * Set or clear all multicast mode if a
3448          * transition is taking place.
3449          */
3450         if ((ndev->flags & IFF_ALLMULTI) ||
3451             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3452                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3453                         if (ql_set_routing_reg
3454                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3455                                 QPRINTK(qdev, HW, ERR,
3456                                         "Failed to set all-multi mode.\n");
3457                         } else {
3458                                 set_bit(QL_ALLMULTI, &qdev->flags);
3459                         }
3460                 }
3461         } else {
3462                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3463                         if (ql_set_routing_reg
3464                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3465                                 QPRINTK(qdev, HW, ERR,
3466                                         "Failed to clear all-multi mode.\n");
3467                         } else {
3468                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3469                         }
3470                 }
3471         }
3472
3473         if (ndev->mc_count) {
3474                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3475                      i++, mc_ptr = mc_ptr->next)
3476                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3477                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3478                                 QPRINTK(qdev, HW, ERR,
3479                                         "Failed to loadmulticast address.\n");
3480                                 goto exit;
3481                         }
3482                 if (ql_set_routing_reg
3483                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3484                         QPRINTK(qdev, HW, ERR,
3485                                 "Failed to set multicast match mode.\n");
3486                 } else {
3487                         set_bit(QL_ALLMULTI, &qdev->flags);
3488                 }
3489         }
3490 exit:
3491         spin_unlock(&qdev->hw_lock);
3492 }
3493
3494 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3495 {
3496         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3497         struct sockaddr *addr = p;
3498         int ret = 0;
3499
3500         if (netif_running(ndev))
3501                 return -EBUSY;
3502
3503         if (!is_valid_ether_addr(addr->sa_data))
3504                 return -EADDRNOTAVAIL;
3505         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3506
3507         spin_lock(&qdev->hw_lock);
3508         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3509                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3510                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3511                 ret = -1;
3512         }
3513         spin_unlock(&qdev->hw_lock);
3514
3515         return ret;
3516 }
3517
3518 static void qlge_tx_timeout(struct net_device *ndev)
3519 {
3520         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3521         ql_queue_asic_error(qdev);
3522 }
3523
3524 static void ql_asic_reset_work(struct work_struct *work)
3525 {
3526         struct ql_adapter *qdev =
3527             container_of(work, struct ql_adapter, asic_reset_work.work);
3528         ql_cycle_adapter(qdev);
3529 }
3530
3531 static void ql_get_board_info(struct ql_adapter *qdev)
3532 {
3533         qdev->func =
3534             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3535         if (qdev->func) {
3536                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3537                 qdev->port_link_up = STS_PL1;
3538                 qdev->port_init = STS_PI1;
3539                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3540                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3541         } else {
3542                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3543                 qdev->port_link_up = STS_PL0;
3544                 qdev->port_init = STS_PI0;
3545                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3546                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3547         }
3548         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3549 }
3550
3551 static void ql_release_all(struct pci_dev *pdev)
3552 {
3553         struct net_device *ndev = pci_get_drvdata(pdev);
3554         struct ql_adapter *qdev = netdev_priv(ndev);
3555
3556         if (qdev->workqueue) {
3557                 destroy_workqueue(qdev->workqueue);
3558                 qdev->workqueue = NULL;
3559         }
3560         if (qdev->q_workqueue) {
3561                 destroy_workqueue(qdev->q_workqueue);
3562                 qdev->q_workqueue = NULL;
3563         }
3564         if (qdev->reg_base)
3565                 iounmap(qdev->reg_base);
3566         if (qdev->doorbell_area)
3567                 iounmap(qdev->doorbell_area);
3568         pci_release_regions(pdev);
3569         pci_set_drvdata(pdev, NULL);
3570 }
3571
3572 static int __devinit ql_init_device(struct pci_dev *pdev,
3573                                     struct net_device *ndev, int cards_found)
3574 {
3575         struct ql_adapter *qdev = netdev_priv(ndev);
3576         int pos, err = 0;
3577         u16 val16;
3578
3579         memset((void *)qdev, 0, sizeof(qdev));
3580         err = pci_enable_device(pdev);
3581         if (err) {
3582                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3583                 return err;
3584         }
3585
3586         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3587         if (pos <= 0) {
3588                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3589                         "aborting.\n");
3590                 goto err_out;
3591         } else {
3592                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3593                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3594                 val16 |= (PCI_EXP_DEVCTL_CERE |
3595                           PCI_EXP_DEVCTL_NFERE |
3596                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3597                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3598         }
3599
3600         err = pci_request_regions(pdev, DRV_NAME);
3601         if (err) {
3602                 dev_err(&pdev->dev, "PCI region request failed.\n");
3603                 goto err_out;
3604         }
3605
3606         pci_set_master(pdev);
3607         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3608                 set_bit(QL_DMA64, &qdev->flags);
3609                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3610         } else {
3611                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3612                 if (!err)
3613                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3614         }
3615
3616         if (err) {
3617                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3618                 goto err_out;
3619         }
3620
3621         pci_set_drvdata(pdev, ndev);
3622         qdev->reg_base =
3623             ioremap_nocache(pci_resource_start(pdev, 1),
3624                             pci_resource_len(pdev, 1));
3625         if (!qdev->reg_base) {
3626                 dev_err(&pdev->dev, "Register mapping failed.\n");
3627                 err = -ENOMEM;
3628                 goto err_out;
3629         }
3630
3631         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3632         qdev->doorbell_area =
3633             ioremap_nocache(pci_resource_start(pdev, 3),
3634                             pci_resource_len(pdev, 3));
3635         if (!qdev->doorbell_area) {
3636                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3637                 err = -ENOMEM;
3638                 goto err_out;
3639         }
3640
3641         ql_get_board_info(qdev);
3642         qdev->ndev = ndev;
3643         qdev->pdev = pdev;
3644         qdev->msg_enable = netif_msg_init(debug, default_msg);
3645         spin_lock_init(&qdev->hw_lock);
3646         spin_lock_init(&qdev->stats_lock);
3647
3648         /* make sure the EEPROM is good */
3649         err = ql_get_flash_params(qdev);
3650         if (err) {
3651                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3652                 goto err_out;
3653         }
3654
3655         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3656                 goto err_out;
3657
3658         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3659         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3660
3661         /* Set up the default ring sizes. */
3662         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3663         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3664
3665         /* Set up the coalescing parameters. */
3666         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3667         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3668         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3669         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3670
3671         /*
3672          * Set up the operating parameters.
3673          */
3674         qdev->rx_csum = 1;
3675
3676         qdev->q_workqueue = create_workqueue(ndev->name);
3677         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3678         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3679         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3680         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3681
3682         if (!cards_found) {
3683                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3684                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3685                          DRV_NAME, DRV_VERSION);
3686         }
3687         return 0;
3688 err_out:
3689         ql_release_all(pdev);
3690         pci_disable_device(pdev);
3691         return err;
3692 }
3693
3694
3695 static const struct net_device_ops qlge_netdev_ops = {
3696         .ndo_open               = qlge_open,
3697         .ndo_stop               = qlge_close,
3698         .ndo_start_xmit         = qlge_send,
3699         .ndo_change_mtu         = qlge_change_mtu,
3700         .ndo_get_stats          = qlge_get_stats,
3701         .ndo_set_multicast_list = qlge_set_multicast_list,
3702         .ndo_set_mac_address    = qlge_set_mac_address,
3703         .ndo_validate_addr      = eth_validate_addr,
3704         .ndo_tx_timeout         = qlge_tx_timeout,
3705         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3706         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3707         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3708 };
3709
3710 static int __devinit qlge_probe(struct pci_dev *pdev,
3711                                 const struct pci_device_id *pci_entry)
3712 {
3713         struct net_device *ndev = NULL;
3714         struct ql_adapter *qdev = NULL;
3715         static int cards_found = 0;
3716         int err = 0;
3717
3718         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3719         if (!ndev)
3720                 return -ENOMEM;
3721
3722         err = ql_init_device(pdev, ndev, cards_found);
3723         if (err < 0) {
3724                 free_netdev(ndev);
3725                 return err;
3726         }
3727
3728         qdev = netdev_priv(ndev);
3729         SET_NETDEV_DEV(ndev, &pdev->dev);
3730         ndev->features = (0
3731                           | NETIF_F_IP_CSUM
3732                           | NETIF_F_SG
3733                           | NETIF_F_TSO
3734                           | NETIF_F_TSO6
3735                           | NETIF_F_TSO_ECN
3736                           | NETIF_F_HW_VLAN_TX
3737                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3738
3739         if (test_bit(QL_DMA64, &qdev->flags))
3740                 ndev->features |= NETIF_F_HIGHDMA;
3741
3742         /*
3743          * Set up net_device structure.
3744          */
3745         ndev->tx_queue_len = qdev->tx_ring_size;
3746         ndev->irq = pdev->irq;
3747
3748         ndev->netdev_ops = &qlge_netdev_ops;
3749         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3750         ndev->watchdog_timeo = 10 * HZ;
3751
3752         err = register_netdev(ndev);
3753         if (err) {
3754                 dev_err(&pdev->dev, "net device registration failed.\n");
3755                 ql_release_all(pdev);
3756                 pci_disable_device(pdev);
3757                 return err;
3758         }
3759         netif_carrier_off(ndev);
3760         netif_stop_queue(ndev);
3761         ql_display_dev_info(ndev);
3762         cards_found++;
3763         return 0;
3764 }
3765
3766 static void __devexit qlge_remove(struct pci_dev *pdev)
3767 {
3768         struct net_device *ndev = pci_get_drvdata(pdev);
3769         unregister_netdev(ndev);
3770         ql_release_all(pdev);
3771         pci_disable_device(pdev);
3772         free_netdev(ndev);
3773 }
3774
3775 /*
3776  * This callback is called by the PCI subsystem whenever
3777  * a PCI bus error is detected.
3778  */
3779 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3780                                                enum pci_channel_state state)
3781 {
3782         struct net_device *ndev = pci_get_drvdata(pdev);
3783         struct ql_adapter *qdev = netdev_priv(ndev);
3784
3785         if (netif_running(ndev))
3786                 ql_adapter_down(qdev);
3787
3788         pci_disable_device(pdev);
3789
3790         /* Request a slot reset. */
3791         return PCI_ERS_RESULT_NEED_RESET;
3792 }
3793
3794 /*
3795  * This callback is called after the PCI buss has been reset.
3796  * Basically, this tries to restart the card from scratch.
3797  * This is a shortened version of the device probe/discovery code,
3798  * it resembles the first-half of the () routine.
3799  */
3800 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3801 {
3802         struct net_device *ndev = pci_get_drvdata(pdev);
3803         struct ql_adapter *qdev = netdev_priv(ndev);
3804
3805         if (pci_enable_device(pdev)) {
3806                 QPRINTK(qdev, IFUP, ERR,
3807                         "Cannot re-enable PCI device after reset.\n");
3808                 return PCI_ERS_RESULT_DISCONNECT;
3809         }
3810
3811         pci_set_master(pdev);
3812
3813         netif_carrier_off(ndev);
3814         netif_stop_queue(ndev);
3815         ql_adapter_reset(qdev);
3816
3817         /* Make sure the EEPROM is good */
3818         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3819
3820         if (!is_valid_ether_addr(ndev->perm_addr)) {
3821                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3822                 return PCI_ERS_RESULT_DISCONNECT;
3823         }
3824
3825         return PCI_ERS_RESULT_RECOVERED;
3826 }
3827
3828 static void qlge_io_resume(struct pci_dev *pdev)
3829 {
3830         struct net_device *ndev = pci_get_drvdata(pdev);
3831         struct ql_adapter *qdev = netdev_priv(ndev);
3832
3833         pci_set_master(pdev);
3834
3835         if (netif_running(ndev)) {
3836                 if (ql_adapter_up(qdev)) {
3837                         QPRINTK(qdev, IFUP, ERR,
3838                                 "Device initialization failed after reset.\n");
3839                         return;
3840                 }
3841         }
3842
3843         netif_device_attach(ndev);
3844 }
3845
3846 static struct pci_error_handlers qlge_err_handler = {
3847         .error_detected = qlge_io_error_detected,
3848         .slot_reset = qlge_io_slot_reset,
3849         .resume = qlge_io_resume,
3850 };
3851
3852 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3853 {
3854         struct net_device *ndev = pci_get_drvdata(pdev);
3855         struct ql_adapter *qdev = netdev_priv(ndev);
3856         int err, i;
3857
3858         netif_device_detach(ndev);
3859
3860         if (netif_running(ndev)) {
3861                 err = ql_adapter_down(qdev);
3862                 if (!err)
3863                         return err;
3864         }
3865
3866         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3867                 netif_napi_del(&qdev->rx_ring[i].napi);
3868
3869         err = pci_save_state(pdev);
3870         if (err)
3871                 return err;
3872
3873         pci_disable_device(pdev);
3874
3875         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3876
3877         return 0;
3878 }
3879
3880 #ifdef CONFIG_PM
3881 static int qlge_resume(struct pci_dev *pdev)
3882 {
3883         struct net_device *ndev = pci_get_drvdata(pdev);
3884         struct ql_adapter *qdev = netdev_priv(ndev);
3885         int err;
3886
3887         pci_set_power_state(pdev, PCI_D0);
3888         pci_restore_state(pdev);
3889         err = pci_enable_device(pdev);
3890         if (err) {
3891                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3892                 return err;
3893         }
3894         pci_set_master(pdev);
3895
3896         pci_enable_wake(pdev, PCI_D3hot, 0);
3897         pci_enable_wake(pdev, PCI_D3cold, 0);
3898
3899         if (netif_running(ndev)) {
3900                 err = ql_adapter_up(qdev);
3901                 if (err)
3902                         return err;
3903         }
3904
3905         netif_device_attach(ndev);
3906
3907         return 0;
3908 }
3909 #endif /* CONFIG_PM */
3910
3911 static void qlge_shutdown(struct pci_dev *pdev)
3912 {
3913         qlge_suspend(pdev, PMSG_SUSPEND);
3914 }
3915
3916 static struct pci_driver qlge_driver = {
3917         .name = DRV_NAME,
3918         .id_table = qlge_pci_tbl,
3919         .probe = qlge_probe,
3920         .remove = __devexit_p(qlge_remove),
3921 #ifdef CONFIG_PM
3922         .suspend = qlge_suspend,
3923         .resume = qlge_resume,
3924 #endif
3925         .shutdown = qlge_shutdown,
3926         .err_handler = &qlge_err_handler
3927 };
3928
3929 static int __init qlge_init_module(void)
3930 {
3931         return pci_register_driver(&qlge_driver);
3932 }
3933
3934 static void __exit qlge_exit(void)
3935 {
3936         pci_unregister_driver(&qlge_driver);
3937 }
3938
3939 module_init(qlge_init_module);
3940 module_exit(qlge_exit);