2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info = "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
33 /* We use the hw_value as an index into our private channel structure */
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
120 sc->hw_rate_table[ATH9K_MODE_11G];
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
134 sc->hw_rate_table[ATH9K_MODE_11A];
142 static void ath_update_txpow(struct ath_softc *sc)
144 struct ath_hw *ah = sc->sc_ah;
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
155 static u8 parse_mpdudensity(u8 mpdudensity)
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
168 switch (mpdudensity) {
174 /* Our lower layer calculations limit our precision to
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
192 struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
208 if (rate_table == NULL)
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
217 maxrates = rate_table->rate_cnt;
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240 struct ath9k_channel *hchan)
242 struct ath_hw *ah = sc->sc_ah;
243 bool fastcc = true, stopped;
244 struct ieee80211_channel *channel = hw->conf.channel;
247 if (sc->sc_flags & SC_OP_INVALID)
253 * This is only performed if the channel settings have
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
261 ath9k_hw_set_interrupts(ah, 0);
262 ath_drain_all_txq(sc, false);
263 stopped = ath_stoprecv(sc);
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
269 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
272 DPRINTF(sc, ATH_DBG_CONFIG,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc->sc_ah->curchan->channel,
275 channel->center_freq, sc->tx_chan_width);
277 spin_lock_bh(&sc->sc_resetlock);
279 r = ath9k_hw_reset(ah, hchan, fastcc);
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "Unable to reset channel (%u Mhz) "
284 channel->center_freq, r);
285 spin_unlock_bh(&sc->sc_resetlock);
288 spin_unlock_bh(&sc->sc_resetlock);
290 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
291 sc->sc_flags &= ~SC_OP_FULL_RESET;
293 if (ath_startrecv(sc) != 0) {
294 DPRINTF(sc, ATH_DBG_FATAL,
295 "Unable to restart recv logic\n");
299 ath_cache_conf_rate(sc, &hw->conf);
300 ath_update_txpow(sc);
301 ath9k_hw_set_interrupts(ah, sc->imask);
302 ath9k_ps_restore(sc);
307 * This routine performs the periodic noise floor calibration function
308 * that is used to adjust and optimize the chip performance. This
309 * takes environmental changes (location, temperature) into account.
310 * When the task is complete, it reschedules itself depending on the
311 * appropriate interval that was calculated.
313 static void ath_ani_calibrate(unsigned long data)
315 struct ath_softc *sc = (struct ath_softc *)data;
316 struct ath_hw *ah = sc->sc_ah;
317 bool longcal = false;
318 bool shortcal = false;
319 bool aniflag = false;
320 unsigned int timestamp = jiffies_to_msecs(jiffies);
321 u32 cal_interval, short_cal_interval;
323 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
324 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
327 * don't calibrate when we're scanning.
328 * we are most likely not on our home channel.
330 if (sc->sc_flags & SC_OP_SCANNING)
333 /* Long calibration runs independently of short calibration. */
334 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
336 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
337 sc->ani.longcal_timer = timestamp;
340 /* Short calibration applies only while caldone is false */
341 if (!sc->ani.caldone) {
342 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
344 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
345 sc->ani.shortcal_timer = timestamp;
346 sc->ani.resetcal_timer = timestamp;
349 if ((timestamp - sc->ani.resetcal_timer) >=
350 ATH_RESTART_CALINTERVAL) {
351 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
353 sc->ani.resetcal_timer = timestamp;
357 /* Verify whether we must check ANI */
358 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
360 sc->ani.checkani_timer = timestamp;
363 /* Skip all processing if there's nothing to do. */
364 if (longcal || shortcal || aniflag) {
365 /* Call ANI routine if necessary */
367 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
369 /* Perform calibration if necessary */
370 if (longcal || shortcal) {
371 bool iscaldone = false;
373 if (ath9k_hw_calibrate(ah, ah->curchan,
374 sc->rx_chainmask, longcal,
377 sc->ani.noise_floor =
378 ath9k_hw_getchan_noise(ah,
381 DPRINTF(sc, ATH_DBG_ANI,
382 "calibrate chan %u/%x nf: %d\n",
383 ah->curchan->channel,
384 ah->curchan->channelFlags,
385 sc->ani.noise_floor);
387 DPRINTF(sc, ATH_DBG_ANY,
388 "calibrate chan %u/%x failed\n",
389 ah->curchan->channel,
390 ah->curchan->channelFlags);
392 sc->ani.caldone = iscaldone;
398 * Set timer interval based on previous results.
399 * The interval must be the shortest necessary to satisfy ANI,
400 * short calibration and long calibration.
402 cal_interval = ATH_LONG_CALINTERVAL;
403 if (sc->sc_ah->config.enable_ani)
404 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405 if (!sc->ani.caldone)
406 cal_interval = min(cal_interval, (u32)short_cal_interval);
408 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
412 * Update tx/rx chainmask. For legacy association,
413 * hard code chainmask to 1x1, for 11n association, use
414 * the chainmask configuration, for bt coexistence, use
415 * the chainmask configuration even in legacy mode.
417 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
419 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
421 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
423 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
425 sc->tx_chainmask = 1;
426 sc->rx_chainmask = 1;
429 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430 sc->tx_chainmask, sc->rx_chainmask);
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
437 an = (struct ath_node *)sta->drv_priv;
439 if (sc->sc_flags & SC_OP_TXAGGR)
440 ath_tx_node_init(sc, an);
442 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443 sta->ht_cap.ampdu_factor);
444 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
449 struct ath_node *an = (struct ath_node *)sta->drv_priv;
451 if (sc->sc_flags & SC_OP_TXAGGR)
452 ath_tx_node_cleanup(sc, an);
455 static void ath9k_tasklet(unsigned long data)
457 struct ath_softc *sc = (struct ath_softc *)data;
458 u32 status = sc->intrstatus;
460 if (status & ATH9K_INT_FATAL) {
461 /* need a chip reset */
462 ath_reset(sc, false);
467 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468 spin_lock_bh(&sc->rx.rxflushlock);
469 ath_rx_tasklet(sc, 0);
470 spin_unlock_bh(&sc->rx.rxflushlock);
472 /* XXX: optimize this */
473 if (status & ATH9K_INT_TX)
477 /* re-enable hardware interrupt */
478 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
481 irqreturn_t ath_isr(int irq, void *dev)
483 struct ath_softc *sc = dev;
484 struct ath_hw *ah = sc->sc_ah;
485 enum ath9k_int status;
489 if (sc->sc_flags & SC_OP_INVALID) {
491 * The hardware is not ready/present, don't
492 * touch anything. Note this can happen early
493 * on if the IRQ is shared.
497 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
502 * Figure out the reason(s) for the interrupt. Note
503 * that the hal returns a pseudo-ISR that may include
504 * bits we haven't explicitly enabled so we mask the
505 * value to insure we only process bits we requested.
507 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
509 status &= sc->imask; /* discard unasked-for bits */
512 * If there are no status bits set, then this interrupt was not
513 * for me (should have been caught above).
518 sc->intrstatus = status;
521 if (status & ATH9K_INT_FATAL) {
522 /* need a chip reset */
524 } else if (status & ATH9K_INT_RXORN) {
525 /* need a chip reset */
528 if (status & ATH9K_INT_SWBA) {
529 /* schedule a tasklet for beacon handling */
530 tasklet_schedule(&sc->bcon_tasklet);
532 if (status & ATH9K_INT_RXEOL) {
534 * NB: the hardware should re-read the link when
535 * RXE bit is written, but it doesn't work
536 * at least on older hardware revs.
541 if (status & ATH9K_INT_TXURN)
542 /* bump tx trigger level */
543 ath9k_hw_updatetxtriglevel(ah, true);
544 /* XXX: optimize this */
545 if (status & ATH9K_INT_RX)
547 if (status & ATH9K_INT_TX)
549 if (status & ATH9K_INT_BMISS)
551 /* carrier sense timeout */
552 if (status & ATH9K_INT_CST)
554 if (status & ATH9K_INT_MIB) {
556 * Disable interrupts until we service the MIB
557 * interrupt; otherwise it will continue to
560 ath9k_hw_set_interrupts(ah, 0);
562 * Let the hal handle the event. We assume
563 * it will clear whatever condition caused
566 ath9k_hw_procmibevent(ah, &sc->nodestats);
567 ath9k_hw_set_interrupts(ah, sc->imask);
569 if (status & ATH9K_INT_TIM_TIMER) {
570 if (!(ah->caps.hw_caps &
571 ATH9K_HW_CAP_AUTOSLEEP)) {
572 /* Clear RxAbort bit so that we can
574 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
575 ath9k_hw_setrxabort(ah, 0);
577 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
580 if (status & ATH9K_INT_TSFOOR) {
581 /* FIXME: Handle this interrupt for power save */
585 ath9k_ps_restore(sc);
588 ath_debug_stat_interrupt(sc, status);
591 /* turn off every interrupt except SWBA */
592 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
593 tasklet_schedule(&sc->intr_tq);
599 static u32 ath_get_extchanmode(struct ath_softc *sc,
600 struct ieee80211_channel *chan,
601 enum nl80211_channel_type channel_type)
605 switch (chan->band) {
606 case IEEE80211_BAND_2GHZ:
607 switch(channel_type) {
608 case NL80211_CHAN_NO_HT:
609 case NL80211_CHAN_HT20:
610 chanmode = CHANNEL_G_HT20;
612 case NL80211_CHAN_HT40PLUS:
613 chanmode = CHANNEL_G_HT40PLUS;
615 case NL80211_CHAN_HT40MINUS:
616 chanmode = CHANNEL_G_HT40MINUS;
620 case IEEE80211_BAND_5GHZ:
621 switch(channel_type) {
622 case NL80211_CHAN_NO_HT:
623 case NL80211_CHAN_HT20:
624 chanmode = CHANNEL_A_HT20;
626 case NL80211_CHAN_HT40PLUS:
627 chanmode = CHANNEL_A_HT40PLUS;
629 case NL80211_CHAN_HT40MINUS:
630 chanmode = CHANNEL_A_HT40MINUS;
641 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
642 struct ath9k_keyval *hk, const u8 *addr,
648 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
649 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
653 * Group key installation - only two key cache entries are used
654 * regardless of splitmic capability since group key is only
655 * used either for TX or RX.
658 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
659 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
661 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
662 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
664 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
667 /* TX and RX keys share the same key cache entry. */
668 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
669 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
670 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
673 /* Separate key cache entries for TX and RX */
675 /* TX key goes at first index, RX key at +32. */
676 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
678 /* TX MIC entry failed. No need to proceed further */
679 DPRINTF(sc, ATH_DBG_KEYCACHE,
680 "Setting TX MIC Key Failed\n");
684 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
685 /* XXX delete tx key on failure? */
686 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
689 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
693 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
694 if (test_bit(i, sc->keymap) ||
695 test_bit(i + 64, sc->keymap))
696 continue; /* At least one part of TKIP key allocated */
698 (test_bit(i + 32, sc->keymap) ||
699 test_bit(i + 64 + 32, sc->keymap)))
700 continue; /* At least one part of TKIP key allocated */
702 /* Found a free slot for a TKIP key */
708 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
712 /* First, try to find slots that would not be available for TKIP. */
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
715 if (!test_bit(i, sc->keymap) &&
716 (test_bit(i + 32, sc->keymap) ||
717 test_bit(i + 64, sc->keymap) ||
718 test_bit(i + 64 + 32, sc->keymap)))
720 if (!test_bit(i + 32, sc->keymap) &&
721 (test_bit(i, sc->keymap) ||
722 test_bit(i + 64, sc->keymap) ||
723 test_bit(i + 64 + 32, sc->keymap)))
725 if (!test_bit(i + 64, sc->keymap) &&
726 (test_bit(i , sc->keymap) ||
727 test_bit(i + 32, sc->keymap) ||
728 test_bit(i + 64 + 32, sc->keymap)))
730 if (!test_bit(i + 64 + 32, sc->keymap) &&
731 (test_bit(i, sc->keymap) ||
732 test_bit(i + 32, sc->keymap) ||
733 test_bit(i + 64, sc->keymap)))
737 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
738 if (!test_bit(i, sc->keymap) &&
739 test_bit(i + 64, sc->keymap))
741 if (test_bit(i, sc->keymap) &&
742 !test_bit(i + 64, sc->keymap))
747 /* No partially used TKIP slots, pick any available slot */
748 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
749 /* Do not allow slots that could be needed for TKIP group keys
750 * to be used. This limitation could be removed if we know that
751 * TKIP will not be used. */
752 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
755 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
757 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
761 if (!test_bit(i, sc->keymap))
762 return i; /* Found a free slot for a key */
765 /* No free slot found */
769 static int ath_key_config(struct ath_softc *sc,
770 struct ieee80211_vif *vif,
771 struct ieee80211_sta *sta,
772 struct ieee80211_key_conf *key)
774 struct ath9k_keyval hk;
775 const u8 *mac = NULL;
779 memset(&hk, 0, sizeof(hk));
783 hk.kv_type = ATH9K_CIPHER_WEP;
786 hk.kv_type = ATH9K_CIPHER_TKIP;
789 hk.kv_type = ATH9K_CIPHER_AES_CCM;
795 hk.kv_len = key->keylen;
796 memcpy(hk.kv_val, key->key, key->keylen);
798 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
799 /* For now, use the default keys for broadcast keys. This may
800 * need to change with virtual interfaces. */
802 } else if (key->keyidx) {
807 if (vif->type != NL80211_IFTYPE_AP) {
808 /* Only keyidx 0 should be used with unicast key, but
809 * allow this for client mode for now. */
818 if (key->alg == ALG_TKIP)
819 idx = ath_reserve_key_cache_slot_tkip(sc);
821 idx = ath_reserve_key_cache_slot(sc);
823 return -ENOSPC; /* no free key cache entries */
826 if (key->alg == ALG_TKIP)
827 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
828 vif->type == NL80211_IFTYPE_AP);
830 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
835 set_bit(idx, sc->keymap);
836 if (key->alg == ALG_TKIP) {
837 set_bit(idx + 64, sc->keymap);
839 set_bit(idx + 32, sc->keymap);
840 set_bit(idx + 64 + 32, sc->keymap);
847 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
849 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
850 if (key->hw_key_idx < IEEE80211_WEP_NKID)
853 clear_bit(key->hw_key_idx, sc->keymap);
854 if (key->alg != ALG_TKIP)
857 clear_bit(key->hw_key_idx + 64, sc->keymap);
859 clear_bit(key->hw_key_idx + 32, sc->keymap);
860 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
864 static void setup_ht_cap(struct ath_softc *sc,
865 struct ieee80211_sta_ht_cap *ht_info)
867 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
868 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
870 ht_info->ht_supported = true;
871 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
872 IEEE80211_HT_CAP_SM_PS |
873 IEEE80211_HT_CAP_SGI_40 |
874 IEEE80211_HT_CAP_DSSSCCK40;
876 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
877 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
879 /* set up supported mcs set */
880 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
882 switch(sc->rx_chainmask) {
884 ht_info->mcs.rx_mask[0] = 0xff;
890 ht_info->mcs.rx_mask[0] = 0xff;
891 ht_info->mcs.rx_mask[1] = 0xff;
895 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
898 static void ath9k_bss_assoc_info(struct ath_softc *sc,
899 struct ieee80211_vif *vif,
900 struct ieee80211_bss_conf *bss_conf)
902 struct ath_vif *avp = (void *)vif->drv_priv;
904 if (bss_conf->assoc) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
906 bss_conf->aid, sc->curbssid);
908 /* New association, store aid */
909 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
910 sc->curaid = bss_conf->aid;
911 ath9k_hw_write_associd(sc);
914 /* Configure the beacon */
915 ath_beacon_config(sc, vif);
917 /* Reset rssi stats */
918 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
919 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
920 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
921 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
924 mod_timer(&sc->ani.timer,
925 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
927 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
932 /********************************/
934 /********************************/
936 static void ath_led_blink_work(struct work_struct *work)
938 struct ath_softc *sc = container_of(work, struct ath_softc,
939 ath_led_blink_work.work);
941 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
944 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
945 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
946 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
948 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
949 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
951 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
952 (sc->sc_flags & SC_OP_LED_ON) ?
953 msecs_to_jiffies(sc->led_off_duration) :
954 msecs_to_jiffies(sc->led_on_duration));
956 sc->led_on_duration = sc->led_on_cnt ?
957 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
958 ATH_LED_ON_DURATION_IDLE;
959 sc->led_off_duration = sc->led_off_cnt ?
960 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
961 ATH_LED_OFF_DURATION_IDLE;
962 sc->led_on_cnt = sc->led_off_cnt = 0;
963 if (sc->sc_flags & SC_OP_LED_ON)
964 sc->sc_flags &= ~SC_OP_LED_ON;
966 sc->sc_flags |= SC_OP_LED_ON;
969 static void ath_led_brightness(struct led_classdev *led_cdev,
970 enum led_brightness brightness)
972 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
973 struct ath_softc *sc = led->sc;
975 switch (brightness) {
977 if (led->led_type == ATH_LED_ASSOC ||
978 led->led_type == ATH_LED_RADIO) {
979 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
980 (led->led_type == ATH_LED_RADIO));
981 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
982 if (led->led_type == ATH_LED_RADIO)
983 sc->sc_flags &= ~SC_OP_LED_ON;
989 if (led->led_type == ATH_LED_ASSOC) {
990 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
991 queue_delayed_work(sc->hw->workqueue,
992 &sc->ath_led_blink_work, 0);
993 } else if (led->led_type == ATH_LED_RADIO) {
994 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
995 sc->sc_flags |= SC_OP_LED_ON;
1005 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1011 led->led_cdev.name = led->name;
1012 led->led_cdev.default_trigger = trigger;
1013 led->led_cdev.brightness_set = ath_led_brightness;
1015 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1017 DPRINTF(sc, ATH_DBG_FATAL,
1018 "Failed to register led:%s", led->name);
1020 led->registered = 1;
1024 static void ath_unregister_led(struct ath_led *led)
1026 if (led->registered) {
1027 led_classdev_unregister(&led->led_cdev);
1028 led->registered = 0;
1032 static void ath_deinit_leds(struct ath_softc *sc)
1034 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1035 ath_unregister_led(&sc->assoc_led);
1036 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1037 ath_unregister_led(&sc->tx_led);
1038 ath_unregister_led(&sc->rx_led);
1039 ath_unregister_led(&sc->radio_led);
1040 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1043 static void ath_init_leds(struct ath_softc *sc)
1048 /* Configure gpio 1 for output */
1049 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1050 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1051 /* LED off, active low */
1052 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1054 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1056 trigger = ieee80211_get_radio_led_name(sc->hw);
1057 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1058 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1059 ret = ath_register_led(sc, &sc->radio_led, trigger);
1060 sc->radio_led.led_type = ATH_LED_RADIO;
1064 trigger = ieee80211_get_assoc_led_name(sc->hw);
1065 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1066 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1067 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1068 sc->assoc_led.led_type = ATH_LED_ASSOC;
1072 trigger = ieee80211_get_tx_led_name(sc->hw);
1073 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1074 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1075 ret = ath_register_led(sc, &sc->tx_led, trigger);
1076 sc->tx_led.led_type = ATH_LED_TX;
1080 trigger = ieee80211_get_rx_led_name(sc->hw);
1081 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1082 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1083 ret = ath_register_led(sc, &sc->rx_led, trigger);
1084 sc->rx_led.led_type = ATH_LED_RX;
1091 ath_deinit_leds(sc);
1094 void ath_radio_enable(struct ath_softc *sc)
1096 struct ath_hw *ah = sc->sc_ah;
1097 struct ieee80211_channel *channel = sc->hw->conf.channel;
1100 ath9k_ps_wakeup(sc);
1101 spin_lock_bh(&sc->sc_resetlock);
1103 r = ath9k_hw_reset(ah, ah->curchan, false);
1106 DPRINTF(sc, ATH_DBG_FATAL,
1107 "Unable to reset channel %u (%uMhz) ",
1108 "reset status %u\n",
1109 channel->center_freq, r);
1111 spin_unlock_bh(&sc->sc_resetlock);
1113 ath_update_txpow(sc);
1114 if (ath_startrecv(sc) != 0) {
1115 DPRINTF(sc, ATH_DBG_FATAL,
1116 "Unable to restart recv logic\n");
1120 if (sc->sc_flags & SC_OP_BEACONS)
1121 ath_beacon_config(sc, NULL); /* restart beacons */
1123 /* Re-Enable interrupts */
1124 ath9k_hw_set_interrupts(ah, sc->imask);
1127 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1128 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1129 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1131 ieee80211_wake_queues(sc->hw);
1132 ath9k_ps_restore(sc);
1135 void ath_radio_disable(struct ath_softc *sc)
1137 struct ath_hw *ah = sc->sc_ah;
1138 struct ieee80211_channel *channel = sc->hw->conf.channel;
1141 ath9k_ps_wakeup(sc);
1142 ieee80211_stop_queues(sc->hw);
1145 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1146 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1148 /* Disable interrupts */
1149 ath9k_hw_set_interrupts(ah, 0);
1151 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1152 ath_stoprecv(sc); /* turn off frame recv */
1153 ath_flushrecv(sc); /* flush recv queue */
1155 spin_lock_bh(&sc->sc_resetlock);
1156 r = ath9k_hw_reset(ah, ah->curchan, false);
1158 DPRINTF(sc, ATH_DBG_FATAL,
1159 "Unable to reset channel %u (%uMhz) "
1160 "reset status %u\n",
1161 channel->center_freq, r);
1163 spin_unlock_bh(&sc->sc_resetlock);
1165 ath9k_hw_phy_disable(ah);
1166 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1167 ath9k_ps_restore(sc);
1170 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1172 /*******************/
1174 /*******************/
1176 static bool ath_is_rfkill_set(struct ath_softc *sc)
1178 struct ath_hw *ah = sc->sc_ah;
1180 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1181 ah->rfkill_polarity;
1184 /* h/w rfkill poll function */
1185 static void ath_rfkill_poll(struct work_struct *work)
1187 struct ath_softc *sc = container_of(work, struct ath_softc,
1188 rf_kill.rfkill_poll.work);
1191 if (sc->sc_flags & SC_OP_INVALID)
1194 radio_on = !ath_is_rfkill_set(sc);
1197 * enable/disable radio only when there is a
1198 * state change in RF switch
1200 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1201 enum rfkill_state state;
1203 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1204 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1205 : RFKILL_STATE_HARD_BLOCKED;
1206 } else if (radio_on) {
1207 ath_radio_enable(sc);
1208 state = RFKILL_STATE_UNBLOCKED;
1210 ath_radio_disable(sc);
1211 state = RFKILL_STATE_HARD_BLOCKED;
1214 if (state == RFKILL_STATE_HARD_BLOCKED)
1215 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1217 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1219 rfkill_force_state(sc->rf_kill.rfkill, state);
1222 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1223 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1226 /* s/w rfkill handler */
1227 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1229 struct ath_softc *sc = data;
1232 case RFKILL_STATE_SOFT_BLOCKED:
1233 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1234 SC_OP_RFKILL_SW_BLOCKED)))
1235 ath_radio_disable(sc);
1236 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1238 case RFKILL_STATE_UNBLOCKED:
1239 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1240 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1241 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1242 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1243 "radio as it is disabled by h/w\n");
1246 ath_radio_enable(sc);
1254 /* Init s/w rfkill */
1255 static int ath_init_sw_rfkill(struct ath_softc *sc)
1257 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1259 if (!sc->rf_kill.rfkill) {
1260 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1264 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1265 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1266 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1267 sc->rf_kill.rfkill->data = sc;
1268 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1269 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1270 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1275 /* Deinitialize rfkill */
1276 static void ath_deinit_rfkill(struct ath_softc *sc)
1278 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1279 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1281 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1282 rfkill_unregister(sc->rf_kill.rfkill);
1283 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1284 sc->rf_kill.rfkill = NULL;
1288 static int ath_start_rfkill_poll(struct ath_softc *sc)
1290 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1291 queue_delayed_work(sc->hw->workqueue,
1292 &sc->rf_kill.rfkill_poll, 0);
1294 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1295 if (rfkill_register(sc->rf_kill.rfkill)) {
1296 DPRINTF(sc, ATH_DBG_FATAL,
1297 "Unable to register rfkill\n");
1298 rfkill_free(sc->rf_kill.rfkill);
1300 /* Deinitialize the device */
1304 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1310 #endif /* CONFIG_RFKILL */
1312 void ath_cleanup(struct ath_softc *sc)
1315 free_irq(sc->irq, sc);
1316 ath_bus_cleanup(sc);
1317 kfree(sc->sec_wiphy);
1318 ieee80211_free_hw(sc->hw);
1321 void ath_detach(struct ath_softc *sc)
1323 struct ieee80211_hw *hw = sc->hw;
1326 ath9k_ps_wakeup(sc);
1328 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1330 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1331 ath_deinit_rfkill(sc);
1333 ath_deinit_leds(sc);
1334 cancel_work_sync(&sc->chan_work);
1335 cancel_delayed_work_sync(&sc->wiphy_work);
1337 for (i = 0; i < sc->num_sec_wiphy; i++) {
1338 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1341 sc->sec_wiphy[i] = NULL;
1342 ieee80211_unregister_hw(aphy->hw);
1343 ieee80211_free_hw(aphy->hw);
1345 ieee80211_unregister_hw(hw);
1349 tasklet_kill(&sc->intr_tq);
1350 tasklet_kill(&sc->bcon_tasklet);
1352 if (!(sc->sc_flags & SC_OP_INVALID))
1353 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1355 /* cleanup tx queues */
1356 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1357 if (ATH_TXQ_SETUP(sc, i))
1358 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1360 ath9k_hw_detach(sc->sc_ah);
1361 ath9k_exit_debug(sc);
1362 ath9k_ps_restore(sc);
1365 static int ath_init(u16 devid, struct ath_softc *sc)
1367 struct ath_hw *ah = NULL;
1372 /* XXX: hardware will not be ready until ath_open() being called */
1373 sc->sc_flags |= SC_OP_INVALID;
1375 if (ath9k_init_debug(sc) < 0)
1376 printk(KERN_ERR "Unable to create debugfs files\n");
1378 spin_lock_init(&sc->wiphy_lock);
1379 spin_lock_init(&sc->sc_resetlock);
1380 spin_lock_init(&sc->sc_serial_rw);
1381 mutex_init(&sc->mutex);
1382 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1383 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1387 * Cache line size is used to size and align various
1388 * structures used to communicate with the hardware.
1390 ath_read_cachesize(sc, &csz);
1391 /* XXX assert csz is non-zero */
1392 sc->cachelsz = csz << 2; /* convert to bytes */
1394 ah = ath9k_hw_attach(devid, sc, &status);
1396 DPRINTF(sc, ATH_DBG_FATAL,
1397 "Unable to attach hardware; HAL status %d\n", status);
1403 /* Get the hardware key cache size. */
1404 sc->keymax = ah->caps.keycache_size;
1405 if (sc->keymax > ATH_KEYMAX) {
1406 DPRINTF(sc, ATH_DBG_KEYCACHE,
1407 "Warning, using only %u entries in %u key cache\n",
1408 ATH_KEYMAX, sc->keymax);
1409 sc->keymax = ATH_KEYMAX;
1413 * Reset the key cache since some parts do not
1414 * reset the contents on initial power up.
1416 for (i = 0; i < sc->keymax; i++)
1417 ath9k_hw_keyreset(ah, (u16) i);
1419 if (ath9k_regd_init(sc->sc_ah))
1422 /* default to MONITOR mode */
1423 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1425 /* Setup rate tables */
1427 ath_rate_attach(sc);
1428 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1429 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1432 * Allocate hardware transmit queues: one queue for
1433 * beacon frames and one data queue for each QoS
1434 * priority. Note that the hal handles reseting
1435 * these queues at the needed time.
1437 sc->beacon.beaconq = ath_beaconq_setup(ah);
1438 if (sc->beacon.beaconq == -1) {
1439 DPRINTF(sc, ATH_DBG_FATAL,
1440 "Unable to setup a beacon xmit queue\n");
1444 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1445 if (sc->beacon.cabq == NULL) {
1446 DPRINTF(sc, ATH_DBG_FATAL,
1447 "Unable to setup CAB xmit queue\n");
1452 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1453 ath_cabq_update(sc);
1455 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1456 sc->tx.hwq_map[i] = -1;
1458 /* Setup data queues */
1459 /* NB: ensure BK queue is the lowest priority h/w queue */
1460 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1461 DPRINTF(sc, ATH_DBG_FATAL,
1462 "Unable to setup xmit queue for BK traffic\n");
1467 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1468 DPRINTF(sc, ATH_DBG_FATAL,
1469 "Unable to setup xmit queue for BE traffic\n");
1473 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1474 DPRINTF(sc, ATH_DBG_FATAL,
1475 "Unable to setup xmit queue for VI traffic\n");
1479 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1480 DPRINTF(sc, ATH_DBG_FATAL,
1481 "Unable to setup xmit queue for VO traffic\n");
1486 /* Initializes the noise floor to a reasonable default value.
1487 * Later on this will be updated during ANI processing. */
1489 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1490 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1492 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1493 ATH9K_CIPHER_TKIP, NULL)) {
1495 * Whether we should enable h/w TKIP MIC.
1496 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1497 * report WMM capable, so it's always safe to turn on
1498 * TKIP MIC in this case.
1500 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1505 * Check whether the separate key cache entries
1506 * are required to handle both tx+rx MIC keys.
1507 * With split mic keys the number of stations is limited
1508 * to 27 otherwise 59.
1510 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1511 ATH9K_CIPHER_TKIP, NULL)
1512 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1513 ATH9K_CIPHER_MIC, NULL)
1514 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1518 /* turn on mcast key search if possible */
1519 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1520 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1523 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1525 /* 11n Capabilities */
1526 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1527 sc->sc_flags |= SC_OP_TXAGGR;
1528 sc->sc_flags |= SC_OP_RXAGGR;
1531 sc->tx_chainmask = ah->caps.tx_chainmask;
1532 sc->rx_chainmask = ah->caps.rx_chainmask;
1534 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1535 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1537 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1538 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1540 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1542 /* initialize beacon slots */
1543 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1544 sc->beacon.bslot[i] = NULL;
1545 sc->beacon.bslot_aphy[i] = NULL;
1548 /* save MISC configurations */
1549 sc->config.swBeaconProcess = 1;
1551 /* setup channels and rates */
1553 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1554 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1555 sc->rates[IEEE80211_BAND_2GHZ];
1556 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1557 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1558 ARRAY_SIZE(ath9k_2ghz_chantable);
1560 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1561 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1562 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1563 sc->rates[IEEE80211_BAND_5GHZ];
1564 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1565 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1566 ARRAY_SIZE(ath9k_5ghz_chantable);
1569 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1570 ath9k_hw_btcoex_enable(sc->sc_ah);
1574 /* cleanup tx queues */
1575 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1576 if (ATH_TXQ_SETUP(sc, i))
1577 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1580 ath9k_hw_detach(ah);
1581 ath9k_exit_debug(sc);
1586 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1588 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1589 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1590 IEEE80211_HW_SIGNAL_DBM |
1591 IEEE80211_HW_AMPDU_AGGREGATION |
1592 IEEE80211_HW_SUPPORTS_PS |
1593 IEEE80211_HW_PS_NULLFUNC_STACK |
1594 IEEE80211_HW_SPECTRUM_MGMT;
1596 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1597 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1599 hw->wiphy->interface_modes =
1600 BIT(NL80211_IFTYPE_AP) |
1601 BIT(NL80211_IFTYPE_STATION) |
1602 BIT(NL80211_IFTYPE_ADHOC) |
1603 BIT(NL80211_IFTYPE_MESH_POINT);
1605 hw->wiphy->reg_notifier = ath9k_reg_notifier;
1606 hw->wiphy->strict_regulatory = true;
1610 hw->channel_change_time = 5000;
1611 hw->max_listen_interval = 10;
1612 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1613 hw->sta_data_size = sizeof(struct ath_node);
1614 hw->vif_data_size = sizeof(struct ath_vif);
1616 hw->rate_control_algorithm = "ath9k_rate_control";
1618 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1619 &sc->sbands[IEEE80211_BAND_2GHZ];
1620 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1621 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1622 &sc->sbands[IEEE80211_BAND_5GHZ];
1625 int ath_attach(u16 devid, struct ath_softc *sc)
1627 struct ieee80211_hw *hw = sc->hw;
1628 const struct ieee80211_regdomain *regd;
1631 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1633 error = ath_init(devid, sc);
1637 /* get mac address from hardware and set in mac80211 */
1639 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1641 ath_set_hw_capab(sc, hw);
1643 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1644 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1645 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1646 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1649 /* initialize tx/rx engine */
1650 error = ath_tx_init(sc, ATH_TXBUF);
1654 error = ath_rx_init(sc, ATH_RXBUF);
1658 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1659 /* Initialze h/w Rfkill */
1660 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1661 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1663 /* Initialize s/w rfkill */
1664 error = ath_init_sw_rfkill(sc);
1669 if (ath9k_is_world_regd(sc->sc_ah)) {
1670 /* Anything applied here (prior to wiphy registration) gets
1671 * saved on the wiphy orig_* parameters */
1672 regd = ath9k_world_regdomain(sc->sc_ah);
1673 hw->wiphy->custom_regulatory = true;
1674 hw->wiphy->strict_regulatory = false;
1676 /* This gets applied in the case of the absense of CRDA,
1677 * it's our own custom world regulatory domain, similar to
1678 * cfg80211's but we enable passive scanning */
1679 regd = ath9k_default_world_regdomain();
1681 wiphy_apply_custom_regulatory(hw->wiphy, regd);
1682 ath9k_reg_apply_radar_flags(hw->wiphy);
1683 ath9k_reg_apply_world_flags(hw->wiphy, NL80211_REGDOM_SET_BY_DRIVER);
1685 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1686 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1687 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1689 error = ieee80211_register_hw(hw);
1691 if (!ath9k_is_world_regd(sc->sc_ah)) {
1692 error = regulatory_hint(hw->wiphy,
1693 sc->sc_ah->regulatory.alpha2);
1698 /* Initialize LED control */
1705 /* cleanup tx queues */
1706 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1707 if (ATH_TXQ_SETUP(sc, i))
1708 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1710 ath9k_hw_detach(sc->sc_ah);
1711 ath9k_exit_debug(sc);
1716 int ath_reset(struct ath_softc *sc, bool retry_tx)
1718 struct ath_hw *ah = sc->sc_ah;
1719 struct ieee80211_hw *hw = sc->hw;
1722 ath9k_hw_set_interrupts(ah, 0);
1723 ath_drain_all_txq(sc, retry_tx);
1727 spin_lock_bh(&sc->sc_resetlock);
1728 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1730 DPRINTF(sc, ATH_DBG_FATAL,
1731 "Unable to reset hardware; reset status %u\n", r);
1732 spin_unlock_bh(&sc->sc_resetlock);
1734 if (ath_startrecv(sc) != 0)
1735 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1738 * We may be doing a reset in response to a request
1739 * that changes the channel so update any state that
1740 * might change as a result.
1742 ath_cache_conf_rate(sc, &hw->conf);
1744 ath_update_txpow(sc);
1746 if (sc->sc_flags & SC_OP_BEACONS)
1747 ath_beacon_config(sc, NULL); /* restart beacons */
1749 ath9k_hw_set_interrupts(ah, sc->imask);
1753 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1754 if (ATH_TXQ_SETUP(sc, i)) {
1755 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1756 ath_txq_schedule(sc, &sc->tx.txq[i]);
1757 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1766 * This function will allocate both the DMA descriptor structure, and the
1767 * buffers it contains. These are used to contain the descriptors used
1770 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1771 struct list_head *head, const char *name,
1772 int nbuf, int ndesc)
1774 #define DS2PHYS(_dd, _ds) \
1775 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1776 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1777 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1779 struct ath_desc *ds;
1781 int i, bsize, error;
1783 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1786 INIT_LIST_HEAD(head);
1787 /* ath_desc must be a multiple of DWORDs */
1788 if ((sizeof(struct ath_desc) % 4) != 0) {
1789 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1790 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1796 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1799 * Need additional DMA memory because we can't use
1800 * descriptors that cross the 4K page boundary. Assume
1801 * one skipped descriptor per 4K page.
1803 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1805 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1808 while (ndesc_skipped) {
1809 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1810 dd->dd_desc_len += dma_len;
1812 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1816 /* allocate descriptors */
1817 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1818 &dd->dd_desc_paddr, GFP_KERNEL);
1819 if (dd->dd_desc == NULL) {
1824 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1825 dd->dd_name, ds, (u32) dd->dd_desc_len,
1826 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1828 /* allocate buffers */
1829 bsize = sizeof(struct ath_buf) * nbuf;
1830 bf = kzalloc(bsize, GFP_KERNEL);
1837 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1839 bf->bf_daddr = DS2PHYS(dd, ds);
1841 if (!(sc->sc_ah->caps.hw_caps &
1842 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1844 * Skip descriptor addresses which can cause 4KB
1845 * boundary crossing (addr + length) with a 32 dword
1848 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1849 ASSERT((caddr_t) bf->bf_desc <
1850 ((caddr_t) dd->dd_desc +
1855 bf->bf_daddr = DS2PHYS(dd, ds);
1858 list_add_tail(&bf->list, head);
1862 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1865 memset(dd, 0, sizeof(*dd));
1867 #undef ATH_DESC_4KB_BOUND_CHECK
1868 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1872 void ath_descdma_cleanup(struct ath_softc *sc,
1873 struct ath_descdma *dd,
1874 struct list_head *head)
1876 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1879 INIT_LIST_HEAD(head);
1880 kfree(dd->dd_bufptr);
1881 memset(dd, 0, sizeof(*dd));
1884 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1890 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1893 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1896 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1899 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1902 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1909 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1914 case ATH9K_WME_AC_VO:
1917 case ATH9K_WME_AC_VI:
1920 case ATH9K_WME_AC_BE:
1923 case ATH9K_WME_AC_BK:
1934 /* XXX: Remove me once we don't depend on ath9k_channel for all
1935 * this redundant data */
1936 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1937 struct ath9k_channel *ichan)
1939 struct ieee80211_channel *chan = hw->conf.channel;
1940 struct ieee80211_conf *conf = &hw->conf;
1942 ichan->channel = chan->center_freq;
1945 if (chan->band == IEEE80211_BAND_2GHZ) {
1946 ichan->chanmode = CHANNEL_G;
1947 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1949 ichan->chanmode = CHANNEL_A;
1950 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1953 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1955 if (conf_is_ht(conf)) {
1956 if (conf_is_ht40(conf))
1957 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1959 ichan->chanmode = ath_get_extchanmode(sc, chan,
1960 conf->channel_type);
1964 /**********************/
1965 /* mac80211 callbacks */
1966 /**********************/
1968 static int ath9k_start(struct ieee80211_hw *hw)
1970 struct ath_wiphy *aphy = hw->priv;
1971 struct ath_softc *sc = aphy->sc;
1972 struct ieee80211_channel *curchan = hw->conf.channel;
1973 struct ath9k_channel *init_channel;
1976 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1977 "initial channel: %d MHz\n", curchan->center_freq);
1979 mutex_lock(&sc->mutex);
1981 if (ath9k_wiphy_started(sc)) {
1982 if (sc->chan_idx == curchan->hw_value) {
1984 * Already on the operational channel, the new wiphy
1985 * can be marked active.
1987 aphy->state = ATH_WIPHY_ACTIVE;
1988 ieee80211_wake_queues(hw);
1991 * Another wiphy is on another channel, start the new
1992 * wiphy in paused state.
1994 aphy->state = ATH_WIPHY_PAUSED;
1995 ieee80211_stop_queues(hw);
1997 mutex_unlock(&sc->mutex);
2000 aphy->state = ATH_WIPHY_ACTIVE;
2002 /* setup initial channel */
2004 pos = curchan->hw_value;
2007 init_channel = &sc->sc_ah->channels[pos];
2008 ath9k_update_ichannel(sc, hw, init_channel);
2010 /* Reset SERDES registers */
2011 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2014 * The basic interface to setting the hardware in a good
2015 * state is ``reset''. On return the hardware is known to
2016 * be powered up and with interrupts disabled. This must
2017 * be followed by initialization of the appropriate bits
2018 * and then setup of the interrupt mask.
2020 spin_lock_bh(&sc->sc_resetlock);
2021 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2023 DPRINTF(sc, ATH_DBG_FATAL,
2024 "Unable to reset hardware; reset status %u "
2025 "(freq %u MHz)\n", r,
2026 curchan->center_freq);
2027 spin_unlock_bh(&sc->sc_resetlock);
2030 spin_unlock_bh(&sc->sc_resetlock);
2033 * This is needed only to setup initial state
2034 * but it's best done after a reset.
2036 ath_update_txpow(sc);
2039 * Setup the hardware after reset:
2040 * The receive engine is set going.
2041 * Frame transmit is handled entirely
2042 * in the frame output path; there's nothing to do
2043 * here except setup the interrupt mask.
2045 if (ath_startrecv(sc) != 0) {
2046 DPRINTF(sc, ATH_DBG_FATAL,
2047 "Unable to start recv logic\n");
2052 /* Setup our intr mask. */
2053 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2054 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2055 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2057 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2058 sc->imask |= ATH9K_INT_GTT;
2060 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2061 sc->imask |= ATH9K_INT_CST;
2063 ath_cache_conf_rate(sc, &hw->conf);
2065 sc->sc_flags &= ~SC_OP_INVALID;
2067 /* Disable BMISS interrupt when we're not associated */
2068 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2069 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2071 ieee80211_wake_queues(hw);
2073 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2074 r = ath_start_rfkill_poll(sc);
2078 mutex_unlock(&sc->mutex);
2083 static int ath9k_tx(struct ieee80211_hw *hw,
2084 struct sk_buff *skb)
2086 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2087 struct ath_wiphy *aphy = hw->priv;
2088 struct ath_softc *sc = aphy->sc;
2089 struct ath_tx_control txctl;
2090 int hdrlen, padsize;
2092 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2093 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2094 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2098 memset(&txctl, 0, sizeof(struct ath_tx_control));
2101 * As a temporary workaround, assign seq# here; this will likely need
2102 * to be cleaned up to work better with Beacon transmission and virtual
2105 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2106 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2107 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2108 sc->tx.seq_no += 0x10;
2109 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2110 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2113 /* Add the padding after the header if this is not already done */
2114 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2116 padsize = hdrlen % 4;
2117 if (skb_headroom(skb) < padsize)
2119 skb_push(skb, padsize);
2120 memmove(skb->data, skb->data + padsize, hdrlen);
2123 /* Check if a tx queue is available */
2125 txctl.txq = ath_test_get_txq(sc, skb);
2129 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2131 if (ath_tx_start(hw, skb, &txctl) != 0) {
2132 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2138 dev_kfree_skb_any(skb);
2142 static void ath9k_stop(struct ieee80211_hw *hw)
2144 struct ath_wiphy *aphy = hw->priv;
2145 struct ath_softc *sc = aphy->sc;
2147 aphy->state = ATH_WIPHY_INACTIVE;
2149 if (sc->sc_flags & SC_OP_INVALID) {
2150 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2154 mutex_lock(&sc->mutex);
2156 ieee80211_stop_queues(hw);
2158 if (ath9k_wiphy_started(sc)) {
2159 mutex_unlock(&sc->mutex);
2160 return; /* another wiphy still in use */
2163 /* make sure h/w will not generate any interrupt
2164 * before setting the invalid flag. */
2165 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2167 if (!(sc->sc_flags & SC_OP_INVALID)) {
2168 ath_drain_all_txq(sc, false);
2170 ath9k_hw_phy_disable(sc->sc_ah);
2172 sc->rx.rxlink = NULL;
2174 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2175 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2176 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2178 /* disable HAL and put h/w to sleep */
2179 ath9k_hw_disable(sc->sc_ah);
2180 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2182 sc->sc_flags |= SC_OP_INVALID;
2184 mutex_unlock(&sc->mutex);
2186 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2189 static int ath9k_add_interface(struct ieee80211_hw *hw,
2190 struct ieee80211_if_init_conf *conf)
2192 struct ath_wiphy *aphy = hw->priv;
2193 struct ath_softc *sc = aphy->sc;
2194 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2195 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2198 mutex_lock(&sc->mutex);
2200 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2206 switch (conf->type) {
2207 case NL80211_IFTYPE_STATION:
2208 ic_opmode = NL80211_IFTYPE_STATION;
2210 case NL80211_IFTYPE_ADHOC:
2211 case NL80211_IFTYPE_AP:
2212 case NL80211_IFTYPE_MESH_POINT:
2213 if (sc->nbcnvifs >= ATH_BCBUF) {
2217 ic_opmode = conf->type;
2220 DPRINTF(sc, ATH_DBG_FATAL,
2221 "Interface type %d not yet supported\n", conf->type);
2226 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2228 /* Set the VIF opmode */
2229 avp->av_opmode = ic_opmode;
2234 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2235 ath9k_set_bssid_mask(hw);
2238 goto out; /* skip global settings for secondary vif */
2240 if (ic_opmode == NL80211_IFTYPE_AP) {
2241 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2242 sc->sc_flags |= SC_OP_TSF_RESET;
2245 /* Set the device opmode */
2246 sc->sc_ah->opmode = ic_opmode;
2249 * Enable MIB interrupts when there are hardware phy counters.
2250 * Note we only do this (at the moment) for station mode.
2252 if ((conf->type == NL80211_IFTYPE_STATION) ||
2253 (conf->type == NL80211_IFTYPE_ADHOC) ||
2254 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2255 if (ath9k_hw_phycounters(sc->sc_ah))
2256 sc->imask |= ATH9K_INT_MIB;
2257 sc->imask |= ATH9K_INT_TSFOOR;
2261 * Some hardware processes the TIM IE and fires an
2262 * interrupt when the TIM bit is set. For hardware
2263 * that does, if not overridden by configuration,
2264 * enable the TIM interrupt when operating as station.
2266 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2267 (conf->type == NL80211_IFTYPE_STATION) &&
2268 !sc->config.swBeaconProcess)
2269 sc->imask |= ATH9K_INT_TIM;
2271 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2273 if (conf->type == NL80211_IFTYPE_AP) {
2274 /* TODO: is this a suitable place to start ANI for AP mode? */
2276 mod_timer(&sc->ani.timer,
2277 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2281 mutex_unlock(&sc->mutex);
2285 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2286 struct ieee80211_if_init_conf *conf)
2288 struct ath_wiphy *aphy = hw->priv;
2289 struct ath_softc *sc = aphy->sc;
2290 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2293 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2295 mutex_lock(&sc->mutex);
2298 del_timer_sync(&sc->ani.timer);
2300 /* Reclaim beacon resources */
2301 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2302 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2303 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2304 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2305 ath_beacon_return(sc, avp);
2308 sc->sc_flags &= ~SC_OP_BEACONS;
2310 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2311 if (sc->beacon.bslot[i] == conf->vif) {
2312 printk(KERN_DEBUG "%s: vif had allocated beacon "
2313 "slot\n", __func__);
2314 sc->beacon.bslot[i] = NULL;
2315 sc->beacon.bslot_aphy[i] = NULL;
2321 mutex_unlock(&sc->mutex);
2324 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2326 struct ath_wiphy *aphy = hw->priv;
2327 struct ath_softc *sc = aphy->sc;
2328 struct ieee80211_conf *conf = &hw->conf;
2330 mutex_lock(&sc->mutex);
2332 if (changed & IEEE80211_CONF_CHANGE_PS) {
2333 if (conf->flags & IEEE80211_CONF_PS) {
2334 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2335 sc->imask |= ATH9K_INT_TIM_TIMER;
2336 ath9k_hw_set_interrupts(sc->sc_ah,
2339 ath9k_hw_setrxabort(sc->sc_ah, 1);
2340 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2342 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2343 ath9k_hw_setrxabort(sc->sc_ah, 0);
2344 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2345 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2346 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2347 ath9k_hw_set_interrupts(sc->sc_ah,
2353 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2354 struct ieee80211_channel *curchan = hw->conf.channel;
2355 int pos = curchan->hw_value;
2357 aphy->chan_idx = pos;
2358 aphy->chan_is_ht = conf_is_ht(conf);
2360 if (aphy->state == ATH_WIPHY_SCAN ||
2361 aphy->state == ATH_WIPHY_ACTIVE)
2362 ath9k_wiphy_pause_all_forced(sc, aphy);
2365 * Do not change operational channel based on a paused
2368 goto skip_chan_change;
2371 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2372 curchan->center_freq);
2374 /* XXX: remove me eventualy */
2375 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2377 ath_update_chainmask(sc, conf_is_ht(conf));
2379 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2380 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2381 mutex_unlock(&sc->mutex);
2387 if (changed & IEEE80211_CONF_CHANGE_POWER)
2388 sc->config.txpowlimit = 2 * conf->power_level;
2391 * The HW TSF has to be reset when the beacon interval changes.
2392 * We set the flag here, and ath_beacon_config_ap() would take this
2393 * into account when it gets called through the subsequent
2394 * config_interface() call - with IFCC_BEACON in the changed field.
2397 if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2398 sc->sc_flags |= SC_OP_TSF_RESET;
2400 mutex_unlock(&sc->mutex);
2405 static int ath9k_config_interface(struct ieee80211_hw *hw,
2406 struct ieee80211_vif *vif,
2407 struct ieee80211_if_conf *conf)
2409 struct ath_wiphy *aphy = hw->priv;
2410 struct ath_softc *sc = aphy->sc;
2411 struct ath_hw *ah = sc->sc_ah;
2412 struct ath_vif *avp = (void *)vif->drv_priv;
2416 mutex_lock(&sc->mutex);
2418 /* TODO: Need to decide which hw opmode to use for multi-interface
2420 if (vif->type == NL80211_IFTYPE_AP &&
2421 ah->opmode != NL80211_IFTYPE_AP) {
2422 ah->opmode = NL80211_IFTYPE_STATION;
2423 ath9k_hw_setopmode(ah);
2424 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2426 ath9k_hw_write_associd(sc);
2427 /* Request full reset to get hw opmode changed properly */
2428 sc->sc_flags |= SC_OP_FULL_RESET;
2431 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2432 !is_zero_ether_addr(conf->bssid)) {
2433 switch (vif->type) {
2434 case NL80211_IFTYPE_STATION:
2435 case NL80211_IFTYPE_ADHOC:
2436 case NL80211_IFTYPE_MESH_POINT:
2438 memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2439 memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2441 ath9k_hw_write_associd(sc);
2443 /* Set aggregation protection mode parameters */
2444 sc->config.ath_aggr_prot = 0;
2446 DPRINTF(sc, ATH_DBG_CONFIG,
2447 "RX filter 0x%x bssid %pM aid 0x%x\n",
2448 rfilt, sc->curbssid, sc->curaid);
2450 /* need to reconfigure the beacon */
2451 sc->sc_flags &= ~SC_OP_BEACONS ;
2459 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2460 (vif->type == NL80211_IFTYPE_AP) ||
2461 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2462 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2463 (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2464 conf->enable_beacon)) {
2466 * Allocate and setup the beacon frame.
2468 * Stop any previous beacon DMA. This may be
2469 * necessary, for example, when an ibss merge
2470 * causes reconfiguration; we may be called
2471 * with beacon transmission active.
2473 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2475 error = ath_beacon_alloc(aphy, vif);
2477 mutex_unlock(&sc->mutex);
2481 ath_beacon_config(sc, vif);
2485 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2486 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2487 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2488 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2489 ath9k_hw_keysetmac(sc->sc_ah,
2494 /* Only legacy IBSS for now */
2495 if (vif->type == NL80211_IFTYPE_ADHOC)
2496 ath_update_chainmask(sc, 0);
2498 mutex_unlock(&sc->mutex);
2503 #define SUPPORTED_FILTERS \
2504 (FIF_PROMISC_IN_BSS | \
2508 FIF_BCN_PRBRESP_PROMISC | \
2511 /* FIXME: sc->sc_full_reset ? */
2512 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2513 unsigned int changed_flags,
2514 unsigned int *total_flags,
2516 struct dev_mc_list *mclist)
2518 struct ath_wiphy *aphy = hw->priv;
2519 struct ath_softc *sc = aphy->sc;
2522 changed_flags &= SUPPORTED_FILTERS;
2523 *total_flags &= SUPPORTED_FILTERS;
2525 sc->rx.rxfilter = *total_flags;
2526 rfilt = ath_calcrxfilter(sc);
2527 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2529 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2532 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2533 struct ieee80211_vif *vif,
2534 enum sta_notify_cmd cmd,
2535 struct ieee80211_sta *sta)
2537 struct ath_wiphy *aphy = hw->priv;
2538 struct ath_softc *sc = aphy->sc;
2541 case STA_NOTIFY_ADD:
2542 ath_node_attach(sc, sta);
2544 case STA_NOTIFY_REMOVE:
2545 ath_node_detach(sc, sta);
2552 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2553 const struct ieee80211_tx_queue_params *params)
2555 struct ath_wiphy *aphy = hw->priv;
2556 struct ath_softc *sc = aphy->sc;
2557 struct ath9k_tx_queue_info qi;
2560 if (queue >= WME_NUM_AC)
2563 mutex_lock(&sc->mutex);
2565 qi.tqi_aifs = params->aifs;
2566 qi.tqi_cwmin = params->cw_min;
2567 qi.tqi_cwmax = params->cw_max;
2568 qi.tqi_burstTime = params->txop;
2569 qnum = ath_get_hal_qnum(queue, sc);
2571 DPRINTF(sc, ATH_DBG_CONFIG,
2572 "Configure tx [queue/halq] [%d/%d], "
2573 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2574 queue, qnum, params->aifs, params->cw_min,
2575 params->cw_max, params->txop);
2577 ret = ath_txq_update(sc, qnum, &qi);
2579 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2581 mutex_unlock(&sc->mutex);
2586 static int ath9k_set_key(struct ieee80211_hw *hw,
2587 enum set_key_cmd cmd,
2588 struct ieee80211_vif *vif,
2589 struct ieee80211_sta *sta,
2590 struct ieee80211_key_conf *key)
2592 struct ath_wiphy *aphy = hw->priv;
2593 struct ath_softc *sc = aphy->sc;
2596 if (modparam_nohwcrypt)
2599 mutex_lock(&sc->mutex);
2600 ath9k_ps_wakeup(sc);
2601 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2605 ret = ath_key_config(sc, vif, sta, key);
2607 key->hw_key_idx = ret;
2608 /* push IV and Michael MIC generation to stack */
2609 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2610 if (key->alg == ALG_TKIP)
2611 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2612 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2613 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2618 ath_key_delete(sc, key);
2624 ath9k_ps_restore(sc);
2625 mutex_unlock(&sc->mutex);
2630 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2631 struct ieee80211_vif *vif,
2632 struct ieee80211_bss_conf *bss_conf,
2635 struct ath_wiphy *aphy = hw->priv;
2636 struct ath_softc *sc = aphy->sc;
2638 mutex_lock(&sc->mutex);
2640 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2641 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2642 bss_conf->use_short_preamble);
2643 if (bss_conf->use_short_preamble)
2644 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2646 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2649 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2650 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2651 bss_conf->use_cts_prot);
2652 if (bss_conf->use_cts_prot &&
2653 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2654 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2656 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2659 if (changed & BSS_CHANGED_ASSOC) {
2660 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2662 ath9k_bss_assoc_info(sc, vif, bss_conf);
2665 mutex_unlock(&sc->mutex);
2668 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2671 struct ath_wiphy *aphy = hw->priv;
2672 struct ath_softc *sc = aphy->sc;
2674 mutex_lock(&sc->mutex);
2675 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2676 mutex_unlock(&sc->mutex);
2681 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2683 struct ath_wiphy *aphy = hw->priv;
2684 struct ath_softc *sc = aphy->sc;
2686 mutex_lock(&sc->mutex);
2687 ath9k_hw_settsf64(sc->sc_ah, tsf);
2688 mutex_unlock(&sc->mutex);
2691 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2693 struct ath_wiphy *aphy = hw->priv;
2694 struct ath_softc *sc = aphy->sc;
2696 mutex_lock(&sc->mutex);
2697 ath9k_hw_reset_tsf(sc->sc_ah);
2698 mutex_unlock(&sc->mutex);
2701 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2702 enum ieee80211_ampdu_mlme_action action,
2703 struct ieee80211_sta *sta,
2706 struct ath_wiphy *aphy = hw->priv;
2707 struct ath_softc *sc = aphy->sc;
2711 case IEEE80211_AMPDU_RX_START:
2712 if (!(sc->sc_flags & SC_OP_RXAGGR))
2715 case IEEE80211_AMPDU_RX_STOP:
2717 case IEEE80211_AMPDU_TX_START:
2718 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2720 DPRINTF(sc, ATH_DBG_FATAL,
2721 "Unable to start TX aggregation\n");
2723 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2725 case IEEE80211_AMPDU_TX_STOP:
2726 ret = ath_tx_aggr_stop(sc, sta, tid);
2728 DPRINTF(sc, ATH_DBG_FATAL,
2729 "Unable to stop TX aggregation\n");
2731 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2733 case IEEE80211_AMPDU_TX_OPERATIONAL:
2734 ath_tx_aggr_resume(sc, sta, tid);
2737 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2743 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2745 struct ath_wiphy *aphy = hw->priv;
2746 struct ath_softc *sc = aphy->sc;
2748 if (ath9k_wiphy_scanning(sc)) {
2749 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2752 * Do not allow the concurrent scanning state for now. This
2753 * could be improved with scanning control moved into ath9k.
2758 aphy->state = ATH_WIPHY_SCAN;
2759 ath9k_wiphy_pause_all_forced(sc, aphy);
2761 mutex_lock(&sc->mutex);
2762 sc->sc_flags |= SC_OP_SCANNING;
2763 mutex_unlock(&sc->mutex);
2766 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2768 struct ath_wiphy *aphy = hw->priv;
2769 struct ath_softc *sc = aphy->sc;
2771 mutex_lock(&sc->mutex);
2772 aphy->state = ATH_WIPHY_ACTIVE;
2773 sc->sc_flags &= ~SC_OP_SCANNING;
2774 mutex_unlock(&sc->mutex);
2777 struct ieee80211_ops ath9k_ops = {
2779 .start = ath9k_start,
2781 .add_interface = ath9k_add_interface,
2782 .remove_interface = ath9k_remove_interface,
2783 .config = ath9k_config,
2784 .config_interface = ath9k_config_interface,
2785 .configure_filter = ath9k_configure_filter,
2786 .sta_notify = ath9k_sta_notify,
2787 .conf_tx = ath9k_conf_tx,
2788 .bss_info_changed = ath9k_bss_info_changed,
2789 .set_key = ath9k_set_key,
2790 .get_tsf = ath9k_get_tsf,
2791 .set_tsf = ath9k_set_tsf,
2792 .reset_tsf = ath9k_reset_tsf,
2793 .ampdu_action = ath9k_ampdu_action,
2794 .sw_scan_start = ath9k_sw_scan_start,
2795 .sw_scan_complete = ath9k_sw_scan_complete,
2801 } ath_mac_bb_names[] = {
2802 { AR_SREV_VERSION_5416_PCI, "5416" },
2803 { AR_SREV_VERSION_5416_PCIE, "5418" },
2804 { AR_SREV_VERSION_9100, "9100" },
2805 { AR_SREV_VERSION_9160, "9160" },
2806 { AR_SREV_VERSION_9280, "9280" },
2807 { AR_SREV_VERSION_9285, "9285" }
2813 } ath_rf_names[] = {
2815 { AR_RAD5133_SREV_MAJOR, "5133" },
2816 { AR_RAD5122_SREV_MAJOR, "5122" },
2817 { AR_RAD2133_SREV_MAJOR, "2133" },
2818 { AR_RAD2122_SREV_MAJOR, "2122" }
2822 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2825 ath_mac_bb_name(u32 mac_bb_version)
2829 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2830 if (ath_mac_bb_names[i].version == mac_bb_version) {
2831 return ath_mac_bb_names[i].name;
2839 * Return the RF name. "????" is returned if the RF is unknown.
2842 ath_rf_name(u16 rf_version)
2846 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2847 if (ath_rf_names[i].version == rf_version) {
2848 return ath_rf_names[i].name;
2855 static int __init ath9k_init(void)
2859 /* Register rate control algorithm */
2860 error = ath_rate_control_register();
2863 "ath9k: Unable to register rate control "
2869 error = ath9k_debug_create_root();
2872 "ath9k: Unable to create debugfs root: %d\n",
2874 goto err_rate_unregister;
2877 error = ath_pci_init();
2880 "ath9k: No PCI devices found, driver not installed.\n");
2882 goto err_remove_root;
2885 error = ath_ahb_init();
2897 ath9k_debug_remove_root();
2898 err_rate_unregister:
2899 ath_rate_control_unregister();
2903 module_init(ath9k_init);
2905 static void __exit ath9k_exit(void)
2909 ath9k_debug_remove_root();
2910 ath_rate_control_unregister();
2911 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2913 module_exit(ath9k_exit);