4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
225 if (hrtimer_active(&rt_b->rt_period_timer))
228 spin_lock(&rt_b->rt_runtime_lock);
233 if (hrtimer_active(&rt_b->rt_period_timer))
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
267 static LIST_HEAD(task_groups);
269 /* task group related information */
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
275 #ifdef CONFIG_USER_SCHED
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
377 tg = __task_cred(p)->user->tg;
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
383 tg = &init_task_group;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
405 static int root_task_group_empty(void)
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
421 struct load_weight load;
422 unsigned long nr_running;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
482 /* Real-Time classes' related field in a runqueue: */
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
488 int curr; /* highest queued rt task prio */
490 int next; /* next highest */
495 unsigned long rt_nr_migratory;
497 struct plist_head pushable_tasks;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
528 cpumask_var_t online;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask;
537 struct cpupri cpupri;
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu;
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain;
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 /* list of leaf cfs_rq on this cpu: */
589 struct list_head leaf_cfs_rq_list;
591 #ifdef CONFIG_RT_GROUP_SCHED
592 struct list_head leaf_rt_rq_list;
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
601 unsigned long nr_uninterruptible;
603 struct task_struct *curr, *idle;
604 unsigned long next_balance;
605 struct mm_struct *prev_mm;
612 struct root_domain *rd;
613 struct sched_domain *sd;
615 unsigned char idle_at_tick;
616 /* For active balancing */
619 /* cpu of this runqueue: */
623 unsigned long avg_load_per_task;
625 struct task_struct *migration_thread;
626 struct list_head migration_queue;
629 /* calc_load related fields */
630 unsigned long calc_load_update;
631 long calc_load_active;
633 #ifdef CONFIG_SCHED_HRTICK
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
638 struct hrtimer hrtick_timer;
641 #ifdef CONFIG_SCHEDSTATS
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
660 unsigned int bkl_count;
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 static inline int cpu_of(struct rq *rq)
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 static inline void update_rq_clock(struct rq *rq)
697 rq->clock = sched_clock_cpu(cpu_of(rq));
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
706 # define const_debug static const
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
716 int runqueue_is_locked(void)
719 struct rq *rq = cpu_rq(cpu);
722 ret = spin_is_locked(&rq->lock);
728 * Debugging: various feature bits
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
735 #include "sched_features.h"
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
760 static int sched_feat_show(struct seq_file *m, void *v)
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
767 seq_printf(m, "%s ", sched_feat_names[i]);
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
786 if (copy_from_user(&buf, ubuf, cnt))
791 if (strncmp(buf, "NO_", 3) == 0) {
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 sysctl_sched_features &= ~(1UL << i);
803 sysctl_sched_features |= (1UL << i);
808 if (!sched_feat_names[i])
816 static int sched_feat_open(struct inode *inode, struct file *filp)
818 return single_open(filp, sched_feat_show, NULL);
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
826 .release = single_release,
829 static __init int sched_init_debug(void)
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 late_initcall(sched_init_debug);
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
849 * ratelimit for updating the group shares.
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
859 unsigned int sysctl_sched_shares_thresh = 4;
862 * period over which we measure -rt task cpu usage in us.
865 unsigned int sysctl_sched_rt_period = 1000000;
867 static __read_mostly int scheduler_running;
870 * part of the period that we allow rt tasks to run in us.
873 int sysctl_sched_rt_runtime = 950000;
875 static inline u64 global_rt_period(void)
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880 static inline u64 global_rt_runtime(void)
882 if (sysctl_sched_rt_runtime < 0)
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
895 static inline int task_current(struct rq *rq, struct task_struct *p)
897 return rq->curr == p;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 spin_unlock_irq(&rq->lock);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
932 return task_current(rq, p);
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
949 spin_unlock(&rq->lock);
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
982 spin_unlock(&rq->lock);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
997 local_irq_save(*flags);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1006 void task_rq_unlock_wait(struct task_struct *p)
1008 struct rq *rq = task_rq(p);
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1017 spin_unlock(&rq->lock);
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1034 local_irq_disable();
1036 spin_lock(&rq->lock);
1041 #ifdef CONFIG_SCHED_HRTICK
1043 * Use HR-timers to deliver accurate preemption points.
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1055 * - enabled by features
1056 * - hrtimer is actually high res
1058 static inline int hrtick_enabled(struct rq *rq)
1060 if (!sched_feat(HRTICK))
1062 if (!cpu_active(cpu_of(rq)))
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067 static void hrtick_clear(struct rq *rq)
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1088 return HRTIMER_NORESTART;
1093 * called from hardirq (IPI) context
1095 static void __hrtick_start(void *arg)
1097 struct rq *rq = arg;
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 hrtimer_set_expires(timer, time);
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 int cpu = (int)(long)hcpu;
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1144 static __init void init_hrtick(void)
1146 hotcpu_notifier(hotplug_hrtick, 0);
1150 * Called to set the hrtick timer state.
1152 * called with rq->lock held and irqs disabled
1154 static void hrtick_start(struct rq *rq, u64 delay)
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SMP */
1165 static void init_rq_hrtick(struct rq *rq)
1168 rq->hrtick_csd_pending = 0;
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1183 static inline void init_rq_hrtick(struct rq *rq)
1187 static inline void init_hrtick(void)
1190 #endif /* CONFIG_SCHED_HRTICK */
1193 * resched_task - mark a task 'to be rescheduled now'.
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205 static void resched_task(struct task_struct *p)
1209 assert_spin_locked(&task_rq(p)->lock);
1211 if (test_tsk_need_resched(p))
1214 set_tsk_need_resched(p);
1217 if (cpu == smp_processor_id())
1220 /* NEED_RESCHED must be visible before we test polling */
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1226 static void resched_cpu(int cpu)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1277 #endif /* CONFIG_NO_HZ */
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1290 # define WMULT_CONST (1UL << 32)
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1462 parent = &root_task_group;
1464 ret = (*down)(parent, data);
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1474 ret = (*up)(parent, data);
1479 parent = parent->parent;
1488 static int tg_nop(struct task_group *tg, void *data)
1495 static unsigned long source_load(int cpu, int type);
1496 static unsigned long target_load(int cpu, int type);
1497 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499 static unsigned long cpu_avg_load_per_task(int cpu)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 rq->avg_load_per_task = 0;
1509 return rq->avg_load_per_task;
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1514 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517 * Calculate and set the cpu's group shares.
1520 update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 unsigned long shares;
1524 unsigned long rq_weight;
1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
1545 spin_lock_irqsave(&rq->lock, flags);
1546 tg->cfs_rq[cpu]->shares = shares;
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
1558 static int tg_shares_up(struct task_group *tg, void *data)
1560 unsigned long weight, rq_weight = 0;
1561 unsigned long shares = 0;
1562 struct sched_domain *sd = data;
1565 for_each_cpu(i, sched_domain_span(sd)) {
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1571 weight = tg->cfs_rq[i]->load.weight;
1573 weight = NICE_0_LOAD;
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
1577 shares += tg->cfs_rq[i]->shares;
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
1586 for_each_cpu(i, sched_domain_span(sd))
1587 update_group_shares_cpu(tg, i, shares, rq_weight);
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
1597 static int tg_load_down(struct task_group *tg, void *data)
1600 long cpu = (long)data;
1603 load = cpu_rq(cpu)->load.weight;
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 tg->cfs_rq[cpu]->h_load = load;
1615 static void update_shares(struct sched_domain *sd)
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
1626 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 spin_unlock(&rq->lock);
1630 spin_lock(&rq->lock);
1633 static void update_h_load(long cpu)
1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1640 static inline void update_shares(struct sched_domain *sd)
1644 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1650 #ifdef CONFIG_PREEMPT
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
1660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1679 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1698 #endif /* CONFIG_PREEMPT */
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1711 return _double_lock_balance(this_rq, busiest);
1714 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 cfs_rq->shares = shares;
1731 static void calc_load_account_active(struct rq *this_rq);
1733 #include "sched_stats.h"
1734 #include "sched_idletask.c"
1735 #include "sched_fair.c"
1736 #include "sched_rt.c"
1737 #ifdef CONFIG_SCHED_DEBUG
1738 # include "sched_debug.c"
1741 #define sched_class_highest (&rt_sched_class)
1742 #define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
1745 static void inc_nr_running(struct rq *rq)
1750 static void dec_nr_running(struct rq *rq)
1755 static void set_load_weight(struct task_struct *p)
1757 if (task_has_rt_policy(p)) {
1758 p->se.load.weight = prio_to_weight[0] * 2;
1759 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1764 * SCHED_IDLE tasks get minimal weight:
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1776 static void update_avg(u64 *avg, u64 sample)
1778 s64 diff = sample - *avg;
1782 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1785 p->se.start_runtime = p->se.sum_exec_runtime;
1787 sched_info_queued(p);
1788 p->sched_class->enqueue_task(rq, p, wakeup);
1792 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1795 if (p->se.last_wakeup) {
1796 update_avg(&p->se.avg_overlap,
1797 p->se.sum_exec_runtime - p->se.last_wakeup);
1798 p->se.last_wakeup = 0;
1800 update_avg(&p->se.avg_wakeup,
1801 sysctl_sched_wakeup_granularity);
1805 sched_info_dequeued(p);
1806 p->sched_class->dequeue_task(rq, p, sleep);
1811 * __normal_prio - return the priority that is based on the static prio
1813 static inline int __normal_prio(struct task_struct *p)
1815 return p->static_prio;
1819 * Calculate the expected normal priority: i.e. priority
1820 * without taking RT-inheritance into account. Might be
1821 * boosted by interactivity modifiers. Changes upon fork,
1822 * setprio syscalls, and whenever the interactivity
1823 * estimator recalculates.
1825 static inline int normal_prio(struct task_struct *p)
1829 if (task_has_rt_policy(p))
1830 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 prio = __normal_prio(p);
1837 * Calculate the current priority, i.e. the priority
1838 * taken into account by the scheduler. This value might
1839 * be boosted by RT tasks, or might be boosted by
1840 * interactivity modifiers. Will be RT if the task got
1841 * RT-boosted. If not then it returns p->normal_prio.
1843 static int effective_prio(struct task_struct *p)
1845 p->normal_prio = normal_prio(p);
1847 * If we are RT tasks or we were boosted to RT priority,
1848 * keep the priority unchanged. Otherwise, update priority
1849 * to the normal priority:
1851 if (!rt_prio(p->prio))
1852 return p->normal_prio;
1857 * activate_task - move a task to the runqueue.
1859 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 if (task_contributes_to_load(p))
1862 rq->nr_uninterruptible--;
1864 enqueue_task(rq, p, wakeup);
1869 * deactivate_task - remove a task from the runqueue.
1871 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 if (task_contributes_to_load(p))
1874 rq->nr_uninterruptible++;
1876 dequeue_task(rq, p, sleep);
1881 * task_curr - is this task currently executing on a CPU?
1882 * @p: the task in question.
1884 inline int task_curr(const struct task_struct *p)
1886 return cpu_curr(task_cpu(p)) == p;
1889 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 set_task_rq(p, cpu);
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfuly executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1899 task_thread_info(p)->cpu = cpu;
1903 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1904 const struct sched_class *prev_class,
1905 int oldprio, int running)
1907 if (prev_class != p->sched_class) {
1908 if (prev_class->switched_from)
1909 prev_class->switched_from(rq, p, running);
1910 p->sched_class->switched_to(rq, p, running);
1912 p->sched_class->prio_changed(rq, p, oldprio, running);
1917 /* Used instead of source_load when we know the type == 0 */
1918 static unsigned long weighted_cpuload(const int cpu)
1920 return cpu_rq(cpu)->load.weight;
1924 * Is this task likely cache-hot:
1927 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1932 * Buddy candidates are cache hot:
1934 if (sched_feat(CACHE_HOT_BUDDY) &&
1935 (&p->se == cfs_rq_of(&p->se)->next ||
1936 &p->se == cfs_rq_of(&p->se)->last))
1939 if (p->sched_class != &fair_sched_class)
1942 if (sysctl_sched_migration_cost == -1)
1944 if (sysctl_sched_migration_cost == 0)
1947 delta = now - p->se.exec_start;
1949 return delta < (s64)sysctl_sched_migration_cost;
1953 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 int old_cpu = task_cpu(p);
1956 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1957 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1958 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1961 clock_offset = old_rq->clock - new_rq->clock;
1963 trace_sched_migrate_task(p, new_cpu);
1965 #ifdef CONFIG_SCHEDSTATS
1966 if (p->se.wait_start)
1967 p->se.wait_start -= clock_offset;
1968 if (p->se.sleep_start)
1969 p->se.sleep_start -= clock_offset;
1970 if (p->se.block_start)
1971 p->se.block_start -= clock_offset;
1972 if (old_cpu != new_cpu) {
1973 schedstat_inc(p, se.nr_migrations);
1974 if (task_hot(p, old_rq->clock, NULL))
1975 schedstat_inc(p, se.nr_forced2_migrations);
1978 p->se.vruntime -= old_cfsrq->min_vruntime -
1979 new_cfsrq->min_vruntime;
1981 __set_task_cpu(p, new_cpu);
1984 struct migration_req {
1985 struct list_head list;
1987 struct task_struct *task;
1990 struct completion done;
1994 * The task's runqueue lock must be held.
1995 * Returns true if you have to wait for migration thread.
1998 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2000 struct rq *rq = task_rq(p);
2003 * If the task is not on a runqueue (and not running), then
2004 * it is sufficient to simply update the task's cpu field.
2006 if (!p->se.on_rq && !task_running(rq, p)) {
2007 set_task_cpu(p, dest_cpu);
2011 init_completion(&req->done);
2013 req->dest_cpu = dest_cpu;
2014 list_add(&req->list, &rq->migration_queue);
2020 * wait_task_context_switch - wait for a thread to complete at least one
2023 * @p must not be current.
2025 void wait_task_context_switch(struct task_struct *p)
2027 unsigned long nvcsw, nivcsw, flags;
2035 * The runqueue is assigned before the actual context
2036 * switch. We need to take the runqueue lock.
2038 * We could check initially without the lock but it is
2039 * very likely that we need to take the lock in every
2042 rq = task_rq_lock(p, &flags);
2043 running = task_running(rq, p);
2044 task_rq_unlock(rq, &flags);
2046 if (likely(!running))
2049 * The switch count is incremented before the actual
2050 * context switch. We thus wait for two switches to be
2051 * sure at least one completed.
2053 if ((p->nvcsw - nvcsw) > 1)
2055 if ((p->nivcsw - nivcsw) > 1)
2063 * wait_task_inactive - wait for a thread to unschedule.
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2078 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2080 unsigned long flags;
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2105 while (task_running(rq, p)) {
2106 if (match_state && unlikely(p->state != match_state))
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2116 rq = task_rq_lock(p, &flags);
2117 trace_sched_wait_task(rq, p);
2118 running = task_running(rq, p);
2119 on_rq = p->se.on_rq;
2121 if (!match_state || p->state == match_state)
2122 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2123 task_rq_unlock(rq, &flags);
2126 * If it changed from the expected state, bail out now.
2128 if (unlikely(!ncsw))
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2135 * Oops. Go back and try again..
2137 if (unlikely(running)) {
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2147 * So if it was still runnable (but just not actively
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2151 if (unlikely(on_rq)) {
2152 schedule_timeout_uninterruptible(1);
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2180 void kick_process(struct task_struct *p)
2186 if ((cpu != smp_processor_id()) && task_curr(p))
2187 smp_send_reschedule(cpu);
2192 * Return a low guess at the load of a migration-source cpu weighted
2193 * according to the scheduling class and "nice" value.
2195 * We want to under-estimate the load of migration sources, to
2196 * balance conservatively.
2198 static unsigned long source_load(int cpu, int type)
2200 struct rq *rq = cpu_rq(cpu);
2201 unsigned long total = weighted_cpuload(cpu);
2203 if (type == 0 || !sched_feat(LB_BIAS))
2206 return min(rq->cpu_load[type-1], total);
2210 * Return a high guess at the load of a migration-target cpu weighted
2211 * according to the scheduling class and "nice" value.
2213 static unsigned long target_load(int cpu, int type)
2215 struct rq *rq = cpu_rq(cpu);
2216 unsigned long total = weighted_cpuload(cpu);
2218 if (type == 0 || !sched_feat(LB_BIAS))
2221 return max(rq->cpu_load[type-1], total);
2225 * find_idlest_group finds and returns the least busy CPU group within the
2228 static struct sched_group *
2229 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2231 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2232 unsigned long min_load = ULONG_MAX, this_load = 0;
2233 int load_idx = sd->forkexec_idx;
2234 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2237 unsigned long load, avg_load;
2241 /* Skip over this group if it has no CPUs allowed */
2242 if (!cpumask_intersects(sched_group_cpus(group),
2246 local_group = cpumask_test_cpu(this_cpu,
2247 sched_group_cpus(group));
2249 /* Tally up the load of all CPUs in the group */
2252 for_each_cpu(i, sched_group_cpus(group)) {
2253 /* Bias balancing toward cpus of our domain */
2255 load = source_load(i, load_idx);
2257 load = target_load(i, load_idx);
2262 /* Adjust by relative CPU power of the group */
2263 avg_load = sg_div_cpu_power(group,
2264 avg_load * SCHED_LOAD_SCALE);
2267 this_load = avg_load;
2269 } else if (avg_load < min_load) {
2270 min_load = avg_load;
2273 } while (group = group->next, group != sd->groups);
2275 if (!idlest || 100*this_load < imbalance*min_load)
2281 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2284 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2286 unsigned long load, min_load = ULONG_MAX;
2290 /* Traverse only the allowed CPUs */
2291 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2292 load = weighted_cpuload(i);
2294 if (load < min_load || (load == min_load && i == this_cpu)) {
2304 * sched_balance_self: balance the current task (running on cpu) in domains
2305 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2308 * Balance, ie. select the least loaded group.
2310 * Returns the target CPU number, or the same CPU if no balancing is needed.
2312 * preempt must be disabled.
2314 static int sched_balance_self(int cpu, int flag)
2316 struct task_struct *t = current;
2317 struct sched_domain *tmp, *sd = NULL;
2319 for_each_domain(cpu, tmp) {
2321 * If power savings logic is enabled for a domain, stop there.
2323 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2325 if (tmp->flags & flag)
2333 struct sched_group *group;
2334 int new_cpu, weight;
2336 if (!(sd->flags & flag)) {
2341 group = find_idlest_group(sd, t, cpu);
2347 new_cpu = find_idlest_cpu(group, t, cpu);
2348 if (new_cpu == -1 || new_cpu == cpu) {
2349 /* Now try balancing at a lower domain level of cpu */
2354 /* Now try balancing at a lower domain level of new_cpu */
2356 weight = cpumask_weight(sched_domain_span(sd));
2358 for_each_domain(cpu, tmp) {
2359 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2361 if (tmp->flags & flag)
2364 /* while loop will break here if sd == NULL */
2370 #endif /* CONFIG_SMP */
2373 * try_to_wake_up - wake up a thread
2374 * @p: the to-be-woken-up thread
2375 * @state: the mask of task states that can be woken
2376 * @sync: do a synchronous wakeup?
2378 * Put it on the run-queue if it's not already there. The "current"
2379 * thread is always on the run-queue (except when the actual
2380 * re-schedule is in progress), and as such you're allowed to do
2381 * the simpler "current->state = TASK_RUNNING" to mark yourself
2382 * runnable without the overhead of this.
2384 * returns failure only if the task is already active.
2386 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2388 int cpu, orig_cpu, this_cpu, success = 0;
2389 unsigned long flags;
2393 if (!sched_feat(SYNC_WAKEUPS))
2397 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398 struct sched_domain *sd;
2400 this_cpu = raw_smp_processor_id();
2403 for_each_domain(this_cpu, sd) {
2404 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2413 rq = task_rq_lock(p, &flags);
2414 update_rq_clock(rq);
2415 old_state = p->state;
2416 if (!(old_state & state))
2424 this_cpu = smp_processor_id();
2427 if (unlikely(task_running(rq, p)))
2430 cpu = p->sched_class->select_task_rq(p, sync);
2431 if (cpu != orig_cpu) {
2432 set_task_cpu(p, cpu);
2433 task_rq_unlock(rq, &flags);
2434 /* might preempt at this point */
2435 rq = task_rq_lock(p, &flags);
2436 old_state = p->state;
2437 if (!(old_state & state))
2442 this_cpu = smp_processor_id();
2446 #ifdef CONFIG_SCHEDSTATS
2447 schedstat_inc(rq, ttwu_count);
2448 if (cpu == this_cpu)
2449 schedstat_inc(rq, ttwu_local);
2451 struct sched_domain *sd;
2452 for_each_domain(this_cpu, sd) {
2453 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2454 schedstat_inc(sd, ttwu_wake_remote);
2459 #endif /* CONFIG_SCHEDSTATS */
2462 #endif /* CONFIG_SMP */
2463 schedstat_inc(p, se.nr_wakeups);
2465 schedstat_inc(p, se.nr_wakeups_sync);
2466 if (orig_cpu != cpu)
2467 schedstat_inc(p, se.nr_wakeups_migrate);
2468 if (cpu == this_cpu)
2469 schedstat_inc(p, se.nr_wakeups_local);
2471 schedstat_inc(p, se.nr_wakeups_remote);
2472 activate_task(rq, p, 1);
2476 * Only attribute actual wakeups done by this task.
2478 if (!in_interrupt()) {
2479 struct sched_entity *se = ¤t->se;
2480 u64 sample = se->sum_exec_runtime;
2482 if (se->last_wakeup)
2483 sample -= se->last_wakeup;
2485 sample -= se->start_runtime;
2486 update_avg(&se->avg_wakeup, sample);
2488 se->last_wakeup = se->sum_exec_runtime;
2492 trace_sched_wakeup(rq, p, success);
2493 check_preempt_curr(rq, p, sync);
2495 p->state = TASK_RUNNING;
2497 if (p->sched_class->task_wake_up)
2498 p->sched_class->task_wake_up(rq, p);
2501 task_rq_unlock(rq, &flags);
2507 * wake_up_process - Wake up a specific process
2508 * @p: The process to be woken up.
2510 * Attempt to wake up the nominated process and move it to the set of runnable
2511 * processes. Returns 1 if the process was woken up, 0 if it was already
2514 * It may be assumed that this function implies a write memory barrier before
2515 * changing the task state if and only if any tasks are woken up.
2517 int wake_up_process(struct task_struct *p)
2519 return try_to_wake_up(p, TASK_ALL, 0);
2521 EXPORT_SYMBOL(wake_up_process);
2523 int wake_up_state(struct task_struct *p, unsigned int state)
2525 return try_to_wake_up(p, state, 0);
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
2532 * __sched_fork() is basic setup used by init_idle() too:
2534 static void __sched_fork(struct task_struct *p)
2536 p->se.exec_start = 0;
2537 p->se.sum_exec_runtime = 0;
2538 p->se.prev_sum_exec_runtime = 0;
2539 p->se.last_wakeup = 0;
2540 p->se.avg_overlap = 0;
2541 p->se.start_runtime = 0;
2542 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2544 #ifdef CONFIG_SCHEDSTATS
2545 p->se.wait_start = 0;
2546 p->se.sum_sleep_runtime = 0;
2547 p->se.sleep_start = 0;
2548 p->se.block_start = 0;
2549 p->se.sleep_max = 0;
2550 p->se.block_max = 0;
2552 p->se.slice_max = 0;
2556 INIT_LIST_HEAD(&p->rt.run_list);
2558 INIT_LIST_HEAD(&p->se.group_node);
2560 #ifdef CONFIG_PREEMPT_NOTIFIERS
2561 INIT_HLIST_HEAD(&p->preempt_notifiers);
2565 * We mark the process as running here, but have not actually
2566 * inserted it onto the runqueue yet. This guarantees that
2567 * nobody will actually run it, and a signal or other external
2568 * event cannot wake it up and insert it on the runqueue either.
2570 p->state = TASK_RUNNING;
2574 * fork()/clone()-time setup:
2576 void sched_fork(struct task_struct *p, int clone_flags)
2578 int cpu = get_cpu();
2583 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2585 set_task_cpu(p, cpu);
2588 * Make sure we do not leak PI boosting priority to the child:
2590 p->prio = current->normal_prio;
2591 if (!rt_prio(p->prio))
2592 p->sched_class = &fair_sched_class;
2594 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2595 if (likely(sched_info_on()))
2596 memset(&p->sched_info, 0, sizeof(p->sched_info));
2598 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2601 #ifdef CONFIG_PREEMPT
2602 /* Want to start with kernel preemption disabled. */
2603 task_thread_info(p)->preempt_count = 1;
2605 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2611 * wake_up_new_task - wake up a newly created task for the first time.
2613 * This function will do some initial scheduler statistics housekeeping
2614 * that must be done for every newly created context, then puts the task
2615 * on the runqueue and wakes it.
2617 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2619 unsigned long flags;
2622 rq = task_rq_lock(p, &flags);
2623 BUG_ON(p->state != TASK_RUNNING);
2624 update_rq_clock(rq);
2626 p->prio = effective_prio(p);
2628 if (!p->sched_class->task_new || !current->se.on_rq) {
2629 activate_task(rq, p, 0);
2632 * Let the scheduling class do new task startup
2633 * management (if any):
2635 p->sched_class->task_new(rq, p);
2638 trace_sched_wakeup_new(rq, p, 1);
2639 check_preempt_curr(rq, p, 0);
2641 if (p->sched_class->task_wake_up)
2642 p->sched_class->task_wake_up(rq, p);
2644 task_rq_unlock(rq, &flags);
2647 #ifdef CONFIG_PREEMPT_NOTIFIERS
2650 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2651 * @notifier: notifier struct to register
2653 void preempt_notifier_register(struct preempt_notifier *notifier)
2655 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2657 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2660 * preempt_notifier_unregister - no longer interested in preemption notifications
2661 * @notifier: notifier struct to unregister
2663 * This is safe to call from within a preemption notifier.
2665 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2667 hlist_del(¬ifier->link);
2669 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2671 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2681 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_out(notifier, next);
2691 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2693 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2699 struct task_struct *next)
2703 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2706 * prepare_task_switch - prepare to switch tasks
2707 * @rq: the runqueue preparing to switch
2708 * @prev: the current task that is being switched out
2709 * @next: the task we are going to switch to.
2711 * This is called with the rq lock held and interrupts off. It must
2712 * be paired with a subsequent finish_task_switch after the context
2715 * prepare_task_switch sets up locking and calls architecture specific
2719 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2720 struct task_struct *next)
2722 fire_sched_out_preempt_notifiers(prev, next);
2723 prepare_lock_switch(rq, next);
2724 prepare_arch_switch(next);
2728 * finish_task_switch - clean up after a task-switch
2729 * @rq: runqueue associated with task-switch
2730 * @prev: the thread we just switched away from.
2732 * finish_task_switch must be called after the context switch, paired
2733 * with a prepare_task_switch call before the context switch.
2734 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2735 * and do any other architecture-specific cleanup actions.
2737 * Note that we may have delayed dropping an mm in context_switch(). If
2738 * so, we finish that here outside of the runqueue lock. (Doing it
2739 * with the lock held can cause deadlocks; see schedule() for
2742 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2743 __releases(rq->lock)
2745 struct mm_struct *mm = rq->prev_mm;
2748 int post_schedule = 0;
2750 if (current->sched_class->needs_post_schedule)
2751 post_schedule = current->sched_class->needs_post_schedule(rq);
2757 * A task struct has one reference for the use as "current".
2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
2761 * The test for TASK_DEAD must occur while the runqueue locks are
2762 * still held, otherwise prev could be scheduled on another cpu, die
2763 * there before we look at prev->state, and then the reference would
2765 * Manfred Spraul <manfred@colorfullife.com>
2767 prev_state = prev->state;
2768 finish_arch_switch(prev);
2769 finish_lock_switch(rq, prev);
2772 current->sched_class->post_schedule(rq);
2775 fire_sched_in_preempt_notifiers(current);
2778 if (unlikely(prev_state == TASK_DEAD)) {
2780 * Remove function-return probe instances associated with this
2781 * task and put them back on the free list.
2783 kprobe_flush_task(prev);
2784 put_task_struct(prev);
2789 * schedule_tail - first thing a freshly forked thread must call.
2790 * @prev: the thread we just switched away from.
2792 asmlinkage void schedule_tail(struct task_struct *prev)
2793 __releases(rq->lock)
2795 struct rq *rq = this_rq();
2797 finish_task_switch(rq, prev);
2798 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2799 /* In this case, finish_task_switch does not reenable preemption */
2802 if (current->set_child_tid)
2803 put_user(task_pid_vnr(current), current->set_child_tid);
2807 * context_switch - switch to the new MM and the new
2808 * thread's register state.
2811 context_switch(struct rq *rq, struct task_struct *prev,
2812 struct task_struct *next)
2814 struct mm_struct *mm, *oldmm;
2816 prepare_task_switch(rq, prev, next);
2817 trace_sched_switch(rq, prev, next);
2819 oldmm = prev->active_mm;
2821 * For paravirt, this is coupled with an exit in switch_to to
2822 * combine the page table reload and the switch backend into
2825 arch_start_context_switch(prev);
2827 if (unlikely(!mm)) {
2828 next->active_mm = oldmm;
2829 atomic_inc(&oldmm->mm_count);
2830 enter_lazy_tlb(oldmm, next);
2832 switch_mm(oldmm, mm, next);
2834 if (unlikely(!prev->mm)) {
2835 prev->active_mm = NULL;
2836 rq->prev_mm = oldmm;
2839 * Since the runqueue lock will be released by the next
2840 * task (which is an invalid locking op but in the case
2841 * of the scheduler it's an obvious special-case), so we
2842 * do an early lockdep release here:
2844 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2845 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2848 /* Here we just switch the register state and the stack. */
2849 switch_to(prev, next, prev);
2853 * this_rq must be evaluated again because prev may have moved
2854 * CPUs since it called schedule(), thus the 'rq' on its stack
2855 * frame will be invalid.
2857 finish_task_switch(this_rq(), prev);
2861 * nr_running, nr_uninterruptible and nr_context_switches:
2863 * externally visible scheduler statistics: current number of runnable
2864 * threads, current number of uninterruptible-sleeping threads, total
2865 * number of context switches performed since bootup.
2867 unsigned long nr_running(void)
2869 unsigned long i, sum = 0;
2871 for_each_online_cpu(i)
2872 sum += cpu_rq(i)->nr_running;
2877 unsigned long nr_uninterruptible(void)
2879 unsigned long i, sum = 0;
2881 for_each_possible_cpu(i)
2882 sum += cpu_rq(i)->nr_uninterruptible;
2885 * Since we read the counters lockless, it might be slightly
2886 * inaccurate. Do not allow it to go below zero though:
2888 if (unlikely((long)sum < 0))
2894 unsigned long long nr_context_switches(void)
2897 unsigned long long sum = 0;
2899 for_each_possible_cpu(i)
2900 sum += cpu_rq(i)->nr_switches;
2905 unsigned long nr_iowait(void)
2907 unsigned long i, sum = 0;
2909 for_each_possible_cpu(i)
2910 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2915 /* Variables and functions for calc_load */
2916 static atomic_long_t calc_load_tasks;
2917 static unsigned long calc_load_update;
2918 unsigned long avenrun[3];
2919 EXPORT_SYMBOL(avenrun);
2922 * get_avenrun - get the load average array
2923 * @loads: pointer to dest load array
2924 * @offset: offset to add
2925 * @shift: shift count to shift the result left
2927 * These values are estimates at best, so no need for locking.
2929 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2931 loads[0] = (avenrun[0] + offset) << shift;
2932 loads[1] = (avenrun[1] + offset) << shift;
2933 loads[2] = (avenrun[2] + offset) << shift;
2936 static unsigned long
2937 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2940 load += active * (FIXED_1 - exp);
2941 return load >> FSHIFT;
2945 * calc_load - update the avenrun load estimates 10 ticks after the
2946 * CPUs have updated calc_load_tasks.
2948 void calc_global_load(void)
2950 unsigned long upd = calc_load_update + 10;
2953 if (time_before(jiffies, upd))
2956 active = atomic_long_read(&calc_load_tasks);
2957 active = active > 0 ? active * FIXED_1 : 0;
2959 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2960 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2961 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2963 calc_load_update += LOAD_FREQ;
2967 * Either called from update_cpu_load() or from a cpu going idle
2969 static void calc_load_account_active(struct rq *this_rq)
2971 long nr_active, delta;
2973 nr_active = this_rq->nr_running;
2974 nr_active += (long) this_rq->nr_uninterruptible;
2976 if (nr_active != this_rq->calc_load_active) {
2977 delta = nr_active - this_rq->calc_load_active;
2978 this_rq->calc_load_active = nr_active;
2979 atomic_long_add(delta, &calc_load_tasks);
2984 * Update rq->cpu_load[] statistics. This function is usually called every
2985 * scheduler tick (TICK_NSEC).
2987 static void update_cpu_load(struct rq *this_rq)
2989 unsigned long this_load = this_rq->load.weight;
2992 this_rq->nr_load_updates++;
2994 /* Update our load: */
2995 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2996 unsigned long old_load, new_load;
2998 /* scale is effectively 1 << i now, and >> i divides by scale */
3000 old_load = this_rq->cpu_load[i];
3001 new_load = this_load;
3003 * Round up the averaging division if load is increasing. This
3004 * prevents us from getting stuck on 9 if the load is 10, for
3007 if (new_load > old_load)
3008 new_load += scale-1;
3009 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3012 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3013 this_rq->calc_load_update += LOAD_FREQ;
3014 calc_load_account_active(this_rq);
3021 * double_rq_lock - safely lock two runqueues
3023 * Note this does not disable interrupts like task_rq_lock,
3024 * you need to do so manually before calling.
3026 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3027 __acquires(rq1->lock)
3028 __acquires(rq2->lock)
3030 BUG_ON(!irqs_disabled());
3032 spin_lock(&rq1->lock);
3033 __acquire(rq2->lock); /* Fake it out ;) */
3036 spin_lock(&rq1->lock);
3037 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3039 spin_lock(&rq2->lock);
3040 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3043 update_rq_clock(rq1);
3044 update_rq_clock(rq2);
3048 * double_rq_unlock - safely unlock two runqueues
3050 * Note this does not restore interrupts like task_rq_unlock,
3051 * you need to do so manually after calling.
3053 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3054 __releases(rq1->lock)
3055 __releases(rq2->lock)
3057 spin_unlock(&rq1->lock);
3059 spin_unlock(&rq2->lock);
3061 __release(rq2->lock);
3065 * If dest_cpu is allowed for this process, migrate the task to it.
3066 * This is accomplished by forcing the cpu_allowed mask to only
3067 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3068 * the cpu_allowed mask is restored.
3070 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3072 struct migration_req req;
3073 unsigned long flags;
3076 rq = task_rq_lock(p, &flags);
3077 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3078 || unlikely(!cpu_active(dest_cpu)))
3081 /* force the process onto the specified CPU */
3082 if (migrate_task(p, dest_cpu, &req)) {
3083 /* Need to wait for migration thread (might exit: take ref). */
3084 struct task_struct *mt = rq->migration_thread;
3086 get_task_struct(mt);
3087 task_rq_unlock(rq, &flags);
3088 wake_up_process(mt);
3089 put_task_struct(mt);
3090 wait_for_completion(&req.done);
3095 task_rq_unlock(rq, &flags);
3099 * sched_exec - execve() is a valuable balancing opportunity, because at
3100 * this point the task has the smallest effective memory and cache footprint.
3102 void sched_exec(void)
3104 int new_cpu, this_cpu = get_cpu();
3105 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3107 if (new_cpu != this_cpu)
3108 sched_migrate_task(current, new_cpu);
3112 * pull_task - move a task from a remote runqueue to the local runqueue.
3113 * Both runqueues must be locked.
3115 static void pull_task(struct rq *src_rq, struct task_struct *p,
3116 struct rq *this_rq, int this_cpu)
3118 deactivate_task(src_rq, p, 0);
3119 set_task_cpu(p, this_cpu);
3120 activate_task(this_rq, p, 0);
3122 * Note that idle threads have a prio of MAX_PRIO, for this test
3123 * to be always true for them.
3125 check_preempt_curr(this_rq, p, 0);
3129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3132 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3133 struct sched_domain *sd, enum cpu_idle_type idle,
3136 int tsk_cache_hot = 0;
3138 * We do not migrate tasks that are:
3139 * 1) running (obviously), or
3140 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3141 * 3) are cache-hot on their current CPU.
3143 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3144 schedstat_inc(p, se.nr_failed_migrations_affine);
3149 if (task_running(rq, p)) {
3150 schedstat_inc(p, se.nr_failed_migrations_running);
3155 * Aggressive migration if:
3156 * 1) task is cache cold, or
3157 * 2) too many balance attempts have failed.
3160 tsk_cache_hot = task_hot(p, rq->clock, sd);
3161 if (!tsk_cache_hot ||
3162 sd->nr_balance_failed > sd->cache_nice_tries) {
3163 #ifdef CONFIG_SCHEDSTATS
3164 if (tsk_cache_hot) {
3165 schedstat_inc(sd, lb_hot_gained[idle]);
3166 schedstat_inc(p, se.nr_forced_migrations);
3172 if (tsk_cache_hot) {
3173 schedstat_inc(p, se.nr_failed_migrations_hot);
3179 static unsigned long
3180 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3181 unsigned long max_load_move, struct sched_domain *sd,
3182 enum cpu_idle_type idle, int *all_pinned,
3183 int *this_best_prio, struct rq_iterator *iterator)
3185 int loops = 0, pulled = 0, pinned = 0;
3186 struct task_struct *p;
3187 long rem_load_move = max_load_move;
3189 if (max_load_move == 0)
3195 * Start the load-balancing iterator:
3197 p = iterator->start(iterator->arg);
3199 if (!p || loops++ > sysctl_sched_nr_migrate)
3202 if ((p->se.load.weight >> 1) > rem_load_move ||
3203 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3204 p = iterator->next(iterator->arg);
3208 pull_task(busiest, p, this_rq, this_cpu);
3210 rem_load_move -= p->se.load.weight;
3212 #ifdef CONFIG_PREEMPT
3214 * NEWIDLE balancing is a source of latency, so preemptible kernels
3215 * will stop after the first task is pulled to minimize the critical
3218 if (idle == CPU_NEWLY_IDLE)
3223 * We only want to steal up to the prescribed amount of weighted load.
3225 if (rem_load_move > 0) {
3226 if (p->prio < *this_best_prio)
3227 *this_best_prio = p->prio;
3228 p = iterator->next(iterator->arg);
3233 * Right now, this is one of only two places pull_task() is called,
3234 * so we can safely collect pull_task() stats here rather than
3235 * inside pull_task().
3237 schedstat_add(sd, lb_gained[idle], pulled);
3240 *all_pinned = pinned;
3242 return max_load_move - rem_load_move;
3246 * move_tasks tries to move up to max_load_move weighted load from busiest to
3247 * this_rq, as part of a balancing operation within domain "sd".
3248 * Returns 1 if successful and 0 otherwise.
3250 * Called with both runqueues locked.
3252 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3253 unsigned long max_load_move,
3254 struct sched_domain *sd, enum cpu_idle_type idle,
3257 const struct sched_class *class = sched_class_highest;
3258 unsigned long total_load_moved = 0;
3259 int this_best_prio = this_rq->curr->prio;
3263 class->load_balance(this_rq, this_cpu, busiest,
3264 max_load_move - total_load_moved,
3265 sd, idle, all_pinned, &this_best_prio);
3266 class = class->next;
3268 #ifdef CONFIG_PREEMPT
3270 * NEWIDLE balancing is a source of latency, so preemptible
3271 * kernels will stop after the first task is pulled to minimize
3272 * the critical section.
3274 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3277 } while (class && max_load_move > total_load_moved);
3279 return total_load_moved > 0;
3283 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3284 struct sched_domain *sd, enum cpu_idle_type idle,
3285 struct rq_iterator *iterator)
3287 struct task_struct *p = iterator->start(iterator->arg);
3291 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3292 pull_task(busiest, p, this_rq, this_cpu);
3294 * Right now, this is only the second place pull_task()
3295 * is called, so we can safely collect pull_task()
3296 * stats here rather than inside pull_task().
3298 schedstat_inc(sd, lb_gained[idle]);
3302 p = iterator->next(iterator->arg);
3309 * move_one_task tries to move exactly one task from busiest to this_rq, as
3310 * part of active balancing operations within "domain".
3311 * Returns 1 if successful and 0 otherwise.
3313 * Called with both runqueues locked.
3315 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3316 struct sched_domain *sd, enum cpu_idle_type idle)
3318 const struct sched_class *class;
3320 for (class = sched_class_highest; class; class = class->next)
3321 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3326 /********** Helpers for find_busiest_group ************************/
3328 * sd_lb_stats - Structure to store the statistics of a sched_domain
3329 * during load balancing.
3331 struct sd_lb_stats {
3332 struct sched_group *busiest; /* Busiest group in this sd */
3333 struct sched_group *this; /* Local group in this sd */
3334 unsigned long total_load; /* Total load of all groups in sd */
3335 unsigned long total_pwr; /* Total power of all groups in sd */
3336 unsigned long avg_load; /* Average load across all groups in sd */
3338 /** Statistics of this group */
3339 unsigned long this_load;
3340 unsigned long this_load_per_task;
3341 unsigned long this_nr_running;
3343 /* Statistics of the busiest group */
3344 unsigned long max_load;
3345 unsigned long busiest_load_per_task;
3346 unsigned long busiest_nr_running;
3348 int group_imb; /* Is there imbalance in this sd */
3349 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3350 int power_savings_balance; /* Is powersave balance needed for this sd */
3351 struct sched_group *group_min; /* Least loaded group in sd */
3352 struct sched_group *group_leader; /* Group which relieves group_min */
3353 unsigned long min_load_per_task; /* load_per_task in group_min */
3354 unsigned long leader_nr_running; /* Nr running of group_leader */
3355 unsigned long min_nr_running; /* Nr running of group_min */
3360 * sg_lb_stats - stats of a sched_group required for load_balancing
3362 struct sg_lb_stats {
3363 unsigned long avg_load; /*Avg load across the CPUs of the group */
3364 unsigned long group_load; /* Total load over the CPUs of the group */
3365 unsigned long sum_nr_running; /* Nr tasks running in the group */
3366 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3367 unsigned long group_capacity;
3368 int group_imb; /* Is there an imbalance in the group ? */
3372 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3373 * @group: The group whose first cpu is to be returned.
3375 static inline unsigned int group_first_cpu(struct sched_group *group)
3377 return cpumask_first(sched_group_cpus(group));
3381 * get_sd_load_idx - Obtain the load index for a given sched domain.
3382 * @sd: The sched_domain whose load_idx is to be obtained.
3383 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3385 static inline int get_sd_load_idx(struct sched_domain *sd,
3386 enum cpu_idle_type idle)
3392 load_idx = sd->busy_idx;
3395 case CPU_NEWLY_IDLE:
3396 load_idx = sd->newidle_idx;
3399 load_idx = sd->idle_idx;
3407 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3409 * init_sd_power_savings_stats - Initialize power savings statistics for
3410 * the given sched_domain, during load balancing.
3412 * @sd: Sched domain whose power-savings statistics are to be initialized.
3413 * @sds: Variable containing the statistics for sd.
3414 * @idle: Idle status of the CPU at which we're performing load-balancing.
3416 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3417 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3420 * Busy processors will not participate in power savings
3423 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3424 sds->power_savings_balance = 0;
3426 sds->power_savings_balance = 1;
3427 sds->min_nr_running = ULONG_MAX;
3428 sds->leader_nr_running = 0;
3433 * update_sd_power_savings_stats - Update the power saving stats for a
3434 * sched_domain while performing load balancing.
3436 * @group: sched_group belonging to the sched_domain under consideration.
3437 * @sds: Variable containing the statistics of the sched_domain
3438 * @local_group: Does group contain the CPU for which we're performing
3440 * @sgs: Variable containing the statistics of the group.
3442 static inline void update_sd_power_savings_stats(struct sched_group *group,
3443 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3446 if (!sds->power_savings_balance)
3450 * If the local group is idle or completely loaded
3451 * no need to do power savings balance at this domain
3453 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3454 !sds->this_nr_running))
3455 sds->power_savings_balance = 0;
3458 * If a group is already running at full capacity or idle,
3459 * don't include that group in power savings calculations
3461 if (!sds->power_savings_balance ||
3462 sgs->sum_nr_running >= sgs->group_capacity ||
3463 !sgs->sum_nr_running)
3467 * Calculate the group which has the least non-idle load.
3468 * This is the group from where we need to pick up the load
3471 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3472 (sgs->sum_nr_running == sds->min_nr_running &&
3473 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3474 sds->group_min = group;
3475 sds->min_nr_running = sgs->sum_nr_running;
3476 sds->min_load_per_task = sgs->sum_weighted_load /
3477 sgs->sum_nr_running;
3481 * Calculate the group which is almost near its
3482 * capacity but still has some space to pick up some load
3483 * from other group and save more power
3485 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3488 if (sgs->sum_nr_running > sds->leader_nr_running ||
3489 (sgs->sum_nr_running == sds->leader_nr_running &&
3490 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3491 sds->group_leader = group;
3492 sds->leader_nr_running = sgs->sum_nr_running;
3497 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3498 * @sds: Variable containing the statistics of the sched_domain
3499 * under consideration.
3500 * @this_cpu: Cpu at which we're currently performing load-balancing.
3501 * @imbalance: Variable to store the imbalance.
3504 * Check if we have potential to perform some power-savings balance.
3505 * If yes, set the busiest group to be the least loaded group in the
3506 * sched_domain, so that it's CPUs can be put to idle.
3508 * Returns 1 if there is potential to perform power-savings balance.
3511 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3512 int this_cpu, unsigned long *imbalance)
3514 if (!sds->power_savings_balance)
3517 if (sds->this != sds->group_leader ||
3518 sds->group_leader == sds->group_min)
3521 *imbalance = sds->min_load_per_task;
3522 sds->busiest = sds->group_min;
3524 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3525 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3526 group_first_cpu(sds->group_leader);
3532 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3533 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3534 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3539 static inline void update_sd_power_savings_stats(struct sched_group *group,
3540 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3545 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3546 int this_cpu, unsigned long *imbalance)
3550 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3555 * @group: sched_group whose statistics are to be updated.
3556 * @this_cpu: Cpu for which load balance is currently performed.
3557 * @idle: Idle status of this_cpu
3558 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3559 * @sd_idle: Idle status of the sched_domain containing group.
3560 * @local_group: Does group contain this_cpu.
3561 * @cpus: Set of cpus considered for load balancing.
3562 * @balance: Should we balance.
3563 * @sgs: variable to hold the statistics for this group.
3565 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3566 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3567 int local_group, const struct cpumask *cpus,
3568 int *balance, struct sg_lb_stats *sgs)
3570 unsigned long load, max_cpu_load, min_cpu_load;
3572 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3573 unsigned long sum_avg_load_per_task;
3574 unsigned long avg_load_per_task;
3577 balance_cpu = group_first_cpu(group);
3579 /* Tally up the load of all CPUs in the group */
3580 sum_avg_load_per_task = avg_load_per_task = 0;
3582 min_cpu_load = ~0UL;
3584 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3585 struct rq *rq = cpu_rq(i);
3587 if (*sd_idle && rq->nr_running)
3590 /* Bias balancing toward cpus of our domain */
3592 if (idle_cpu(i) && !first_idle_cpu) {
3597 load = target_load(i, load_idx);
3599 load = source_load(i, load_idx);
3600 if (load > max_cpu_load)
3601 max_cpu_load = load;
3602 if (min_cpu_load > load)
3603 min_cpu_load = load;
3606 sgs->group_load += load;
3607 sgs->sum_nr_running += rq->nr_running;
3608 sgs->sum_weighted_load += weighted_cpuload(i);
3610 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3614 * First idle cpu or the first cpu(busiest) in this sched group
3615 * is eligible for doing load balancing at this and above
3616 * domains. In the newly idle case, we will allow all the cpu's
3617 * to do the newly idle load balance.
3619 if (idle != CPU_NEWLY_IDLE && local_group &&
3620 balance_cpu != this_cpu && balance) {
3625 /* Adjust by relative CPU power of the group */
3626 sgs->avg_load = sg_div_cpu_power(group,
3627 sgs->group_load * SCHED_LOAD_SCALE);
3631 * Consider the group unbalanced when the imbalance is larger
3632 * than the average weight of two tasks.
3634 * APZ: with cgroup the avg task weight can vary wildly and
3635 * might not be a suitable number - should we keep a
3636 * normalized nr_running number somewhere that negates
3639 avg_load_per_task = sg_div_cpu_power(group,
3640 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3642 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3645 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3650 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3651 * @sd: sched_domain whose statistics are to be updated.
3652 * @this_cpu: Cpu for which load balance is currently performed.
3653 * @idle: Idle status of this_cpu
3654 * @sd_idle: Idle status of the sched_domain containing group.
3655 * @cpus: Set of cpus considered for load balancing.
3656 * @balance: Should we balance.
3657 * @sds: variable to hold the statistics for this sched_domain.
3659 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3660 enum cpu_idle_type idle, int *sd_idle,
3661 const struct cpumask *cpus, int *balance,
3662 struct sd_lb_stats *sds)
3664 struct sched_group *group = sd->groups;
3665 struct sg_lb_stats sgs;
3668 init_sd_power_savings_stats(sd, sds, idle);
3669 load_idx = get_sd_load_idx(sd, idle);
3674 local_group = cpumask_test_cpu(this_cpu,
3675 sched_group_cpus(group));
3676 memset(&sgs, 0, sizeof(sgs));
3677 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3678 local_group, cpus, balance, &sgs);
3680 if (local_group && balance && !(*balance))
3683 sds->total_load += sgs.group_load;
3684 sds->total_pwr += group->__cpu_power;
3687 sds->this_load = sgs.avg_load;
3689 sds->this_nr_running = sgs.sum_nr_running;
3690 sds->this_load_per_task = sgs.sum_weighted_load;
3691 } else if (sgs.avg_load > sds->max_load &&
3692 (sgs.sum_nr_running > sgs.group_capacity ||
3694 sds->max_load = sgs.avg_load;
3695 sds->busiest = group;
3696 sds->busiest_nr_running = sgs.sum_nr_running;
3697 sds->busiest_load_per_task = sgs.sum_weighted_load;
3698 sds->group_imb = sgs.group_imb;
3701 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3702 group = group->next;
3703 } while (group != sd->groups);
3708 * fix_small_imbalance - Calculate the minor imbalance that exists
3709 * amongst the groups of a sched_domain, during
3711 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3712 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3713 * @imbalance: Variable to store the imbalance.
3715 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3716 int this_cpu, unsigned long *imbalance)
3718 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3719 unsigned int imbn = 2;
3721 if (sds->this_nr_running) {
3722 sds->this_load_per_task /= sds->this_nr_running;
3723 if (sds->busiest_load_per_task >
3724 sds->this_load_per_task)
3727 sds->this_load_per_task =
3728 cpu_avg_load_per_task(this_cpu);
3730 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3731 sds->busiest_load_per_task * imbn) {
3732 *imbalance = sds->busiest_load_per_task;
3737 * OK, we don't have enough imbalance to justify moving tasks,
3738 * however we may be able to increase total CPU power used by
3742 pwr_now += sds->busiest->__cpu_power *
3743 min(sds->busiest_load_per_task, sds->max_load);
3744 pwr_now += sds->this->__cpu_power *
3745 min(sds->this_load_per_task, sds->this_load);
3746 pwr_now /= SCHED_LOAD_SCALE;
3748 /* Amount of load we'd subtract */
3749 tmp = sg_div_cpu_power(sds->busiest,
3750 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3751 if (sds->max_load > tmp)
3752 pwr_move += sds->busiest->__cpu_power *
3753 min(sds->busiest_load_per_task, sds->max_load - tmp);
3755 /* Amount of load we'd add */
3756 if (sds->max_load * sds->busiest->__cpu_power <
3757 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3758 tmp = sg_div_cpu_power(sds->this,
3759 sds->max_load * sds->busiest->__cpu_power);
3761 tmp = sg_div_cpu_power(sds->this,
3762 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3763 pwr_move += sds->this->__cpu_power *
3764 min(sds->this_load_per_task, sds->this_load + tmp);
3765 pwr_move /= SCHED_LOAD_SCALE;
3767 /* Move if we gain throughput */
3768 if (pwr_move > pwr_now)
3769 *imbalance = sds->busiest_load_per_task;
3773 * calculate_imbalance - Calculate the amount of imbalance present within the
3774 * groups of a given sched_domain during load balance.
3775 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3776 * @this_cpu: Cpu for which currently load balance is being performed.
3777 * @imbalance: The variable to store the imbalance.
3779 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3780 unsigned long *imbalance)
3782 unsigned long max_pull;
3784 * In the presence of smp nice balancing, certain scenarios can have
3785 * max load less than avg load(as we skip the groups at or below
3786 * its cpu_power, while calculating max_load..)
3788 if (sds->max_load < sds->avg_load) {
3790 return fix_small_imbalance(sds, this_cpu, imbalance);
3793 /* Don't want to pull so many tasks that a group would go idle */
3794 max_pull = min(sds->max_load - sds->avg_load,
3795 sds->max_load - sds->busiest_load_per_task);
3797 /* How much load to actually move to equalise the imbalance */
3798 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3799 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3803 * if *imbalance is less than the average load per runnable task
3804 * there is no gaurantee that any tasks will be moved so we'll have
3805 * a think about bumping its value to force at least one task to be
3808 if (*imbalance < sds->busiest_load_per_task)
3809 return fix_small_imbalance(sds, this_cpu, imbalance);
3812 /******* find_busiest_group() helpers end here *********************/
3815 * find_busiest_group - Returns the busiest group within the sched_domain
3816 * if there is an imbalance. If there isn't an imbalance, and
3817 * the user has opted for power-savings, it returns a group whose
3818 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3819 * such a group exists.
3821 * Also calculates the amount of weighted load which should be moved
3822 * to restore balance.
3824 * @sd: The sched_domain whose busiest group is to be returned.
3825 * @this_cpu: The cpu for which load balancing is currently being performed.
3826 * @imbalance: Variable which stores amount of weighted load which should
3827 * be moved to restore balance/put a group to idle.
3828 * @idle: The idle status of this_cpu.
3829 * @sd_idle: The idleness of sd
3830 * @cpus: The set of CPUs under consideration for load-balancing.
3831 * @balance: Pointer to a variable indicating if this_cpu
3832 * is the appropriate cpu to perform load balancing at this_level.
3834 * Returns: - the busiest group if imbalance exists.
3835 * - If no imbalance and user has opted for power-savings balance,
3836 * return the least loaded group whose CPUs can be
3837 * put to idle by rebalancing its tasks onto our group.
3839 static struct sched_group *
3840 find_busiest_group(struct sched_domain *sd, int this_cpu,
3841 unsigned long *imbalance, enum cpu_idle_type idle,
3842 int *sd_idle, const struct cpumask *cpus, int *balance)
3844 struct sd_lb_stats sds;
3846 memset(&sds, 0, sizeof(sds));
3849 * Compute the various statistics relavent for load balancing at
3852 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3855 /* Cases where imbalance does not exist from POV of this_cpu */
3856 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3858 * 2) There is no busy sibling group to pull from.
3859 * 3) This group is the busiest group.
3860 * 4) This group is more busy than the avg busieness at this
3862 * 5) The imbalance is within the specified limit.
3863 * 6) Any rebalance would lead to ping-pong
3865 if (balance && !(*balance))
3868 if (!sds.busiest || sds.busiest_nr_running == 0)
3871 if (sds.this_load >= sds.max_load)
3874 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3876 if (sds.this_load >= sds.avg_load)
3879 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3882 sds.busiest_load_per_task /= sds.busiest_nr_running;
3884 sds.busiest_load_per_task =
3885 min(sds.busiest_load_per_task, sds.avg_load);
3888 * We're trying to get all the cpus to the average_load, so we don't
3889 * want to push ourselves above the average load, nor do we wish to
3890 * reduce the max loaded cpu below the average load, as either of these
3891 * actions would just result in more rebalancing later, and ping-pong
3892 * tasks around. Thus we look for the minimum possible imbalance.
3893 * Negative imbalances (*we* are more loaded than anyone else) will
3894 * be counted as no imbalance for these purposes -- we can't fix that
3895 * by pulling tasks to us. Be careful of negative numbers as they'll
3896 * appear as very large values with unsigned longs.
3898 if (sds.max_load <= sds.busiest_load_per_task)
3901 /* Looks like there is an imbalance. Compute it */
3902 calculate_imbalance(&sds, this_cpu, imbalance);
3907 * There is no obvious imbalance. But check if we can do some balancing
3910 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3918 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3921 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3922 unsigned long imbalance, const struct cpumask *cpus)
3924 struct rq *busiest = NULL, *rq;
3925 unsigned long max_load = 0;
3928 for_each_cpu(i, sched_group_cpus(group)) {
3931 if (!cpumask_test_cpu(i, cpus))
3935 wl = weighted_cpuload(i);
3937 if (rq->nr_running == 1 && wl > imbalance)
3940 if (wl > max_load) {
3950 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3951 * so long as it is large enough.
3953 #define MAX_PINNED_INTERVAL 512
3955 /* Working cpumask for load_balance and load_balance_newidle. */
3956 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3959 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3960 * tasks if there is an imbalance.
3962 static int load_balance(int this_cpu, struct rq *this_rq,
3963 struct sched_domain *sd, enum cpu_idle_type idle,
3966 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3967 struct sched_group *group;
3968 unsigned long imbalance;
3970 unsigned long flags;
3971 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3973 cpumask_setall(cpus);
3976 * When power savings policy is enabled for the parent domain, idle
3977 * sibling can pick up load irrespective of busy siblings. In this case,
3978 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3979 * portraying it as CPU_NOT_IDLE.
3981 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3982 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3985 schedstat_inc(sd, lb_count[idle]);
3989 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3996 schedstat_inc(sd, lb_nobusyg[idle]);
4000 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4002 schedstat_inc(sd, lb_nobusyq[idle]);
4006 BUG_ON(busiest == this_rq);
4008 schedstat_add(sd, lb_imbalance[idle], imbalance);
4011 if (busiest->nr_running > 1) {
4013 * Attempt to move tasks. If find_busiest_group has found
4014 * an imbalance but busiest->nr_running <= 1, the group is
4015 * still unbalanced. ld_moved simply stays zero, so it is
4016 * correctly treated as an imbalance.
4018 local_irq_save(flags);
4019 double_rq_lock(this_rq, busiest);
4020 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4021 imbalance, sd, idle, &all_pinned);
4022 double_rq_unlock(this_rq, busiest);
4023 local_irq_restore(flags);
4026 * some other cpu did the load balance for us.
4028 if (ld_moved && this_cpu != smp_processor_id())
4029 resched_cpu(this_cpu);
4031 /* All tasks on this runqueue were pinned by CPU affinity */
4032 if (unlikely(all_pinned)) {
4033 cpumask_clear_cpu(cpu_of(busiest), cpus);
4034 if (!cpumask_empty(cpus))
4041 schedstat_inc(sd, lb_failed[idle]);
4042 sd->nr_balance_failed++;
4044 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4046 spin_lock_irqsave(&busiest->lock, flags);
4048 /* don't kick the migration_thread, if the curr
4049 * task on busiest cpu can't be moved to this_cpu
4051 if (!cpumask_test_cpu(this_cpu,
4052 &busiest->curr->cpus_allowed)) {
4053 spin_unlock_irqrestore(&busiest->lock, flags);
4055 goto out_one_pinned;
4058 if (!busiest->active_balance) {
4059 busiest->active_balance = 1;
4060 busiest->push_cpu = this_cpu;
4063 spin_unlock_irqrestore(&busiest->lock, flags);
4065 wake_up_process(busiest->migration_thread);
4068 * We've kicked active balancing, reset the failure
4071 sd->nr_balance_failed = sd->cache_nice_tries+1;
4074 sd->nr_balance_failed = 0;
4076 if (likely(!active_balance)) {
4077 /* We were unbalanced, so reset the balancing interval */
4078 sd->balance_interval = sd->min_interval;
4081 * If we've begun active balancing, start to back off. This
4082 * case may not be covered by the all_pinned logic if there
4083 * is only 1 task on the busy runqueue (because we don't call
4086 if (sd->balance_interval < sd->max_interval)
4087 sd->balance_interval *= 2;
4090 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4091 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4097 schedstat_inc(sd, lb_balanced[idle]);
4099 sd->nr_balance_failed = 0;
4102 /* tune up the balancing interval */
4103 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4104 (sd->balance_interval < sd->max_interval))
4105 sd->balance_interval *= 2;
4107 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4108 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4119 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4120 * tasks if there is an imbalance.
4122 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4123 * this_rq is locked.
4126 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4128 struct sched_group *group;
4129 struct rq *busiest = NULL;
4130 unsigned long imbalance;
4134 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4136 cpumask_setall(cpus);
4139 * When power savings policy is enabled for the parent domain, idle
4140 * sibling can pick up load irrespective of busy siblings. In this case,
4141 * let the state of idle sibling percolate up as IDLE, instead of
4142 * portraying it as CPU_NOT_IDLE.
4144 if (sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4148 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4150 update_shares_locked(this_rq, sd);
4151 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4152 &sd_idle, cpus, NULL);
4154 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4158 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4160 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4164 BUG_ON(busiest == this_rq);
4166 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4169 if (busiest->nr_running > 1) {
4170 /* Attempt to move tasks */
4171 double_lock_balance(this_rq, busiest);
4172 /* this_rq->clock is already updated */
4173 update_rq_clock(busiest);
4174 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4175 imbalance, sd, CPU_NEWLY_IDLE,
4177 double_unlock_balance(this_rq, busiest);
4179 if (unlikely(all_pinned)) {
4180 cpumask_clear_cpu(cpu_of(busiest), cpus);
4181 if (!cpumask_empty(cpus))
4187 int active_balance = 0;
4189 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4190 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4191 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4194 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4197 if (sd->nr_balance_failed++ < 2)
4201 * The only task running in a non-idle cpu can be moved to this
4202 * cpu in an attempt to completely freeup the other CPU
4203 * package. The same method used to move task in load_balance()
4204 * have been extended for load_balance_newidle() to speedup
4205 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4207 * The package power saving logic comes from
4208 * find_busiest_group(). If there are no imbalance, then
4209 * f_b_g() will return NULL. However when sched_mc={1,2} then
4210 * f_b_g() will select a group from which a running task may be
4211 * pulled to this cpu in order to make the other package idle.
4212 * If there is no opportunity to make a package idle and if
4213 * there are no imbalance, then f_b_g() will return NULL and no
4214 * action will be taken in load_balance_newidle().
4216 * Under normal task pull operation due to imbalance, there
4217 * will be more than one task in the source run queue and
4218 * move_tasks() will succeed. ld_moved will be true and this
4219 * active balance code will not be triggered.
4222 /* Lock busiest in correct order while this_rq is held */
4223 double_lock_balance(this_rq, busiest);
4226 * don't kick the migration_thread, if the curr
4227 * task on busiest cpu can't be moved to this_cpu
4229 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4230 double_unlock_balance(this_rq, busiest);
4235 if (!busiest->active_balance) {
4236 busiest->active_balance = 1;
4237 busiest->push_cpu = this_cpu;
4241 double_unlock_balance(this_rq, busiest);
4243 * Should not call ttwu while holding a rq->lock
4245 spin_unlock(&this_rq->lock);
4247 wake_up_process(busiest->migration_thread);
4248 spin_lock(&this_rq->lock);
4251 sd->nr_balance_failed = 0;
4253 update_shares_locked(this_rq, sd);
4257 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4258 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4259 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4261 sd->nr_balance_failed = 0;
4267 * idle_balance is called by schedule() if this_cpu is about to become
4268 * idle. Attempts to pull tasks from other CPUs.
4270 static void idle_balance(int this_cpu, struct rq *this_rq)
4272 struct sched_domain *sd;
4273 int pulled_task = 0;
4274 unsigned long next_balance = jiffies + HZ;
4276 for_each_domain(this_cpu, sd) {
4277 unsigned long interval;
4279 if (!(sd->flags & SD_LOAD_BALANCE))
4282 if (sd->flags & SD_BALANCE_NEWIDLE)
4283 /* If we've pulled tasks over stop searching: */
4284 pulled_task = load_balance_newidle(this_cpu, this_rq,
4287 interval = msecs_to_jiffies(sd->balance_interval);
4288 if (time_after(next_balance, sd->last_balance + interval))
4289 next_balance = sd->last_balance + interval;
4293 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4295 * We are going idle. next_balance may be set based on
4296 * a busy processor. So reset next_balance.
4298 this_rq->next_balance = next_balance;
4303 * active_load_balance is run by migration threads. It pushes running tasks
4304 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4305 * running on each physical CPU where possible, and avoids physical /
4306 * logical imbalances.
4308 * Called with busiest_rq locked.
4310 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4312 int target_cpu = busiest_rq->push_cpu;
4313 struct sched_domain *sd;
4314 struct rq *target_rq;
4316 /* Is there any task to move? */
4317 if (busiest_rq->nr_running <= 1)
4320 target_rq = cpu_rq(target_cpu);
4323 * This condition is "impossible", if it occurs
4324 * we need to fix it. Originally reported by
4325 * Bjorn Helgaas on a 128-cpu setup.
4327 BUG_ON(busiest_rq == target_rq);
4329 /* move a task from busiest_rq to target_rq */
4330 double_lock_balance(busiest_rq, target_rq);
4331 update_rq_clock(busiest_rq);
4332 update_rq_clock(target_rq);
4334 /* Search for an sd spanning us and the target CPU. */
4335 for_each_domain(target_cpu, sd) {
4336 if ((sd->flags & SD_LOAD_BALANCE) &&
4337 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4342 schedstat_inc(sd, alb_count);
4344 if (move_one_task(target_rq, target_cpu, busiest_rq,
4346 schedstat_inc(sd, alb_pushed);
4348 schedstat_inc(sd, alb_failed);
4350 double_unlock_balance(busiest_rq, target_rq);
4355 atomic_t load_balancer;
4356 cpumask_var_t cpu_mask;
4357 cpumask_var_t ilb_grp_nohz_mask;
4358 } nohz ____cacheline_aligned = {
4359 .load_balancer = ATOMIC_INIT(-1),
4362 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4364 * lowest_flag_domain - Return lowest sched_domain containing flag.
4365 * @cpu: The cpu whose lowest level of sched domain is to
4367 * @flag: The flag to check for the lowest sched_domain
4368 * for the given cpu.
4370 * Returns the lowest sched_domain of a cpu which contains the given flag.
4372 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4374 struct sched_domain *sd;
4376 for_each_domain(cpu, sd)
4377 if (sd && (sd->flags & flag))
4384 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4385 * @cpu: The cpu whose domains we're iterating over.
4386 * @sd: variable holding the value of the power_savings_sd
4388 * @flag: The flag to filter the sched_domains to be iterated.
4390 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4391 * set, starting from the lowest sched_domain to the highest.
4393 #define for_each_flag_domain(cpu, sd, flag) \
4394 for (sd = lowest_flag_domain(cpu, flag); \
4395 (sd && (sd->flags & flag)); sd = sd->parent)
4398 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4399 * @ilb_group: group to be checked for semi-idleness
4401 * Returns: 1 if the group is semi-idle. 0 otherwise.
4403 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4404 * and atleast one non-idle CPU. This helper function checks if the given
4405 * sched_group is semi-idle or not.
4407 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4409 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4410 sched_group_cpus(ilb_group));
4413 * A sched_group is semi-idle when it has atleast one busy cpu
4414 * and atleast one idle cpu.
4416 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4419 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4425 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4426 * @cpu: The cpu which is nominating a new idle_load_balancer.
4428 * Returns: Returns the id of the idle load balancer if it exists,
4429 * Else, returns >= nr_cpu_ids.
4431 * This algorithm picks the idle load balancer such that it belongs to a
4432 * semi-idle powersavings sched_domain. The idea is to try and avoid
4433 * completely idle packages/cores just for the purpose of idle load balancing
4434 * when there are other idle cpu's which are better suited for that job.
4436 static int find_new_ilb(int cpu)
4438 struct sched_domain *sd;
4439 struct sched_group *ilb_group;
4442 * Have idle load balancer selection from semi-idle packages only
4443 * when power-aware load balancing is enabled
4445 if (!(sched_smt_power_savings || sched_mc_power_savings))
4449 * Optimize for the case when we have no idle CPUs or only one
4450 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4452 if (cpumask_weight(nohz.cpu_mask) < 2)
4455 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4456 ilb_group = sd->groups;
4459 if (is_semi_idle_group(ilb_group))
4460 return cpumask_first(nohz.ilb_grp_nohz_mask);
4462 ilb_group = ilb_group->next;
4464 } while (ilb_group != sd->groups);
4468 return cpumask_first(nohz.cpu_mask);
4470 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4471 static inline int find_new_ilb(int call_cpu)
4473 return cpumask_first(nohz.cpu_mask);
4478 * This routine will try to nominate the ilb (idle load balancing)
4479 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4480 * load balancing on behalf of all those cpus. If all the cpus in the system
4481 * go into this tickless mode, then there will be no ilb owner (as there is
4482 * no need for one) and all the cpus will sleep till the next wakeup event
4485 * For the ilb owner, tick is not stopped. And this tick will be used
4486 * for idle load balancing. ilb owner will still be part of
4489 * While stopping the tick, this cpu will become the ilb owner if there
4490 * is no other owner. And will be the owner till that cpu becomes busy
4491 * or if all cpus in the system stop their ticks at which point
4492 * there is no need for ilb owner.
4494 * When the ilb owner becomes busy, it nominates another owner, during the
4495 * next busy scheduler_tick()
4497 int select_nohz_load_balancer(int stop_tick)
4499 int cpu = smp_processor_id();
4502 cpu_rq(cpu)->in_nohz_recently = 1;
4504 if (!cpu_active(cpu)) {
4505 if (atomic_read(&nohz.load_balancer) != cpu)
4509 * If we are going offline and still the leader,
4512 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4518 cpumask_set_cpu(cpu, nohz.cpu_mask);
4520 /* time for ilb owner also to sleep */
4521 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4522 if (atomic_read(&nohz.load_balancer) == cpu)
4523 atomic_set(&nohz.load_balancer, -1);
4527 if (atomic_read(&nohz.load_balancer) == -1) {
4528 /* make me the ilb owner */
4529 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4531 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4534 if (!(sched_smt_power_savings ||
4535 sched_mc_power_savings))
4538 * Check to see if there is a more power-efficient
4541 new_ilb = find_new_ilb(cpu);
4542 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4543 atomic_set(&nohz.load_balancer, -1);
4544 resched_cpu(new_ilb);
4550 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4553 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4555 if (atomic_read(&nohz.load_balancer) == cpu)
4556 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4563 static DEFINE_SPINLOCK(balancing);
4566 * It checks each scheduling domain to see if it is due to be balanced,
4567 * and initiates a balancing operation if so.
4569 * Balancing parameters are set up in arch_init_sched_domains.
4571 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4574 struct rq *rq = cpu_rq(cpu);
4575 unsigned long interval;
4576 struct sched_domain *sd;
4577 /* Earliest time when we have to do rebalance again */
4578 unsigned long next_balance = jiffies + 60*HZ;
4579 int update_next_balance = 0;
4582 for_each_domain(cpu, sd) {
4583 if (!(sd->flags & SD_LOAD_BALANCE))
4586 interval = sd->balance_interval;
4587 if (idle != CPU_IDLE)
4588 interval *= sd->busy_factor;
4590 /* scale ms to jiffies */
4591 interval = msecs_to_jiffies(interval);
4592 if (unlikely(!interval))
4594 if (interval > HZ*NR_CPUS/10)
4595 interval = HZ*NR_CPUS/10;
4597 need_serialize = sd->flags & SD_SERIALIZE;
4599 if (need_serialize) {
4600 if (!spin_trylock(&balancing))
4604 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4605 if (load_balance(cpu, rq, sd, idle, &balance)) {
4607 * We've pulled tasks over so either we're no
4608 * longer idle, or one of our SMT siblings is
4611 idle = CPU_NOT_IDLE;
4613 sd->last_balance = jiffies;
4616 spin_unlock(&balancing);
4618 if (time_after(next_balance, sd->last_balance + interval)) {
4619 next_balance = sd->last_balance + interval;
4620 update_next_balance = 1;
4624 * Stop the load balance at this level. There is another
4625 * CPU in our sched group which is doing load balancing more
4633 * next_balance will be updated only when there is a need.
4634 * When the cpu is attached to null domain for ex, it will not be
4637 if (likely(update_next_balance))
4638 rq->next_balance = next_balance;
4642 * run_rebalance_domains is triggered when needed from the scheduler tick.
4643 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4644 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4646 static void run_rebalance_domains(struct softirq_action *h)
4648 int this_cpu = smp_processor_id();
4649 struct rq *this_rq = cpu_rq(this_cpu);
4650 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4651 CPU_IDLE : CPU_NOT_IDLE;
4653 rebalance_domains(this_cpu, idle);
4657 * If this cpu is the owner for idle load balancing, then do the
4658 * balancing on behalf of the other idle cpus whose ticks are
4661 if (this_rq->idle_at_tick &&
4662 atomic_read(&nohz.load_balancer) == this_cpu) {
4666 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4667 if (balance_cpu == this_cpu)
4671 * If this cpu gets work to do, stop the load balancing
4672 * work being done for other cpus. Next load
4673 * balancing owner will pick it up.
4678 rebalance_domains(balance_cpu, CPU_IDLE);
4680 rq = cpu_rq(balance_cpu);
4681 if (time_after(this_rq->next_balance, rq->next_balance))
4682 this_rq->next_balance = rq->next_balance;
4688 static inline int on_null_domain(int cpu)
4690 return !rcu_dereference(cpu_rq(cpu)->sd);
4694 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4696 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4697 * idle load balancing owner or decide to stop the periodic load balancing,
4698 * if the whole system is idle.
4700 static inline void trigger_load_balance(struct rq *rq, int cpu)
4704 * If we were in the nohz mode recently and busy at the current
4705 * scheduler tick, then check if we need to nominate new idle
4708 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4709 rq->in_nohz_recently = 0;
4711 if (atomic_read(&nohz.load_balancer) == cpu) {
4712 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4713 atomic_set(&nohz.load_balancer, -1);
4716 if (atomic_read(&nohz.load_balancer) == -1) {
4717 int ilb = find_new_ilb(cpu);
4719 if (ilb < nr_cpu_ids)
4725 * If this cpu is idle and doing idle load balancing for all the
4726 * cpus with ticks stopped, is it time for that to stop?
4728 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4729 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4735 * If this cpu is idle and the idle load balancing is done by
4736 * someone else, then no need raise the SCHED_SOFTIRQ
4738 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4739 cpumask_test_cpu(cpu, nohz.cpu_mask))
4742 /* Don't need to rebalance while attached to NULL domain */
4743 if (time_after_eq(jiffies, rq->next_balance) &&
4744 likely(!on_null_domain(cpu)))
4745 raise_softirq(SCHED_SOFTIRQ);
4748 #else /* CONFIG_SMP */
4751 * on UP we do not need to balance between CPUs:
4753 static inline void idle_balance(int cpu, struct rq *rq)
4759 DEFINE_PER_CPU(struct kernel_stat, kstat);
4761 EXPORT_PER_CPU_SYMBOL(kstat);
4764 * Return any ns on the sched_clock that have not yet been accounted in
4765 * @p in case that task is currently running.
4767 * Called with task_rq_lock() held on @rq.
4769 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4773 if (task_current(rq, p)) {
4774 update_rq_clock(rq);
4775 ns = rq->clock - p->se.exec_start;
4783 unsigned long long task_delta_exec(struct task_struct *p)
4785 unsigned long flags;
4789 rq = task_rq_lock(p, &flags);
4790 ns = do_task_delta_exec(p, rq);
4791 task_rq_unlock(rq, &flags);
4797 * Return accounted runtime for the task.
4798 * In case the task is currently running, return the runtime plus current's
4799 * pending runtime that have not been accounted yet.
4801 unsigned long long task_sched_runtime(struct task_struct *p)
4803 unsigned long flags;
4807 rq = task_rq_lock(p, &flags);
4808 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4809 task_rq_unlock(rq, &flags);
4815 * Return sum_exec_runtime for the thread group.
4816 * In case the task is currently running, return the sum plus current's
4817 * pending runtime that have not been accounted yet.
4819 * Note that the thread group might have other running tasks as well,
4820 * so the return value not includes other pending runtime that other
4821 * running tasks might have.
4823 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4825 struct task_cputime totals;
4826 unsigned long flags;
4830 rq = task_rq_lock(p, &flags);
4831 thread_group_cputime(p, &totals);
4832 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4833 task_rq_unlock(rq, &flags);
4839 * Account user cpu time to a process.
4840 * @p: the process that the cpu time gets accounted to
4841 * @cputime: the cpu time spent in user space since the last update
4842 * @cputime_scaled: cputime scaled by cpu frequency
4844 void account_user_time(struct task_struct *p, cputime_t cputime,
4845 cputime_t cputime_scaled)
4847 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4850 /* Add user time to process. */
4851 p->utime = cputime_add(p->utime, cputime);
4852 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4853 account_group_user_time(p, cputime);
4855 /* Add user time to cpustat. */
4856 tmp = cputime_to_cputime64(cputime);
4857 if (TASK_NICE(p) > 0)
4858 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4860 cpustat->user = cputime64_add(cpustat->user, tmp);
4862 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4863 /* Account for user time used */
4864 acct_update_integrals(p);
4868 * Account guest cpu time to a process.
4869 * @p: the process that the cpu time gets accounted to
4870 * @cputime: the cpu time spent in virtual machine since the last update
4871 * @cputime_scaled: cputime scaled by cpu frequency
4873 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4874 cputime_t cputime_scaled)
4877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4879 tmp = cputime_to_cputime64(cputime);
4881 /* Add guest time to process. */
4882 p->utime = cputime_add(p->utime, cputime);
4883 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4884 account_group_user_time(p, cputime);
4885 p->gtime = cputime_add(p->gtime, cputime);
4887 /* Add guest time to cpustat. */
4888 cpustat->user = cputime64_add(cpustat->user, tmp);
4889 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4893 * Account system cpu time to a process.
4894 * @p: the process that the cpu time gets accounted to
4895 * @hardirq_offset: the offset to subtract from hardirq_count()
4896 * @cputime: the cpu time spent in kernel space since the last update
4897 * @cputime_scaled: cputime scaled by cpu frequency
4899 void account_system_time(struct task_struct *p, int hardirq_offset,
4900 cputime_t cputime, cputime_t cputime_scaled)
4902 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4905 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4906 account_guest_time(p, cputime, cputime_scaled);
4910 /* Add system time to process. */
4911 p->stime = cputime_add(p->stime, cputime);
4912 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4913 account_group_system_time(p, cputime);
4915 /* Add system time to cpustat. */
4916 tmp = cputime_to_cputime64(cputime);
4917 if (hardirq_count() - hardirq_offset)
4918 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4919 else if (softirq_count())
4920 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4922 cpustat->system = cputime64_add(cpustat->system, tmp);
4924 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4926 /* Account for system time used */
4927 acct_update_integrals(p);
4931 * Account for involuntary wait time.
4932 * @steal: the cpu time spent in involuntary wait
4934 void account_steal_time(cputime_t cputime)
4936 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4937 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4939 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4943 * Account for idle time.
4944 * @cputime: the cpu time spent in idle wait
4946 void account_idle_time(cputime_t cputime)
4948 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4949 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4950 struct rq *rq = this_rq();
4952 if (atomic_read(&rq->nr_iowait) > 0)
4953 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4955 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4958 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4961 * Account a single tick of cpu time.
4962 * @p: the process that the cpu time gets accounted to
4963 * @user_tick: indicates if the tick is a user or a system tick
4965 void account_process_tick(struct task_struct *p, int user_tick)
4967 cputime_t one_jiffy = jiffies_to_cputime(1);
4968 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4969 struct rq *rq = this_rq();
4972 account_user_time(p, one_jiffy, one_jiffy_scaled);
4973 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4974 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4977 account_idle_time(one_jiffy);
4981 * Account multiple ticks of steal time.
4982 * @p: the process from which the cpu time has been stolen
4983 * @ticks: number of stolen ticks
4985 void account_steal_ticks(unsigned long ticks)
4987 account_steal_time(jiffies_to_cputime(ticks));
4991 * Account multiple ticks of idle time.
4992 * @ticks: number of stolen ticks
4994 void account_idle_ticks(unsigned long ticks)
4996 account_idle_time(jiffies_to_cputime(ticks));
5002 * Use precise platform statistics if available:
5004 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5005 cputime_t task_utime(struct task_struct *p)
5010 cputime_t task_stime(struct task_struct *p)
5015 cputime_t task_utime(struct task_struct *p)
5017 clock_t utime = cputime_to_clock_t(p->utime),
5018 total = utime + cputime_to_clock_t(p->stime);
5022 * Use CFS's precise accounting:
5024 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5028 do_div(temp, total);
5030 utime = (clock_t)temp;
5032 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5033 return p->prev_utime;
5036 cputime_t task_stime(struct task_struct *p)
5041 * Use CFS's precise accounting. (we subtract utime from
5042 * the total, to make sure the total observed by userspace
5043 * grows monotonically - apps rely on that):
5045 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5046 cputime_to_clock_t(task_utime(p));
5049 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5051 return p->prev_stime;
5055 inline cputime_t task_gtime(struct task_struct *p)
5061 * This function gets called by the timer code, with HZ frequency.
5062 * We call it with interrupts disabled.
5064 * It also gets called by the fork code, when changing the parent's
5067 void scheduler_tick(void)
5069 int cpu = smp_processor_id();
5070 struct rq *rq = cpu_rq(cpu);
5071 struct task_struct *curr = rq->curr;
5075 spin_lock(&rq->lock);
5076 update_rq_clock(rq);
5077 update_cpu_load(rq);
5078 curr->sched_class->task_tick(rq, curr, 0);
5079 spin_unlock(&rq->lock);
5082 rq->idle_at_tick = idle_cpu(cpu);
5083 trigger_load_balance(rq, cpu);
5087 notrace unsigned long get_parent_ip(unsigned long addr)
5089 if (in_lock_functions(addr)) {
5090 addr = CALLER_ADDR2;
5091 if (in_lock_functions(addr))
5092 addr = CALLER_ADDR3;
5097 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5098 defined(CONFIG_PREEMPT_TRACER))
5100 void __kprobes add_preempt_count(int val)
5102 #ifdef CONFIG_DEBUG_PREEMPT
5106 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5109 preempt_count() += val;
5110 #ifdef CONFIG_DEBUG_PREEMPT
5112 * Spinlock count overflowing soon?
5114 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5117 if (preempt_count() == val)
5118 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5120 EXPORT_SYMBOL(add_preempt_count);
5122 void __kprobes sub_preempt_count(int val)
5124 #ifdef CONFIG_DEBUG_PREEMPT
5128 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5131 * Is the spinlock portion underflowing?
5133 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5134 !(preempt_count() & PREEMPT_MASK)))
5138 if (preempt_count() == val)
5139 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5140 preempt_count() -= val;
5142 EXPORT_SYMBOL(sub_preempt_count);
5147 * Print scheduling while atomic bug:
5149 static noinline void __schedule_bug(struct task_struct *prev)
5151 struct pt_regs *regs = get_irq_regs();
5153 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5154 prev->comm, prev->pid, preempt_count());
5156 debug_show_held_locks(prev);
5158 if (irqs_disabled())
5159 print_irqtrace_events(prev);
5168 * Various schedule()-time debugging checks and statistics:
5170 static inline void schedule_debug(struct task_struct *prev)
5173 * Test if we are atomic. Since do_exit() needs to call into
5174 * schedule() atomically, we ignore that path for now.
5175 * Otherwise, whine if we are scheduling when we should not be.
5177 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5178 __schedule_bug(prev);
5180 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5182 schedstat_inc(this_rq(), sched_count);
5183 #ifdef CONFIG_SCHEDSTATS
5184 if (unlikely(prev->lock_depth >= 0)) {
5185 schedstat_inc(this_rq(), bkl_count);
5186 schedstat_inc(prev, sched_info.bkl_count);
5191 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5193 if (prev->state == TASK_RUNNING) {
5194 u64 runtime = prev->se.sum_exec_runtime;
5196 runtime -= prev->se.prev_sum_exec_runtime;
5197 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5200 * In order to avoid avg_overlap growing stale when we are
5201 * indeed overlapping and hence not getting put to sleep, grow
5202 * the avg_overlap on preemption.
5204 * We use the average preemption runtime because that
5205 * correlates to the amount of cache footprint a task can
5208 update_avg(&prev->se.avg_overlap, runtime);
5210 prev->sched_class->put_prev_task(rq, prev);
5214 * Pick up the highest-prio task:
5216 static inline struct task_struct *
5217 pick_next_task(struct rq *rq)
5219 const struct sched_class *class;
5220 struct task_struct *p;
5223 * Optimization: we know that if all tasks are in
5224 * the fair class we can call that function directly:
5226 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5227 p = fair_sched_class.pick_next_task(rq);
5232 class = sched_class_highest;
5234 p = class->pick_next_task(rq);
5238 * Will never be NULL as the idle class always
5239 * returns a non-NULL p:
5241 class = class->next;
5246 * schedule() is the main scheduler function.
5248 asmlinkage void __sched schedule(void)
5250 struct task_struct *prev, *next;
5251 unsigned long *switch_count;
5257 cpu = smp_processor_id();
5261 switch_count = &prev->nivcsw;
5263 release_kernel_lock(prev);
5264 need_resched_nonpreemptible:
5266 schedule_debug(prev);
5268 if (sched_feat(HRTICK))
5271 spin_lock_irq(&rq->lock);
5272 update_rq_clock(rq);
5273 clear_tsk_need_resched(prev);
5275 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5276 if (unlikely(signal_pending_state(prev->state, prev)))
5277 prev->state = TASK_RUNNING;
5279 deactivate_task(rq, prev, 1);
5280 switch_count = &prev->nvcsw;
5284 if (prev->sched_class->pre_schedule)
5285 prev->sched_class->pre_schedule(rq, prev);
5288 if (unlikely(!rq->nr_running))
5289 idle_balance(cpu, rq);
5291 put_prev_task(rq, prev);
5292 next = pick_next_task(rq);
5294 if (likely(prev != next)) {
5295 sched_info_switch(prev, next);
5301 context_switch(rq, prev, next); /* unlocks the rq */
5303 * the context switch might have flipped the stack from under
5304 * us, hence refresh the local variables.
5306 cpu = smp_processor_id();
5309 spin_unlock_irq(&rq->lock);
5311 if (unlikely(reacquire_kernel_lock(current) < 0))
5312 goto need_resched_nonpreemptible;
5314 preempt_enable_no_resched();
5318 EXPORT_SYMBOL(schedule);
5322 * Look out! "owner" is an entirely speculative pointer
5323 * access and not reliable.
5325 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5330 if (!sched_feat(OWNER_SPIN))
5333 #ifdef CONFIG_DEBUG_PAGEALLOC
5335 * Need to access the cpu field knowing that
5336 * DEBUG_PAGEALLOC could have unmapped it if
5337 * the mutex owner just released it and exited.
5339 if (probe_kernel_address(&owner->cpu, cpu))
5346 * Even if the access succeeded (likely case),
5347 * the cpu field may no longer be valid.
5349 if (cpu >= nr_cpumask_bits)
5353 * We need to validate that we can do a
5354 * get_cpu() and that we have the percpu area.
5356 if (!cpu_online(cpu))
5363 * Owner changed, break to re-assess state.
5365 if (lock->owner != owner)
5369 * Is that owner really running on that cpu?
5371 if (task_thread_info(rq->curr) != owner || need_resched())
5381 #ifdef CONFIG_PREEMPT
5383 * this is the entry point to schedule() from in-kernel preemption
5384 * off of preempt_enable. Kernel preemptions off return from interrupt
5385 * occur there and call schedule directly.
5387 asmlinkage void __sched preempt_schedule(void)
5389 struct thread_info *ti = current_thread_info();
5392 * If there is a non-zero preempt_count or interrupts are disabled,
5393 * we do not want to preempt the current task. Just return..
5395 if (likely(ti->preempt_count || irqs_disabled()))
5399 add_preempt_count(PREEMPT_ACTIVE);
5401 sub_preempt_count(PREEMPT_ACTIVE);
5404 * Check again in case we missed a preemption opportunity
5405 * between schedule and now.
5408 } while (need_resched());
5410 EXPORT_SYMBOL(preempt_schedule);
5413 * this is the entry point to schedule() from kernel preemption
5414 * off of irq context.
5415 * Note, that this is called and return with irqs disabled. This will
5416 * protect us against recursive calling from irq.
5418 asmlinkage void __sched preempt_schedule_irq(void)
5420 struct thread_info *ti = current_thread_info();
5422 /* Catch callers which need to be fixed */
5423 BUG_ON(ti->preempt_count || !irqs_disabled());
5426 add_preempt_count(PREEMPT_ACTIVE);
5429 local_irq_disable();
5430 sub_preempt_count(PREEMPT_ACTIVE);
5433 * Check again in case we missed a preemption opportunity
5434 * between schedule and now.
5437 } while (need_resched());
5440 #endif /* CONFIG_PREEMPT */
5442 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5445 return try_to_wake_up(curr->private, mode, sync);
5447 EXPORT_SYMBOL(default_wake_function);
5450 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5451 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5452 * number) then we wake all the non-exclusive tasks and one exclusive task.
5454 * There are circumstances in which we can try to wake a task which has already
5455 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5456 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5458 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5459 int nr_exclusive, int sync, void *key)
5461 wait_queue_t *curr, *next;
5463 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5464 unsigned flags = curr->flags;
5466 if (curr->func(curr, mode, sync, key) &&
5467 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5473 * __wake_up - wake up threads blocked on a waitqueue.
5475 * @mode: which threads
5476 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5477 * @key: is directly passed to the wakeup function
5479 * It may be assumed that this function implies a write memory barrier before
5480 * changing the task state if and only if any tasks are woken up.
5482 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5483 int nr_exclusive, void *key)
5485 unsigned long flags;
5487 spin_lock_irqsave(&q->lock, flags);
5488 __wake_up_common(q, mode, nr_exclusive, 0, key);
5489 spin_unlock_irqrestore(&q->lock, flags);
5491 EXPORT_SYMBOL(__wake_up);
5494 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5496 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5498 __wake_up_common(q, mode, 1, 0, NULL);
5501 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5503 __wake_up_common(q, mode, 1, 0, key);
5507 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5509 * @mode: which threads
5510 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5511 * @key: opaque value to be passed to wakeup targets
5513 * The sync wakeup differs that the waker knows that it will schedule
5514 * away soon, so while the target thread will be woken up, it will not
5515 * be migrated to another CPU - ie. the two threads are 'synchronized'
5516 * with each other. This can prevent needless bouncing between CPUs.
5518 * On UP it can prevent extra preemption.
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
5523 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5524 int nr_exclusive, void *key)
5526 unsigned long flags;
5532 if (unlikely(!nr_exclusive))
5535 spin_lock_irqsave(&q->lock, flags);
5536 __wake_up_common(q, mode, nr_exclusive, sync, key);
5537 spin_unlock_irqrestore(&q->lock, flags);
5539 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5542 * __wake_up_sync - see __wake_up_sync_key()
5544 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5546 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5548 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5551 * complete: - signals a single thread waiting on this completion
5552 * @x: holds the state of this particular completion
5554 * This will wake up a single thread waiting on this completion. Threads will be
5555 * awakened in the same order in which they were queued.
5557 * See also complete_all(), wait_for_completion() and related routines.
5559 * It may be assumed that this function implies a write memory barrier before
5560 * changing the task state if and only if any tasks are woken up.
5562 void complete(struct completion *x)
5564 unsigned long flags;
5566 spin_lock_irqsave(&x->wait.lock, flags);
5568 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5569 spin_unlock_irqrestore(&x->wait.lock, flags);
5571 EXPORT_SYMBOL(complete);
5574 * complete_all: - signals all threads waiting on this completion
5575 * @x: holds the state of this particular completion
5577 * This will wake up all threads waiting on this particular completion event.
5579 * It may be assumed that this function implies a write memory barrier before
5580 * changing the task state if and only if any tasks are woken up.
5582 void complete_all(struct completion *x)
5584 unsigned long flags;
5586 spin_lock_irqsave(&x->wait.lock, flags);
5587 x->done += UINT_MAX/2;
5588 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5589 spin_unlock_irqrestore(&x->wait.lock, flags);
5591 EXPORT_SYMBOL(complete_all);
5593 static inline long __sched
5594 do_wait_for_common(struct completion *x, long timeout, int state)
5597 DECLARE_WAITQUEUE(wait, current);
5599 wait.flags |= WQ_FLAG_EXCLUSIVE;
5600 __add_wait_queue_tail(&x->wait, &wait);
5602 if (signal_pending_state(state, current)) {
5603 timeout = -ERESTARTSYS;
5606 __set_current_state(state);
5607 spin_unlock_irq(&x->wait.lock);
5608 timeout = schedule_timeout(timeout);
5609 spin_lock_irq(&x->wait.lock);
5610 } while (!x->done && timeout);
5611 __remove_wait_queue(&x->wait, &wait);
5616 return timeout ?: 1;
5620 wait_for_common(struct completion *x, long timeout, int state)
5624 spin_lock_irq(&x->wait.lock);
5625 timeout = do_wait_for_common(x, timeout, state);
5626 spin_unlock_irq(&x->wait.lock);
5631 * wait_for_completion: - waits for completion of a task
5632 * @x: holds the state of this particular completion
5634 * This waits to be signaled for completion of a specific task. It is NOT
5635 * interruptible and there is no timeout.
5637 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5638 * and interrupt capability. Also see complete().
5640 void __sched wait_for_completion(struct completion *x)
5642 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5644 EXPORT_SYMBOL(wait_for_completion);
5647 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5648 * @x: holds the state of this particular completion
5649 * @timeout: timeout value in jiffies
5651 * This waits for either a completion of a specific task to be signaled or for a
5652 * specified timeout to expire. The timeout is in jiffies. It is not
5655 unsigned long __sched
5656 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5658 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5660 EXPORT_SYMBOL(wait_for_completion_timeout);
5663 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5664 * @x: holds the state of this particular completion
5666 * This waits for completion of a specific task to be signaled. It is
5669 int __sched wait_for_completion_interruptible(struct completion *x)
5671 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5672 if (t == -ERESTARTSYS)
5676 EXPORT_SYMBOL(wait_for_completion_interruptible);
5679 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5680 * @x: holds the state of this particular completion
5681 * @timeout: timeout value in jiffies
5683 * This waits for either a completion of a specific task to be signaled or for a
5684 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5686 unsigned long __sched
5687 wait_for_completion_interruptible_timeout(struct completion *x,
5688 unsigned long timeout)
5690 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5692 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5695 * wait_for_completion_killable: - waits for completion of a task (killable)
5696 * @x: holds the state of this particular completion
5698 * This waits to be signaled for completion of a specific task. It can be
5699 * interrupted by a kill signal.
5701 int __sched wait_for_completion_killable(struct completion *x)
5703 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5704 if (t == -ERESTARTSYS)
5708 EXPORT_SYMBOL(wait_for_completion_killable);
5711 * try_wait_for_completion - try to decrement a completion without blocking
5712 * @x: completion structure
5714 * Returns: 0 if a decrement cannot be done without blocking
5715 * 1 if a decrement succeeded.
5717 * If a completion is being used as a counting completion,
5718 * attempt to decrement the counter without blocking. This
5719 * enables us to avoid waiting if the resource the completion
5720 * is protecting is not available.
5722 bool try_wait_for_completion(struct completion *x)
5726 spin_lock_irq(&x->wait.lock);
5731 spin_unlock_irq(&x->wait.lock);
5734 EXPORT_SYMBOL(try_wait_for_completion);
5737 * completion_done - Test to see if a completion has any waiters
5738 * @x: completion structure
5740 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5741 * 1 if there are no waiters.
5744 bool completion_done(struct completion *x)
5748 spin_lock_irq(&x->wait.lock);
5751 spin_unlock_irq(&x->wait.lock);
5754 EXPORT_SYMBOL(completion_done);
5757 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5759 unsigned long flags;
5762 init_waitqueue_entry(&wait, current);
5764 __set_current_state(state);
5766 spin_lock_irqsave(&q->lock, flags);
5767 __add_wait_queue(q, &wait);
5768 spin_unlock(&q->lock);
5769 timeout = schedule_timeout(timeout);
5770 spin_lock_irq(&q->lock);
5771 __remove_wait_queue(q, &wait);
5772 spin_unlock_irqrestore(&q->lock, flags);
5777 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5779 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5781 EXPORT_SYMBOL(interruptible_sleep_on);
5784 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5786 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5788 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5790 void __sched sleep_on(wait_queue_head_t *q)
5792 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5794 EXPORT_SYMBOL(sleep_on);
5796 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5798 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5800 EXPORT_SYMBOL(sleep_on_timeout);
5802 #ifdef CONFIG_RT_MUTEXES
5805 * rt_mutex_setprio - set the current priority of a task
5807 * @prio: prio value (kernel-internal form)
5809 * This function changes the 'effective' priority of a task. It does
5810 * not touch ->normal_prio like __setscheduler().
5812 * Used by the rt_mutex code to implement priority inheritance logic.
5814 void rt_mutex_setprio(struct task_struct *p, int prio)
5816 unsigned long flags;
5817 int oldprio, on_rq, running;
5819 const struct sched_class *prev_class = p->sched_class;
5821 BUG_ON(prio < 0 || prio > MAX_PRIO);
5823 rq = task_rq_lock(p, &flags);
5824 update_rq_clock(rq);
5827 on_rq = p->se.on_rq;
5828 running = task_current(rq, p);
5830 dequeue_task(rq, p, 0);
5832 p->sched_class->put_prev_task(rq, p);
5835 p->sched_class = &rt_sched_class;
5837 p->sched_class = &fair_sched_class;
5842 p->sched_class->set_curr_task(rq);
5844 enqueue_task(rq, p, 0);
5846 check_class_changed(rq, p, prev_class, oldprio, running);
5848 task_rq_unlock(rq, &flags);
5853 void set_user_nice(struct task_struct *p, long nice)
5855 int old_prio, delta, on_rq;
5856 unsigned long flags;
5859 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5862 * We have to be careful, if called from sys_setpriority(),
5863 * the task might be in the middle of scheduling on another CPU.
5865 rq = task_rq_lock(p, &flags);
5866 update_rq_clock(rq);
5868 * The RT priorities are set via sched_setscheduler(), but we still
5869 * allow the 'normal' nice value to be set - but as expected
5870 * it wont have any effect on scheduling until the task is
5871 * SCHED_FIFO/SCHED_RR:
5873 if (task_has_rt_policy(p)) {
5874 p->static_prio = NICE_TO_PRIO(nice);
5877 on_rq = p->se.on_rq;
5879 dequeue_task(rq, p, 0);
5881 p->static_prio = NICE_TO_PRIO(nice);
5884 p->prio = effective_prio(p);
5885 delta = p->prio - old_prio;
5888 enqueue_task(rq, p, 0);
5890 * If the task increased its priority or is running and
5891 * lowered its priority, then reschedule its CPU:
5893 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5894 resched_task(rq->curr);
5897 task_rq_unlock(rq, &flags);
5899 EXPORT_SYMBOL(set_user_nice);
5902 * can_nice - check if a task can reduce its nice value
5906 int can_nice(const struct task_struct *p, const int nice)
5908 /* convert nice value [19,-20] to rlimit style value [1,40] */
5909 int nice_rlim = 20 - nice;
5911 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5912 capable(CAP_SYS_NICE));
5915 #ifdef __ARCH_WANT_SYS_NICE
5918 * sys_nice - change the priority of the current process.
5919 * @increment: priority increment
5921 * sys_setpriority is a more generic, but much slower function that
5922 * does similar things.
5924 SYSCALL_DEFINE1(nice, int, increment)
5929 * Setpriority might change our priority at the same moment.
5930 * We don't have to worry. Conceptually one call occurs first
5931 * and we have a single winner.
5933 if (increment < -40)
5938 nice = TASK_NICE(current) + increment;
5944 if (increment < 0 && !can_nice(current, nice))
5947 retval = security_task_setnice(current, nice);
5951 set_user_nice(current, nice);
5958 * task_prio - return the priority value of a given task.
5959 * @p: the task in question.
5961 * This is the priority value as seen by users in /proc.
5962 * RT tasks are offset by -200. Normal tasks are centered
5963 * around 0, value goes from -16 to +15.
5965 int task_prio(const struct task_struct *p)
5967 return p->prio - MAX_RT_PRIO;
5971 * task_nice - return the nice value of a given task.
5972 * @p: the task in question.
5974 int task_nice(const struct task_struct *p)
5976 return TASK_NICE(p);
5978 EXPORT_SYMBOL(task_nice);
5981 * idle_cpu - is a given cpu idle currently?
5982 * @cpu: the processor in question.
5984 int idle_cpu(int cpu)
5986 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5990 * idle_task - return the idle task for a given cpu.
5991 * @cpu: the processor in question.
5993 struct task_struct *idle_task(int cpu)
5995 return cpu_rq(cpu)->idle;
5999 * find_process_by_pid - find a process with a matching PID value.
6000 * @pid: the pid in question.
6002 static struct task_struct *find_process_by_pid(pid_t pid)
6004 return pid ? find_task_by_vpid(pid) : current;
6007 /* Actually do priority change: must hold rq lock. */
6009 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6011 BUG_ON(p->se.on_rq);
6014 switch (p->policy) {
6018 p->sched_class = &fair_sched_class;
6022 p->sched_class = &rt_sched_class;
6026 p->rt_priority = prio;
6027 p->normal_prio = normal_prio(p);
6028 /* we are holding p->pi_lock already */
6029 p->prio = rt_mutex_getprio(p);
6034 * check the target process has a UID that matches the current process's
6036 static bool check_same_owner(struct task_struct *p)
6038 const struct cred *cred = current_cred(), *pcred;
6042 pcred = __task_cred(p);
6043 match = (cred->euid == pcred->euid ||
6044 cred->euid == pcred->uid);
6049 static int __sched_setscheduler(struct task_struct *p, int policy,
6050 struct sched_param *param, bool user)
6052 int retval, oldprio, oldpolicy = -1, on_rq, running;
6053 unsigned long flags;
6054 const struct sched_class *prev_class = p->sched_class;
6057 /* may grab non-irq protected spin_locks */
6058 BUG_ON(in_interrupt());
6060 /* double check policy once rq lock held */
6062 policy = oldpolicy = p->policy;
6063 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6064 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6065 policy != SCHED_IDLE)
6068 * Valid priorities for SCHED_FIFO and SCHED_RR are
6069 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6070 * SCHED_BATCH and SCHED_IDLE is 0.
6072 if (param->sched_priority < 0 ||
6073 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6074 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6076 if (rt_policy(policy) != (param->sched_priority != 0))
6080 * Allow unprivileged RT tasks to decrease priority:
6082 if (user && !capable(CAP_SYS_NICE)) {
6083 if (rt_policy(policy)) {
6084 unsigned long rlim_rtprio;
6086 if (!lock_task_sighand(p, &flags))
6088 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6089 unlock_task_sighand(p, &flags);
6091 /* can't set/change the rt policy */
6092 if (policy != p->policy && !rlim_rtprio)
6095 /* can't increase priority */
6096 if (param->sched_priority > p->rt_priority &&
6097 param->sched_priority > rlim_rtprio)
6101 * Like positive nice levels, dont allow tasks to
6102 * move out of SCHED_IDLE either:
6104 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6107 /* can't change other user's priorities */
6108 if (!check_same_owner(p))
6113 #ifdef CONFIG_RT_GROUP_SCHED
6115 * Do not allow realtime tasks into groups that have no runtime
6118 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6119 task_group(p)->rt_bandwidth.rt_runtime == 0)
6123 retval = security_task_setscheduler(p, policy, param);
6129 * make sure no PI-waiters arrive (or leave) while we are
6130 * changing the priority of the task:
6132 spin_lock_irqsave(&p->pi_lock, flags);
6134 * To be able to change p->policy safely, the apropriate
6135 * runqueue lock must be held.
6137 rq = __task_rq_lock(p);
6138 /* recheck policy now with rq lock held */
6139 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6140 policy = oldpolicy = -1;
6141 __task_rq_unlock(rq);
6142 spin_unlock_irqrestore(&p->pi_lock, flags);
6145 update_rq_clock(rq);
6146 on_rq = p->se.on_rq;
6147 running = task_current(rq, p);
6149 deactivate_task(rq, p, 0);
6151 p->sched_class->put_prev_task(rq, p);
6154 __setscheduler(rq, p, policy, param->sched_priority);
6157 p->sched_class->set_curr_task(rq);
6159 activate_task(rq, p, 0);
6161 check_class_changed(rq, p, prev_class, oldprio, running);
6163 __task_rq_unlock(rq);
6164 spin_unlock_irqrestore(&p->pi_lock, flags);
6166 rt_mutex_adjust_pi(p);
6172 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6173 * @p: the task in question.
6174 * @policy: new policy.
6175 * @param: structure containing the new RT priority.
6177 * NOTE that the task may be already dead.
6179 int sched_setscheduler(struct task_struct *p, int policy,
6180 struct sched_param *param)
6182 return __sched_setscheduler(p, policy, param, true);
6184 EXPORT_SYMBOL_GPL(sched_setscheduler);
6187 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6188 * @p: the task in question.
6189 * @policy: new policy.
6190 * @param: structure containing the new RT priority.
6192 * Just like sched_setscheduler, only don't bother checking if the
6193 * current context has permission. For example, this is needed in
6194 * stop_machine(): we create temporary high priority worker threads,
6195 * but our caller might not have that capability.
6197 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6198 struct sched_param *param)
6200 return __sched_setscheduler(p, policy, param, false);
6204 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6206 struct sched_param lparam;
6207 struct task_struct *p;
6210 if (!param || pid < 0)
6212 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6217 p = find_process_by_pid(pid);
6219 retval = sched_setscheduler(p, policy, &lparam);
6226 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6227 * @pid: the pid in question.
6228 * @policy: new policy.
6229 * @param: structure containing the new RT priority.
6231 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6232 struct sched_param __user *, param)
6234 /* negative values for policy are not valid */
6238 return do_sched_setscheduler(pid, policy, param);
6242 * sys_sched_setparam - set/change the RT priority of a thread
6243 * @pid: the pid in question.
6244 * @param: structure containing the new RT priority.
6246 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6248 return do_sched_setscheduler(pid, -1, param);
6252 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6253 * @pid: the pid in question.
6255 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6257 struct task_struct *p;
6264 read_lock(&tasklist_lock);
6265 p = find_process_by_pid(pid);
6267 retval = security_task_getscheduler(p);
6271 read_unlock(&tasklist_lock);
6276 * sys_sched_getscheduler - get the RT priority of a thread
6277 * @pid: the pid in question.
6278 * @param: structure containing the RT priority.
6280 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6282 struct sched_param lp;
6283 struct task_struct *p;
6286 if (!param || pid < 0)
6289 read_lock(&tasklist_lock);
6290 p = find_process_by_pid(pid);
6295 retval = security_task_getscheduler(p);
6299 lp.sched_priority = p->rt_priority;
6300 read_unlock(&tasklist_lock);
6303 * This one might sleep, we cannot do it with a spinlock held ...
6305 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6310 read_unlock(&tasklist_lock);
6314 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6316 cpumask_var_t cpus_allowed, new_mask;
6317 struct task_struct *p;
6321 read_lock(&tasklist_lock);
6323 p = find_process_by_pid(pid);
6325 read_unlock(&tasklist_lock);
6331 * It is not safe to call set_cpus_allowed with the
6332 * tasklist_lock held. We will bump the task_struct's
6333 * usage count and then drop tasklist_lock.
6336 read_unlock(&tasklist_lock);
6338 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6342 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6344 goto out_free_cpus_allowed;
6347 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6350 retval = security_task_setscheduler(p, 0, NULL);
6354 cpuset_cpus_allowed(p, cpus_allowed);
6355 cpumask_and(new_mask, in_mask, cpus_allowed);
6357 retval = set_cpus_allowed_ptr(p, new_mask);
6360 cpuset_cpus_allowed(p, cpus_allowed);
6361 if (!cpumask_subset(new_mask, cpus_allowed)) {
6363 * We must have raced with a concurrent cpuset
6364 * update. Just reset the cpus_allowed to the
6365 * cpuset's cpus_allowed
6367 cpumask_copy(new_mask, cpus_allowed);
6372 free_cpumask_var(new_mask);
6373 out_free_cpus_allowed:
6374 free_cpumask_var(cpus_allowed);
6381 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6382 struct cpumask *new_mask)
6384 if (len < cpumask_size())
6385 cpumask_clear(new_mask);
6386 else if (len > cpumask_size())
6387 len = cpumask_size();
6389 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6393 * sys_sched_setaffinity - set the cpu affinity of a process
6394 * @pid: pid of the process
6395 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6396 * @user_mask_ptr: user-space pointer to the new cpu mask
6398 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6399 unsigned long __user *, user_mask_ptr)
6401 cpumask_var_t new_mask;
6404 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6407 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6409 retval = sched_setaffinity(pid, new_mask);
6410 free_cpumask_var(new_mask);
6414 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6416 struct task_struct *p;
6420 read_lock(&tasklist_lock);
6423 p = find_process_by_pid(pid);
6427 retval = security_task_getscheduler(p);
6431 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6434 read_unlock(&tasklist_lock);
6441 * sys_sched_getaffinity - get the cpu affinity of a process
6442 * @pid: pid of the process
6443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6444 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6446 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6447 unsigned long __user *, user_mask_ptr)
6452 if (len < cpumask_size())
6455 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6458 ret = sched_getaffinity(pid, mask);
6460 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6463 ret = cpumask_size();
6465 free_cpumask_var(mask);
6471 * sys_sched_yield - yield the current processor to other threads.
6473 * This function yields the current CPU to other tasks. If there are no
6474 * other threads running on this CPU then this function will return.
6476 SYSCALL_DEFINE0(sched_yield)
6478 struct rq *rq = this_rq_lock();
6480 schedstat_inc(rq, yld_count);
6481 current->sched_class->yield_task(rq);
6484 * Since we are going to call schedule() anyway, there's
6485 * no need to preempt or enable interrupts:
6487 __release(rq->lock);
6488 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6489 _raw_spin_unlock(&rq->lock);
6490 preempt_enable_no_resched();
6497 static void __cond_resched(void)
6499 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6500 __might_sleep(__FILE__, __LINE__);
6503 * The BKS might be reacquired before we have dropped
6504 * PREEMPT_ACTIVE, which could trigger a second
6505 * cond_resched() call.
6508 add_preempt_count(PREEMPT_ACTIVE);
6510 sub_preempt_count(PREEMPT_ACTIVE);
6511 } while (need_resched());
6514 int __sched _cond_resched(void)
6516 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6517 system_state == SYSTEM_RUNNING) {
6523 EXPORT_SYMBOL(_cond_resched);
6526 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6527 * call schedule, and on return reacquire the lock.
6529 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6530 * operations here to prevent schedule() from being called twice (once via
6531 * spin_unlock(), once by hand).
6533 int cond_resched_lock(spinlock_t *lock)
6535 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6538 if (spin_needbreak(lock) || resched) {
6540 if (resched && need_resched())
6549 EXPORT_SYMBOL(cond_resched_lock);
6551 int __sched cond_resched_softirq(void)
6553 BUG_ON(!in_softirq());
6555 if (need_resched() && system_state == SYSTEM_RUNNING) {
6563 EXPORT_SYMBOL(cond_resched_softirq);
6566 * yield - yield the current processor to other threads.
6568 * This is a shortcut for kernel-space yielding - it marks the
6569 * thread runnable and calls sys_sched_yield().
6571 void __sched yield(void)
6573 set_current_state(TASK_RUNNING);
6576 EXPORT_SYMBOL(yield);
6579 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6580 * that process accounting knows that this is a task in IO wait state.
6582 * But don't do that if it is a deliberate, throttling IO wait (this task
6583 * has set its backing_dev_info: the queue against which it should throttle)
6585 void __sched io_schedule(void)
6587 struct rq *rq = &__raw_get_cpu_var(runqueues);
6589 delayacct_blkio_start();
6590 atomic_inc(&rq->nr_iowait);
6592 atomic_dec(&rq->nr_iowait);
6593 delayacct_blkio_end();
6595 EXPORT_SYMBOL(io_schedule);
6597 long __sched io_schedule_timeout(long timeout)
6599 struct rq *rq = &__raw_get_cpu_var(runqueues);
6602 delayacct_blkio_start();
6603 atomic_inc(&rq->nr_iowait);
6604 ret = schedule_timeout(timeout);
6605 atomic_dec(&rq->nr_iowait);
6606 delayacct_blkio_end();
6611 * sys_sched_get_priority_max - return maximum RT priority.
6612 * @policy: scheduling class.
6614 * this syscall returns the maximum rt_priority that can be used
6615 * by a given scheduling class.
6617 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6624 ret = MAX_USER_RT_PRIO-1;
6636 * sys_sched_get_priority_min - return minimum RT priority.
6637 * @policy: scheduling class.
6639 * this syscall returns the minimum rt_priority that can be used
6640 * by a given scheduling class.
6642 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6660 * sys_sched_rr_get_interval - return the default timeslice of a process.
6661 * @pid: pid of the process.
6662 * @interval: userspace pointer to the timeslice value.
6664 * this syscall writes the default timeslice value of a given process
6665 * into the user-space timespec buffer. A value of '0' means infinity.
6667 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6668 struct timespec __user *, interval)
6670 struct task_struct *p;
6671 unsigned int time_slice;
6679 read_lock(&tasklist_lock);
6680 p = find_process_by_pid(pid);
6684 retval = security_task_getscheduler(p);
6689 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6690 * tasks that are on an otherwise idle runqueue:
6693 if (p->policy == SCHED_RR) {
6694 time_slice = DEF_TIMESLICE;
6695 } else if (p->policy != SCHED_FIFO) {
6696 struct sched_entity *se = &p->se;
6697 unsigned long flags;
6700 rq = task_rq_lock(p, &flags);
6701 if (rq->cfs.load.weight)
6702 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6703 task_rq_unlock(rq, &flags);
6705 read_unlock(&tasklist_lock);
6706 jiffies_to_timespec(time_slice, &t);
6707 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6711 read_unlock(&tasklist_lock);
6715 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6717 void sched_show_task(struct task_struct *p)
6719 unsigned long free = 0;
6722 state = p->state ? __ffs(p->state) + 1 : 0;
6723 printk(KERN_INFO "%-13.13s %c", p->comm,
6724 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6725 #if BITS_PER_LONG == 32
6726 if (state == TASK_RUNNING)
6727 printk(KERN_CONT " running ");
6729 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6731 if (state == TASK_RUNNING)
6732 printk(KERN_CONT " running task ");
6734 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6736 #ifdef CONFIG_DEBUG_STACK_USAGE
6737 free = stack_not_used(p);
6739 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6740 task_pid_nr(p), task_pid_nr(p->real_parent),
6741 (unsigned long)task_thread_info(p)->flags);
6743 show_stack(p, NULL);
6746 void show_state_filter(unsigned long state_filter)
6748 struct task_struct *g, *p;
6750 #if BITS_PER_LONG == 32
6752 " task PC stack pid father\n");
6755 " task PC stack pid father\n");
6757 read_lock(&tasklist_lock);
6758 do_each_thread(g, p) {
6760 * reset the NMI-timeout, listing all files on a slow
6761 * console might take alot of time:
6763 touch_nmi_watchdog();
6764 if (!state_filter || (p->state & state_filter))
6766 } while_each_thread(g, p);
6768 touch_all_softlockup_watchdogs();
6770 #ifdef CONFIG_SCHED_DEBUG
6771 sysrq_sched_debug_show();
6773 read_unlock(&tasklist_lock);
6775 * Only show locks if all tasks are dumped:
6777 if (state_filter == -1)
6778 debug_show_all_locks();
6781 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6783 idle->sched_class = &idle_sched_class;
6787 * init_idle - set up an idle thread for a given CPU
6788 * @idle: task in question
6789 * @cpu: cpu the idle task belongs to
6791 * NOTE: this function does not set the idle thread's NEED_RESCHED
6792 * flag, to make booting more robust.
6794 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6796 struct rq *rq = cpu_rq(cpu);
6797 unsigned long flags;
6799 spin_lock_irqsave(&rq->lock, flags);
6802 idle->se.exec_start = sched_clock();
6804 idle->prio = idle->normal_prio = MAX_PRIO;
6805 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6806 __set_task_cpu(idle, cpu);
6808 rq->curr = rq->idle = idle;
6809 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6812 spin_unlock_irqrestore(&rq->lock, flags);
6814 /* Set the preempt count _outside_ the spinlocks! */
6815 #if defined(CONFIG_PREEMPT)
6816 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6818 task_thread_info(idle)->preempt_count = 0;
6821 * The idle tasks have their own, simple scheduling class:
6823 idle->sched_class = &idle_sched_class;
6824 ftrace_graph_init_task(idle);
6828 * In a system that switches off the HZ timer nohz_cpu_mask
6829 * indicates which cpus entered this state. This is used
6830 * in the rcu update to wait only for active cpus. For system
6831 * which do not switch off the HZ timer nohz_cpu_mask should
6832 * always be CPU_BITS_NONE.
6834 cpumask_var_t nohz_cpu_mask;
6837 * Increase the granularity value when there are more CPUs,
6838 * because with more CPUs the 'effective latency' as visible
6839 * to users decreases. But the relationship is not linear,
6840 * so pick a second-best guess by going with the log2 of the
6843 * This idea comes from the SD scheduler of Con Kolivas:
6845 static inline void sched_init_granularity(void)
6847 unsigned int factor = 1 + ilog2(num_online_cpus());
6848 const unsigned long limit = 200000000;
6850 sysctl_sched_min_granularity *= factor;
6851 if (sysctl_sched_min_granularity > limit)
6852 sysctl_sched_min_granularity = limit;
6854 sysctl_sched_latency *= factor;
6855 if (sysctl_sched_latency > limit)
6856 sysctl_sched_latency = limit;
6858 sysctl_sched_wakeup_granularity *= factor;
6860 sysctl_sched_shares_ratelimit *= factor;
6865 * This is how migration works:
6867 * 1) we queue a struct migration_req structure in the source CPU's
6868 * runqueue and wake up that CPU's migration thread.
6869 * 2) we down() the locked semaphore => thread blocks.
6870 * 3) migration thread wakes up (implicitly it forces the migrated
6871 * thread off the CPU)
6872 * 4) it gets the migration request and checks whether the migrated
6873 * task is still in the wrong runqueue.
6874 * 5) if it's in the wrong runqueue then the migration thread removes
6875 * it and puts it into the right queue.
6876 * 6) migration thread up()s the semaphore.
6877 * 7) we wake up and the migration is done.
6881 * Change a given task's CPU affinity. Migrate the thread to a
6882 * proper CPU and schedule it away if the CPU it's executing on
6883 * is removed from the allowed bitmask.
6885 * NOTE: the caller must have a valid reference to the task, the
6886 * task must not exit() & deallocate itself prematurely. The
6887 * call is not atomic; no spinlocks may be held.
6889 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6891 struct migration_req req;
6892 unsigned long flags;
6896 rq = task_rq_lock(p, &flags);
6897 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6902 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6903 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6908 if (p->sched_class->set_cpus_allowed)
6909 p->sched_class->set_cpus_allowed(p, new_mask);
6911 cpumask_copy(&p->cpus_allowed, new_mask);
6912 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6915 /* Can the task run on the task's current CPU? If so, we're done */
6916 if (cpumask_test_cpu(task_cpu(p), new_mask))
6919 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6920 /* Need help from migration thread: drop lock and wait. */
6921 task_rq_unlock(rq, &flags);
6922 wake_up_process(rq->migration_thread);
6923 wait_for_completion(&req.done);
6924 tlb_migrate_finish(p->mm);
6928 task_rq_unlock(rq, &flags);
6932 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6935 * Move (not current) task off this cpu, onto dest cpu. We're doing
6936 * this because either it can't run here any more (set_cpus_allowed()
6937 * away from this CPU, or CPU going down), or because we're
6938 * attempting to rebalance this task on exec (sched_exec).
6940 * So we race with normal scheduler movements, but that's OK, as long
6941 * as the task is no longer on this CPU.
6943 * Returns non-zero if task was successfully migrated.
6945 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6947 struct rq *rq_dest, *rq_src;
6950 if (unlikely(!cpu_active(dest_cpu)))
6953 rq_src = cpu_rq(src_cpu);
6954 rq_dest = cpu_rq(dest_cpu);
6956 double_rq_lock(rq_src, rq_dest);
6957 /* Already moved. */
6958 if (task_cpu(p) != src_cpu)
6960 /* Affinity changed (again). */
6961 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6964 on_rq = p->se.on_rq;
6966 deactivate_task(rq_src, p, 0);
6968 set_task_cpu(p, dest_cpu);
6970 activate_task(rq_dest, p, 0);
6971 check_preempt_curr(rq_dest, p, 0);
6976 double_rq_unlock(rq_src, rq_dest);
6981 * migration_thread - this is a highprio system thread that performs
6982 * thread migration by bumping thread off CPU then 'pushing' onto
6985 static int migration_thread(void *data)
6987 int cpu = (long)data;
6991 BUG_ON(rq->migration_thread != current);
6993 set_current_state(TASK_INTERRUPTIBLE);
6994 while (!kthread_should_stop()) {
6995 struct migration_req *req;
6996 struct list_head *head;
6998 spin_lock_irq(&rq->lock);
7000 if (cpu_is_offline(cpu)) {
7001 spin_unlock_irq(&rq->lock);
7005 if (rq->active_balance) {
7006 active_load_balance(rq, cpu);
7007 rq->active_balance = 0;
7010 head = &rq->migration_queue;
7012 if (list_empty(head)) {
7013 spin_unlock_irq(&rq->lock);
7015 set_current_state(TASK_INTERRUPTIBLE);
7018 req = list_entry(head->next, struct migration_req, list);
7019 list_del_init(head->next);
7021 spin_unlock(&rq->lock);
7022 __migrate_task(req->task, cpu, req->dest_cpu);
7025 complete(&req->done);
7027 __set_current_state(TASK_RUNNING);
7031 /* Wait for kthread_stop */
7032 set_current_state(TASK_INTERRUPTIBLE);
7033 while (!kthread_should_stop()) {
7035 set_current_state(TASK_INTERRUPTIBLE);
7037 __set_current_state(TASK_RUNNING);
7041 #ifdef CONFIG_HOTPLUG_CPU
7043 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7047 local_irq_disable();
7048 ret = __migrate_task(p, src_cpu, dest_cpu);
7054 * Figure out where task on dead CPU should go, use force if necessary.
7056 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7059 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7062 /* Look for allowed, online CPU in same node. */
7063 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7064 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7067 /* Any allowed, online CPU? */
7068 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7069 if (dest_cpu < nr_cpu_ids)
7072 /* No more Mr. Nice Guy. */
7073 if (dest_cpu >= nr_cpu_ids) {
7074 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7075 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7078 * Don't tell them about moving exiting tasks or
7079 * kernel threads (both mm NULL), since they never
7082 if (p->mm && printk_ratelimit()) {
7083 printk(KERN_INFO "process %d (%s) no "
7084 "longer affine to cpu%d\n",
7085 task_pid_nr(p), p->comm, dead_cpu);
7090 /* It can have affinity changed while we were choosing. */
7091 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7096 * While a dead CPU has no uninterruptible tasks queued at this point,
7097 * it might still have a nonzero ->nr_uninterruptible counter, because
7098 * for performance reasons the counter is not stricly tracking tasks to
7099 * their home CPUs. So we just add the counter to another CPU's counter,
7100 * to keep the global sum constant after CPU-down:
7102 static void migrate_nr_uninterruptible(struct rq *rq_src)
7104 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7105 unsigned long flags;
7107 local_irq_save(flags);
7108 double_rq_lock(rq_src, rq_dest);
7109 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7110 rq_src->nr_uninterruptible = 0;
7111 double_rq_unlock(rq_src, rq_dest);
7112 local_irq_restore(flags);
7115 /* Run through task list and migrate tasks from the dead cpu. */
7116 static void migrate_live_tasks(int src_cpu)
7118 struct task_struct *p, *t;
7120 read_lock(&tasklist_lock);
7122 do_each_thread(t, p) {
7126 if (task_cpu(p) == src_cpu)
7127 move_task_off_dead_cpu(src_cpu, p);
7128 } while_each_thread(t, p);
7130 read_unlock(&tasklist_lock);
7134 * Schedules idle task to be the next runnable task on current CPU.
7135 * It does so by boosting its priority to highest possible.
7136 * Used by CPU offline code.
7138 void sched_idle_next(void)
7140 int this_cpu = smp_processor_id();
7141 struct rq *rq = cpu_rq(this_cpu);
7142 struct task_struct *p = rq->idle;
7143 unsigned long flags;
7145 /* cpu has to be offline */
7146 BUG_ON(cpu_online(this_cpu));
7149 * Strictly not necessary since rest of the CPUs are stopped by now
7150 * and interrupts disabled on the current cpu.
7152 spin_lock_irqsave(&rq->lock, flags);
7154 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7156 update_rq_clock(rq);
7157 activate_task(rq, p, 0);
7159 spin_unlock_irqrestore(&rq->lock, flags);
7163 * Ensures that the idle task is using init_mm right before its cpu goes
7166 void idle_task_exit(void)
7168 struct mm_struct *mm = current->active_mm;
7170 BUG_ON(cpu_online(smp_processor_id()));
7173 switch_mm(mm, &init_mm, current);
7177 /* called under rq->lock with disabled interrupts */
7178 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7180 struct rq *rq = cpu_rq(dead_cpu);
7182 /* Must be exiting, otherwise would be on tasklist. */
7183 BUG_ON(!p->exit_state);
7185 /* Cannot have done final schedule yet: would have vanished. */
7186 BUG_ON(p->state == TASK_DEAD);
7191 * Drop lock around migration; if someone else moves it,
7192 * that's OK. No task can be added to this CPU, so iteration is
7195 spin_unlock_irq(&rq->lock);
7196 move_task_off_dead_cpu(dead_cpu, p);
7197 spin_lock_irq(&rq->lock);
7202 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7203 static void migrate_dead_tasks(unsigned int dead_cpu)
7205 struct rq *rq = cpu_rq(dead_cpu);
7206 struct task_struct *next;
7209 if (!rq->nr_running)
7211 update_rq_clock(rq);
7212 next = pick_next_task(rq);
7215 next->sched_class->put_prev_task(rq, next);
7216 migrate_dead(dead_cpu, next);
7222 * remove the tasks which were accounted by rq from calc_load_tasks.
7224 static void calc_global_load_remove(struct rq *rq)
7226 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7228 #endif /* CONFIG_HOTPLUG_CPU */
7230 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7232 static struct ctl_table sd_ctl_dir[] = {
7234 .procname = "sched_domain",
7240 static struct ctl_table sd_ctl_root[] = {
7242 .ctl_name = CTL_KERN,
7243 .procname = "kernel",
7245 .child = sd_ctl_dir,
7250 static struct ctl_table *sd_alloc_ctl_entry(int n)
7252 struct ctl_table *entry =
7253 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7258 static void sd_free_ctl_entry(struct ctl_table **tablep)
7260 struct ctl_table *entry;
7263 * In the intermediate directories, both the child directory and
7264 * procname are dynamically allocated and could fail but the mode
7265 * will always be set. In the lowest directory the names are
7266 * static strings and all have proc handlers.
7268 for (entry = *tablep; entry->mode; entry++) {
7270 sd_free_ctl_entry(&entry->child);
7271 if (entry->proc_handler == NULL)
7272 kfree(entry->procname);
7280 set_table_entry(struct ctl_table *entry,
7281 const char *procname, void *data, int maxlen,
7282 mode_t mode, proc_handler *proc_handler)
7284 entry->procname = procname;
7286 entry->maxlen = maxlen;
7288 entry->proc_handler = proc_handler;
7291 static struct ctl_table *
7292 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7294 struct ctl_table *table = sd_alloc_ctl_entry(13);
7299 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7300 sizeof(long), 0644, proc_doulongvec_minmax);
7301 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7302 sizeof(long), 0644, proc_doulongvec_minmax);
7303 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7304 sizeof(int), 0644, proc_dointvec_minmax);
7305 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7306 sizeof(int), 0644, proc_dointvec_minmax);
7307 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7308 sizeof(int), 0644, proc_dointvec_minmax);
7309 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7310 sizeof(int), 0644, proc_dointvec_minmax);
7311 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7312 sizeof(int), 0644, proc_dointvec_minmax);
7313 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7314 sizeof(int), 0644, proc_dointvec_minmax);
7315 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7316 sizeof(int), 0644, proc_dointvec_minmax);
7317 set_table_entry(&table[9], "cache_nice_tries",
7318 &sd->cache_nice_tries,
7319 sizeof(int), 0644, proc_dointvec_minmax);
7320 set_table_entry(&table[10], "flags", &sd->flags,
7321 sizeof(int), 0644, proc_dointvec_minmax);
7322 set_table_entry(&table[11], "name", sd->name,
7323 CORENAME_MAX_SIZE, 0444, proc_dostring);
7324 /* &table[12] is terminator */
7329 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7331 struct ctl_table *entry, *table;
7332 struct sched_domain *sd;
7333 int domain_num = 0, i;
7336 for_each_domain(cpu, sd)
7338 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7343 for_each_domain(cpu, sd) {
7344 snprintf(buf, 32, "domain%d", i);
7345 entry->procname = kstrdup(buf, GFP_KERNEL);
7347 entry->child = sd_alloc_ctl_domain_table(sd);
7354 static struct ctl_table_header *sd_sysctl_header;
7355 static void register_sched_domain_sysctl(void)
7357 int i, cpu_num = num_online_cpus();
7358 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7361 WARN_ON(sd_ctl_dir[0].child);
7362 sd_ctl_dir[0].child = entry;
7367 for_each_online_cpu(i) {
7368 snprintf(buf, 32, "cpu%d", i);
7369 entry->procname = kstrdup(buf, GFP_KERNEL);
7371 entry->child = sd_alloc_ctl_cpu_table(i);
7375 WARN_ON(sd_sysctl_header);
7376 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7379 /* may be called multiple times per register */
7380 static void unregister_sched_domain_sysctl(void)
7382 if (sd_sysctl_header)
7383 unregister_sysctl_table(sd_sysctl_header);
7384 sd_sysctl_header = NULL;
7385 if (sd_ctl_dir[0].child)
7386 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7389 static void register_sched_domain_sysctl(void)
7392 static void unregister_sched_domain_sysctl(void)
7397 static void set_rq_online(struct rq *rq)
7400 const struct sched_class *class;
7402 cpumask_set_cpu(rq->cpu, rq->rd->online);
7405 for_each_class(class) {
7406 if (class->rq_online)
7407 class->rq_online(rq);
7412 static void set_rq_offline(struct rq *rq)
7415 const struct sched_class *class;
7417 for_each_class(class) {
7418 if (class->rq_offline)
7419 class->rq_offline(rq);
7422 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7428 * migration_call - callback that gets triggered when a CPU is added.
7429 * Here we can start up the necessary migration thread for the new CPU.
7431 static int __cpuinit
7432 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7434 struct task_struct *p;
7435 int cpu = (long)hcpu;
7436 unsigned long flags;
7441 case CPU_UP_PREPARE:
7442 case CPU_UP_PREPARE_FROZEN:
7443 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7446 kthread_bind(p, cpu);
7447 /* Must be high prio: stop_machine expects to yield to it. */
7448 rq = task_rq_lock(p, &flags);
7449 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7450 task_rq_unlock(rq, &flags);
7451 cpu_rq(cpu)->migration_thread = p;
7455 case CPU_ONLINE_FROZEN:
7456 /* Strictly unnecessary, as first user will wake it. */
7457 wake_up_process(cpu_rq(cpu)->migration_thread);
7459 /* Update our root-domain */
7461 spin_lock_irqsave(&rq->lock, flags);
7462 rq->calc_load_update = calc_load_update;
7463 rq->calc_load_active = 0;
7465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7469 spin_unlock_irqrestore(&rq->lock, flags);
7472 #ifdef CONFIG_HOTPLUG_CPU
7473 case CPU_UP_CANCELED:
7474 case CPU_UP_CANCELED_FROZEN:
7475 if (!cpu_rq(cpu)->migration_thread)
7477 /* Unbind it from offline cpu so it can run. Fall thru. */
7478 kthread_bind(cpu_rq(cpu)->migration_thread,
7479 cpumask_any(cpu_online_mask));
7480 kthread_stop(cpu_rq(cpu)->migration_thread);
7481 cpu_rq(cpu)->migration_thread = NULL;
7485 case CPU_DEAD_FROZEN:
7486 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7487 migrate_live_tasks(cpu);
7489 kthread_stop(rq->migration_thread);
7490 rq->migration_thread = NULL;
7491 /* Idle task back to normal (off runqueue, low prio) */
7492 spin_lock_irq(&rq->lock);
7493 update_rq_clock(rq);
7494 deactivate_task(rq, rq->idle, 0);
7495 rq->idle->static_prio = MAX_PRIO;
7496 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7497 rq->idle->sched_class = &idle_sched_class;
7498 migrate_dead_tasks(cpu);
7499 spin_unlock_irq(&rq->lock);
7501 migrate_nr_uninterruptible(rq);
7502 BUG_ON(rq->nr_running != 0);
7503 calc_global_load_remove(rq);
7505 * No need to migrate the tasks: it was best-effort if
7506 * they didn't take sched_hotcpu_mutex. Just wake up
7509 spin_lock_irq(&rq->lock);
7510 while (!list_empty(&rq->migration_queue)) {
7511 struct migration_req *req;
7513 req = list_entry(rq->migration_queue.next,
7514 struct migration_req, list);
7515 list_del_init(&req->list);
7516 spin_unlock_irq(&rq->lock);
7517 complete(&req->done);
7518 spin_lock_irq(&rq->lock);
7520 spin_unlock_irq(&rq->lock);
7524 case CPU_DYING_FROZEN:
7525 /* Update our root-domain */
7527 spin_lock_irqsave(&rq->lock, flags);
7529 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7532 spin_unlock_irqrestore(&rq->lock, flags);
7539 /* Register at highest priority so that task migration (migrate_all_tasks)
7540 * happens before everything else.
7542 static struct notifier_block __cpuinitdata migration_notifier = {
7543 .notifier_call = migration_call,
7547 static int __init migration_init(void)
7549 void *cpu = (void *)(long)smp_processor_id();
7552 /* Start one for the boot CPU: */
7553 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7554 BUG_ON(err == NOTIFY_BAD);
7555 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7556 register_cpu_notifier(&migration_notifier);
7560 early_initcall(migration_init);
7565 #ifdef CONFIG_SCHED_DEBUG
7567 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7568 struct cpumask *groupmask)
7570 struct sched_group *group = sd->groups;
7573 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7574 cpumask_clear(groupmask);
7576 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7578 if (!(sd->flags & SD_LOAD_BALANCE)) {
7579 printk("does not load-balance\n");
7581 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7586 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7588 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7589 printk(KERN_ERR "ERROR: domain->span does not contain "
7592 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7593 printk(KERN_ERR "ERROR: domain->groups does not contain"
7597 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7601 printk(KERN_ERR "ERROR: group is NULL\n");
7605 if (!group->__cpu_power) {
7606 printk(KERN_CONT "\n");
7607 printk(KERN_ERR "ERROR: domain->cpu_power not "
7612 if (!cpumask_weight(sched_group_cpus(group))) {
7613 printk(KERN_CONT "\n");
7614 printk(KERN_ERR "ERROR: empty group\n");
7618 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7619 printk(KERN_CONT "\n");
7620 printk(KERN_ERR "ERROR: repeated CPUs\n");
7624 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7626 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7628 printk(KERN_CONT " %s", str);
7629 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7630 printk(KERN_CONT " (__cpu_power = %d)",
7631 group->__cpu_power);
7634 group = group->next;
7635 } while (group != sd->groups);
7636 printk(KERN_CONT "\n");
7638 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7639 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7642 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7643 printk(KERN_ERR "ERROR: parent span is not a superset "
7644 "of domain->span\n");
7648 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7650 cpumask_var_t groupmask;
7654 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7658 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7660 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7661 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7666 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7673 free_cpumask_var(groupmask);
7675 #else /* !CONFIG_SCHED_DEBUG */
7676 # define sched_domain_debug(sd, cpu) do { } while (0)
7677 #endif /* CONFIG_SCHED_DEBUG */
7679 static int sd_degenerate(struct sched_domain *sd)
7681 if (cpumask_weight(sched_domain_span(sd)) == 1)
7684 /* Following flags need at least 2 groups */
7685 if (sd->flags & (SD_LOAD_BALANCE |
7686 SD_BALANCE_NEWIDLE |
7690 SD_SHARE_PKG_RESOURCES)) {
7691 if (sd->groups != sd->groups->next)
7695 /* Following flags don't use groups */
7696 if (sd->flags & (SD_WAKE_IDLE |
7705 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7707 unsigned long cflags = sd->flags, pflags = parent->flags;
7709 if (sd_degenerate(parent))
7712 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7715 /* Does parent contain flags not in child? */
7716 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7717 if (cflags & SD_WAKE_AFFINE)
7718 pflags &= ~SD_WAKE_BALANCE;
7719 /* Flags needing groups don't count if only 1 group in parent */
7720 if (parent->groups == parent->groups->next) {
7721 pflags &= ~(SD_LOAD_BALANCE |
7722 SD_BALANCE_NEWIDLE |
7726 SD_SHARE_PKG_RESOURCES);
7727 if (nr_node_ids == 1)
7728 pflags &= ~SD_SERIALIZE;
7730 if (~cflags & pflags)
7736 static void free_rootdomain(struct root_domain *rd)
7738 cpupri_cleanup(&rd->cpupri);
7740 free_cpumask_var(rd->rto_mask);
7741 free_cpumask_var(rd->online);
7742 free_cpumask_var(rd->span);
7746 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7748 struct root_domain *old_rd = NULL;
7749 unsigned long flags;
7751 spin_lock_irqsave(&rq->lock, flags);
7756 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7759 cpumask_clear_cpu(rq->cpu, old_rd->span);
7762 * If we dont want to free the old_rt yet then
7763 * set old_rd to NULL to skip the freeing later
7766 if (!atomic_dec_and_test(&old_rd->refcount))
7770 atomic_inc(&rd->refcount);
7773 cpumask_set_cpu(rq->cpu, rd->span);
7774 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7777 spin_unlock_irqrestore(&rq->lock, flags);
7780 free_rootdomain(old_rd);
7783 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7785 memset(rd, 0, sizeof(*rd));
7788 alloc_bootmem_cpumask_var(&def_root_domain.span);
7789 alloc_bootmem_cpumask_var(&def_root_domain.online);
7790 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7791 cpupri_init(&rd->cpupri, true);
7795 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7797 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7799 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7802 if (cpupri_init(&rd->cpupri, false) != 0)
7807 free_cpumask_var(rd->rto_mask);
7809 free_cpumask_var(rd->online);
7811 free_cpumask_var(rd->span);
7816 static void init_defrootdomain(void)
7818 init_rootdomain(&def_root_domain, true);
7820 atomic_set(&def_root_domain.refcount, 1);
7823 static struct root_domain *alloc_rootdomain(void)
7825 struct root_domain *rd;
7827 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7831 if (init_rootdomain(rd, false) != 0) {
7840 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7841 * hold the hotplug lock.
7844 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7846 struct rq *rq = cpu_rq(cpu);
7847 struct sched_domain *tmp;
7849 /* Remove the sched domains which do not contribute to scheduling. */
7850 for (tmp = sd; tmp; ) {
7851 struct sched_domain *parent = tmp->parent;
7855 if (sd_parent_degenerate(tmp, parent)) {
7856 tmp->parent = parent->parent;
7858 parent->parent->child = tmp;
7863 if (sd && sd_degenerate(sd)) {
7869 sched_domain_debug(sd, cpu);
7871 rq_attach_root(rq, rd);
7872 rcu_assign_pointer(rq->sd, sd);
7875 /* cpus with isolated domains */
7876 static cpumask_var_t cpu_isolated_map;
7878 /* Setup the mask of cpus configured for isolated domains */
7879 static int __init isolated_cpu_setup(char *str)
7881 cpulist_parse(str, cpu_isolated_map);
7885 __setup("isolcpus=", isolated_cpu_setup);
7888 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7889 * to a function which identifies what group(along with sched group) a CPU
7890 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7891 * (due to the fact that we keep track of groups covered with a struct cpumask).
7893 * init_sched_build_groups will build a circular linked list of the groups
7894 * covered by the given span, and will set each group's ->cpumask correctly,
7895 * and ->cpu_power to 0.
7898 init_sched_build_groups(const struct cpumask *span,
7899 const struct cpumask *cpu_map,
7900 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7901 struct sched_group **sg,
7902 struct cpumask *tmpmask),
7903 struct cpumask *covered, struct cpumask *tmpmask)
7905 struct sched_group *first = NULL, *last = NULL;
7908 cpumask_clear(covered);
7910 for_each_cpu(i, span) {
7911 struct sched_group *sg;
7912 int group = group_fn(i, cpu_map, &sg, tmpmask);
7915 if (cpumask_test_cpu(i, covered))
7918 cpumask_clear(sched_group_cpus(sg));
7919 sg->__cpu_power = 0;
7921 for_each_cpu(j, span) {
7922 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7925 cpumask_set_cpu(j, covered);
7926 cpumask_set_cpu(j, sched_group_cpus(sg));
7937 #define SD_NODES_PER_DOMAIN 16
7942 * find_next_best_node - find the next node to include in a sched_domain
7943 * @node: node whose sched_domain we're building
7944 * @used_nodes: nodes already in the sched_domain
7946 * Find the next node to include in a given scheduling domain. Simply
7947 * finds the closest node not already in the @used_nodes map.
7949 * Should use nodemask_t.
7951 static int find_next_best_node(int node, nodemask_t *used_nodes)
7953 int i, n, val, min_val, best_node = 0;
7957 for (i = 0; i < nr_node_ids; i++) {
7958 /* Start at @node */
7959 n = (node + i) % nr_node_ids;
7961 if (!nr_cpus_node(n))
7964 /* Skip already used nodes */
7965 if (node_isset(n, *used_nodes))
7968 /* Simple min distance search */
7969 val = node_distance(node, n);
7971 if (val < min_val) {
7977 node_set(best_node, *used_nodes);
7982 * sched_domain_node_span - get a cpumask for a node's sched_domain
7983 * @node: node whose cpumask we're constructing
7984 * @span: resulting cpumask
7986 * Given a node, construct a good cpumask for its sched_domain to span. It
7987 * should be one that prevents unnecessary balancing, but also spreads tasks
7990 static void sched_domain_node_span(int node, struct cpumask *span)
7992 nodemask_t used_nodes;
7995 cpumask_clear(span);
7996 nodes_clear(used_nodes);
7998 cpumask_or(span, span, cpumask_of_node(node));
7999 node_set(node, used_nodes);
8001 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8002 int next_node = find_next_best_node(node, &used_nodes);
8004 cpumask_or(span, span, cpumask_of_node(next_node));
8007 #endif /* CONFIG_NUMA */
8009 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8012 * The cpus mask in sched_group and sched_domain hangs off the end.
8014 * ( See the the comments in include/linux/sched.h:struct sched_group
8015 * and struct sched_domain. )
8017 struct static_sched_group {
8018 struct sched_group sg;
8019 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8022 struct static_sched_domain {
8023 struct sched_domain sd;
8024 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8028 * SMT sched-domains:
8030 #ifdef CONFIG_SCHED_SMT
8031 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8032 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8035 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8036 struct sched_group **sg, struct cpumask *unused)
8039 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8042 #endif /* CONFIG_SCHED_SMT */
8045 * multi-core sched-domains:
8047 #ifdef CONFIG_SCHED_MC
8048 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8049 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8050 #endif /* CONFIG_SCHED_MC */
8052 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8054 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8055 struct sched_group **sg, struct cpumask *mask)
8059 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8060 group = cpumask_first(mask);
8062 *sg = &per_cpu(sched_group_core, group).sg;
8065 #elif defined(CONFIG_SCHED_MC)
8067 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8068 struct sched_group **sg, struct cpumask *unused)
8071 *sg = &per_cpu(sched_group_core, cpu).sg;
8076 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8077 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8080 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8081 struct sched_group **sg, struct cpumask *mask)
8084 #ifdef CONFIG_SCHED_MC
8085 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8086 group = cpumask_first(mask);
8087 #elif defined(CONFIG_SCHED_SMT)
8088 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8089 group = cpumask_first(mask);
8094 *sg = &per_cpu(sched_group_phys, group).sg;
8100 * The init_sched_build_groups can't handle what we want to do with node
8101 * groups, so roll our own. Now each node has its own list of groups which
8102 * gets dynamically allocated.
8104 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8105 static struct sched_group ***sched_group_nodes_bycpu;
8107 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8108 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8110 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8111 struct sched_group **sg,
8112 struct cpumask *nodemask)
8116 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8117 group = cpumask_first(nodemask);
8120 *sg = &per_cpu(sched_group_allnodes, group).sg;
8124 static void init_numa_sched_groups_power(struct sched_group *group_head)
8126 struct sched_group *sg = group_head;
8132 for_each_cpu(j, sched_group_cpus(sg)) {
8133 struct sched_domain *sd;
8135 sd = &per_cpu(phys_domains, j).sd;
8136 if (j != group_first_cpu(sd->groups)) {
8138 * Only add "power" once for each
8144 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8147 } while (sg != group_head);
8149 #endif /* CONFIG_NUMA */
8152 /* Free memory allocated for various sched_group structures */
8153 static void free_sched_groups(const struct cpumask *cpu_map,
8154 struct cpumask *nodemask)
8158 for_each_cpu(cpu, cpu_map) {
8159 struct sched_group **sched_group_nodes
8160 = sched_group_nodes_bycpu[cpu];
8162 if (!sched_group_nodes)
8165 for (i = 0; i < nr_node_ids; i++) {
8166 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8168 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8169 if (cpumask_empty(nodemask))
8179 if (oldsg != sched_group_nodes[i])
8182 kfree(sched_group_nodes);
8183 sched_group_nodes_bycpu[cpu] = NULL;
8186 #else /* !CONFIG_NUMA */
8187 static void free_sched_groups(const struct cpumask *cpu_map,
8188 struct cpumask *nodemask)
8191 #endif /* CONFIG_NUMA */
8194 * Initialize sched groups cpu_power.
8196 * cpu_power indicates the capacity of sched group, which is used while
8197 * distributing the load between different sched groups in a sched domain.
8198 * Typically cpu_power for all the groups in a sched domain will be same unless
8199 * there are asymmetries in the topology. If there are asymmetries, group
8200 * having more cpu_power will pickup more load compared to the group having
8203 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8204 * the maximum number of tasks a group can handle in the presence of other idle
8205 * or lightly loaded groups in the same sched domain.
8207 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8209 struct sched_domain *child;
8210 struct sched_group *group;
8212 WARN_ON(!sd || !sd->groups);
8214 if (cpu != group_first_cpu(sd->groups))
8219 sd->groups->__cpu_power = 0;
8222 * For perf policy, if the groups in child domain share resources
8223 * (for example cores sharing some portions of the cache hierarchy
8224 * or SMT), then set this domain groups cpu_power such that each group
8225 * can handle only one task, when there are other idle groups in the
8226 * same sched domain.
8228 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8230 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8231 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8236 * add cpu_power of each child group to this groups cpu_power
8238 group = child->groups;
8240 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8241 group = group->next;
8242 } while (group != child->groups);
8246 * Initializers for schedule domains
8247 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8250 #ifdef CONFIG_SCHED_DEBUG
8251 # define SD_INIT_NAME(sd, type) sd->name = #type
8253 # define SD_INIT_NAME(sd, type) do { } while (0)
8256 #define SD_INIT(sd, type) sd_init_##type(sd)
8258 #define SD_INIT_FUNC(type) \
8259 static noinline void sd_init_##type(struct sched_domain *sd) \
8261 memset(sd, 0, sizeof(*sd)); \
8262 *sd = SD_##type##_INIT; \
8263 sd->level = SD_LV_##type; \
8264 SD_INIT_NAME(sd, type); \
8269 SD_INIT_FUNC(ALLNODES)
8272 #ifdef CONFIG_SCHED_SMT
8273 SD_INIT_FUNC(SIBLING)
8275 #ifdef CONFIG_SCHED_MC
8279 static int default_relax_domain_level = -1;
8281 static int __init setup_relax_domain_level(char *str)
8285 val = simple_strtoul(str, NULL, 0);
8286 if (val < SD_LV_MAX)
8287 default_relax_domain_level = val;
8291 __setup("relax_domain_level=", setup_relax_domain_level);
8293 static void set_domain_attribute(struct sched_domain *sd,
8294 struct sched_domain_attr *attr)
8298 if (!attr || attr->relax_domain_level < 0) {
8299 if (default_relax_domain_level < 0)
8302 request = default_relax_domain_level;
8304 request = attr->relax_domain_level;
8305 if (request < sd->level) {
8306 /* turn off idle balance on this domain */
8307 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8309 /* turn on idle balance on this domain */
8310 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8315 * Build sched domains for a given set of cpus and attach the sched domains
8316 * to the individual cpus
8318 static int __build_sched_domains(const struct cpumask *cpu_map,
8319 struct sched_domain_attr *attr)
8321 int i, err = -ENOMEM;
8322 struct root_domain *rd;
8323 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8326 cpumask_var_t domainspan, covered, notcovered;
8327 struct sched_group **sched_group_nodes = NULL;
8328 int sd_allnodes = 0;
8330 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8332 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8333 goto free_domainspan;
8334 if (!alloc_cpumask_var(¬covered, GFP_KERNEL))
8338 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8339 goto free_notcovered;
8340 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8342 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8343 goto free_this_sibling_map;
8344 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8345 goto free_this_core_map;
8346 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8347 goto free_send_covered;
8351 * Allocate the per-node list of sched groups
8353 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8355 if (!sched_group_nodes) {
8356 printk(KERN_WARNING "Can not alloc sched group node list\n");
8361 rd = alloc_rootdomain();
8363 printk(KERN_WARNING "Cannot alloc root domain\n");
8364 goto free_sched_groups;
8368 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8372 * Set up domains for cpus specified by the cpu_map.
8374 for_each_cpu(i, cpu_map) {
8375 struct sched_domain *sd = NULL, *p;
8377 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8380 if (cpumask_weight(cpu_map) >
8381 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8382 sd = &per_cpu(allnodes_domains, i).sd;
8383 SD_INIT(sd, ALLNODES);
8384 set_domain_attribute(sd, attr);
8385 cpumask_copy(sched_domain_span(sd), cpu_map);
8386 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8392 sd = &per_cpu(node_domains, i).sd;
8394 set_domain_attribute(sd, attr);
8395 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8399 cpumask_and(sched_domain_span(sd),
8400 sched_domain_span(sd), cpu_map);
8404 sd = &per_cpu(phys_domains, i).sd;
8406 set_domain_attribute(sd, attr);
8407 cpumask_copy(sched_domain_span(sd), nodemask);
8411 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8413 #ifdef CONFIG_SCHED_MC
8415 sd = &per_cpu(core_domains, i).sd;
8417 set_domain_attribute(sd, attr);
8418 cpumask_and(sched_domain_span(sd), cpu_map,
8419 cpu_coregroup_mask(i));
8422 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8425 #ifdef CONFIG_SCHED_SMT
8427 sd = &per_cpu(cpu_domains, i).sd;
8428 SD_INIT(sd, SIBLING);
8429 set_domain_attribute(sd, attr);
8430 cpumask_and(sched_domain_span(sd),
8431 topology_thread_cpumask(i), cpu_map);
8434 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8438 #ifdef CONFIG_SCHED_SMT
8439 /* Set up CPU (sibling) groups */
8440 for_each_cpu(i, cpu_map) {
8441 cpumask_and(this_sibling_map,
8442 topology_thread_cpumask(i), cpu_map);
8443 if (i != cpumask_first(this_sibling_map))
8446 init_sched_build_groups(this_sibling_map, cpu_map,
8448 send_covered, tmpmask);
8452 #ifdef CONFIG_SCHED_MC
8453 /* Set up multi-core groups */
8454 for_each_cpu(i, cpu_map) {
8455 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8456 if (i != cpumask_first(this_core_map))
8459 init_sched_build_groups(this_core_map, cpu_map,
8461 send_covered, tmpmask);
8465 /* Set up physical groups */
8466 for (i = 0; i < nr_node_ids; i++) {
8467 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8468 if (cpumask_empty(nodemask))
8471 init_sched_build_groups(nodemask, cpu_map,
8473 send_covered, tmpmask);
8477 /* Set up node groups */
8479 init_sched_build_groups(cpu_map, cpu_map,
8480 &cpu_to_allnodes_group,
8481 send_covered, tmpmask);
8484 for (i = 0; i < nr_node_ids; i++) {
8485 /* Set up node groups */
8486 struct sched_group *sg, *prev;
8489 cpumask_clear(covered);
8490 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8491 if (cpumask_empty(nodemask)) {
8492 sched_group_nodes[i] = NULL;
8496 sched_domain_node_span(i, domainspan);
8497 cpumask_and(domainspan, domainspan, cpu_map);
8499 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8502 printk(KERN_WARNING "Can not alloc domain group for "
8506 sched_group_nodes[i] = sg;
8507 for_each_cpu(j, nodemask) {
8508 struct sched_domain *sd;
8510 sd = &per_cpu(node_domains, j).sd;
8513 sg->__cpu_power = 0;
8514 cpumask_copy(sched_group_cpus(sg), nodemask);
8516 cpumask_or(covered, covered, nodemask);
8519 for (j = 0; j < nr_node_ids; j++) {
8520 int n = (i + j) % nr_node_ids;
8522 cpumask_complement(notcovered, covered);
8523 cpumask_and(tmpmask, notcovered, cpu_map);
8524 cpumask_and(tmpmask, tmpmask, domainspan);
8525 if (cpumask_empty(tmpmask))
8528 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8529 if (cpumask_empty(tmpmask))
8532 sg = kmalloc_node(sizeof(struct sched_group) +
8537 "Can not alloc domain group for node %d\n", j);
8540 sg->__cpu_power = 0;
8541 cpumask_copy(sched_group_cpus(sg), tmpmask);
8542 sg->next = prev->next;
8543 cpumask_or(covered, covered, tmpmask);
8550 /* Calculate CPU power for physical packages and nodes */
8551 #ifdef CONFIG_SCHED_SMT
8552 for_each_cpu(i, cpu_map) {
8553 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8555 init_sched_groups_power(i, sd);
8558 #ifdef CONFIG_SCHED_MC
8559 for_each_cpu(i, cpu_map) {
8560 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8562 init_sched_groups_power(i, sd);
8566 for_each_cpu(i, cpu_map) {
8567 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8569 init_sched_groups_power(i, sd);
8573 for (i = 0; i < nr_node_ids; i++)
8574 init_numa_sched_groups_power(sched_group_nodes[i]);
8577 struct sched_group *sg;
8579 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8581 init_numa_sched_groups_power(sg);
8585 /* Attach the domains */
8586 for_each_cpu(i, cpu_map) {
8587 struct sched_domain *sd;
8588 #ifdef CONFIG_SCHED_SMT
8589 sd = &per_cpu(cpu_domains, i).sd;
8590 #elif defined(CONFIG_SCHED_MC)
8591 sd = &per_cpu(core_domains, i).sd;
8593 sd = &per_cpu(phys_domains, i).sd;
8595 cpu_attach_domain(sd, rd, i);
8601 free_cpumask_var(tmpmask);
8603 free_cpumask_var(send_covered);
8605 free_cpumask_var(this_core_map);
8606 free_this_sibling_map:
8607 free_cpumask_var(this_sibling_map);
8609 free_cpumask_var(nodemask);
8612 free_cpumask_var(notcovered);
8614 free_cpumask_var(covered);
8616 free_cpumask_var(domainspan);
8623 kfree(sched_group_nodes);
8629 free_sched_groups(cpu_map, tmpmask);
8630 free_rootdomain(rd);
8635 static int build_sched_domains(const struct cpumask *cpu_map)
8637 return __build_sched_domains(cpu_map, NULL);
8640 static struct cpumask *doms_cur; /* current sched domains */
8641 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8642 static struct sched_domain_attr *dattr_cur;
8643 /* attribues of custom domains in 'doms_cur' */
8646 * Special case: If a kmalloc of a doms_cur partition (array of
8647 * cpumask) fails, then fallback to a single sched domain,
8648 * as determined by the single cpumask fallback_doms.
8650 static cpumask_var_t fallback_doms;
8653 * arch_update_cpu_topology lets virtualized architectures update the
8654 * cpu core maps. It is supposed to return 1 if the topology changed
8655 * or 0 if it stayed the same.
8657 int __attribute__((weak)) arch_update_cpu_topology(void)
8663 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8664 * For now this just excludes isolated cpus, but could be used to
8665 * exclude other special cases in the future.
8667 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8671 arch_update_cpu_topology();
8673 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8675 doms_cur = fallback_doms;
8676 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8678 err = build_sched_domains(doms_cur);
8679 register_sched_domain_sysctl();
8684 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8685 struct cpumask *tmpmask)
8687 free_sched_groups(cpu_map, tmpmask);
8691 * Detach sched domains from a group of cpus specified in cpu_map
8692 * These cpus will now be attached to the NULL domain
8694 static void detach_destroy_domains(const struct cpumask *cpu_map)
8696 /* Save because hotplug lock held. */
8697 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8700 for_each_cpu(i, cpu_map)
8701 cpu_attach_domain(NULL, &def_root_domain, i);
8702 synchronize_sched();
8703 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8706 /* handle null as "default" */
8707 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8708 struct sched_domain_attr *new, int idx_new)
8710 struct sched_domain_attr tmp;
8717 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8718 new ? (new + idx_new) : &tmp,
8719 sizeof(struct sched_domain_attr));
8723 * Partition sched domains as specified by the 'ndoms_new'
8724 * cpumasks in the array doms_new[] of cpumasks. This compares
8725 * doms_new[] to the current sched domain partitioning, doms_cur[].
8726 * It destroys each deleted domain and builds each new domain.
8728 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8729 * The masks don't intersect (don't overlap.) We should setup one
8730 * sched domain for each mask. CPUs not in any of the cpumasks will
8731 * not be load balanced. If the same cpumask appears both in the
8732 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8735 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8736 * ownership of it and will kfree it when done with it. If the caller
8737 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8738 * ndoms_new == 1, and partition_sched_domains() will fallback to
8739 * the single partition 'fallback_doms', it also forces the domains
8742 * If doms_new == NULL it will be replaced with cpu_online_mask.
8743 * ndoms_new == 0 is a special case for destroying existing domains,
8744 * and it will not create the default domain.
8746 * Call with hotplug lock held
8748 /* FIXME: Change to struct cpumask *doms_new[] */
8749 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8750 struct sched_domain_attr *dattr_new)
8755 mutex_lock(&sched_domains_mutex);
8757 /* always unregister in case we don't destroy any domains */
8758 unregister_sched_domain_sysctl();
8760 /* Let architecture update cpu core mappings. */
8761 new_topology = arch_update_cpu_topology();
8763 n = doms_new ? ndoms_new : 0;
8765 /* Destroy deleted domains */
8766 for (i = 0; i < ndoms_cur; i++) {
8767 for (j = 0; j < n && !new_topology; j++) {
8768 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8769 && dattrs_equal(dattr_cur, i, dattr_new, j))
8772 /* no match - a current sched domain not in new doms_new[] */
8773 detach_destroy_domains(doms_cur + i);
8778 if (doms_new == NULL) {
8780 doms_new = fallback_doms;
8781 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8782 WARN_ON_ONCE(dattr_new);
8785 /* Build new domains */
8786 for (i = 0; i < ndoms_new; i++) {
8787 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8788 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8789 && dattrs_equal(dattr_new, i, dattr_cur, j))
8792 /* no match - add a new doms_new */
8793 __build_sched_domains(doms_new + i,
8794 dattr_new ? dattr_new + i : NULL);
8799 /* Remember the new sched domains */
8800 if (doms_cur != fallback_doms)
8802 kfree(dattr_cur); /* kfree(NULL) is safe */
8803 doms_cur = doms_new;
8804 dattr_cur = dattr_new;
8805 ndoms_cur = ndoms_new;
8807 register_sched_domain_sysctl();
8809 mutex_unlock(&sched_domains_mutex);
8812 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8813 static void arch_reinit_sched_domains(void)
8817 /* Destroy domains first to force the rebuild */
8818 partition_sched_domains(0, NULL, NULL);
8820 rebuild_sched_domains();
8824 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8826 unsigned int level = 0;
8828 if (sscanf(buf, "%u", &level) != 1)
8832 * level is always be positive so don't check for
8833 * level < POWERSAVINGS_BALANCE_NONE which is 0
8834 * What happens on 0 or 1 byte write,
8835 * need to check for count as well?
8838 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8842 sched_smt_power_savings = level;
8844 sched_mc_power_savings = level;
8846 arch_reinit_sched_domains();
8851 #ifdef CONFIG_SCHED_MC
8852 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8855 return sprintf(page, "%u\n", sched_mc_power_savings);
8857 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8858 const char *buf, size_t count)
8860 return sched_power_savings_store(buf, count, 0);
8862 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8863 sched_mc_power_savings_show,
8864 sched_mc_power_savings_store);
8867 #ifdef CONFIG_SCHED_SMT
8868 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8871 return sprintf(page, "%u\n", sched_smt_power_savings);
8873 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8874 const char *buf, size_t count)
8876 return sched_power_savings_store(buf, count, 1);
8878 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8879 sched_smt_power_savings_show,
8880 sched_smt_power_savings_store);
8883 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8887 #ifdef CONFIG_SCHED_SMT
8889 err = sysfs_create_file(&cls->kset.kobj,
8890 &attr_sched_smt_power_savings.attr);
8892 #ifdef CONFIG_SCHED_MC
8893 if (!err && mc_capable())
8894 err = sysfs_create_file(&cls->kset.kobj,
8895 &attr_sched_mc_power_savings.attr);
8899 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8901 #ifndef CONFIG_CPUSETS
8903 * Add online and remove offline CPUs from the scheduler domains.
8904 * When cpusets are enabled they take over this function.
8906 static int update_sched_domains(struct notifier_block *nfb,
8907 unsigned long action, void *hcpu)
8911 case CPU_ONLINE_FROZEN:
8913 case CPU_DEAD_FROZEN:
8914 partition_sched_domains(1, NULL, NULL);
8923 static int update_runtime(struct notifier_block *nfb,
8924 unsigned long action, void *hcpu)
8926 int cpu = (int)(long)hcpu;
8929 case CPU_DOWN_PREPARE:
8930 case CPU_DOWN_PREPARE_FROZEN:
8931 disable_runtime(cpu_rq(cpu));
8934 case CPU_DOWN_FAILED:
8935 case CPU_DOWN_FAILED_FROZEN:
8937 case CPU_ONLINE_FROZEN:
8938 enable_runtime(cpu_rq(cpu));
8946 void __init sched_init_smp(void)
8948 cpumask_var_t non_isolated_cpus;
8950 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8952 #if defined(CONFIG_NUMA)
8953 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8955 BUG_ON(sched_group_nodes_bycpu == NULL);
8958 mutex_lock(&sched_domains_mutex);
8959 arch_init_sched_domains(cpu_online_mask);
8960 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8961 if (cpumask_empty(non_isolated_cpus))
8962 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8963 mutex_unlock(&sched_domains_mutex);
8966 #ifndef CONFIG_CPUSETS
8967 /* XXX: Theoretical race here - CPU may be hotplugged now */
8968 hotcpu_notifier(update_sched_domains, 0);
8971 /* RT runtime code needs to handle some hotplug events */
8972 hotcpu_notifier(update_runtime, 0);
8976 /* Move init over to a non-isolated CPU */
8977 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8979 sched_init_granularity();
8980 free_cpumask_var(non_isolated_cpus);
8982 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8983 init_sched_rt_class();
8986 void __init sched_init_smp(void)
8988 sched_init_granularity();
8990 #endif /* CONFIG_SMP */
8992 int in_sched_functions(unsigned long addr)
8994 return in_lock_functions(addr) ||
8995 (addr >= (unsigned long)__sched_text_start
8996 && addr < (unsigned long)__sched_text_end);
8999 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9001 cfs_rq->tasks_timeline = RB_ROOT;
9002 INIT_LIST_HEAD(&cfs_rq->tasks);
9003 #ifdef CONFIG_FAIR_GROUP_SCHED
9006 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9009 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9011 struct rt_prio_array *array;
9014 array = &rt_rq->active;
9015 for (i = 0; i < MAX_RT_PRIO; i++) {
9016 INIT_LIST_HEAD(array->queue + i);
9017 __clear_bit(i, array->bitmap);
9019 /* delimiter for bitsearch: */
9020 __set_bit(MAX_RT_PRIO, array->bitmap);
9022 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9023 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9025 rt_rq->highest_prio.next = MAX_RT_PRIO;
9029 rt_rq->rt_nr_migratory = 0;
9030 rt_rq->overloaded = 0;
9031 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9035 rt_rq->rt_throttled = 0;
9036 rt_rq->rt_runtime = 0;
9037 spin_lock_init(&rt_rq->rt_runtime_lock);
9039 #ifdef CONFIG_RT_GROUP_SCHED
9040 rt_rq->rt_nr_boosted = 0;
9045 #ifdef CONFIG_FAIR_GROUP_SCHED
9046 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9047 struct sched_entity *se, int cpu, int add,
9048 struct sched_entity *parent)
9050 struct rq *rq = cpu_rq(cpu);
9051 tg->cfs_rq[cpu] = cfs_rq;
9052 init_cfs_rq(cfs_rq, rq);
9055 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9058 /* se could be NULL for init_task_group */
9063 se->cfs_rq = &rq->cfs;
9065 se->cfs_rq = parent->my_q;
9068 se->load.weight = tg->shares;
9069 se->load.inv_weight = 0;
9070 se->parent = parent;
9074 #ifdef CONFIG_RT_GROUP_SCHED
9075 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9076 struct sched_rt_entity *rt_se, int cpu, int add,
9077 struct sched_rt_entity *parent)
9079 struct rq *rq = cpu_rq(cpu);
9081 tg->rt_rq[cpu] = rt_rq;
9082 init_rt_rq(rt_rq, rq);
9084 rt_rq->rt_se = rt_se;
9085 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9087 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9089 tg->rt_se[cpu] = rt_se;
9094 rt_se->rt_rq = &rq->rt;
9096 rt_se->rt_rq = parent->my_q;
9098 rt_se->my_q = rt_rq;
9099 rt_se->parent = parent;
9100 INIT_LIST_HEAD(&rt_se->run_list);
9104 void __init sched_init(void)
9107 unsigned long alloc_size = 0, ptr;
9109 #ifdef CONFIG_FAIR_GROUP_SCHED
9110 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9112 #ifdef CONFIG_RT_GROUP_SCHED
9113 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9115 #ifdef CONFIG_USER_SCHED
9118 #ifdef CONFIG_CPUMASK_OFFSTACK
9119 alloc_size += num_possible_cpus() * cpumask_size();
9122 * As sched_init() is called before page_alloc is setup,
9123 * we use alloc_bootmem().
9126 ptr = (unsigned long)alloc_bootmem(alloc_size);
9128 #ifdef CONFIG_FAIR_GROUP_SCHED
9129 init_task_group.se = (struct sched_entity **)ptr;
9130 ptr += nr_cpu_ids * sizeof(void **);
9132 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9133 ptr += nr_cpu_ids * sizeof(void **);
9135 #ifdef CONFIG_USER_SCHED
9136 root_task_group.se = (struct sched_entity **)ptr;
9137 ptr += nr_cpu_ids * sizeof(void **);
9139 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9140 ptr += nr_cpu_ids * sizeof(void **);
9141 #endif /* CONFIG_USER_SCHED */
9142 #endif /* CONFIG_FAIR_GROUP_SCHED */
9143 #ifdef CONFIG_RT_GROUP_SCHED
9144 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9145 ptr += nr_cpu_ids * sizeof(void **);
9147 init_task_group.rt_rq = (struct rt_rq **)ptr;
9148 ptr += nr_cpu_ids * sizeof(void **);
9150 #ifdef CONFIG_USER_SCHED
9151 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9152 ptr += nr_cpu_ids * sizeof(void **);
9154 root_task_group.rt_rq = (struct rt_rq **)ptr;
9155 ptr += nr_cpu_ids * sizeof(void **);
9156 #endif /* CONFIG_USER_SCHED */
9157 #endif /* CONFIG_RT_GROUP_SCHED */
9158 #ifdef CONFIG_CPUMASK_OFFSTACK
9159 for_each_possible_cpu(i) {
9160 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9161 ptr += cpumask_size();
9163 #endif /* CONFIG_CPUMASK_OFFSTACK */
9167 init_defrootdomain();
9170 init_rt_bandwidth(&def_rt_bandwidth,
9171 global_rt_period(), global_rt_runtime());
9173 #ifdef CONFIG_RT_GROUP_SCHED
9174 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9175 global_rt_period(), global_rt_runtime());
9176 #ifdef CONFIG_USER_SCHED
9177 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9178 global_rt_period(), RUNTIME_INF);
9179 #endif /* CONFIG_USER_SCHED */
9180 #endif /* CONFIG_RT_GROUP_SCHED */
9182 #ifdef CONFIG_GROUP_SCHED
9183 list_add(&init_task_group.list, &task_groups);
9184 INIT_LIST_HEAD(&init_task_group.children);
9186 #ifdef CONFIG_USER_SCHED
9187 INIT_LIST_HEAD(&root_task_group.children);
9188 init_task_group.parent = &root_task_group;
9189 list_add(&init_task_group.siblings, &root_task_group.children);
9190 #endif /* CONFIG_USER_SCHED */
9191 #endif /* CONFIG_GROUP_SCHED */
9193 for_each_possible_cpu(i) {
9197 spin_lock_init(&rq->lock);
9199 rq->calc_load_active = 0;
9200 rq->calc_load_update = jiffies + LOAD_FREQ;
9201 init_cfs_rq(&rq->cfs, rq);
9202 init_rt_rq(&rq->rt, rq);
9203 #ifdef CONFIG_FAIR_GROUP_SCHED
9204 init_task_group.shares = init_task_group_load;
9205 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9206 #ifdef CONFIG_CGROUP_SCHED
9208 * How much cpu bandwidth does init_task_group get?
9210 * In case of task-groups formed thr' the cgroup filesystem, it
9211 * gets 100% of the cpu resources in the system. This overall
9212 * system cpu resource is divided among the tasks of
9213 * init_task_group and its child task-groups in a fair manner,
9214 * based on each entity's (task or task-group's) weight
9215 * (se->load.weight).
9217 * In other words, if init_task_group has 10 tasks of weight
9218 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9219 * then A0's share of the cpu resource is:
9221 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9223 * We achieve this by letting init_task_group's tasks sit
9224 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9226 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9227 #elif defined CONFIG_USER_SCHED
9228 root_task_group.shares = NICE_0_LOAD;
9229 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9231 * In case of task-groups formed thr' the user id of tasks,
9232 * init_task_group represents tasks belonging to root user.
9233 * Hence it forms a sibling of all subsequent groups formed.
9234 * In this case, init_task_group gets only a fraction of overall
9235 * system cpu resource, based on the weight assigned to root
9236 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9237 * by letting tasks of init_task_group sit in a separate cfs_rq
9238 * (init_cfs_rq) and having one entity represent this group of
9239 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9241 init_tg_cfs_entry(&init_task_group,
9242 &per_cpu(init_cfs_rq, i),
9243 &per_cpu(init_sched_entity, i), i, 1,
9244 root_task_group.se[i]);
9247 #endif /* CONFIG_FAIR_GROUP_SCHED */
9249 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9250 #ifdef CONFIG_RT_GROUP_SCHED
9251 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9252 #ifdef CONFIG_CGROUP_SCHED
9253 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9254 #elif defined CONFIG_USER_SCHED
9255 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9256 init_tg_rt_entry(&init_task_group,
9257 &per_cpu(init_rt_rq, i),
9258 &per_cpu(init_sched_rt_entity, i), i, 1,
9259 root_task_group.rt_se[i]);
9263 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9264 rq->cpu_load[j] = 0;
9268 rq->active_balance = 0;
9269 rq->next_balance = jiffies;
9273 rq->migration_thread = NULL;
9274 INIT_LIST_HEAD(&rq->migration_queue);
9275 rq_attach_root(rq, &def_root_domain);
9278 atomic_set(&rq->nr_iowait, 0);
9281 set_load_weight(&init_task);
9283 #ifdef CONFIG_PREEMPT_NOTIFIERS
9284 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9288 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9291 #ifdef CONFIG_RT_MUTEXES
9292 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9296 * The boot idle thread does lazy MMU switching as well:
9298 atomic_inc(&init_mm.mm_count);
9299 enter_lazy_tlb(&init_mm, current);
9302 * Make us the idle thread. Technically, schedule() should not be
9303 * called from this thread, however somewhere below it might be,
9304 * but because we are the idle thread, we just pick up running again
9305 * when this runqueue becomes "idle".
9307 init_idle(current, smp_processor_id());
9309 calc_load_update = jiffies + LOAD_FREQ;
9312 * During early bootup we pretend to be a normal task:
9314 current->sched_class = &fair_sched_class;
9316 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9317 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9320 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9321 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9323 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9326 scheduler_running = 1;
9329 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9330 void __might_sleep(char *file, int line)
9333 static unsigned long prev_jiffy; /* ratelimiting */
9335 if ((!in_atomic() && !irqs_disabled()) ||
9336 system_state != SYSTEM_RUNNING || oops_in_progress)
9338 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9340 prev_jiffy = jiffies;
9343 "BUG: sleeping function called from invalid context at %s:%d\n",
9346 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9347 in_atomic(), irqs_disabled(),
9348 current->pid, current->comm);
9350 debug_show_held_locks(current);
9351 if (irqs_disabled())
9352 print_irqtrace_events(current);
9356 EXPORT_SYMBOL(__might_sleep);
9359 #ifdef CONFIG_MAGIC_SYSRQ
9360 static void normalize_task(struct rq *rq, struct task_struct *p)
9364 update_rq_clock(rq);
9365 on_rq = p->se.on_rq;
9367 deactivate_task(rq, p, 0);
9368 __setscheduler(rq, p, SCHED_NORMAL, 0);
9370 activate_task(rq, p, 0);
9371 resched_task(rq->curr);
9375 void normalize_rt_tasks(void)
9377 struct task_struct *g, *p;
9378 unsigned long flags;
9381 read_lock_irqsave(&tasklist_lock, flags);
9382 do_each_thread(g, p) {
9384 * Only normalize user tasks:
9389 p->se.exec_start = 0;
9390 #ifdef CONFIG_SCHEDSTATS
9391 p->se.wait_start = 0;
9392 p->se.sleep_start = 0;
9393 p->se.block_start = 0;
9398 * Renice negative nice level userspace
9401 if (TASK_NICE(p) < 0 && p->mm)
9402 set_user_nice(p, 0);
9406 spin_lock(&p->pi_lock);
9407 rq = __task_rq_lock(p);
9409 normalize_task(rq, p);
9411 __task_rq_unlock(rq);
9412 spin_unlock(&p->pi_lock);
9413 } while_each_thread(g, p);
9415 read_unlock_irqrestore(&tasklist_lock, flags);
9418 #endif /* CONFIG_MAGIC_SYSRQ */
9422 * These functions are only useful for the IA64 MCA handling.
9424 * They can only be called when the whole system has been
9425 * stopped - every CPU needs to be quiescent, and no scheduling
9426 * activity can take place. Using them for anything else would
9427 * be a serious bug, and as a result, they aren't even visible
9428 * under any other configuration.
9432 * curr_task - return the current task for a given cpu.
9433 * @cpu: the processor in question.
9435 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9437 struct task_struct *curr_task(int cpu)
9439 return cpu_curr(cpu);
9443 * set_curr_task - set the current task for a given cpu.
9444 * @cpu: the processor in question.
9445 * @p: the task pointer to set.
9447 * Description: This function must only be used when non-maskable interrupts
9448 * are serviced on a separate stack. It allows the architecture to switch the
9449 * notion of the current task on a cpu in a non-blocking manner. This function
9450 * must be called with all CPU's synchronized, and interrupts disabled, the
9451 * and caller must save the original value of the current task (see
9452 * curr_task() above) and restore that value before reenabling interrupts and
9453 * re-starting the system.
9455 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9457 void set_curr_task(int cpu, struct task_struct *p)
9464 #ifdef CONFIG_FAIR_GROUP_SCHED
9465 static void free_fair_sched_group(struct task_group *tg)
9469 for_each_possible_cpu(i) {
9471 kfree(tg->cfs_rq[i]);
9481 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9483 struct cfs_rq *cfs_rq;
9484 struct sched_entity *se;
9488 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9491 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9495 tg->shares = NICE_0_LOAD;
9497 for_each_possible_cpu(i) {
9500 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9501 GFP_KERNEL, cpu_to_node(i));
9505 se = kzalloc_node(sizeof(struct sched_entity),
9506 GFP_KERNEL, cpu_to_node(i));
9510 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9519 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9521 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9522 &cpu_rq(cpu)->leaf_cfs_rq_list);
9525 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9527 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9529 #else /* !CONFG_FAIR_GROUP_SCHED */
9530 static inline void free_fair_sched_group(struct task_group *tg)
9535 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9540 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9544 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9547 #endif /* CONFIG_FAIR_GROUP_SCHED */
9549 #ifdef CONFIG_RT_GROUP_SCHED
9550 static void free_rt_sched_group(struct task_group *tg)
9554 destroy_rt_bandwidth(&tg->rt_bandwidth);
9556 for_each_possible_cpu(i) {
9558 kfree(tg->rt_rq[i]);
9560 kfree(tg->rt_se[i]);
9568 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9570 struct rt_rq *rt_rq;
9571 struct sched_rt_entity *rt_se;
9575 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9578 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9582 init_rt_bandwidth(&tg->rt_bandwidth,
9583 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9585 for_each_possible_cpu(i) {
9588 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9589 GFP_KERNEL, cpu_to_node(i));
9593 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9594 GFP_KERNEL, cpu_to_node(i));
9598 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9607 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9609 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9610 &cpu_rq(cpu)->leaf_rt_rq_list);
9613 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9615 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9617 #else /* !CONFIG_RT_GROUP_SCHED */
9618 static inline void free_rt_sched_group(struct task_group *tg)
9623 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9628 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9632 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9635 #endif /* CONFIG_RT_GROUP_SCHED */
9637 #ifdef CONFIG_GROUP_SCHED
9638 static void free_sched_group(struct task_group *tg)
9640 free_fair_sched_group(tg);
9641 free_rt_sched_group(tg);
9645 /* allocate runqueue etc for a new task group */
9646 struct task_group *sched_create_group(struct task_group *parent)
9648 struct task_group *tg;
9649 unsigned long flags;
9652 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9654 return ERR_PTR(-ENOMEM);
9656 if (!alloc_fair_sched_group(tg, parent))
9659 if (!alloc_rt_sched_group(tg, parent))
9662 spin_lock_irqsave(&task_group_lock, flags);
9663 for_each_possible_cpu(i) {
9664 register_fair_sched_group(tg, i);
9665 register_rt_sched_group(tg, i);
9667 list_add_rcu(&tg->list, &task_groups);
9669 WARN_ON(!parent); /* root should already exist */
9671 tg->parent = parent;
9672 INIT_LIST_HEAD(&tg->children);
9673 list_add_rcu(&tg->siblings, &parent->children);
9674 spin_unlock_irqrestore(&task_group_lock, flags);
9679 free_sched_group(tg);
9680 return ERR_PTR(-ENOMEM);
9683 /* rcu callback to free various structures associated with a task group */
9684 static void free_sched_group_rcu(struct rcu_head *rhp)
9686 /* now it should be safe to free those cfs_rqs */
9687 free_sched_group(container_of(rhp, struct task_group, rcu));
9690 /* Destroy runqueue etc associated with a task group */
9691 void sched_destroy_group(struct task_group *tg)
9693 unsigned long flags;
9696 spin_lock_irqsave(&task_group_lock, flags);
9697 for_each_possible_cpu(i) {
9698 unregister_fair_sched_group(tg, i);
9699 unregister_rt_sched_group(tg, i);
9701 list_del_rcu(&tg->list);
9702 list_del_rcu(&tg->siblings);
9703 spin_unlock_irqrestore(&task_group_lock, flags);
9705 /* wait for possible concurrent references to cfs_rqs complete */
9706 call_rcu(&tg->rcu, free_sched_group_rcu);
9709 /* change task's runqueue when it moves between groups.
9710 * The caller of this function should have put the task in its new group
9711 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9712 * reflect its new group.
9714 void sched_move_task(struct task_struct *tsk)
9717 unsigned long flags;
9720 rq = task_rq_lock(tsk, &flags);
9722 update_rq_clock(rq);
9724 running = task_current(rq, tsk);
9725 on_rq = tsk->se.on_rq;
9728 dequeue_task(rq, tsk, 0);
9729 if (unlikely(running))
9730 tsk->sched_class->put_prev_task(rq, tsk);
9732 set_task_rq(tsk, task_cpu(tsk));
9734 #ifdef CONFIG_FAIR_GROUP_SCHED
9735 if (tsk->sched_class->moved_group)
9736 tsk->sched_class->moved_group(tsk);
9739 if (unlikely(running))
9740 tsk->sched_class->set_curr_task(rq);
9742 enqueue_task(rq, tsk, 0);
9744 task_rq_unlock(rq, &flags);
9746 #endif /* CONFIG_GROUP_SCHED */
9748 #ifdef CONFIG_FAIR_GROUP_SCHED
9749 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9751 struct cfs_rq *cfs_rq = se->cfs_rq;
9756 dequeue_entity(cfs_rq, se, 0);
9758 se->load.weight = shares;
9759 se->load.inv_weight = 0;
9762 enqueue_entity(cfs_rq, se, 0);
9765 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9767 struct cfs_rq *cfs_rq = se->cfs_rq;
9768 struct rq *rq = cfs_rq->rq;
9769 unsigned long flags;
9771 spin_lock_irqsave(&rq->lock, flags);
9772 __set_se_shares(se, shares);
9773 spin_unlock_irqrestore(&rq->lock, flags);
9776 static DEFINE_MUTEX(shares_mutex);
9778 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9781 unsigned long flags;
9784 * We can't change the weight of the root cgroup.
9789 if (shares < MIN_SHARES)
9790 shares = MIN_SHARES;
9791 else if (shares > MAX_SHARES)
9792 shares = MAX_SHARES;
9794 mutex_lock(&shares_mutex);
9795 if (tg->shares == shares)
9798 spin_lock_irqsave(&task_group_lock, flags);
9799 for_each_possible_cpu(i)
9800 unregister_fair_sched_group(tg, i);
9801 list_del_rcu(&tg->siblings);
9802 spin_unlock_irqrestore(&task_group_lock, flags);
9804 /* wait for any ongoing reference to this group to finish */
9805 synchronize_sched();
9808 * Now we are free to modify the group's share on each cpu
9809 * w/o tripping rebalance_share or load_balance_fair.
9811 tg->shares = shares;
9812 for_each_possible_cpu(i) {
9816 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9817 set_se_shares(tg->se[i], shares);
9821 * Enable load balance activity on this group, by inserting it back on
9822 * each cpu's rq->leaf_cfs_rq_list.
9824 spin_lock_irqsave(&task_group_lock, flags);
9825 for_each_possible_cpu(i)
9826 register_fair_sched_group(tg, i);
9827 list_add_rcu(&tg->siblings, &tg->parent->children);
9828 spin_unlock_irqrestore(&task_group_lock, flags);
9830 mutex_unlock(&shares_mutex);
9834 unsigned long sched_group_shares(struct task_group *tg)
9840 #ifdef CONFIG_RT_GROUP_SCHED
9842 * Ensure that the real time constraints are schedulable.
9844 static DEFINE_MUTEX(rt_constraints_mutex);
9846 static unsigned long to_ratio(u64 period, u64 runtime)
9848 if (runtime == RUNTIME_INF)
9851 return div64_u64(runtime << 20, period);
9854 /* Must be called with tasklist_lock held */
9855 static inline int tg_has_rt_tasks(struct task_group *tg)
9857 struct task_struct *g, *p;
9859 do_each_thread(g, p) {
9860 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9862 } while_each_thread(g, p);
9867 struct rt_schedulable_data {
9868 struct task_group *tg;
9873 static int tg_schedulable(struct task_group *tg, void *data)
9875 struct rt_schedulable_data *d = data;
9876 struct task_group *child;
9877 unsigned long total, sum = 0;
9878 u64 period, runtime;
9880 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9881 runtime = tg->rt_bandwidth.rt_runtime;
9884 period = d->rt_period;
9885 runtime = d->rt_runtime;
9888 #ifdef CONFIG_USER_SCHED
9889 if (tg == &root_task_group) {
9890 period = global_rt_period();
9891 runtime = global_rt_runtime();
9896 * Cannot have more runtime than the period.
9898 if (runtime > period && runtime != RUNTIME_INF)
9902 * Ensure we don't starve existing RT tasks.
9904 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9907 total = to_ratio(period, runtime);
9910 * Nobody can have more than the global setting allows.
9912 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9916 * The sum of our children's runtime should not exceed our own.
9918 list_for_each_entry_rcu(child, &tg->children, siblings) {
9919 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9920 runtime = child->rt_bandwidth.rt_runtime;
9922 if (child == d->tg) {
9923 period = d->rt_period;
9924 runtime = d->rt_runtime;
9927 sum += to_ratio(period, runtime);
9936 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9938 struct rt_schedulable_data data = {
9940 .rt_period = period,
9941 .rt_runtime = runtime,
9944 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9947 static int tg_set_bandwidth(struct task_group *tg,
9948 u64 rt_period, u64 rt_runtime)
9952 mutex_lock(&rt_constraints_mutex);
9953 read_lock(&tasklist_lock);
9954 err = __rt_schedulable(tg, rt_period, rt_runtime);
9958 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9959 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9960 tg->rt_bandwidth.rt_runtime = rt_runtime;
9962 for_each_possible_cpu(i) {
9963 struct rt_rq *rt_rq = tg->rt_rq[i];
9965 spin_lock(&rt_rq->rt_runtime_lock);
9966 rt_rq->rt_runtime = rt_runtime;
9967 spin_unlock(&rt_rq->rt_runtime_lock);
9969 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9971 read_unlock(&tasklist_lock);
9972 mutex_unlock(&rt_constraints_mutex);
9977 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9979 u64 rt_runtime, rt_period;
9981 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9982 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9983 if (rt_runtime_us < 0)
9984 rt_runtime = RUNTIME_INF;
9986 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9989 long sched_group_rt_runtime(struct task_group *tg)
9993 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9996 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9997 do_div(rt_runtime_us, NSEC_PER_USEC);
9998 return rt_runtime_us;
10001 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10003 u64 rt_runtime, rt_period;
10005 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10006 rt_runtime = tg->rt_bandwidth.rt_runtime;
10008 if (rt_period == 0)
10011 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10014 long sched_group_rt_period(struct task_group *tg)
10018 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10019 do_div(rt_period_us, NSEC_PER_USEC);
10020 return rt_period_us;
10023 static int sched_rt_global_constraints(void)
10025 u64 runtime, period;
10028 if (sysctl_sched_rt_period <= 0)
10031 runtime = global_rt_runtime();
10032 period = global_rt_period();
10035 * Sanity check on the sysctl variables.
10037 if (runtime > period && runtime != RUNTIME_INF)
10040 mutex_lock(&rt_constraints_mutex);
10041 read_lock(&tasklist_lock);
10042 ret = __rt_schedulable(NULL, 0, 0);
10043 read_unlock(&tasklist_lock);
10044 mutex_unlock(&rt_constraints_mutex);
10049 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10051 /* Don't accept realtime tasks when there is no way for them to run */
10052 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10058 #else /* !CONFIG_RT_GROUP_SCHED */
10059 static int sched_rt_global_constraints(void)
10061 unsigned long flags;
10064 if (sysctl_sched_rt_period <= 0)
10068 * There's always some RT tasks in the root group
10069 * -- migration, kstopmachine etc..
10071 if (sysctl_sched_rt_runtime == 0)
10074 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10075 for_each_possible_cpu(i) {
10076 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10078 spin_lock(&rt_rq->rt_runtime_lock);
10079 rt_rq->rt_runtime = global_rt_runtime();
10080 spin_unlock(&rt_rq->rt_runtime_lock);
10082 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10086 #endif /* CONFIG_RT_GROUP_SCHED */
10088 int sched_rt_handler(struct ctl_table *table, int write,
10089 struct file *filp, void __user *buffer, size_t *lenp,
10093 int old_period, old_runtime;
10094 static DEFINE_MUTEX(mutex);
10096 mutex_lock(&mutex);
10097 old_period = sysctl_sched_rt_period;
10098 old_runtime = sysctl_sched_rt_runtime;
10100 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10102 if (!ret && write) {
10103 ret = sched_rt_global_constraints();
10105 sysctl_sched_rt_period = old_period;
10106 sysctl_sched_rt_runtime = old_runtime;
10108 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10109 def_rt_bandwidth.rt_period =
10110 ns_to_ktime(global_rt_period());
10113 mutex_unlock(&mutex);
10118 #ifdef CONFIG_CGROUP_SCHED
10120 /* return corresponding task_group object of a cgroup */
10121 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10123 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10124 struct task_group, css);
10127 static struct cgroup_subsys_state *
10128 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10130 struct task_group *tg, *parent;
10132 if (!cgrp->parent) {
10133 /* This is early initialization for the top cgroup */
10134 return &init_task_group.css;
10137 parent = cgroup_tg(cgrp->parent);
10138 tg = sched_create_group(parent);
10140 return ERR_PTR(-ENOMEM);
10146 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10148 struct task_group *tg = cgroup_tg(cgrp);
10150 sched_destroy_group(tg);
10154 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10155 struct task_struct *tsk)
10157 #ifdef CONFIG_RT_GROUP_SCHED
10158 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10161 /* We don't support RT-tasks being in separate groups */
10162 if (tsk->sched_class != &fair_sched_class)
10170 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10171 struct cgroup *old_cont, struct task_struct *tsk)
10173 sched_move_task(tsk);
10176 #ifdef CONFIG_FAIR_GROUP_SCHED
10177 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10180 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10183 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10185 struct task_group *tg = cgroup_tg(cgrp);
10187 return (u64) tg->shares;
10189 #endif /* CONFIG_FAIR_GROUP_SCHED */
10191 #ifdef CONFIG_RT_GROUP_SCHED
10192 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10195 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10198 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10200 return sched_group_rt_runtime(cgroup_tg(cgrp));
10203 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10206 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10209 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10211 return sched_group_rt_period(cgroup_tg(cgrp));
10213 #endif /* CONFIG_RT_GROUP_SCHED */
10215 static struct cftype cpu_files[] = {
10216 #ifdef CONFIG_FAIR_GROUP_SCHED
10219 .read_u64 = cpu_shares_read_u64,
10220 .write_u64 = cpu_shares_write_u64,
10223 #ifdef CONFIG_RT_GROUP_SCHED
10225 .name = "rt_runtime_us",
10226 .read_s64 = cpu_rt_runtime_read,
10227 .write_s64 = cpu_rt_runtime_write,
10230 .name = "rt_period_us",
10231 .read_u64 = cpu_rt_period_read_uint,
10232 .write_u64 = cpu_rt_period_write_uint,
10237 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10239 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10242 struct cgroup_subsys cpu_cgroup_subsys = {
10244 .create = cpu_cgroup_create,
10245 .destroy = cpu_cgroup_destroy,
10246 .can_attach = cpu_cgroup_can_attach,
10247 .attach = cpu_cgroup_attach,
10248 .populate = cpu_cgroup_populate,
10249 .subsys_id = cpu_cgroup_subsys_id,
10253 #endif /* CONFIG_CGROUP_SCHED */
10255 #ifdef CONFIG_CGROUP_CPUACCT
10258 * CPU accounting code for task groups.
10260 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10261 * (balbir@in.ibm.com).
10264 /* track cpu usage of a group of tasks and its child groups */
10266 struct cgroup_subsys_state css;
10267 /* cpuusage holds pointer to a u64-type object on every cpu */
10269 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10270 struct cpuacct *parent;
10273 struct cgroup_subsys cpuacct_subsys;
10275 /* return cpu accounting group corresponding to this container */
10276 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10278 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10279 struct cpuacct, css);
10282 /* return cpu accounting group to which this task belongs */
10283 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10285 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10286 struct cpuacct, css);
10289 /* create a new cpu accounting group */
10290 static struct cgroup_subsys_state *cpuacct_create(
10291 struct cgroup_subsys *ss, struct cgroup *cgrp)
10293 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10299 ca->cpuusage = alloc_percpu(u64);
10303 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10304 if (percpu_counter_init(&ca->cpustat[i], 0))
10305 goto out_free_counters;
10308 ca->parent = cgroup_ca(cgrp->parent);
10314 percpu_counter_destroy(&ca->cpustat[i]);
10315 free_percpu(ca->cpuusage);
10319 return ERR_PTR(-ENOMEM);
10322 /* destroy an existing cpu accounting group */
10324 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10326 struct cpuacct *ca = cgroup_ca(cgrp);
10329 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10330 percpu_counter_destroy(&ca->cpustat[i]);
10331 free_percpu(ca->cpuusage);
10335 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10337 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10340 #ifndef CONFIG_64BIT
10342 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10344 spin_lock_irq(&cpu_rq(cpu)->lock);
10346 spin_unlock_irq(&cpu_rq(cpu)->lock);
10354 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10356 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10358 #ifndef CONFIG_64BIT
10360 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10362 spin_lock_irq(&cpu_rq(cpu)->lock);
10364 spin_unlock_irq(&cpu_rq(cpu)->lock);
10370 /* return total cpu usage (in nanoseconds) of a group */
10371 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10373 struct cpuacct *ca = cgroup_ca(cgrp);
10374 u64 totalcpuusage = 0;
10377 for_each_present_cpu(i)
10378 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10380 return totalcpuusage;
10383 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10386 struct cpuacct *ca = cgroup_ca(cgrp);
10395 for_each_present_cpu(i)
10396 cpuacct_cpuusage_write(ca, i, 0);
10402 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10403 struct seq_file *m)
10405 struct cpuacct *ca = cgroup_ca(cgroup);
10409 for_each_present_cpu(i) {
10410 percpu = cpuacct_cpuusage_read(ca, i);
10411 seq_printf(m, "%llu ", (unsigned long long) percpu);
10413 seq_printf(m, "\n");
10417 static const char *cpuacct_stat_desc[] = {
10418 [CPUACCT_STAT_USER] = "user",
10419 [CPUACCT_STAT_SYSTEM] = "system",
10422 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10423 struct cgroup_map_cb *cb)
10425 struct cpuacct *ca = cgroup_ca(cgrp);
10428 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10429 s64 val = percpu_counter_read(&ca->cpustat[i]);
10430 val = cputime64_to_clock_t(val);
10431 cb->fill(cb, cpuacct_stat_desc[i], val);
10436 static struct cftype files[] = {
10439 .read_u64 = cpuusage_read,
10440 .write_u64 = cpuusage_write,
10443 .name = "usage_percpu",
10444 .read_seq_string = cpuacct_percpu_seq_read,
10448 .read_map = cpuacct_stats_show,
10452 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10454 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10458 * charge this task's execution time to its accounting group.
10460 * called with rq->lock held.
10462 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10464 struct cpuacct *ca;
10467 if (unlikely(!cpuacct_subsys.active))
10470 cpu = task_cpu(tsk);
10476 for (; ca; ca = ca->parent) {
10477 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10478 *cpuusage += cputime;
10485 * Charge the system/user time to the task's accounting group.
10487 static void cpuacct_update_stats(struct task_struct *tsk,
10488 enum cpuacct_stat_index idx, cputime_t val)
10490 struct cpuacct *ca;
10492 if (unlikely(!cpuacct_subsys.active))
10499 percpu_counter_add(&ca->cpustat[idx], val);
10505 struct cgroup_subsys cpuacct_subsys = {
10507 .create = cpuacct_create,
10508 .destroy = cpuacct_destroy,
10509 .populate = cpuacct_populate,
10510 .subsys_id = cpuacct_subsys_id,
10512 #endif /* CONFIG_CGROUP_CPUACCT */