[SPARC64]: SMP build fixes.
[linux-2.6] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33
34 #include <asm/irq.h>
35 #include <asm/irq_regs.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/oplib.h>
39 #include <asm/uaccess.h>
40 #include <asm/timer.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47
48 extern void calibrate_delay(void);
49
50 int sparc64_multi_core __read_mostly;
51
52 /* Please don't make this stuff initdata!!!  --DaveM */
53 unsigned char boot_cpu_id;
54
55 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
56 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
57 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
58         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_SYMBOL(cpu_possible_map);
63 EXPORT_SYMBOL(cpu_online_map);
64 EXPORT_SYMBOL(cpu_sibling_map);
65 EXPORT_SYMBOL(cpu_core_map);
66
67 static cpumask_t smp_commenced_mask;
68 static cpumask_t cpu_callout_map;
69
70 void smp_info(struct seq_file *m)
71 {
72         int i;
73         
74         seq_printf(m, "State:\n");
75         for_each_online_cpu(i)
76                 seq_printf(m, "CPU%d:\t\tonline\n", i);
77 }
78
79 void smp_bogo(struct seq_file *m)
80 {
81         int i;
82         
83         for_each_online_cpu(i)
84                 seq_printf(m,
85                            "Cpu%dBogo\t: %lu.%02lu\n"
86                            "Cpu%dClkTck\t: %016lx\n",
87                            i, cpu_data(i).udelay_val / (500000/HZ),
88                            (cpu_data(i).udelay_val / (5000/HZ)) % 100,
89                            i, cpu_data(i).clock_tick);
90 }
91
92 extern void setup_sparc64_timer(void);
93
94 static volatile unsigned long callin_flag = 0;
95
96 void __devinit smp_callin(void)
97 {
98         int cpuid = hard_smp_processor_id();
99         struct trap_per_cpu *tb = &trap_block[cpuid];;
100
101         __local_per_cpu_offset = __per_cpu_offset(cpuid);
102
103         if (tlb_type == hypervisor)
104                 sun4v_ktsb_register();
105
106         __flush_tlb_all();
107
108         setup_sparc64_timer();
109
110         if (cheetah_pcache_forced_on)
111                 cheetah_enable_pcache();
112
113         local_irq_enable();
114
115         calibrate_delay();
116         cpu_data(cpuid).udelay_val = loops_per_jiffy;
117         callin_flag = 1;
118         __asm__ __volatile__("membar #Sync\n\t"
119                              "flush  %%g6" : : : "memory");
120
121         /* Clear this or we will die instantly when we
122          * schedule back to this idler...
123          */
124         current_thread_info()->new_child = 0;
125
126         /* Attach to the address space of init_task. */
127         atomic_inc(&init_mm.mm_count);
128         current->active_mm = &init_mm;
129
130         if (tb->hdesc) {
131                 kfree(tb->hdesc);
132                 tb->hdesc = NULL;
133         }
134
135         while (!cpu_isset(cpuid, smp_commenced_mask))
136                 rmb();
137
138         cpu_set(cpuid, cpu_online_map);
139
140         /* idle thread is expected to have preempt disabled */
141         preempt_disable();
142 }
143
144 void cpu_panic(void)
145 {
146         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147         panic("SMP bolixed\n");
148 }
149
150 /* This tick register synchronization scheme is taken entirely from
151  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152  *
153  * The only change I've made is to rework it so that the master
154  * initiates the synchonization instead of the slave. -DaveM
155  */
156
157 #define MASTER  0
158 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
159
160 #define NUM_ROUNDS      64      /* magic value */
161 #define NUM_ITERS       5       /* likewise */
162
163 static DEFINE_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
165
166 #define DEBUG_TICK_SYNC 0
167
168 static inline long get_delta (long *rt, long *master)
169 {
170         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171         unsigned long tcenter, t0, t1, tm;
172         unsigned long i;
173
174         for (i = 0; i < NUM_ITERS; i++) {
175                 t0 = tick_ops->get_tick();
176                 go[MASTER] = 1;
177                 membar_storeload();
178                 while (!(tm = go[SLAVE]))
179                         rmb();
180                 go[SLAVE] = 0;
181                 wmb();
182                 t1 = tick_ops->get_tick();
183
184                 if (t1 - t0 < best_t1 - best_t0)
185                         best_t0 = t0, best_t1 = t1, best_tm = tm;
186         }
187
188         *rt = best_t1 - best_t0;
189         *master = best_tm - best_t0;
190
191         /* average best_t0 and best_t1 without overflow: */
192         tcenter = (best_t0/2 + best_t1/2);
193         if (best_t0 % 2 + best_t1 % 2 == 2)
194                 tcenter++;
195         return tcenter - best_tm;
196 }
197
198 void smp_synchronize_tick_client(void)
199 {
200         long i, delta, adj, adjust_latency = 0, done = 0;
201         unsigned long flags, rt, master_time_stamp, bound;
202 #if DEBUG_TICK_SYNC
203         struct {
204                 long rt;        /* roundtrip time */
205                 long master;    /* master's timestamp */
206                 long diff;      /* difference between midpoint and master's timestamp */
207                 long lat;       /* estimate of itc adjustment latency */
208         } t[NUM_ROUNDS];
209 #endif
210
211         go[MASTER] = 1;
212
213         while (go[MASTER])
214                 rmb();
215
216         local_irq_save(flags);
217         {
218                 for (i = 0; i < NUM_ROUNDS; i++) {
219                         delta = get_delta(&rt, &master_time_stamp);
220                         if (delta == 0) {
221                                 done = 1;       /* let's lock on to this... */
222                                 bound = rt;
223                         }
224
225                         if (!done) {
226                                 if (i > 0) {
227                                         adjust_latency += -delta;
228                                         adj = -delta + adjust_latency/4;
229                                 } else
230                                         adj = -delta;
231
232                                 tick_ops->add_tick(adj);
233                         }
234 #if DEBUG_TICK_SYNC
235                         t[i].rt = rt;
236                         t[i].master = master_time_stamp;
237                         t[i].diff = delta;
238                         t[i].lat = adjust_latency/4;
239 #endif
240                 }
241         }
242         local_irq_restore(flags);
243
244 #if DEBUG_TICK_SYNC
245         for (i = 0; i < NUM_ROUNDS; i++)
246                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249
250         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
251                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
252 }
253
254 static void smp_start_sync_tick_client(int cpu);
255
256 static void smp_synchronize_one_tick(int cpu)
257 {
258         unsigned long flags, i;
259
260         go[MASTER] = 0;
261
262         smp_start_sync_tick_client(cpu);
263
264         /* wait for client to be ready */
265         while (!go[MASTER])
266                 rmb();
267
268         /* now let the client proceed into his loop */
269         go[MASTER] = 0;
270         membar_storeload();
271
272         spin_lock_irqsave(&itc_sync_lock, flags);
273         {
274                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
275                         while (!go[MASTER])
276                                 rmb();
277                         go[MASTER] = 0;
278                         wmb();
279                         go[SLAVE] = tick_ops->get_tick();
280                         membar_storeload();
281                 }
282         }
283         spin_unlock_irqrestore(&itc_sync_lock, flags);
284 }
285
286 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
287 /* XXX Put this in some common place. XXX */
288 static unsigned long kimage_addr_to_ra(void *p)
289 {
290         unsigned long val = (unsigned long) p;
291
292         return kern_base + (val - KERNBASE);
293 }
294
295 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
296 {
297         extern unsigned long sparc64_ttable_tl0;
298         extern unsigned long kern_locked_tte_data;
299         extern int bigkernel;
300         struct hvtramp_descr *hdesc;
301         unsigned long trampoline_ra;
302         struct trap_per_cpu *tb;
303         u64 tte_vaddr, tte_data;
304         unsigned long hv_err;
305
306         hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
307         if (!hdesc) {
308                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
309                        "hvtramp_descr.\n");
310                 return;
311         }
312
313         hdesc->cpu = cpu;
314         hdesc->num_mappings = (bigkernel ? 2 : 1);
315
316         tb = &trap_block[cpu];
317         tb->hdesc = hdesc;
318
319         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
320         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
321
322         hdesc->thread_reg = thread_reg;
323
324         tte_vaddr = (unsigned long) KERNBASE;
325         tte_data = kern_locked_tte_data;
326
327         hdesc->maps[0].vaddr = tte_vaddr;
328         hdesc->maps[0].tte   = tte_data;
329         if (bigkernel) {
330                 tte_vaddr += 0x400000;
331                 tte_data  += 0x400000;
332                 hdesc->maps[1].vaddr = tte_vaddr;
333                 hdesc->maps[1].tte   = tte_data;
334         }
335
336         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
337
338         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
339                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
340                                  __pa(hdesc));
341 }
342 #endif
343
344 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
345
346 extern unsigned long sparc64_cpu_startup;
347
348 /* The OBP cpu startup callback truncates the 3rd arg cookie to
349  * 32-bits (I think) so to be safe we have it read the pointer
350  * contained here so we work on >4GB machines. -DaveM
351  */
352 static struct thread_info *cpu_new_thread = NULL;
353
354 static int __devinit smp_boot_one_cpu(unsigned int cpu)
355 {
356         unsigned long entry =
357                 (unsigned long)(&sparc64_cpu_startup);
358         unsigned long cookie =
359                 (unsigned long)(&cpu_new_thread);
360         struct task_struct *p;
361         int timeout, ret;
362
363         p = fork_idle(cpu);
364         callin_flag = 0;
365         cpu_new_thread = task_thread_info(p);
366         cpu_set(cpu, cpu_callout_map);
367
368         if (tlb_type == hypervisor) {
369                 /* Alloc the mondo queues, cpu will load them.  */
370                 sun4v_init_mondo_queues(0, cpu, 1, 0);
371
372 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
373                 if (ldom_domaining_enabled)
374                         ldom_startcpu_cpuid(cpu,
375                                             (unsigned long) cpu_new_thread);
376                 else
377 #endif
378                         prom_startcpu_cpuid(cpu, entry, cookie);
379         } else {
380                 struct device_node *dp = of_find_node_by_cpuid(cpu);
381
382                 prom_startcpu(dp->node, entry, cookie);
383         }
384
385         for (timeout = 0; timeout < 50000; timeout++) {
386                 if (callin_flag)
387                         break;
388                 udelay(100);
389         }
390
391         if (callin_flag) {
392                 ret = 0;
393         } else {
394                 printk("Processor %d is stuck.\n", cpu);
395                 cpu_clear(cpu, cpu_callout_map);
396                 ret = -ENODEV;
397         }
398         cpu_new_thread = NULL;
399
400         return ret;
401 }
402
403 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
404 {
405         u64 result, target;
406         int stuck, tmp;
407
408         if (this_is_starfire) {
409                 /* map to real upaid */
410                 cpu = (((cpu & 0x3c) << 1) |
411                         ((cpu & 0x40) >> 4) |
412                         (cpu & 0x3));
413         }
414
415         target = (cpu << 14) | 0x70;
416 again:
417         /* Ok, this is the real Spitfire Errata #54.
418          * One must read back from a UDB internal register
419          * after writes to the UDB interrupt dispatch, but
420          * before the membar Sync for that write.
421          * So we use the high UDB control register (ASI 0x7f,
422          * ADDR 0x20) for the dummy read. -DaveM
423          */
424         tmp = 0x40;
425         __asm__ __volatile__(
426         "wrpr   %1, %2, %%pstate\n\t"
427         "stxa   %4, [%0] %3\n\t"
428         "stxa   %5, [%0+%8] %3\n\t"
429         "add    %0, %8, %0\n\t"
430         "stxa   %6, [%0+%8] %3\n\t"
431         "membar #Sync\n\t"
432         "stxa   %%g0, [%7] %3\n\t"
433         "membar #Sync\n\t"
434         "mov    0x20, %%g1\n\t"
435         "ldxa   [%%g1] 0x7f, %%g0\n\t"
436         "membar #Sync"
437         : "=r" (tmp)
438         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
439           "r" (data0), "r" (data1), "r" (data2), "r" (target),
440           "r" (0x10), "0" (tmp)
441         : "g1");
442
443         /* NOTE: PSTATE_IE is still clear. */
444         stuck = 100000;
445         do {
446                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
447                         : "=r" (result)
448                         : "i" (ASI_INTR_DISPATCH_STAT));
449                 if (result == 0) {
450                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451                                              : : "r" (pstate));
452                         return;
453                 }
454                 stuck -= 1;
455                 if (stuck == 0)
456                         break;
457         } while (result & 0x1);
458         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
459                              : : "r" (pstate));
460         if (stuck == 0) {
461                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
462                        smp_processor_id(), result);
463         } else {
464                 udelay(2);
465                 goto again;
466         }
467 }
468
469 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
470 {
471         u64 pstate;
472         int i;
473
474         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
475         for_each_cpu_mask(i, mask)
476                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480  * packet, but we have no use for that.  However we do take advantage of
481  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482  */
483 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
484 {
485         u64 pstate, ver;
486         int nack_busy_id, is_jbus, need_more;
487
488         if (cpus_empty(mask))
489                 return;
490
491         /* Unfortunately, someone at Sun had the brilliant idea to make the
492          * busy/nack fields hard-coded by ITID number for this Ultra-III
493          * derivative processor.
494          */
495         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
496         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497                    (ver >> 32) == __SERRANO_ID);
498
499         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500
501 retry:
502         need_more = 0;
503         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504                              : : "r" (pstate), "i" (PSTATE_IE));
505
506         /* Setup the dispatch data registers. */
507         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
508                              "stxa      %1, [%4] %6\n\t"
509                              "stxa      %2, [%5] %6\n\t"
510                              "membar    #Sync\n\t"
511                              : /* no outputs */
512                              : "r" (data0), "r" (data1), "r" (data2),
513                                "r" (0x40), "r" (0x50), "r" (0x60),
514                                "i" (ASI_INTR_W));
515
516         nack_busy_id = 0;
517         {
518                 int i;
519
520                 for_each_cpu_mask(i, mask) {
521                         u64 target = (i << 14) | 0x70;
522
523                         if (!is_jbus)
524                                 target |= (nack_busy_id << 24);
525                         __asm__ __volatile__(
526                                 "stxa   %%g0, [%0] %1\n\t"
527                                 "membar #Sync\n\t"
528                                 : /* no outputs */
529                                 : "r" (target), "i" (ASI_INTR_W));
530                         nack_busy_id++;
531                         if (nack_busy_id == 32) {
532                                 need_more = 1;
533                                 break;
534                         }
535                 }
536         }
537
538         /* Now, poll for completion. */
539         {
540                 u64 dispatch_stat;
541                 long stuck;
542
543                 stuck = 100000 * nack_busy_id;
544                 do {
545                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
546                                              : "=r" (dispatch_stat)
547                                              : "i" (ASI_INTR_DISPATCH_STAT));
548                         if (dispatch_stat == 0UL) {
549                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
550                                                      : : "r" (pstate));
551                                 if (unlikely(need_more)) {
552                                         int i, cnt = 0;
553                                         for_each_cpu_mask(i, mask) {
554                                                 cpu_clear(i, mask);
555                                                 cnt++;
556                                                 if (cnt == 32)
557                                                         break;
558                                         }
559                                         goto retry;
560                                 }
561                                 return;
562                         }
563                         if (!--stuck)
564                                 break;
565                 } while (dispatch_stat & 0x5555555555555555UL);
566
567                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
568                                      : : "r" (pstate));
569
570                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
571                         /* Busy bits will not clear, continue instead
572                          * of freezing up on this cpu.
573                          */
574                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
575                                smp_processor_id(), dispatch_stat);
576                 } else {
577                         int i, this_busy_nack = 0;
578
579                         /* Delay some random time with interrupts enabled
580                          * to prevent deadlock.
581                          */
582                         udelay(2 * nack_busy_id);
583
584                         /* Clear out the mask bits for cpus which did not
585                          * NACK us.
586                          */
587                         for_each_cpu_mask(i, mask) {
588                                 u64 check_mask;
589
590                                 if (is_jbus)
591                                         check_mask = (0x2UL << (2*i));
592                                 else
593                                         check_mask = (0x2UL <<
594                                                       this_busy_nack);
595                                 if ((dispatch_stat & check_mask) == 0)
596                                         cpu_clear(i, mask);
597                                 this_busy_nack += 2;
598                                 if (this_busy_nack == 64)
599                                         break;
600                         }
601
602                         goto retry;
603                 }
604         }
605 }
606
607 /* Multi-cpu list version.  */
608 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
609 {
610         struct trap_per_cpu *tb;
611         u16 *cpu_list;
612         u64 *mondo;
613         cpumask_t error_mask;
614         unsigned long flags, status;
615         int cnt, retries, this_cpu, prev_sent, i;
616
617         if (cpus_empty(mask))
618                 return;
619
620         /* We have to do this whole thing with interrupts fully disabled.
621          * Otherwise if we send an xcall from interrupt context it will
622          * corrupt both our mondo block and cpu list state.
623          *
624          * One consequence of this is that we cannot use timeout mechanisms
625          * that depend upon interrupts being delivered locally.  So, for
626          * example, we cannot sample jiffies and expect it to advance.
627          *
628          * Fortunately, udelay() uses %stick/%tick so we can use that.
629          */
630         local_irq_save(flags);
631
632         this_cpu = smp_processor_id();
633         tb = &trap_block[this_cpu];
634
635         mondo = __va(tb->cpu_mondo_block_pa);
636         mondo[0] = data0;
637         mondo[1] = data1;
638         mondo[2] = data2;
639         wmb();
640
641         cpu_list = __va(tb->cpu_list_pa);
642
643         /* Setup the initial cpu list.  */
644         cnt = 0;
645         for_each_cpu_mask(i, mask)
646                 cpu_list[cnt++] = i;
647
648         cpus_clear(error_mask);
649         retries = 0;
650         prev_sent = 0;
651         do {
652                 int forward_progress, n_sent;
653
654                 status = sun4v_cpu_mondo_send(cnt,
655                                               tb->cpu_list_pa,
656                                               tb->cpu_mondo_block_pa);
657
658                 /* HV_EOK means all cpus received the xcall, we're done.  */
659                 if (likely(status == HV_EOK))
660                         break;
661
662                 /* First, see if we made any forward progress.
663                  *
664                  * The hypervisor indicates successful sends by setting
665                  * cpu list entries to the value 0xffff.
666                  */
667                 n_sent = 0;
668                 for (i = 0; i < cnt; i++) {
669                         if (likely(cpu_list[i] == 0xffff))
670                                 n_sent++;
671                 }
672
673                 forward_progress = 0;
674                 if (n_sent > prev_sent)
675                         forward_progress = 1;
676
677                 prev_sent = n_sent;
678
679                 /* If we get a HV_ECPUERROR, then one or more of the cpus
680                  * in the list are in error state.  Use the cpu_state()
681                  * hypervisor call to find out which cpus are in error state.
682                  */
683                 if (unlikely(status == HV_ECPUERROR)) {
684                         for (i = 0; i < cnt; i++) {
685                                 long err;
686                                 u16 cpu;
687
688                                 cpu = cpu_list[i];
689                                 if (cpu == 0xffff)
690                                         continue;
691
692                                 err = sun4v_cpu_state(cpu);
693                                 if (err >= 0 &&
694                                     err == HV_CPU_STATE_ERROR) {
695                                         cpu_list[i] = 0xffff;
696                                         cpu_set(cpu, error_mask);
697                                 }
698                         }
699                 } else if (unlikely(status != HV_EWOULDBLOCK))
700                         goto fatal_mondo_error;
701
702                 /* Don't bother rewriting the CPU list, just leave the
703                  * 0xffff and non-0xffff entries in there and the
704                  * hypervisor will do the right thing.
705                  *
706                  * Only advance timeout state if we didn't make any
707                  * forward progress.
708                  */
709                 if (unlikely(!forward_progress)) {
710                         if (unlikely(++retries > 10000))
711                                 goto fatal_mondo_timeout;
712
713                         /* Delay a little bit to let other cpus catch up
714                          * on their cpu mondo queue work.
715                          */
716                         udelay(2 * cnt);
717                 }
718         } while (1);
719
720         local_irq_restore(flags);
721
722         if (unlikely(!cpus_empty(error_mask)))
723                 goto fatal_mondo_cpu_error;
724
725         return;
726
727 fatal_mondo_cpu_error:
728         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
729                "were in error state\n",
730                this_cpu);
731         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
732         for_each_cpu_mask(i, error_mask)
733                 printk("%d ", i);
734         printk("]\n");
735         return;
736
737 fatal_mondo_timeout:
738         local_irq_restore(flags);
739         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
740                " progress after %d retries.\n",
741                this_cpu, retries);
742         goto dump_cpu_list_and_out;
743
744 fatal_mondo_error:
745         local_irq_restore(flags);
746         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
747                this_cpu, status);
748         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
749                "mondo_block_pa(%lx)\n",
750                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
751
752 dump_cpu_list_and_out:
753         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
754         for (i = 0; i < cnt; i++)
755                 printk("%u ", cpu_list[i]);
756         printk("]\n");
757 }
758
759 /* Send cross call to all processors mentioned in MASK
760  * except self.
761  */
762 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
763 {
764         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
765         int this_cpu = get_cpu();
766
767         cpus_and(mask, mask, cpu_online_map);
768         cpu_clear(this_cpu, mask);
769
770         if (tlb_type == spitfire)
771                 spitfire_xcall_deliver(data0, data1, data2, mask);
772         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
773                 cheetah_xcall_deliver(data0, data1, data2, mask);
774         else
775                 hypervisor_xcall_deliver(data0, data1, data2, mask);
776         /* NOTE: Caller runs local copy on master. */
777
778         put_cpu();
779 }
780
781 extern unsigned long xcall_sync_tick;
782
783 static void smp_start_sync_tick_client(int cpu)
784 {
785         cpumask_t mask = cpumask_of_cpu(cpu);
786
787         smp_cross_call_masked(&xcall_sync_tick,
788                               0, 0, 0, mask);
789 }
790
791 /* Send cross call to all processors except self. */
792 #define smp_cross_call(func, ctx, data1, data2) \
793         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
794
795 struct call_data_struct {
796         void (*func) (void *info);
797         void *info;
798         atomic_t finished;
799         int wait;
800 };
801
802 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
803 static struct call_data_struct *call_data;
804
805 extern unsigned long xcall_call_function;
806
807 /**
808  * smp_call_function(): Run a function on all other CPUs.
809  * @func: The function to run. This must be fast and non-blocking.
810  * @info: An arbitrary pointer to pass to the function.
811  * @nonatomic: currently unused.
812  * @wait: If true, wait (atomically) until function has completed on other CPUs.
813  *
814  * Returns 0 on success, else a negative status code. Does not return until
815  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
816  *
817  * You must not call this function with disabled interrupts or from a
818  * hardware interrupt handler or from a bottom half handler.
819  */
820 static int smp_call_function_mask(void (*func)(void *info), void *info,
821                                   int nonatomic, int wait, cpumask_t mask)
822 {
823         struct call_data_struct data;
824         int cpus;
825
826         /* Can deadlock when called with interrupts disabled */
827         WARN_ON(irqs_disabled());
828
829         data.func = func;
830         data.info = info;
831         atomic_set(&data.finished, 0);
832         data.wait = wait;
833
834         spin_lock(&call_lock);
835
836         cpu_clear(smp_processor_id(), mask);
837         cpus = cpus_weight(mask);
838         if (!cpus)
839                 goto out_unlock;
840
841         call_data = &data;
842         mb();
843
844         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
845
846         /* Wait for response */
847         while (atomic_read(&data.finished) != cpus)
848                 cpu_relax();
849
850 out_unlock:
851         spin_unlock(&call_lock);
852
853         return 0;
854 }
855
856 int smp_call_function(void (*func)(void *info), void *info,
857                       int nonatomic, int wait)
858 {
859         return smp_call_function_mask(func, info, nonatomic, wait,
860                                       cpu_online_map);
861 }
862
863 void smp_call_function_client(int irq, struct pt_regs *regs)
864 {
865         void (*func) (void *info) = call_data->func;
866         void *info = call_data->info;
867
868         clear_softint(1 << irq);
869         if (call_data->wait) {
870                 /* let initiator proceed only after completion */
871                 func(info);
872                 atomic_inc(&call_data->finished);
873         } else {
874                 /* let initiator proceed after getting data */
875                 atomic_inc(&call_data->finished);
876                 func(info);
877         }
878 }
879
880 static void tsb_sync(void *info)
881 {
882         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
883         struct mm_struct *mm = info;
884
885         /* It is not valid to test "currrent->active_mm == mm" here.
886          *
887          * The value of "current" is not changed atomically with
888          * switch_mm().  But that's OK, we just need to check the
889          * current cpu's trap block PGD physical address.
890          */
891         if (tp->pgd_paddr == __pa(mm->pgd))
892                 tsb_context_switch(mm);
893 }
894
895 void smp_tsb_sync(struct mm_struct *mm)
896 {
897         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
898 }
899
900 extern unsigned long xcall_flush_tlb_mm;
901 extern unsigned long xcall_flush_tlb_pending;
902 extern unsigned long xcall_flush_tlb_kernel_range;
903 extern unsigned long xcall_report_regs;
904 extern unsigned long xcall_receive_signal;
905 extern unsigned long xcall_new_mmu_context_version;
906
907 #ifdef DCACHE_ALIASING_POSSIBLE
908 extern unsigned long xcall_flush_dcache_page_cheetah;
909 #endif
910 extern unsigned long xcall_flush_dcache_page_spitfire;
911
912 #ifdef CONFIG_DEBUG_DCFLUSH
913 extern atomic_t dcpage_flushes;
914 extern atomic_t dcpage_flushes_xcall;
915 #endif
916
917 static __inline__ void __local_flush_dcache_page(struct page *page)
918 {
919 #ifdef DCACHE_ALIASING_POSSIBLE
920         __flush_dcache_page(page_address(page),
921                             ((tlb_type == spitfire) &&
922                              page_mapping(page) != NULL));
923 #else
924         if (page_mapping(page) != NULL &&
925             tlb_type == spitfire)
926                 __flush_icache_page(__pa(page_address(page)));
927 #endif
928 }
929
930 void smp_flush_dcache_page_impl(struct page *page, int cpu)
931 {
932         cpumask_t mask = cpumask_of_cpu(cpu);
933         int this_cpu;
934
935         if (tlb_type == hypervisor)
936                 return;
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939         atomic_inc(&dcpage_flushes);
940 #endif
941
942         this_cpu = get_cpu();
943
944         if (cpu == this_cpu) {
945                 __local_flush_dcache_page(page);
946         } else if (cpu_online(cpu)) {
947                 void *pg_addr = page_address(page);
948                 u64 data0;
949
950                 if (tlb_type == spitfire) {
951                         data0 =
952                                 ((u64)&xcall_flush_dcache_page_spitfire);
953                         if (page_mapping(page) != NULL)
954                                 data0 |= ((u64)1 << 32);
955                         spitfire_xcall_deliver(data0,
956                                                __pa(pg_addr),
957                                                (u64) pg_addr,
958                                                mask);
959                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
960 #ifdef DCACHE_ALIASING_POSSIBLE
961                         data0 =
962                                 ((u64)&xcall_flush_dcache_page_cheetah);
963                         cheetah_xcall_deliver(data0,
964                                               __pa(pg_addr),
965                                               0, mask);
966 #endif
967                 }
968 #ifdef CONFIG_DEBUG_DCFLUSH
969                 atomic_inc(&dcpage_flushes_xcall);
970 #endif
971         }
972
973         put_cpu();
974 }
975
976 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
977 {
978         void *pg_addr = page_address(page);
979         cpumask_t mask = cpu_online_map;
980         u64 data0;
981         int this_cpu;
982
983         if (tlb_type == hypervisor)
984                 return;
985
986         this_cpu = get_cpu();
987
988         cpu_clear(this_cpu, mask);
989
990 #ifdef CONFIG_DEBUG_DCFLUSH
991         atomic_inc(&dcpage_flushes);
992 #endif
993         if (cpus_empty(mask))
994                 goto flush_self;
995         if (tlb_type == spitfire) {
996                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
997                 if (page_mapping(page) != NULL)
998                         data0 |= ((u64)1 << 32);
999                 spitfire_xcall_deliver(data0,
1000                                        __pa(pg_addr),
1001                                        (u64) pg_addr,
1002                                        mask);
1003         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1004 #ifdef DCACHE_ALIASING_POSSIBLE
1005                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1006                 cheetah_xcall_deliver(data0,
1007                                       __pa(pg_addr),
1008                                       0, mask);
1009 #endif
1010         }
1011 #ifdef CONFIG_DEBUG_DCFLUSH
1012         atomic_inc(&dcpage_flushes_xcall);
1013 #endif
1014  flush_self:
1015         __local_flush_dcache_page(page);
1016
1017         put_cpu();
1018 }
1019
1020 static void __smp_receive_signal_mask(cpumask_t mask)
1021 {
1022         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1023 }
1024
1025 void smp_receive_signal(int cpu)
1026 {
1027         cpumask_t mask = cpumask_of_cpu(cpu);
1028
1029         if (cpu_online(cpu))
1030                 __smp_receive_signal_mask(mask);
1031 }
1032
1033 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1034 {
1035         clear_softint(1 << irq);
1036 }
1037
1038 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1039 {
1040         struct mm_struct *mm;
1041         unsigned long flags;
1042
1043         clear_softint(1 << irq);
1044
1045         /* See if we need to allocate a new TLB context because
1046          * the version of the one we are using is now out of date.
1047          */
1048         mm = current->active_mm;
1049         if (unlikely(!mm || (mm == &init_mm)))
1050                 return;
1051
1052         spin_lock_irqsave(&mm->context.lock, flags);
1053
1054         if (unlikely(!CTX_VALID(mm->context)))
1055                 get_new_mmu_context(mm);
1056
1057         spin_unlock_irqrestore(&mm->context.lock, flags);
1058
1059         load_secondary_context(mm);
1060         __flush_tlb_mm(CTX_HWBITS(mm->context),
1061                        SECONDARY_CONTEXT);
1062 }
1063
1064 void smp_new_mmu_context_version(void)
1065 {
1066         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1067 }
1068
1069 void smp_report_regs(void)
1070 {
1071         smp_cross_call(&xcall_report_regs, 0, 0, 0);
1072 }
1073
1074 /* We know that the window frames of the user have been flushed
1075  * to the stack before we get here because all callers of us
1076  * are flush_tlb_*() routines, and these run after flush_cache_*()
1077  * which performs the flushw.
1078  *
1079  * The SMP TLB coherency scheme we use works as follows:
1080  *
1081  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1082  *    space has (potentially) executed on, this is the heuristic
1083  *    we use to avoid doing cross calls.
1084  *
1085  *    Also, for flushing from kswapd and also for clones, we
1086  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1087  *
1088  * 2) TLB context numbers are shared globally across all processors
1089  *    in the system, this allows us to play several games to avoid
1090  *    cross calls.
1091  *
1092  *    One invariant is that when a cpu switches to a process, and
1093  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1094  *    current cpu's bit set, that tlb context is flushed locally.
1095  *
1096  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1097  *    cross calls when we want to flush the currently running process's
1098  *    tlb state.  This is done by clearing all cpu bits except the current
1099  *    processor's in current->active_mm->cpu_vm_mask and performing the
1100  *    flush locally only.  This will force any subsequent cpus which run
1101  *    this task to flush the context from the local tlb if the process
1102  *    migrates to another cpu (again).
1103  *
1104  * 3) For shared address spaces (threads) and swapping we bite the
1105  *    bullet for most cases and perform the cross call (but only to
1106  *    the cpus listed in cpu_vm_mask).
1107  *
1108  *    The performance gain from "optimizing" away the cross call for threads is
1109  *    questionable (in theory the big win for threads is the massive sharing of
1110  *    address space state across processors).
1111  */
1112
1113 /* This currently is only used by the hugetlb arch pre-fault
1114  * hook on UltraSPARC-III+ and later when changing the pagesize
1115  * bits of the context register for an address space.
1116  */
1117 void smp_flush_tlb_mm(struct mm_struct *mm)
1118 {
1119         u32 ctx = CTX_HWBITS(mm->context);
1120         int cpu = get_cpu();
1121
1122         if (atomic_read(&mm->mm_users) == 1) {
1123                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1124                 goto local_flush_and_out;
1125         }
1126
1127         smp_cross_call_masked(&xcall_flush_tlb_mm,
1128                               ctx, 0, 0,
1129                               mm->cpu_vm_mask);
1130
1131 local_flush_and_out:
1132         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1133
1134         put_cpu();
1135 }
1136
1137 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1138 {
1139         u32 ctx = CTX_HWBITS(mm->context);
1140         int cpu = get_cpu();
1141
1142         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1143                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1144         else
1145                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1146                                       ctx, nr, (unsigned long) vaddrs,
1147                                       mm->cpu_vm_mask);
1148
1149         __flush_tlb_pending(ctx, nr, vaddrs);
1150
1151         put_cpu();
1152 }
1153
1154 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1155 {
1156         start &= PAGE_MASK;
1157         end    = PAGE_ALIGN(end);
1158         if (start != end) {
1159                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1160                                0, start, end);
1161
1162                 __flush_tlb_kernel_range(start, end);
1163         }
1164 }
1165
1166 /* CPU capture. */
1167 /* #define CAPTURE_DEBUG */
1168 extern unsigned long xcall_capture;
1169
1170 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1171 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1172 static unsigned long penguins_are_doing_time;
1173
1174 void smp_capture(void)
1175 {
1176         int result = atomic_add_ret(1, &smp_capture_depth);
1177
1178         if (result == 1) {
1179                 int ncpus = num_online_cpus();
1180
1181 #ifdef CAPTURE_DEBUG
1182                 printk("CPU[%d]: Sending penguins to jail...",
1183                        smp_processor_id());
1184 #endif
1185                 penguins_are_doing_time = 1;
1186                 membar_storestore_loadstore();
1187                 atomic_inc(&smp_capture_registry);
1188                 smp_cross_call(&xcall_capture, 0, 0, 0);
1189                 while (atomic_read(&smp_capture_registry) != ncpus)
1190                         rmb();
1191 #ifdef CAPTURE_DEBUG
1192                 printk("done\n");
1193 #endif
1194         }
1195 }
1196
1197 void smp_release(void)
1198 {
1199         if (atomic_dec_and_test(&smp_capture_depth)) {
1200 #ifdef CAPTURE_DEBUG
1201                 printk("CPU[%d]: Giving pardon to "
1202                        "imprisoned penguins\n",
1203                        smp_processor_id());
1204 #endif
1205                 penguins_are_doing_time = 0;
1206                 membar_storeload_storestore();
1207                 atomic_dec(&smp_capture_registry);
1208         }
1209 }
1210
1211 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1212  * can service tlb flush xcalls...
1213  */
1214 extern void prom_world(int);
1215
1216 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1217 {
1218         clear_softint(1 << irq);
1219
1220         preempt_disable();
1221
1222         __asm__ __volatile__("flushw");
1223         prom_world(1);
1224         atomic_inc(&smp_capture_registry);
1225         membar_storeload_storestore();
1226         while (penguins_are_doing_time)
1227                 rmb();
1228         atomic_dec(&smp_capture_registry);
1229         prom_world(0);
1230
1231         preempt_enable();
1232 }
1233
1234 void __init smp_tick_init(void)
1235 {
1236         boot_cpu_id = hard_smp_processor_id();
1237 }
1238
1239 /* /proc/profile writes can call this, don't __init it please. */
1240 int setup_profiling_timer(unsigned int multiplier)
1241 {
1242         return -EINVAL;
1243 }
1244
1245 void __init smp_prepare_cpus(unsigned int max_cpus)
1246 {
1247         cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
1248 }
1249
1250 void __devinit smp_prepare_boot_cpu(void)
1251 {
1252 }
1253
1254 void __devinit smp_fill_in_sib_core_maps(void)
1255 {
1256         unsigned int i;
1257
1258         for_each_possible_cpu(i) {
1259                 unsigned int j;
1260
1261                 if (cpu_data(i).core_id == 0) {
1262                         cpu_set(i, cpu_core_map[i]);
1263                         continue;
1264                 }
1265
1266                 for_each_possible_cpu(j) {
1267                         if (cpu_data(i).core_id ==
1268                             cpu_data(j).core_id)
1269                                 cpu_set(j, cpu_core_map[i]);
1270                 }
1271         }
1272
1273         for_each_possible_cpu(i) {
1274                 unsigned int j;
1275
1276                 if (cpu_data(i).proc_id == -1) {
1277                         cpu_set(i, cpu_sibling_map[i]);
1278                         continue;
1279                 }
1280
1281                 for_each_possible_cpu(j) {
1282                         if (cpu_data(i).proc_id ==
1283                             cpu_data(j).proc_id)
1284                                 cpu_set(j, cpu_sibling_map[i]);
1285                 }
1286         }
1287 }
1288
1289 int __cpuinit __cpu_up(unsigned int cpu)
1290 {
1291         int ret = smp_boot_one_cpu(cpu);
1292
1293         if (!ret) {
1294                 cpu_set(cpu, smp_commenced_mask);
1295                 while (!cpu_isset(cpu, cpu_online_map))
1296                         mb();
1297                 if (!cpu_isset(cpu, cpu_online_map)) {
1298                         ret = -ENODEV;
1299                 } else {
1300                         /* On SUN4V, writes to %tick and %stick are
1301                          * not allowed.
1302                          */
1303                         if (tlb_type != hypervisor)
1304                                 smp_synchronize_one_tick(cpu);
1305                 }
1306         }
1307         return ret;
1308 }
1309
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 int __cpu_disable(void)
1312 {
1313         printk(KERN_ERR "SMP: __cpu_disable() on cpu %d\n",
1314                smp_processor_id());
1315         return -ENODEV;
1316 }
1317
1318 void __cpu_die(unsigned int cpu)
1319 {
1320         printk(KERN_ERR "SMP: __cpu_die(%u)\n", cpu);
1321 }
1322 #endif
1323
1324 void __init smp_cpus_done(unsigned int max_cpus)
1325 {
1326         unsigned long bogosum = 0;
1327         int i;
1328
1329         for_each_online_cpu(i)
1330                 bogosum += cpu_data(i).udelay_val;
1331         printk("Total of %ld processors activated "
1332                "(%lu.%02lu BogoMIPS).\n",
1333                (long) num_online_cpus(),
1334                bogosum/(500000/HZ),
1335                (bogosum/(5000/HZ))%100);
1336 }
1337
1338 void smp_send_reschedule(int cpu)
1339 {
1340         smp_receive_signal(cpu);
1341 }
1342
1343 /* This is a nop because we capture all other cpus
1344  * anyways when making the PROM active.
1345  */
1346 void smp_send_stop(void)
1347 {
1348 }
1349
1350 unsigned long __per_cpu_base __read_mostly;
1351 unsigned long __per_cpu_shift __read_mostly;
1352
1353 EXPORT_SYMBOL(__per_cpu_base);
1354 EXPORT_SYMBOL(__per_cpu_shift);
1355
1356 void __init real_setup_per_cpu_areas(void)
1357 {
1358         unsigned long goal, size, i;
1359         char *ptr;
1360
1361         /* Copy section for each CPU (we discard the original) */
1362         goal = PERCPU_ENOUGH_ROOM;
1363
1364         __per_cpu_shift = PAGE_SHIFT;
1365         for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1366                 __per_cpu_shift++;
1367
1368         ptr = alloc_bootmem_pages(size * NR_CPUS);
1369
1370         __per_cpu_base = ptr - __per_cpu_start;
1371
1372         for (i = 0; i < NR_CPUS; i++, ptr += size)
1373                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1374
1375         /* Setup %g5 for the boot cpu.  */
1376         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1377 }