2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT)
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
69 static struct mtd_info *doclist = NULL;
72 void __iomem *virtadr;
73 unsigned long physadr;
76 int chips_per_floor; /* The number of chips detected on each floor */
81 struct mtd_info *nextdoc;
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
88 /* This is the ecc value computed by the HW ecc generator upon writing an empty
89 page, one with all 0xff for data. */
90 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
92 #define INFTL_BBT_RESERVED_BLOCKS 4
94 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
95 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
96 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
98 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
99 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
101 static int debug = 0;
102 module_param(debug, int, 0);
104 static int try_dword = 1;
105 module_param(try_dword, int, 0);
107 static int no_ecc_failures = 0;
108 module_param(no_ecc_failures, int, 0);
110 static int no_autopart = 0;
111 module_param(no_autopart, int, 0);
113 static int show_firmware_partition = 0;
114 module_param(show_firmware_partition, int, 0);
116 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
117 static int inftl_bbt_write = 1;
119 static int inftl_bbt_write = 0;
121 module_param(inftl_bbt_write, int, 0);
123 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
124 module_param(doc_config_location, ulong, 0);
125 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
127 /* Sector size for HW ECC */
128 #define SECTOR_SIZE 512
129 /* The sector bytes are packed into NB_DATA 10 bit words */
130 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
131 /* Number of roots */
133 /* First consective root */
135 /* Number of symbols */
138 /* the Reed Solomon control structure */
139 static struct rs_control *rs_decoder;
142 * The HW decoder in the DoC ASIC's provides us a error syndrome,
143 * which we must convert to a standard syndrom usable by the generic
144 * Reed-Solomon library code.
146 * Fabrice Bellard figured this out in the old docecc code. I added
147 * some comments, improved a minor bit and converted it to make use
148 * of the generic Reed-Solomon libary. tglx
150 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
152 int i, j, nerr, errpos[8];
154 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
156 /* Convert the ecc bytes into words */
157 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
158 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
159 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
160 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
163 /* Initialize the syndrom buffer */
164 for (i = 0; i < NROOTS; i++)
168 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
169 * where x = alpha^(FCR + i)
171 for (j = 1; j < NROOTS; j++) {
174 tmp = rs->index_of[ds[j]];
175 for (i = 0; i < NROOTS; i++)
176 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
179 /* Calc s[i] = s[i] / alpha^(v + i) */
180 for (i = 0; i < NROOTS; i++) {
182 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
184 /* Call the decoder library */
185 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
187 /* Incorrectable errors ? */
192 * Correct the errors. The bitpositions are a bit of magic,
193 * but they are given by the design of the de/encoder circuit
196 for (i = 0; i < nerr; i++) {
197 int index, bitpos, pos = 1015 - errpos[i];
199 if (pos >= NB_DATA && pos < 1019)
202 /* extract bit position (MSB first) */
203 pos = 10 * (NB_DATA - 1 - pos) - 6;
204 /* now correct the following 10 bits. At most two bytes
205 can be modified since pos is even */
206 index = (pos >> 3) ^ 1;
208 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
209 val = (uint8_t) (errval[i] >> (2 + bitpos));
211 if (index < SECTOR_SIZE)
214 index = ((pos >> 3) + 1) ^ 1;
215 bitpos = (bitpos + 10) & 7;
218 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
219 val = (uint8_t) (errval[i] << (8 - bitpos));
221 if (index < SECTOR_SIZE)
226 /* If the parity is wrong, no rescue possible */
227 return parity ? -1 : nerr;
230 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
235 for (i = 0; i < cycles; i++) {
236 if (DoC_is_Millennium(doc))
237 dummy = ReadDOC(doc->virtadr, NOP);
238 else if (DoC_is_MillenniumPlus(doc))
239 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
241 dummy = ReadDOC(doc->virtadr, DOCStatus);
246 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
248 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
249 static int _DoC_WaitReady(struct doc_priv *doc)
251 void __iomem *docptr = doc->virtadr;
252 unsigned long timeo = jiffies + (HZ * 10);
255 printk("_DoC_WaitReady...\n");
256 /* Out-of-line routine to wait for chip response */
257 if (DoC_is_MillenniumPlus(doc)) {
258 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
259 if (time_after(jiffies, timeo)) {
260 printk("_DoC_WaitReady timed out.\n");
267 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
268 if (time_after(jiffies, timeo)) {
269 printk("_DoC_WaitReady timed out.\n");
280 static inline int DoC_WaitReady(struct doc_priv *doc)
282 void __iomem *docptr = doc->virtadr;
285 if (DoC_is_MillenniumPlus(doc)) {
288 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
289 /* Call the out-of-line routine to wait */
290 ret = _DoC_WaitReady(doc);
294 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
295 /* Call the out-of-line routine to wait */
296 ret = _DoC_WaitReady(doc);
301 printk("DoC_WaitReady OK\n");
305 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
307 struct nand_chip *this = mtd->priv;
308 struct doc_priv *doc = this->priv;
309 void __iomem *docptr = doc->virtadr;
312 printk("write_byte %02x\n", datum);
313 WriteDOC(datum, docptr, CDSNSlowIO);
314 WriteDOC(datum, docptr, 2k_CDSN_IO);
317 static u_char doc2000_read_byte(struct mtd_info *mtd)
319 struct nand_chip *this = mtd->priv;
320 struct doc_priv *doc = this->priv;
321 void __iomem *docptr = doc->virtadr;
324 ReadDOC(docptr, CDSNSlowIO);
326 ret = ReadDOC(docptr, 2k_CDSN_IO);
328 printk("read_byte returns %02x\n", ret);
332 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
334 struct nand_chip *this = mtd->priv;
335 struct doc_priv *doc = this->priv;
336 void __iomem *docptr = doc->virtadr;
339 printk("writebuf of %d bytes: ", len);
340 for (i = 0; i < len; i++) {
341 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
343 printk("%02x ", buf[i]);
349 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
351 struct nand_chip *this = mtd->priv;
352 struct doc_priv *doc = this->priv;
353 void __iomem *docptr = doc->virtadr;
357 printk("readbuf of %d bytes: ", len);
359 for (i = 0; i < len; i++) {
360 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
364 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
366 struct nand_chip *this = mtd->priv;
367 struct doc_priv *doc = this->priv;
368 void __iomem *docptr = doc->virtadr;
372 printk("readbuf_dword of %d bytes: ", len);
374 if (unlikely((((unsigned long)buf) | len) & 3)) {
375 for (i = 0; i < len; i++) {
376 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
379 for (i = 0; i < len; i += 4) {
380 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
385 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
387 struct nand_chip *this = mtd->priv;
388 struct doc_priv *doc = this->priv;
389 void __iomem *docptr = doc->virtadr;
392 for (i = 0; i < len; i++)
393 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
398 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
400 struct nand_chip *this = mtd->priv;
401 struct doc_priv *doc = this->priv;
404 doc200x_select_chip(mtd, nr);
405 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
406 this->write_byte(mtd, NAND_CMD_READID);
407 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
408 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
409 this->write_byte(mtd, 0);
410 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
412 /* We cant' use dev_ready here, but at least we wait for the
413 * command to complete
417 ret = this->read_byte(mtd) << 8;
418 ret |= this->read_byte(mtd);
420 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
421 /* First chip probe. See if we get same results by 32-bit access */
426 void __iomem *docptr = doc->virtadr;
428 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
429 doc2000_write_byte(mtd, NAND_CMD_READID);
430 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
431 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
432 doc2000_write_byte(mtd, 0);
433 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
437 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
438 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
439 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
440 this->read_buf = &doc2000_readbuf_dword;
447 static void __init doc2000_count_chips(struct mtd_info *mtd)
449 struct nand_chip *this = mtd->priv;
450 struct doc_priv *doc = this->priv;
454 /* Max 4 chips per floor on DiskOnChip 2000 */
455 doc->chips_per_floor = 4;
457 /* Find out what the first chip is */
458 mfrid = doc200x_ident_chip(mtd, 0);
460 /* Find how many chips in each floor. */
461 for (i = 1; i < 4; i++) {
462 if (doc200x_ident_chip(mtd, i) != mfrid)
465 doc->chips_per_floor = i;
466 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
469 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
471 struct doc_priv *doc = this->priv;
476 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
478 status = (int)this->read_byte(mtd);
483 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
485 struct nand_chip *this = mtd->priv;
486 struct doc_priv *doc = this->priv;
487 void __iomem *docptr = doc->virtadr;
489 WriteDOC(datum, docptr, CDSNSlowIO);
490 WriteDOC(datum, docptr, Mil_CDSN_IO);
491 WriteDOC(datum, docptr, WritePipeTerm);
494 static u_char doc2001_read_byte(struct mtd_info *mtd)
496 struct nand_chip *this = mtd->priv;
497 struct doc_priv *doc = this->priv;
498 void __iomem *docptr = doc->virtadr;
500 //ReadDOC(docptr, CDSNSlowIO);
501 /* 11.4.5 -- delay twice to allow extended length cycle */
503 ReadDOC(docptr, ReadPipeInit);
504 //return ReadDOC(docptr, Mil_CDSN_IO);
505 return ReadDOC(docptr, LastDataRead);
508 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
510 struct nand_chip *this = mtd->priv;
511 struct doc_priv *doc = this->priv;
512 void __iomem *docptr = doc->virtadr;
515 for (i = 0; i < len; i++)
516 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
517 /* Terminate write pipeline */
518 WriteDOC(0x00, docptr, WritePipeTerm);
521 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
523 struct nand_chip *this = mtd->priv;
524 struct doc_priv *doc = this->priv;
525 void __iomem *docptr = doc->virtadr;
528 /* Start read pipeline */
529 ReadDOC(docptr, ReadPipeInit);
531 for (i = 0; i < len - 1; i++)
532 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
534 /* Terminate read pipeline */
535 buf[i] = ReadDOC(docptr, LastDataRead);
538 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
540 struct nand_chip *this = mtd->priv;
541 struct doc_priv *doc = this->priv;
542 void __iomem *docptr = doc->virtadr;
545 /* Start read pipeline */
546 ReadDOC(docptr, ReadPipeInit);
548 for (i = 0; i < len - 1; i++)
549 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
550 ReadDOC(docptr, LastDataRead);
553 if (buf[i] != ReadDOC(docptr, LastDataRead))
558 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
560 struct nand_chip *this = mtd->priv;
561 struct doc_priv *doc = this->priv;
562 void __iomem *docptr = doc->virtadr;
565 ReadDOC(docptr, Mplus_ReadPipeInit);
566 ReadDOC(docptr, Mplus_ReadPipeInit);
567 ret = ReadDOC(docptr, Mplus_LastDataRead);
569 printk("read_byte returns %02x\n", ret);
573 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
575 struct nand_chip *this = mtd->priv;
576 struct doc_priv *doc = this->priv;
577 void __iomem *docptr = doc->virtadr;
581 printk("writebuf of %d bytes: ", len);
582 for (i = 0; i < len; i++) {
583 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
585 printk("%02x ", buf[i]);
591 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
593 struct nand_chip *this = mtd->priv;
594 struct doc_priv *doc = this->priv;
595 void __iomem *docptr = doc->virtadr;
599 printk("readbuf of %d bytes: ", len);
601 /* Start read pipeline */
602 ReadDOC(docptr, Mplus_ReadPipeInit);
603 ReadDOC(docptr, Mplus_ReadPipeInit);
605 for (i = 0; i < len - 2; i++) {
606 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
608 printk("%02x ", buf[i]);
611 /* Terminate read pipeline */
612 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
614 printk("%02x ", buf[len - 2]);
615 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
617 printk("%02x ", buf[len - 1]);
622 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
624 struct nand_chip *this = mtd->priv;
625 struct doc_priv *doc = this->priv;
626 void __iomem *docptr = doc->virtadr;
630 printk("verifybuf of %d bytes: ", len);
632 /* Start read pipeline */
633 ReadDOC(docptr, Mplus_ReadPipeInit);
634 ReadDOC(docptr, Mplus_ReadPipeInit);
636 for (i = 0; i < len - 2; i++)
637 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
638 ReadDOC(docptr, Mplus_LastDataRead);
639 ReadDOC(docptr, Mplus_LastDataRead);
642 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
644 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
649 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
651 struct nand_chip *this = mtd->priv;
652 struct doc_priv *doc = this->priv;
653 void __iomem *docptr = doc->virtadr;
657 printk("select chip (%d)\n", chip);
660 /* Disable flash internally */
661 WriteDOC(0, docptr, Mplus_FlashSelect);
665 floor = chip / doc->chips_per_floor;
666 chip -= (floor * doc->chips_per_floor);
668 /* Assert ChipEnable and deassert WriteProtect */
669 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
670 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
673 doc->curfloor = floor;
676 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
678 struct nand_chip *this = mtd->priv;
679 struct doc_priv *doc = this->priv;
680 void __iomem *docptr = doc->virtadr;
684 printk("select chip (%d)\n", chip);
689 floor = chip / doc->chips_per_floor;
690 chip -= (floor * doc->chips_per_floor);
692 /* 11.4.4 -- deassert CE before changing chip */
693 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
695 WriteDOC(floor, docptr, FloorSelect);
696 WriteDOC(chip, docptr, CDSNDeviceSelect);
698 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
701 doc->curfloor = floor;
704 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
706 struct nand_chip *this = mtd->priv;
707 struct doc_priv *doc = this->priv;
708 void __iomem *docptr = doc->virtadr;
711 case NAND_CTL_SETNCE:
712 doc->CDSNControl |= CDSN_CTRL_CE;
714 case NAND_CTL_CLRNCE:
715 doc->CDSNControl &= ~CDSN_CTRL_CE;
717 case NAND_CTL_SETCLE:
718 doc->CDSNControl |= CDSN_CTRL_CLE;
720 case NAND_CTL_CLRCLE:
721 doc->CDSNControl &= ~CDSN_CTRL_CLE;
723 case NAND_CTL_SETALE:
724 doc->CDSNControl |= CDSN_CTRL_ALE;
726 case NAND_CTL_CLRALE:
727 doc->CDSNControl &= ~CDSN_CTRL_ALE;
730 doc->CDSNControl |= CDSN_CTRL_WP;
733 doc->CDSNControl &= ~CDSN_CTRL_WP;
737 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
738 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
739 /* 11.4.3 -- 4 NOPs after CSDNControl write */
743 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
745 struct nand_chip *this = mtd->priv;
746 struct doc_priv *doc = this->priv;
747 void __iomem *docptr = doc->virtadr;
750 * Must terminate write pipeline before sending any commands
753 if (command == NAND_CMD_PAGEPROG) {
754 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
755 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
759 * Write out the command to the device.
761 if (command == NAND_CMD_SEQIN) {
764 if (column >= mtd->writesize) {
766 column -= mtd->writesize;
767 readcmd = NAND_CMD_READOOB;
768 } else if (column < 256) {
769 /* First 256 bytes --> READ0 */
770 readcmd = NAND_CMD_READ0;
773 readcmd = NAND_CMD_READ1;
775 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
777 WriteDOC(command, docptr, Mplus_FlashCmd);
778 WriteDOC(0, docptr, Mplus_WritePipeTerm);
779 WriteDOC(0, docptr, Mplus_WritePipeTerm);
781 if (column != -1 || page_addr != -1) {
782 /* Serially input address */
784 /* Adjust columns for 16 bit buswidth */
785 if (this->options & NAND_BUSWIDTH_16)
787 WriteDOC(column, docptr, Mplus_FlashAddress);
789 if (page_addr != -1) {
790 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
791 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
792 /* One more address cycle for higher density devices */
793 if (this->chipsize & 0x0c000000) {
794 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
795 printk("high density\n");
798 WriteDOC(0, docptr, Mplus_WritePipeTerm);
799 WriteDOC(0, docptr, Mplus_WritePipeTerm);
801 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
802 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
803 WriteDOC(0, docptr, Mplus_FlashControl);
807 * program and erase have their own busy handlers
808 * status and sequential in needs no delay
812 case NAND_CMD_PAGEPROG:
813 case NAND_CMD_ERASE1:
814 case NAND_CMD_ERASE2:
816 case NAND_CMD_STATUS:
822 udelay(this->chip_delay);
823 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
824 WriteDOC(0, docptr, Mplus_WritePipeTerm);
825 WriteDOC(0, docptr, Mplus_WritePipeTerm);
826 while (!(this->read_byte(mtd) & 0x40)) ;
829 /* This applies to read commands */
832 * If we don't have access to the busy pin, we apply the given
835 if (!this->dev_ready) {
836 udelay(this->chip_delay);
841 /* Apply this short delay always to ensure that we do wait tWB in
842 * any case on any machine. */
844 /* wait until command is processed */
845 while (!this->dev_ready(mtd)) ;
848 static int doc200x_dev_ready(struct mtd_info *mtd)
850 struct nand_chip *this = mtd->priv;
851 struct doc_priv *doc = this->priv;
852 void __iomem *docptr = doc->virtadr;
854 if (DoC_is_MillenniumPlus(doc)) {
855 /* 11.4.2 -- must NOP four times before checking FR/B# */
857 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
859 printk("not ready\n");
863 printk("was ready\n");
866 /* 11.4.2 -- must NOP four times before checking FR/B# */
868 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
870 printk("not ready\n");
873 /* 11.4.2 -- Must NOP twice if it's ready */
876 printk("was ready\n");
881 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
883 /* This is our last resort if we couldn't find or create a BBT. Just
884 pretend all blocks are good. */
888 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
890 struct nand_chip *this = mtd->priv;
891 struct doc_priv *doc = this->priv;
892 void __iomem *docptr = doc->virtadr;
894 /* Prime the ECC engine */
897 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
898 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
901 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
902 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
907 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
909 struct nand_chip *this = mtd->priv;
910 struct doc_priv *doc = this->priv;
911 void __iomem *docptr = doc->virtadr;
913 /* Prime the ECC engine */
916 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
917 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
920 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
921 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
926 /* This code is only called on write */
927 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
929 struct nand_chip *this = mtd->priv;
930 struct doc_priv *doc = this->priv;
931 void __iomem *docptr = doc->virtadr;
935 /* flush the pipeline */
936 if (DoC_is_2000(doc)) {
937 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
938 WriteDOC(0, docptr, 2k_CDSN_IO);
939 WriteDOC(0, docptr, 2k_CDSN_IO);
940 WriteDOC(0, docptr, 2k_CDSN_IO);
941 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
942 } else if (DoC_is_MillenniumPlus(doc)) {
943 WriteDOC(0, docptr, Mplus_NOP);
944 WriteDOC(0, docptr, Mplus_NOP);
945 WriteDOC(0, docptr, Mplus_NOP);
947 WriteDOC(0, docptr, NOP);
948 WriteDOC(0, docptr, NOP);
949 WriteDOC(0, docptr, NOP);
952 for (i = 0; i < 6; i++) {
953 if (DoC_is_MillenniumPlus(doc))
954 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
956 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
957 if (ecc_code[i] != empty_write_ecc[i])
960 if (DoC_is_MillenniumPlus(doc))
961 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
963 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
965 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
967 /* Note: this somewhat expensive test should not be triggered
968 often. It could be optimized away by examining the data in
969 the writebuf routine, and remembering the result. */
970 for (i = 0; i < 512; i++) {
977 /* If emptymatch still =1, we do have an all-0xff data buffer.
978 Return all-0xff ecc value instead of the computed one, so
979 it'll look just like a freshly-erased page. */
981 memset(ecc_code, 0xff, 6);
986 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
989 struct nand_chip *this = mtd->priv;
990 struct doc_priv *doc = this->priv;
991 void __iomem *docptr = doc->virtadr;
992 volatile u_char dummy;
995 /* flush the pipeline */
996 if (DoC_is_2000(doc)) {
997 dummy = ReadDOC(docptr, 2k_ECCStatus);
998 dummy = ReadDOC(docptr, 2k_ECCStatus);
999 dummy = ReadDOC(docptr, 2k_ECCStatus);
1000 } else if (DoC_is_MillenniumPlus(doc)) {
1001 dummy = ReadDOC(docptr, Mplus_ECCConf);
1002 dummy = ReadDOC(docptr, Mplus_ECCConf);
1003 dummy = ReadDOC(docptr, Mplus_ECCConf);
1005 dummy = ReadDOC(docptr, ECCConf);
1006 dummy = ReadDOC(docptr, ECCConf);
1007 dummy = ReadDOC(docptr, ECCConf);
1010 /* Error occured ? */
1012 for (i = 0; i < 6; i++) {
1013 if (DoC_is_MillenniumPlus(doc))
1014 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1016 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1017 if (calc_ecc[i] != empty_read_syndrome[i])
1020 /* If emptymatch=1, the read syndrome is consistent with an
1021 all-0xff data and stored ecc block. Check the stored ecc. */
1023 for (i = 0; i < 6; i++) {
1024 if (read_ecc[i] == 0xff)
1030 /* If emptymatch still =1, check the data block. */
1032 /* Note: this somewhat expensive test should not be triggered
1033 often. It could be optimized away by examining the data in
1034 the readbuf routine, and remembering the result. */
1035 for (i = 0; i < 512; i++) {
1042 /* If emptymatch still =1, this is almost certainly a freshly-
1043 erased block, in which case the ECC will not come out right.
1044 We'll suppress the error and tell the caller everything's
1045 OK. Because it is. */
1047 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1049 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1051 if (DoC_is_MillenniumPlus(doc))
1052 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1054 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1055 if (no_ecc_failures && (ret == -1)) {
1056 printk(KERN_ERR "suppressing ECC failure\n");
1062 //u_char mydatabuf[528];
1064 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1065 * attempt to retain compatibility. It used to read:
1066 * .oobfree = { {8, 8} }
1067 * Since that leaves two bytes unusable, it was changed. But the following
1068 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1069 * .oobfree = { {6, 10} }
1070 * jffs2 seems to handle the above gracefully, but the current scheme seems
1071 * safer. The only problem with it is that any code that parses oobfree must
1072 * be able to handle out-of-order segments.
1074 static struct nand_oobinfo doc200x_oobinfo = {
1075 .useecc = MTD_NANDECC_AUTOPLACE,
1077 .eccpos = {0, 1, 2, 3, 4, 5},
1078 .oobfree = {{8, 8}, {6, 2}}
1081 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1082 On sucessful return, buf will contain a copy of the media header for
1083 further processing. id is the string to scan for, and will presumably be
1084 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1085 header. The page #s of the found media headers are placed in mh0_page and
1086 mh1_page in the DOC private structure. */
1087 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1089 struct nand_chip *this = mtd->priv;
1090 struct doc_priv *doc = this->priv;
1095 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1096 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1097 if (retlen != mtd->writesize)
1100 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1102 if (memcmp(buf, id, 6))
1104 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1105 if (doc->mh0_page == -1) {
1106 doc->mh0_page = offs >> this->page_shift;
1111 doc->mh1_page = offs >> this->page_shift;
1114 if (doc->mh0_page == -1) {
1115 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1118 /* Only one mediaheader was found. We want buf to contain a
1119 mediaheader on return, so we'll have to re-read the one we found. */
1120 offs = doc->mh0_page << this->page_shift;
1121 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1122 if (retlen != mtd->writesize) {
1123 /* Insanity. Give up. */
1124 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1130 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1132 struct nand_chip *this = mtd->priv;
1133 struct doc_priv *doc = this->priv;
1136 struct NFTLMediaHeader *mh;
1137 const unsigned psize = 1 << this->page_shift;
1139 unsigned blocks, maxblocks;
1140 int offs, numheaders;
1142 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1144 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1147 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1149 mh = (struct NFTLMediaHeader *)buf;
1151 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1152 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1153 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1155 printk(KERN_INFO " DataOrgID = %s\n"
1156 " NumEraseUnits = %d\n"
1157 " FirstPhysicalEUN = %d\n"
1158 " FormattedSize = %d\n"
1159 " UnitSizeFactor = %d\n",
1160 mh->DataOrgID, mh->NumEraseUnits,
1161 mh->FirstPhysicalEUN, mh->FormattedSize,
1162 mh->UnitSizeFactor);
1164 blocks = mtd->size >> this->phys_erase_shift;
1165 maxblocks = min(32768U, mtd->erasesize - psize);
1167 if (mh->UnitSizeFactor == 0x00) {
1168 /* Auto-determine UnitSizeFactor. The constraints are:
1169 - There can be at most 32768 virtual blocks.
1170 - There can be at most (virtual block size - page size)
1171 virtual blocks (because MediaHeader+BBT must fit in 1).
1173 mh->UnitSizeFactor = 0xff;
1174 while (blocks > maxblocks) {
1176 maxblocks = min(32768U, (maxblocks << 1) + psize);
1177 mh->UnitSizeFactor--;
1179 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1182 /* NOTE: The lines below modify internal variables of the NAND and MTD
1183 layers; variables with have already been configured by nand_scan.
1184 Unfortunately, we didn't know before this point what these values
1185 should be. Thus, this code is somewhat dependant on the exact
1186 implementation of the NAND layer. */
1187 if (mh->UnitSizeFactor != 0xff) {
1188 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1189 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1190 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1191 blocks = mtd->size >> this->bbt_erase_shift;
1192 maxblocks = min(32768U, mtd->erasesize - psize);
1195 if (blocks > maxblocks) {
1196 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1200 /* Skip past the media headers. */
1201 offs = max(doc->mh0_page, doc->mh1_page);
1202 offs <<= this->page_shift;
1203 offs += mtd->erasesize;
1205 if (show_firmware_partition == 1) {
1206 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1207 parts[0].offset = 0;
1208 parts[0].size = offs;
1212 parts[numparts].name = " DiskOnChip BDTL partition";
1213 parts[numparts].offset = offs;
1214 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1216 offs += parts[numparts].size;
1219 if (offs < mtd->size) {
1220 parts[numparts].name = " DiskOnChip Remainder partition";
1221 parts[numparts].offset = offs;
1222 parts[numparts].size = mtd->size - offs;
1232 /* This is a stripped-down copy of the code in inftlmount.c */
1233 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1235 struct nand_chip *this = mtd->priv;
1236 struct doc_priv *doc = this->priv;
1239 struct INFTLMediaHeader *mh;
1240 struct INFTLPartition *ip;
1243 int vshift, lastvunit = 0;
1245 int end = mtd->size;
1247 if (inftl_bbt_write)
1248 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1250 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1252 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1256 if (!find_media_headers(mtd, buf, "BNAND", 0))
1258 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1259 mh = (struct INFTLMediaHeader *)buf;
1261 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1262 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1263 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1264 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1265 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1266 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1268 printk(KERN_INFO " bootRecordID = %s\n"
1269 " NoOfBootImageBlocks = %d\n"
1270 " NoOfBinaryPartitions = %d\n"
1271 " NoOfBDTLPartitions = %d\n"
1272 " BlockMultiplerBits = %d\n"
1273 " FormatFlgs = %d\n"
1274 " OsakVersion = %d.%d.%d.%d\n"
1275 " PercentUsed = %d\n",
1276 mh->bootRecordID, mh->NoOfBootImageBlocks,
1277 mh->NoOfBinaryPartitions,
1278 mh->NoOfBDTLPartitions,
1279 mh->BlockMultiplierBits, mh->FormatFlags,
1280 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1281 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1282 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1283 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1286 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1288 blocks = mtd->size >> vshift;
1289 if (blocks > 32768) {
1290 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1294 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1295 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1296 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1300 /* Scan the partitions */
1301 for (i = 0; (i < 4); i++) {
1302 ip = &(mh->Partitions[i]);
1303 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1304 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1305 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1306 ip->flags = le32_to_cpu(ip->flags);
1307 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1308 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1310 printk(KERN_INFO " PARTITION[%d] ->\n"
1311 " virtualUnits = %d\n"
1315 " spareUnits = %d\n",
1316 i, ip->virtualUnits, ip->firstUnit,
1317 ip->lastUnit, ip->flags,
1320 if ((show_firmware_partition == 1) &&
1321 (i == 0) && (ip->firstUnit > 0)) {
1322 parts[0].name = " DiskOnChip IPL / Media Header partition";
1323 parts[0].offset = 0;
1324 parts[0].size = mtd->erasesize * ip->firstUnit;
1328 if (ip->flags & INFTL_BINARY)
1329 parts[numparts].name = " DiskOnChip BDK partition";
1331 parts[numparts].name = " DiskOnChip BDTL partition";
1332 parts[numparts].offset = ip->firstUnit << vshift;
1333 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1335 if (ip->lastUnit > lastvunit)
1336 lastvunit = ip->lastUnit;
1337 if (ip->flags & INFTL_LAST)
1341 if ((lastvunit << vshift) < end) {
1342 parts[numparts].name = " DiskOnChip Remainder partition";
1343 parts[numparts].offset = lastvunit << vshift;
1344 parts[numparts].size = end - parts[numparts].offset;
1353 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1356 struct nand_chip *this = mtd->priv;
1357 struct doc_priv *doc = this->priv;
1358 struct mtd_partition parts[2];
1360 memset((char *)parts, 0, sizeof(parts));
1361 /* On NFTL, we have to find the media headers before we can read the
1362 BBTs, since they're stored in the media header eraseblocks. */
1363 numparts = nftl_partscan(mtd, parts);
1366 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1367 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1369 this->bbt_td->veroffs = 7;
1370 this->bbt_td->pages[0] = doc->mh0_page + 1;
1371 if (doc->mh1_page != -1) {
1372 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1373 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1375 this->bbt_md->veroffs = 7;
1376 this->bbt_md->pages[0] = doc->mh1_page + 1;
1378 this->bbt_md = NULL;
1381 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1382 At least as nand_bbt.c is currently written. */
1383 if ((ret = nand_scan_bbt(mtd, NULL)))
1385 add_mtd_device(mtd);
1386 #ifdef CONFIG_MTD_PARTITIONS
1388 add_mtd_partitions(mtd, parts, numparts);
1393 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1396 struct nand_chip *this = mtd->priv;
1397 struct doc_priv *doc = this->priv;
1398 struct mtd_partition parts[5];
1400 if (this->numchips > doc->chips_per_floor) {
1401 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1405 if (DoC_is_MillenniumPlus(doc)) {
1406 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1407 if (inftl_bbt_write)
1408 this->bbt_td->options |= NAND_BBT_WRITE;
1409 this->bbt_td->pages[0] = 2;
1410 this->bbt_md = NULL;
1412 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1413 if (inftl_bbt_write)
1414 this->bbt_td->options |= NAND_BBT_WRITE;
1415 this->bbt_td->offs = 8;
1416 this->bbt_td->len = 8;
1417 this->bbt_td->veroffs = 7;
1418 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1419 this->bbt_td->reserved_block_code = 0x01;
1420 this->bbt_td->pattern = "MSYS_BBT";
1422 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1423 if (inftl_bbt_write)
1424 this->bbt_md->options |= NAND_BBT_WRITE;
1425 this->bbt_md->offs = 8;
1426 this->bbt_md->len = 8;
1427 this->bbt_md->veroffs = 7;
1428 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1429 this->bbt_md->reserved_block_code = 0x01;
1430 this->bbt_md->pattern = "TBB_SYSM";
1433 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1434 At least as nand_bbt.c is currently written. */
1435 if ((ret = nand_scan_bbt(mtd, NULL)))
1437 memset((char *)parts, 0, sizeof(parts));
1438 numparts = inftl_partscan(mtd, parts);
1439 /* At least for now, require the INFTL Media Header. We could probably
1440 do without it for non-INFTL use, since all it gives us is
1441 autopartitioning, but I want to give it more thought. */
1444 add_mtd_device(mtd);
1445 #ifdef CONFIG_MTD_PARTITIONS
1447 add_mtd_partitions(mtd, parts, numparts);
1452 static inline int __init doc2000_init(struct mtd_info *mtd)
1454 struct nand_chip *this = mtd->priv;
1455 struct doc_priv *doc = this->priv;
1457 this->write_byte = doc2000_write_byte;
1458 this->read_byte = doc2000_read_byte;
1459 this->write_buf = doc2000_writebuf;
1460 this->read_buf = doc2000_readbuf;
1461 this->verify_buf = doc2000_verifybuf;
1462 this->scan_bbt = nftl_scan_bbt;
1464 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1465 doc2000_count_chips(mtd);
1466 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1467 return (4 * doc->chips_per_floor);
1470 static inline int __init doc2001_init(struct mtd_info *mtd)
1472 struct nand_chip *this = mtd->priv;
1473 struct doc_priv *doc = this->priv;
1475 this->write_byte = doc2001_write_byte;
1476 this->read_byte = doc2001_read_byte;
1477 this->write_buf = doc2001_writebuf;
1478 this->read_buf = doc2001_readbuf;
1479 this->verify_buf = doc2001_verifybuf;
1481 ReadDOC(doc->virtadr, ChipID);
1482 ReadDOC(doc->virtadr, ChipID);
1483 ReadDOC(doc->virtadr, ChipID);
1484 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1485 /* It's not a Millennium; it's one of the newer
1486 DiskOnChip 2000 units with a similar ASIC.
1487 Treat it like a Millennium, except that it
1488 can have multiple chips. */
1489 doc2000_count_chips(mtd);
1490 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1491 this->scan_bbt = inftl_scan_bbt;
1492 return (4 * doc->chips_per_floor);
1494 /* Bog-standard Millennium */
1495 doc->chips_per_floor = 1;
1496 mtd->name = "DiskOnChip Millennium";
1497 this->scan_bbt = nftl_scan_bbt;
1502 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1504 struct nand_chip *this = mtd->priv;
1505 struct doc_priv *doc = this->priv;
1507 this->write_byte = NULL;
1508 this->read_byte = doc2001plus_read_byte;
1509 this->write_buf = doc2001plus_writebuf;
1510 this->read_buf = doc2001plus_readbuf;
1511 this->verify_buf = doc2001plus_verifybuf;
1512 this->scan_bbt = inftl_scan_bbt;
1513 this->hwcontrol = NULL;
1514 this->select_chip = doc2001plus_select_chip;
1515 this->cmdfunc = doc2001plus_command;
1516 this->enable_hwecc = doc2001plus_enable_hwecc;
1518 doc->chips_per_floor = 1;
1519 mtd->name = "DiskOnChip Millennium Plus";
1524 static int __init doc_probe(unsigned long physadr)
1526 unsigned char ChipID;
1527 struct mtd_info *mtd;
1528 struct nand_chip *nand;
1529 struct doc_priv *doc;
1530 void __iomem *virtadr;
1531 unsigned char save_control;
1532 unsigned char tmp, tmpb, tmpc;
1533 int reg, len, numchips;
1536 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1538 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1542 /* It's not possible to cleanly detect the DiskOnChip - the
1543 * bootup procedure will put the device into reset mode, and
1544 * it's not possible to talk to it without actually writing
1545 * to the DOCControl register. So we store the current contents
1546 * of the DOCControl register's location, in case we later decide
1547 * that it's not a DiskOnChip, and want to put it back how we
1550 save_control = ReadDOC(virtadr, DOCControl);
1552 /* Reset the DiskOnChip ASIC */
1553 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1554 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1556 /* Enable the DiskOnChip ASIC */
1557 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1558 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1560 ChipID = ReadDOC(virtadr, ChipID);
1563 case DOC_ChipID_Doc2k:
1564 reg = DoC_2k_ECCStatus;
1566 case DOC_ChipID_DocMil:
1569 case DOC_ChipID_DocMilPlus16:
1570 case DOC_ChipID_DocMilPlus32:
1572 /* Possible Millennium Plus, need to do more checks */
1573 /* Possibly release from power down mode */
1574 for (tmp = 0; (tmp < 4); tmp++)
1575 ReadDOC(virtadr, Mplus_Power);
1577 /* Reset the Millennium Plus ASIC */
1578 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1579 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1580 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1583 /* Enable the Millennium Plus ASIC */
1584 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1585 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1586 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1589 ChipID = ReadDOC(virtadr, ChipID);
1592 case DOC_ChipID_DocMilPlus16:
1593 reg = DoC_Mplus_Toggle;
1595 case DOC_ChipID_DocMilPlus32:
1596 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1607 /* Check the TOGGLE bit in the ECC register */
1608 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1609 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1610 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1611 if ((tmp == tmpb) || (tmp != tmpc)) {
1612 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1617 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1618 unsigned char oldval;
1619 unsigned char newval;
1622 /* Use the alias resolution register to determine if this is
1623 in fact the same DOC aliased to a new address. If writes
1624 to one chip's alias resolution register change the value on
1625 the other chip, they're the same chip. */
1626 if (ChipID == DOC_ChipID_DocMilPlus16) {
1627 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1628 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1630 oldval = ReadDOC(doc->virtadr, AliasResolution);
1631 newval = ReadDOC(virtadr, AliasResolution);
1633 if (oldval != newval)
1635 if (ChipID == DOC_ChipID_DocMilPlus16) {
1636 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1637 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1638 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1640 WriteDOC(~newval, virtadr, AliasResolution);
1641 oldval = ReadDOC(doc->virtadr, AliasResolution);
1642 WriteDOC(newval, virtadr, AliasResolution); // restore it
1645 if (oldval == newval) {
1646 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1651 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1653 len = sizeof(struct mtd_info) +
1654 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1655 mtd = kmalloc(len, GFP_KERNEL);
1657 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1661 memset(mtd, 0, len);
1663 nand = (struct nand_chip *) (mtd + 1);
1664 doc = (struct doc_priv *) (nand + 1);
1665 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1666 nand->bbt_md = nand->bbt_td + 1;
1669 mtd->owner = THIS_MODULE;
1672 nand->select_chip = doc200x_select_chip;
1673 nand->hwcontrol = doc200x_hwcontrol;
1674 nand->dev_ready = doc200x_dev_ready;
1675 nand->waitfunc = doc200x_wait;
1676 nand->block_bad = doc200x_block_bad;
1677 nand->enable_hwecc = doc200x_enable_hwecc;
1678 nand->calculate_ecc = doc200x_calculate_ecc;
1679 nand->correct_data = doc200x_correct_data;
1681 nand->autooob = &doc200x_oobinfo;
1682 nand->eccmode = NAND_ECC_HW6_512;
1683 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1685 doc->physadr = physadr;
1686 doc->virtadr = virtadr;
1687 doc->ChipID = ChipID;
1692 doc->nextdoc = doclist;
1694 if (ChipID == DOC_ChipID_Doc2k)
1695 numchips = doc2000_init(mtd);
1696 else if (ChipID == DOC_ChipID_DocMilPlus16)
1697 numchips = doc2001plus_init(mtd);
1699 numchips = doc2001_init(mtd);
1701 if ((ret = nand_scan(mtd, numchips))) {
1702 /* DBB note: i believe nand_release is necessary here, as
1703 buffers may have been allocated in nand_base. Check with
1705 /* nand_release will call del_mtd_device, but we haven't yet
1706 added it. This is handled without incident by
1707 del_mtd_device, as far as I can tell. */
1718 /* Put back the contents of the DOCControl register, in case it's not
1719 actually a DiskOnChip. */
1720 WriteDOC(save_control, virtadr, DOCControl);
1726 static void release_nanddoc(void)
1728 struct mtd_info *mtd, *nextmtd;
1729 struct nand_chip *nand;
1730 struct doc_priv *doc;
1732 for (mtd = doclist; mtd; mtd = nextmtd) {
1736 nextmtd = doc->nextdoc;
1738 iounmap(doc->virtadr);
1743 static int __init init_nanddoc(void)
1747 /* We could create the decoder on demand, if memory is a concern.
1748 * This way we have it handy, if an error happens
1750 * Symbolsize is 10 (bits)
1751 * Primitve polynomial is x^10+x^3+1
1752 * first consecutive root is 510
1753 * primitve element to generate roots = 1
1754 * generator polinomial degree = 4
1756 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1758 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1762 if (doc_config_location) {
1763 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1764 ret = doc_probe(doc_config_location);
1768 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1769 doc_probe(doc_locations[i]);
1772 /* No banner message any more. Print a message if no DiskOnChip
1773 found, so the user knows we at least tried. */
1775 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1781 free_rs(rs_decoder);
1785 static void __exit cleanup_nanddoc(void)
1787 /* Cleanup the nand/DoC resources */
1790 /* Free the reed solomon resources */
1792 free_rs(rs_decoder);
1796 module_init(init_nanddoc);
1797 module_exit(cleanup_nanddoc);
1799 MODULE_LICENSE("GPL");
1800 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1801 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");