1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
192 static struct ipw2100_fw ipw2100_firmware;
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
226 "unused", /* HOST_ATTENTION */
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
232 "unused", /* SET_IMR */
235 "AUTHENTICATION_TYPE",
238 "INTERNATIONAL_MODE",
253 "CLEAR_ALL_MULTICAST",
274 "AP_OR_STATION_TABLE",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
631 out += snprintf(buf + out, count - out, "%c", c);
635 out += snprintf(buf + out, count - out, " ");
641 static void printk_buf(int level, const u8 * data, u32 len)
645 if (!(ipw2100_debug_level & level))
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
714 ("Attempt to send command while hardware in fatal error condition.\n");
719 if (!(priv->status & STATUS_RUNNING)) {
721 ("Attempt to send command while hardware is not running.\n");
726 if (priv->status & STATUS_CMD_ACTIVE) {
728 ("Attempt to send command while another command is pending.\n");
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
775 wait_event_interruptible_timeout(priv->wait_command_queue,
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
805 spin_unlock_irqrestore(&priv->low_lock, flags);
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 if (val1 == data1 && val2 == data2)
850 * Loop until the CARD_DISABLED bit is the same value as the
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
862 u32 len = sizeof(card_state);
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
883 priv->status &= ~STATUS_ENABLED;
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1005 err = ipw2100_verify(priv);
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1154 priv->status |= STATUS_RF_KILL_HW;
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1204 * Start firmware execution after power on and intialization
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1344 priv->status &= ~STATUS_RESET_PENDING;
1348 ("exit - waited too long for master assert stop\n");
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1428 err = ipw2100_hw_send_command(priv, &cmd);
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1447 mutex_unlock(&priv->adapter_mutex);
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1463 if (!(priv->status & STATUS_RUNNING))
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1598 mutex_unlock(&priv->adapter_mutex);
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1675 static const struct ieee80211_geo ipw_geos[] = {
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1781 /* Send all of the commands that must be sent prior to
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1822 .sa_family = ARPHRD_ETHER}
1824 int associated = priv->status & STATUS_ASSOCIATED;
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862 if (priv->config & CFG_C3_DISABLED) {
1863 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864 acpi_set_cstate_limit(priv->cstate_limit);
1865 priv->config &= ~CFG_C3_DISABLED;
1869 /* We have to signal any supplicant if we are disassociating */
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1885 .sa_family = ARPHRD_ETHER}
1887 int associated = priv->status & STATUS_ASSOCIATED;
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1895 /* Force a power cycle even if interface hasn't been opened
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1906 /* We have to signal any supplicant if we are disassociating */
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret, len, essid_len;
1920 char essid[IW_ESSID_MAX_SIZE];
1925 DECLARE_MAC_BUF(mac);
1928 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1929 * an actual MAC of the AP. Seems like FW sets this
1930 * address too late. Read it later and expose through
1931 * /proc or schedule a later task to query and update
1934 essid_len = IW_ESSID_MAX_SIZE;
1935 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1938 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1946 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1952 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1954 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1959 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1961 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1965 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1968 case TX_RATE_1_MBIT:
1969 txratename = "1Mbps";
1971 case TX_RATE_2_MBIT:
1972 txratename = "2Mbsp";
1974 case TX_RATE_5_5_MBIT:
1975 txratename = "5.5Mbps";
1977 case TX_RATE_11_MBIT:
1978 txratename = "11Mbps";
1981 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1982 txratename = "unknown rate";
1986 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1988 priv->net_dev->name, escape_essid(essid, essid_len),
1989 txratename, chan, print_mac(mac, bssid));
1991 /* now we copy read ssid into dev */
1992 if (!(priv->config & CFG_STATIC_ESSID)) {
1993 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994 memcpy(priv->essid, essid, priv->essid_len);
1996 priv->channel = chan;
1997 memcpy(priv->bssid, bssid, ETH_ALEN);
1999 priv->status |= STATUS_ASSOCIATING;
2000 priv->connect_start = get_seconds();
2002 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006 int length, int batch_mode)
2008 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009 struct host_command cmd = {
2010 .host_command = SSID,
2011 .host_command_sequence = 0,
2012 .host_command_length = ssid_len
2016 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2019 memcpy(cmd.host_command_parameters, essid, ssid_len);
2022 err = ipw2100_disable_adapter(priv);
2027 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2028 * disable auto association -- so we cheat by setting a bogus SSID */
2029 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2031 u8 *bogus = (u8 *) cmd.host_command_parameters;
2032 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2033 bogus[i] = 0x18 + i;
2034 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2037 /* NOTE: We always send the SSID command even if the provided ESSID is
2038 * the same as what we currently think is set. */
2040 err = ipw2100_hw_send_command(priv, &cmd);
2042 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2043 memcpy(priv->essid, essid, ssid_len);
2044 priv->essid_len = ssid_len;
2048 if (ipw2100_enable_adapter(priv))
2055 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2057 DECLARE_MAC_BUF(mac);
2059 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2060 "disassociated: '%s' %s \n",
2061 escape_essid(priv->essid, priv->essid_len),
2062 print_mac(mac, priv->bssid));
2064 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 if (priv->status & STATUS_STOPPING) {
2067 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2071 memset(priv->bssid, 0, ETH_ALEN);
2072 memset(priv->ieee->bssid, 0, ETH_ALEN);
2074 netif_carrier_off(priv->net_dev);
2075 netif_stop_queue(priv->net_dev);
2077 if (!(priv->status & STATUS_RUNNING))
2080 if (priv->status & STATUS_SECURITY_UPDATED)
2081 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2083 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2086 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2088 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2089 priv->net_dev->name);
2091 /* RF_KILL is now enabled (else we wouldn't be here) */
2092 priv->status |= STATUS_RF_KILL_HW;
2094 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2095 if (priv->config & CFG_C3_DISABLED) {
2096 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2097 acpi_set_cstate_limit(priv->cstate_limit);
2098 priv->config &= ~CFG_C3_DISABLED;
2102 /* Make sure the RF Kill check timer is running */
2103 priv->stop_rf_kill = 0;
2104 cancel_delayed_work(&priv->rf_kill);
2105 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2108 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2110 IPW_DEBUG_SCAN("scan complete\n");
2111 /* Age the scan results... */
2112 priv->ieee->scans++;
2113 priv->status &= ~STATUS_SCANNING;
2116 #ifdef CONFIG_IPW2100_DEBUG
2117 #define IPW2100_HANDLER(v, f) { v, f, # v }
2118 struct ipw2100_status_indicator {
2120 void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 #define IPW2100_HANDLER(v, f) { v, f }
2125 struct ipw2100_status_indicator {
2127 void (*cb) (struct ipw2100_priv * priv, u32 status);
2129 #endif /* CONFIG_IPW2100_DEBUG */
2131 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2133 IPW_DEBUG_SCAN("Scanning...\n");
2134 priv->status |= STATUS_SCANNING;
2137 static const struct ipw2100_status_indicator status_handlers[] = {
2138 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2140 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2141 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2142 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2143 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2144 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2145 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2146 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2147 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2148 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2149 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2150 IPW2100_HANDLER(-1, NULL)
2153 static void isr_status_change(struct ipw2100_priv *priv, int status)
2157 if (status == IPW_STATE_SCANNING &&
2158 priv->status & STATUS_ASSOCIATED &&
2159 !(priv->status & STATUS_SCANNING)) {
2160 IPW_DEBUG_INFO("Scan detected while associated, with "
2161 "no scan request. Restarting firmware.\n");
2163 /* Wake up any sleeping jobs */
2164 schedule_reset(priv);
2167 for (i = 0; status_handlers[i].status != -1; i++) {
2168 if (status == status_handlers[i].status) {
2169 IPW_DEBUG_NOTIF("Status change: %s\n",
2170 status_handlers[i].name);
2171 if (status_handlers[i].cb)
2172 status_handlers[i].cb(priv, status);
2173 priv->wstats.status = status;
2178 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2181 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2182 struct ipw2100_cmd_header *cmd)
2184 #ifdef CONFIG_IPW2100_DEBUG
2185 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2186 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2187 command_types[cmd->host_command_reg],
2188 cmd->host_command_reg);
2191 if (cmd->host_command_reg == HOST_COMPLETE)
2192 priv->status |= STATUS_ENABLED;
2194 if (cmd->host_command_reg == CARD_DISABLE)
2195 priv->status &= ~STATUS_ENABLED;
2197 priv->status &= ~STATUS_CMD_ACTIVE;
2199 wake_up_interruptible(&priv->wait_command_queue);
2202 #ifdef CONFIG_IPW2100_DEBUG
2203 static const char *frame_types[] = {
2204 "COMMAND_STATUS_VAL",
2205 "STATUS_CHANGE_VAL",
2208 "HOST_NOTIFICATION_VAL"
2212 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2213 struct ipw2100_rx_packet *packet)
2215 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2219 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2220 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2221 sizeof(struct ipw2100_rx),
2222 PCI_DMA_FROMDEVICE);
2223 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2229 #define SEARCH_ERROR 0xffffffff
2230 #define SEARCH_FAIL 0xfffffffe
2231 #define SEARCH_SUCCESS 0xfffffff0
2232 #define SEARCH_DISCARD 0
2233 #define SEARCH_SNAPSHOT 1
2235 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2236 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2239 if (!priv->snapshot[0])
2241 for (i = 0; i < 0x30; i++)
2242 kfree(priv->snapshot[i]);
2243 priv->snapshot[0] = NULL;
2246 #ifdef IPW2100_DEBUG_C3
2247 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2250 if (priv->snapshot[0])
2252 for (i = 0; i < 0x30; i++) {
2253 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2254 if (!priv->snapshot[i]) {
2255 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2256 "buffer %d\n", priv->net_dev->name, i);
2258 kfree(priv->snapshot[--i]);
2259 priv->snapshot[0] = NULL;
2267 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2268 size_t len, int mode)
2276 if (mode == SEARCH_SNAPSHOT) {
2277 if (!ipw2100_snapshot_alloc(priv))
2278 mode = SEARCH_DISCARD;
2281 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2282 read_nic_dword(priv->net_dev, i, &tmp);
2283 if (mode == SEARCH_SNAPSHOT)
2284 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2285 if (ret == SEARCH_FAIL) {
2287 for (j = 0; j < 4; j++) {
2296 if ((s - in_buf) == len)
2297 ret = (i + j) - len + 1;
2299 } else if (mode == SEARCH_DISCARD)
2309 * 0) Disconnect the SKB from the firmware (just unmap)
2310 * 1) Pack the ETH header into the SKB
2311 * 2) Pass the SKB to the network stack
2313 * When packet is provided by the firmware, it contains the following:
2316 * . ieee80211_snap_hdr
2318 * The size of the constructed ethernet
2321 #ifdef IPW2100_RX_DEBUG
2322 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2325 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2327 #ifdef IPW2100_DEBUG_C3
2328 struct ipw2100_status *status = &priv->status_queue.drv[i];
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2337 i * sizeof(struct ipw2100_status));
2339 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2340 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2341 limit = acpi_get_cstate_limit();
2343 priv->cstate_limit = limit;
2344 acpi_set_cstate_limit(2);
2345 priv->config |= CFG_C3_DISABLED;
2349 #ifdef IPW2100_DEBUG_C3
2350 /* Halt the fimrware so we can get a good image */
2351 write_register(priv->net_dev, IPW_REG_RESET_REG,
2352 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2355 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2356 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2358 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2362 match = ipw2100_match_buf(priv, (u8 *) status,
2363 sizeof(struct ipw2100_status),
2365 if (match < SEARCH_SUCCESS)
2366 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2367 "offset 0x%06X, length %d:\n",
2368 priv->net_dev->name, match,
2369 sizeof(struct ipw2100_status));
2371 IPW_DEBUG_INFO("%s: No DMA status match in "
2372 "Firmware.\n", priv->net_dev->name);
2374 printk_buf((u8 *) priv->status_queue.drv,
2375 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2378 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2379 priv->ieee->stats.rx_errors++;
2380 schedule_reset(priv);
2383 static void isr_rx(struct ipw2100_priv *priv, int i,
2384 struct ieee80211_rx_stats *stats)
2386 struct ipw2100_status *status = &priv->status_queue.drv[i];
2387 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2389 IPW_DEBUG_RX("Handler...\n");
2391 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2392 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2394 priv->net_dev->name,
2395 status->frame_size, skb_tailroom(packet->skb));
2396 priv->ieee->stats.rx_errors++;
2400 if (unlikely(!netif_running(priv->net_dev))) {
2401 priv->ieee->stats.rx_errors++;
2402 priv->wstats.discard.misc++;
2403 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2407 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2408 !(priv->status & STATUS_ASSOCIATED))) {
2409 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2410 priv->wstats.discard.misc++;
2414 pci_unmap_single(priv->pci_dev,
2416 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2418 skb_put(packet->skb, status->frame_size);
2420 #ifdef IPW2100_RX_DEBUG
2421 /* Make a copy of the frame so we can dump it to the logs if
2422 * ieee80211_rx fails */
2423 skb_copy_from_linear_data(packet->skb, packet_data,
2424 min_t(u32, status->frame_size,
2425 IPW_RX_NIC_BUFFER_LENGTH));
2428 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2429 #ifdef IPW2100_RX_DEBUG
2430 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2431 priv->net_dev->name);
2432 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2434 priv->ieee->stats.rx_errors++;
2436 /* ieee80211_rx failed, so it didn't free the SKB */
2437 dev_kfree_skb_any(packet->skb);
2441 /* We need to allocate a new SKB and attach it to the RDB. */
2442 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2443 printk(KERN_WARNING DRV_NAME ": "
2444 "%s: Unable to allocate SKB onto RBD ring - disabling "
2445 "adapter.\n", priv->net_dev->name);
2446 /* TODO: schedule adapter shutdown */
2447 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2450 /* Update the RDB entry */
2451 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2454 #ifdef CONFIG_IPW2100_MONITOR
2456 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2457 struct ieee80211_rx_stats *stats)
2459 struct ipw2100_status *status = &priv->status_queue.drv[i];
2460 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2462 /* Magic struct that slots into the radiotap header -- no reason
2463 * to build this manually element by element, we can write it much
2464 * more efficiently than we can parse it. ORDER MATTERS HERE */
2466 struct ieee80211_radiotap_header rt_hdr;
2467 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2470 IPW_DEBUG_RX("Handler...\n");
2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2473 sizeof(struct ipw_rt_hdr))) {
2474 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2476 priv->net_dev->name,
2478 skb_tailroom(packet->skb));
2479 priv->ieee->stats.rx_errors++;
2483 if (unlikely(!netif_running(priv->net_dev))) {
2484 priv->ieee->stats.rx_errors++;
2485 priv->wstats.discard.misc++;
2486 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2490 if (unlikely(priv->config & CFG_CRC_CHECK &&
2491 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2492 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2493 priv->ieee->stats.rx_errors++;
2497 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2498 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2499 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2500 packet->skb->data, status->frame_size);
2502 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2504 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2505 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2506 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2508 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2510 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2512 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2514 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2515 priv->ieee->stats.rx_errors++;
2517 /* ieee80211_rx failed, so it didn't free the SKB */
2518 dev_kfree_skb_any(packet->skb);
2522 /* We need to allocate a new SKB and attach it to the RDB. */
2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2525 "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 "adapter.\n", priv->net_dev->name);
2527 /* TODO: schedule adapter shutdown */
2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2531 /* Update the RDB entry */
2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2537 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2539 struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2541 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2543 switch (frame_type) {
2544 case COMMAND_STATUS_VAL:
2545 return (status->frame_size != sizeof(u->rx_data.command));
2546 case STATUS_CHANGE_VAL:
2547 return (status->frame_size != sizeof(u->rx_data.status));
2548 case HOST_NOTIFICATION_VAL:
2549 return (status->frame_size < sizeof(u->rx_data.notification));
2550 case P80211_DATA_VAL:
2551 case P8023_DATA_VAL:
2552 #ifdef CONFIG_IPW2100_MONITOR
2555 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2556 case IEEE80211_FTYPE_MGMT:
2557 case IEEE80211_FTYPE_CTL:
2559 case IEEE80211_FTYPE_DATA:
2560 return (status->frame_size >
2561 IPW_MAX_802_11_PAYLOAD_LENGTH);
2570 * ipw2100 interrupts are disabled at this point, and the ISR
2571 * is the only code that calls this method. So, we do not need
2572 * to play with any locks.
2574 * RX Queue works as follows:
2576 * Read index - firmware places packet in entry identified by the
2577 * Read index and advances Read index. In this manner,
2578 * Read index will always point to the next packet to
2579 * be filled--but not yet valid.
2581 * Write index - driver fills this entry with an unused RBD entry.
2582 * This entry has not filled by the firmware yet.
2584 * In between the W and R indexes are the RBDs that have been received
2585 * but not yet processed.
2587 * The process of handling packets will start at WRITE + 1 and advance
2588 * until it reaches the READ index.
2590 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2593 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2595 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2596 struct ipw2100_status_queue *sq = &priv->status_queue;
2597 struct ipw2100_rx_packet *packet;
2600 struct ipw2100_rx *u;
2601 struct ieee80211_rx_stats stats = {
2602 .mac_time = jiffies,
2605 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2606 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2608 if (r >= rxq->entries) {
2609 IPW_DEBUG_RX("exit - bad read index\n");
2613 i = (rxq->next + 1) % rxq->entries;
2616 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2617 r, rxq->next, i); */
2619 packet = &priv->rx_buffers[i];
2621 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2622 * the correct values */
2623 pci_dma_sync_single_for_cpu(priv->pci_dev,
2625 sizeof(struct ipw2100_status) * i,
2626 sizeof(struct ipw2100_status),
2627 PCI_DMA_FROMDEVICE);
2629 /* Sync the DMA for the RX buffer so CPU is sure to get
2630 * the correct values */
2631 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2632 sizeof(struct ipw2100_rx),
2633 PCI_DMA_FROMDEVICE);
2635 if (unlikely(ipw2100_corruption_check(priv, i))) {
2636 ipw2100_corruption_detected(priv, i);
2641 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2642 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2643 stats.len = sq->drv[i].frame_size;
2646 if (stats.rssi != 0)
2647 stats.mask |= IEEE80211_STATMASK_RSSI;
2648 stats.freq = IEEE80211_24GHZ_BAND;
2650 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2651 priv->net_dev->name, frame_types[frame_type],
2654 switch (frame_type) {
2655 case COMMAND_STATUS_VAL:
2656 /* Reset Rx watchdog */
2657 isr_rx_complete_command(priv, &u->rx_data.command);
2660 case STATUS_CHANGE_VAL:
2661 isr_status_change(priv, u->rx_data.status);
2664 case P80211_DATA_VAL:
2665 case P8023_DATA_VAL:
2666 #ifdef CONFIG_IPW2100_MONITOR
2667 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2668 isr_rx_monitor(priv, i, &stats);
2672 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2674 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2675 case IEEE80211_FTYPE_MGMT:
2676 ieee80211_rx_mgt(priv->ieee,
2677 &u->rx_data.header, &stats);
2680 case IEEE80211_FTYPE_CTL:
2683 case IEEE80211_FTYPE_DATA:
2684 isr_rx(priv, i, &stats);
2692 /* clear status field associated with this RBD */
2693 rxq->drv[i].status.info.field = 0;
2695 i = (i + 1) % rxq->entries;
2699 /* backtrack one entry, wrapping to end if at 0 */
2700 rxq->next = (i ? i : rxq->entries) - 1;
2702 write_register(priv->net_dev,
2703 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2708 * __ipw2100_tx_process
2710 * This routine will determine whether the next packet on
2711 * the fw_pend_list has been processed by the firmware yet.
2713 * If not, then it does nothing and returns.
2715 * If so, then it removes the item from the fw_pend_list, frees
2716 * any associated storage, and places the item back on the
2717 * free list of its source (either msg_free_list or tx_free_list)
2719 * TX Queue works as follows:
2721 * Read index - points to the next TBD that the firmware will
2722 * process. The firmware will read the data, and once
2723 * done processing, it will advance the Read index.
2725 * Write index - driver fills this entry with an constructed TBD
2726 * entry. The Write index is not advanced until the
2727 * packet has been configured.
2729 * In between the W and R indexes are the TBDs that have NOT been
2730 * processed. Lagging behind the R index are packets that have
2731 * been processed but have not been freed by the driver.
2733 * In order to free old storage, an internal index will be maintained
2734 * that points to the next packet to be freed. When all used
2735 * packets have been freed, the oldest index will be the same as the
2736 * firmware's read index.
2738 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2740 * Because the TBD structure can not contain arbitrary data, the
2741 * driver must keep an internal queue of cached allocations such that
2742 * it can put that data back into the tx_free_list and msg_free_list
2743 * for use by future command and data packets.
2746 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2748 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2749 struct ipw2100_bd *tbd;
2750 struct list_head *element;
2751 struct ipw2100_tx_packet *packet;
2752 int descriptors_used;
2754 u32 r, w, frag_num = 0;
2756 if (list_empty(&priv->fw_pend_list))
2759 element = priv->fw_pend_list.next;
2761 packet = list_entry(element, struct ipw2100_tx_packet, list);
2762 tbd = &txq->drv[packet->index];
2764 /* Determine how many TBD entries must be finished... */
2765 switch (packet->type) {
2767 /* COMMAND uses only one slot; don't advance */
2768 descriptors_used = 1;
2773 /* DATA uses two slots; advance and loop position. */
2774 descriptors_used = tbd->num_fragments;
2775 frag_num = tbd->num_fragments - 1;
2776 e = txq->oldest + frag_num;
2781 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2782 priv->net_dev->name);
2786 /* if the last TBD is not done by NIC yet, then packet is
2787 * not ready to be released.
2790 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2792 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2795 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2796 priv->net_dev->name);
2799 * txq->next is the index of the last packet written txq->oldest is
2800 * the index of the r is the index of the next packet to be read by
2805 * Quick graphic to help you visualize the following
2806 * if / else statement
2808 * ===>| s---->|===============
2810 * | a | b | c | d | e | f | g | h | i | j | k | l
2814 * w - updated by driver
2815 * r - updated by firmware
2816 * s - start of oldest BD entry (txq->oldest)
2817 * e - end of oldest BD entry
2820 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2821 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2826 DEC_STAT(&priv->fw_pend_stat);
2828 #ifdef CONFIG_IPW2100_DEBUG
2830 int i = txq->oldest;
2831 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2833 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2834 txq->drv[i].host_addr, txq->drv[i].buf_length);
2836 if (packet->type == DATA) {
2837 i = (i + 1) % txq->entries;
2839 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2841 (u32) (txq->nic + i *
2842 sizeof(struct ipw2100_bd)),
2843 (u32) txq->drv[i].host_addr,
2844 txq->drv[i].buf_length);
2849 switch (packet->type) {
2851 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2852 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2853 "Expecting DATA TBD but pulled "
2854 "something else: ids %d=%d.\n",
2855 priv->net_dev->name, txq->oldest, packet->index);
2857 /* DATA packet; we have to unmap and free the SKB */
2858 for (i = 0; i < frag_num; i++) {
2859 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2861 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2862 (packet->index + 1 + i) % txq->entries,
2863 tbd->host_addr, tbd->buf_length);
2865 pci_unmap_single(priv->pci_dev,
2867 tbd->buf_length, PCI_DMA_TODEVICE);
2870 ieee80211_txb_free(packet->info.d_struct.txb);
2871 packet->info.d_struct.txb = NULL;
2873 list_add_tail(element, &priv->tx_free_list);
2874 INC_STAT(&priv->tx_free_stat);
2876 /* We have a free slot in the Tx queue, so wake up the
2877 * transmit layer if it is stopped. */
2878 if (priv->status & STATUS_ASSOCIATED)
2879 netif_wake_queue(priv->net_dev);
2881 /* A packet was processed by the hardware, so update the
2883 priv->net_dev->trans_start = jiffies;
2888 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2889 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2890 "Expecting COMMAND TBD but pulled "
2891 "something else: ids %d=%d.\n",
2892 priv->net_dev->name, txq->oldest, packet->index);
2894 #ifdef CONFIG_IPW2100_DEBUG
2895 if (packet->info.c_struct.cmd->host_command_reg <
2896 ARRAY_SIZE(command_types))
2897 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2898 command_types[packet->info.c_struct.cmd->
2900 packet->info.c_struct.cmd->
2902 packet->info.c_struct.cmd->cmd_status_reg);
2905 list_add_tail(element, &priv->msg_free_list);
2906 INC_STAT(&priv->msg_free_stat);
2910 /* advance oldest used TBD pointer to start of next entry */
2911 txq->oldest = (e + 1) % txq->entries;
2912 /* increase available TBDs number */
2913 txq->available += descriptors_used;
2914 SET_STAT(&priv->txq_stat, txq->available);
2916 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2917 jiffies - packet->jiffy_start);
2919 return (!list_empty(&priv->fw_pend_list));
2922 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2926 while (__ipw2100_tx_process(priv) && i < 200)
2930 printk(KERN_WARNING DRV_NAME ": "
2931 "%s: Driver is running slow (%d iters).\n",
2932 priv->net_dev->name, i);
2936 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2938 struct list_head *element;
2939 struct ipw2100_tx_packet *packet;
2940 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2941 struct ipw2100_bd *tbd;
2942 int next = txq->next;
2944 while (!list_empty(&priv->msg_pend_list)) {
2945 /* if there isn't enough space in TBD queue, then
2946 * don't stuff a new one in.
2947 * NOTE: 3 are needed as a command will take one,
2948 * and there is a minimum of 2 that must be
2949 * maintained between the r and w indexes
2951 if (txq->available <= 3) {
2952 IPW_DEBUG_TX("no room in tx_queue\n");
2956 element = priv->msg_pend_list.next;
2958 DEC_STAT(&priv->msg_pend_stat);
2960 packet = list_entry(element, struct ipw2100_tx_packet, list);
2962 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2963 &txq->drv[txq->next],
2964 (void *)(txq->nic + txq->next *
2965 sizeof(struct ipw2100_bd)));
2967 packet->index = txq->next;
2969 tbd = &txq->drv[txq->next];
2971 /* initialize TBD */
2972 tbd->host_addr = packet->info.c_struct.cmd_phys;
2973 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2974 /* not marking number of fragments causes problems
2975 * with f/w debug version */
2976 tbd->num_fragments = 1;
2977 tbd->status.info.field =
2978 IPW_BD_STATUS_TX_FRAME_COMMAND |
2979 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2981 /* update TBD queue counters */
2983 txq->next %= txq->entries;
2985 DEC_STAT(&priv->txq_stat);
2987 list_add_tail(element, &priv->fw_pend_list);
2988 INC_STAT(&priv->fw_pend_stat);
2991 if (txq->next != next) {
2992 /* kick off the DMA by notifying firmware the
2993 * write index has moved; make sure TBD stores are sync'd */
2995 write_register(priv->net_dev,
2996 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3002 * ipw2100_tx_send_data
3005 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3007 struct list_head *element;
3008 struct ipw2100_tx_packet *packet;
3009 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3010 struct ipw2100_bd *tbd;
3011 int next = txq->next;
3013 struct ipw2100_data_header *ipw_hdr;
3014 struct ieee80211_hdr_3addr *hdr;
3016 while (!list_empty(&priv->tx_pend_list)) {
3017 /* if there isn't enough space in TBD queue, then
3018 * don't stuff a new one in.
3019 * NOTE: 4 are needed as a data will take two,
3020 * and there is a minimum of 2 that must be
3021 * maintained between the r and w indexes
3023 element = priv->tx_pend_list.next;
3024 packet = list_entry(element, struct ipw2100_tx_packet, list);
3026 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3028 /* TODO: Support merging buffers if more than
3029 * IPW_MAX_BDS are used */
3030 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3031 "Increase fragmentation level.\n",
3032 priv->net_dev->name);
3035 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3036 IPW_DEBUG_TX("no room in tx_queue\n");
3041 DEC_STAT(&priv->tx_pend_stat);
3043 tbd = &txq->drv[txq->next];
3045 packet->index = txq->next;
3047 ipw_hdr = packet->info.d_struct.data;
3048 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3051 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3052 /* To DS: Addr1 = BSSID, Addr2 = SA,
3054 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3056 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3057 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3059 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3060 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3063 ipw_hdr->host_command_reg = SEND;
3064 ipw_hdr->host_command_reg1 = 0;
3066 /* For now we only support host based encryption */
3067 ipw_hdr->needs_encryption = 0;
3068 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3069 if (packet->info.d_struct.txb->nr_frags > 1)
3070 ipw_hdr->fragment_size =
3071 packet->info.d_struct.txb->frag_size -
3072 IEEE80211_3ADDR_LEN;
3074 ipw_hdr->fragment_size = 0;
3076 tbd->host_addr = packet->info.d_struct.data_phys;
3077 tbd->buf_length = sizeof(struct ipw2100_data_header);
3078 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3079 tbd->status.info.field =
3080 IPW_BD_STATUS_TX_FRAME_802_3 |
3081 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3083 txq->next %= txq->entries;
3085 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3086 packet->index, tbd->host_addr, tbd->buf_length);
3087 #ifdef CONFIG_IPW2100_DEBUG
3088 if (packet->info.d_struct.txb->nr_frags > 1)
3089 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3090 packet->info.d_struct.txb->nr_frags);
3093 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3094 tbd = &txq->drv[txq->next];
3095 if (i == packet->info.d_struct.txb->nr_frags - 1)
3096 tbd->status.info.field =
3097 IPW_BD_STATUS_TX_FRAME_802_3 |
3098 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3100 tbd->status.info.field =
3101 IPW_BD_STATUS_TX_FRAME_802_3 |
3102 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3104 tbd->buf_length = packet->info.d_struct.txb->
3105 fragments[i]->len - IEEE80211_3ADDR_LEN;
3107 tbd->host_addr = pci_map_single(priv->pci_dev,
3108 packet->info.d_struct.
3111 IEEE80211_3ADDR_LEN,
3115 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3116 txq->next, tbd->host_addr,
3119 pci_dma_sync_single_for_device(priv->pci_dev,
3125 txq->next %= txq->entries;
3128 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3129 SET_STAT(&priv->txq_stat, txq->available);
3131 list_add_tail(element, &priv->fw_pend_list);
3132 INC_STAT(&priv->fw_pend_stat);
3135 if (txq->next != next) {
3136 /* kick off the DMA by notifying firmware the
3137 * write index has moved; make sure TBD stores are sync'd */
3138 write_register(priv->net_dev,
3139 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3145 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3147 struct net_device *dev = priv->net_dev;
3148 unsigned long flags;
3151 spin_lock_irqsave(&priv->low_lock, flags);
3152 ipw2100_disable_interrupts(priv);
3154 read_register(dev, IPW_REG_INTA, &inta);
3156 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3157 (unsigned long)inta & IPW_INTERRUPT_MASK);
3162 /* We do not loop and keep polling for more interrupts as this
3163 * is frowned upon and doesn't play nicely with other potentially
3165 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3166 (unsigned long)inta & IPW_INTERRUPT_MASK);
3168 if (inta & IPW2100_INTA_FATAL_ERROR) {
3169 printk(KERN_WARNING DRV_NAME
3170 ": Fatal interrupt. Scheduling firmware restart.\n");
3172 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3174 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3175 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3176 priv->net_dev->name, priv->fatal_error);
3178 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3179 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3180 priv->net_dev->name, tmp);
3182 /* Wake up any sleeping jobs */
3183 schedule_reset(priv);
3186 if (inta & IPW2100_INTA_PARITY_ERROR) {
3187 printk(KERN_ERR DRV_NAME
3188 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3190 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3193 if (inta & IPW2100_INTA_RX_TRANSFER) {
3194 IPW_DEBUG_ISR("RX interrupt\n");
3196 priv->rx_interrupts++;
3198 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3200 __ipw2100_rx_process(priv);
3201 __ipw2100_tx_complete(priv);
3204 if (inta & IPW2100_INTA_TX_TRANSFER) {
3205 IPW_DEBUG_ISR("TX interrupt\n");
3207 priv->tx_interrupts++;
3209 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3211 __ipw2100_tx_complete(priv);
3212 ipw2100_tx_send_commands(priv);
3213 ipw2100_tx_send_data(priv);
3216 if (inta & IPW2100_INTA_TX_COMPLETE) {
3217 IPW_DEBUG_ISR("TX complete\n");
3219 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3221 __ipw2100_tx_complete(priv);
3224 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3225 /* ipw2100_handle_event(dev); */
3227 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3230 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3231 IPW_DEBUG_ISR("FW init done interrupt\n");
3234 read_register(dev, IPW_REG_INTA, &tmp);
3235 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3236 IPW2100_INTA_PARITY_ERROR)) {
3237 write_register(dev, IPW_REG_INTA,
3238 IPW2100_INTA_FATAL_ERROR |
3239 IPW2100_INTA_PARITY_ERROR);
3242 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3245 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3246 IPW_DEBUG_ISR("Status change interrupt\n");
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3251 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3252 IPW_DEBUG_ISR("slave host mode interrupt\n");
3254 write_register(dev, IPW_REG_INTA,
3255 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3259 ipw2100_enable_interrupts(priv);
3261 spin_unlock_irqrestore(&priv->low_lock, flags);
3263 IPW_DEBUG_ISR("exit\n");
3266 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3268 struct ipw2100_priv *priv = data;
3269 u32 inta, inta_mask;
3274 spin_lock(&priv->low_lock);
3276 /* We check to see if we should be ignoring interrupts before
3277 * we touch the hardware. During ucode load if we try and handle
3278 * an interrupt we can cause keyboard problems as well as cause
3279 * the ucode to fail to initialize */
3280 if (!(priv->status & STATUS_INT_ENABLED)) {
3285 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3286 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3288 if (inta == 0xFFFFFFFF) {
3289 /* Hardware disappeared */
3290 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3294 inta &= IPW_INTERRUPT_MASK;
3296 if (!(inta & inta_mask)) {
3297 /* Shared interrupt */
3301 /* We disable the hardware interrupt here just to prevent unneeded
3302 * calls to be made. We disable this again within the actual
3303 * work tasklet, so if another part of the code re-enables the
3304 * interrupt, that is fine */
3305 ipw2100_disable_interrupts(priv);
3307 tasklet_schedule(&priv->irq_tasklet);
3308 spin_unlock(&priv->low_lock);
3312 spin_unlock(&priv->low_lock);
3316 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3319 struct ipw2100_priv *priv = ieee80211_priv(dev);
3320 struct list_head *element;
3321 struct ipw2100_tx_packet *packet;
3322 unsigned long flags;
3324 spin_lock_irqsave(&priv->low_lock, flags);
3326 if (!(priv->status & STATUS_ASSOCIATED)) {
3327 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3328 priv->ieee->stats.tx_carrier_errors++;
3329 netif_stop_queue(dev);
3333 if (list_empty(&priv->tx_free_list))
3336 element = priv->tx_free_list.next;
3337 packet = list_entry(element, struct ipw2100_tx_packet, list);
3339 packet->info.d_struct.txb = txb;
3341 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3342 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3344 packet->jiffy_start = jiffies;
3347 DEC_STAT(&priv->tx_free_stat);
3349 list_add_tail(element, &priv->tx_pend_list);
3350 INC_STAT(&priv->tx_pend_stat);
3352 ipw2100_tx_send_data(priv);
3354 spin_unlock_irqrestore(&priv->low_lock, flags);
3358 netif_stop_queue(dev);
3359 spin_unlock_irqrestore(&priv->low_lock, flags);
3363 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3365 int i, j, err = -EINVAL;
3370 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3374 if (!priv->msg_buffers) {
3375 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3376 "buffers.\n", priv->net_dev->name);
3380 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3381 v = pci_alloc_consistent(priv->pci_dev,
3382 sizeof(struct ipw2100_cmd_header), &p);
3384 printk(KERN_ERR DRV_NAME ": "
3385 "%s: PCI alloc failed for msg "
3386 "buffers.\n", priv->net_dev->name);
3391 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3393 priv->msg_buffers[i].type = COMMAND;
3394 priv->msg_buffers[i].info.c_struct.cmd =
3395 (struct ipw2100_cmd_header *)v;
3396 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3399 if (i == IPW_COMMAND_POOL_SIZE)
3402 for (j = 0; j < i; j++) {
3403 pci_free_consistent(priv->pci_dev,
3404 sizeof(struct ipw2100_cmd_header),
3405 priv->msg_buffers[j].info.c_struct.cmd,
3406 priv->msg_buffers[j].info.c_struct.
3410 kfree(priv->msg_buffers);
3411 priv->msg_buffers = NULL;
3416 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3420 INIT_LIST_HEAD(&priv->msg_free_list);
3421 INIT_LIST_HEAD(&priv->msg_pend_list);
3423 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3424 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3425 SET_STAT(&priv->msg_free_stat, i);
3430 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3434 if (!priv->msg_buffers)
3437 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3438 pci_free_consistent(priv->pci_dev,
3439 sizeof(struct ipw2100_cmd_header),
3440 priv->msg_buffers[i].info.c_struct.cmd,
3441 priv->msg_buffers[i].info.c_struct.
3445 kfree(priv->msg_buffers);
3446 priv->msg_buffers = NULL;
3449 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3452 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3457 for (i = 0; i < 16; i++) {
3458 out += sprintf(out, "[%08X] ", i * 16);
3459 for (j = 0; j < 16; j += 4) {
3460 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3461 out += sprintf(out, "%08X ", val);
3463 out += sprintf(out, "\n");
3469 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3471 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3474 struct ipw2100_priv *p = d->driver_data;
3475 return sprintf(buf, "0x%08x\n", (int)p->config);
3478 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3480 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3483 struct ipw2100_priv *p = d->driver_data;
3484 return sprintf(buf, "0x%08x\n", (int)p->status);
3487 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3489 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3492 struct ipw2100_priv *p = d->driver_data;
3493 return sprintf(buf, "0x%08x\n", (int)p->capability);
3496 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3498 #define IPW2100_REG(x) { IPW_ ##x, #x }
3499 static const struct {
3503 IPW2100_REG(REG_GP_CNTRL),
3504 IPW2100_REG(REG_GPIO),
3505 IPW2100_REG(REG_INTA),
3506 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3507 #define IPW2100_NIC(x, s) { x, #x, s }
3508 static const struct {
3513 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3514 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3515 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3516 static const struct {
3521 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3522 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3523 "successful Host Tx's (MSDU)"),
3524 IPW2100_ORD(STAT_TX_DIR_DATA,
3525 "successful Directed Tx's (MSDU)"),
3526 IPW2100_ORD(STAT_TX_DIR_DATA1,
3527 "successful Directed Tx's (MSDU) @ 1MB"),
3528 IPW2100_ORD(STAT_TX_DIR_DATA2,
3529 "successful Directed Tx's (MSDU) @ 2MB"),
3530 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3531 "successful Directed Tx's (MSDU) @ 5_5MB"),
3532 IPW2100_ORD(STAT_TX_DIR_DATA11,
3533 "successful Directed Tx's (MSDU) @ 11MB"),
3534 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3535 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3536 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3537 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3538 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3539 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3540 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3541 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3542 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3543 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3544 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3545 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3546 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3547 IPW2100_ORD(STAT_TX_ASSN_RESP,
3548 "successful Association response Tx's"),
3549 IPW2100_ORD(STAT_TX_REASSN,
3550 "successful Reassociation Tx's"),
3551 IPW2100_ORD(STAT_TX_REASSN_RESP,
3552 "successful Reassociation response Tx's"),
3553 IPW2100_ORD(STAT_TX_PROBE,
3554 "probes successfully transmitted"),
3555 IPW2100_ORD(STAT_TX_PROBE_RESP,
3556 "probe responses successfully transmitted"),
3557 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3558 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3559 IPW2100_ORD(STAT_TX_DISASSN,
3560 "successful Disassociation TX"),
3561 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3562 IPW2100_ORD(STAT_TX_DEAUTH,
3563 "successful Deauthentication TX"),
3564 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3565 "Total successful Tx data bytes"),
3566 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3567 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3568 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3569 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3570 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3571 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3572 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3573 "times max tries in a hop failed"),
3574 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3575 "times disassociation failed"),
3576 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3577 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3578 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3580 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3581 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3582 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3583 "directed packets at 5.5MB"),
3584 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3586 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3587 "nondirected packets at 1MB"),
3588 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3589 "nondirected packets at 2MB"),
3590 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3591 "nondirected packets at 5.5MB"),
3592 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3593 "nondirected packets at 11MB"),
3594 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3595 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3597 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3598 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3599 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3600 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3601 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3602 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3603 IPW2100_ORD(STAT_RX_REASSN_RESP,
3604 "Reassociation response Rx's"),
3605 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3606 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3607 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3608 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3609 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3610 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3611 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3612 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3613 "Total rx data bytes received"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3615 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3616 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3617 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3618 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3619 IPW2100_ORD(STAT_RX_DUPLICATE1,
3620 "duplicate rx packets at 1MB"),
3621 IPW2100_ORD(STAT_RX_DUPLICATE2,
3622 "duplicate rx packets at 2MB"),
3623 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3624 "duplicate rx packets at 5.5MB"),
3625 IPW2100_ORD(STAT_RX_DUPLICATE11,
3626 "duplicate rx packets at 11MB"),
3627 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3628 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3629 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3630 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3631 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3632 "rx frames with invalid protocol"),
3633 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3634 IPW2100_ORD(STAT_RX_NO_BUFFER,
3635 "rx frames rejected due to no buffer"),
3636 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3637 "rx frames dropped due to missing fragment"),
3638 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3639 "rx frames dropped due to non-sequential fragment"),
3640 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3641 "rx frames dropped due to unmatched 1st frame"),
3642 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3643 "rx frames dropped due to uncompleted frame"),
3644 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3645 "ICV errors during decryption"),
3646 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3647 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3648 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3649 "poll response timeouts"),
3650 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3651 "timeouts waiting for last {broad,multi}cast pkt"),
3652 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3653 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3654 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3655 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3656 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3657 "current calculation of % missed beacons"),
3658 IPW2100_ORD(STAT_PERCENT_RETRIES,
3659 "current calculation of % missed tx retries"),
3660 IPW2100_ORD(ASSOCIATED_AP_PTR,
3661 "0 if not associated, else pointer to AP table entry"),
3662 IPW2100_ORD(AVAILABLE_AP_CNT,
3663 "AP's decsribed in the AP table"),
3664 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3665 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3666 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3667 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3668 "failures due to response fail"),
3669 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3670 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3671 IPW2100_ORD(STAT_ROAM_INHIBIT,
3672 "times roaming was inhibited due to activity"),
3673 IPW2100_ORD(RSSI_AT_ASSN,
3674 "RSSI of associated AP at time of association"),
3675 IPW2100_ORD(STAT_ASSN_CAUSE1,
3676 "reassociation: no probe response or TX on hop"),
3677 IPW2100_ORD(STAT_ASSN_CAUSE2,
3678 "reassociation: poor tx/rx quality"),
3679 IPW2100_ORD(STAT_ASSN_CAUSE3,
3680 "reassociation: tx/rx quality (excessive AP load"),
3681 IPW2100_ORD(STAT_ASSN_CAUSE4,
3682 "reassociation: AP RSSI level"),
3683 IPW2100_ORD(STAT_ASSN_CAUSE5,
3684 "reassociations due to load leveling"),
3685 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3686 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3687 "times authentication response failed"),
3688 IPW2100_ORD(STATION_TABLE_CNT,
3689 "entries in association table"),
3690 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3691 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3692 IPW2100_ORD(COUNTRY_CODE,
3693 "IEEE country code as recv'd from beacon"),
3694 IPW2100_ORD(COUNTRY_CHANNELS,
3695 "channels suported by country"),
3696 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3697 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3698 IPW2100_ORD(ANTENNA_DIVERSITY,
3699 "TRUE if antenna diversity is disabled"),
3700 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3701 IPW2100_ORD(OUR_FREQ,
3702 "current radio freq lower digits - channel ID"),
3703 IPW2100_ORD(RTC_TIME, "current RTC time"),
3704 IPW2100_ORD(PORT_TYPE, "operating mode"),
3705 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3706 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3707 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3708 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3709 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3710 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3711 IPW2100_ORD(CAPABILITIES,
3712 "Management frame capability field"),
3713 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3714 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3715 IPW2100_ORD(RTS_THRESHOLD,
3716 "Min packet length for RTS handshaking"),
3717 IPW2100_ORD(INT_MODE, "International mode"),
3718 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3719 "protocol frag threshold"),
3720 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3721 "EEPROM offset in SRAM"),
3722 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3723 "EEPROM size in SRAM"),
3724 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3725 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3726 "EEPROM IBSS 11b channel set"),
3727 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3728 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3729 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3730 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3731 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3733 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3737 struct ipw2100_priv *priv = dev_get_drvdata(d);
3738 struct net_device *dev = priv->net_dev;
3742 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3744 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3745 read_register(dev, hw_data[i].addr, &val);
3746 out += sprintf(out, "%30s [%08X] : %08X\n",
3747 hw_data[i].name, hw_data[i].addr, val);
3753 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3755 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3758 struct ipw2100_priv *priv = dev_get_drvdata(d);
3759 struct net_device *dev = priv->net_dev;
3763 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3765 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3770 switch (nic_data[i].size) {
3772 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3773 out += sprintf(out, "%30s [%08X] : %02X\n",
3774 nic_data[i].name, nic_data[i].addr,
3778 read_nic_word(dev, nic_data[i].addr, &tmp16);
3779 out += sprintf(out, "%30s [%08X] : %04X\n",
3780 nic_data[i].name, nic_data[i].addr,
3784 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3785 out += sprintf(out, "%30s [%08X] : %08X\n",
3786 nic_data[i].name, nic_data[i].addr,
3794 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3796 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3799 struct ipw2100_priv *priv = dev_get_drvdata(d);
3800 struct net_device *dev = priv->net_dev;
3801 static unsigned long loop = 0;
3807 if (loop >= 0x30000)
3810 /* sysfs provides us PAGE_SIZE buffer */
3811 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3813 if (priv->snapshot[0])
3814 for (i = 0; i < 4; i++)
3816 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3818 for (i = 0; i < 4; i++)
3819 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3822 len += sprintf(buf + len,
3827 ((u8 *) buffer)[0x0],
3828 ((u8 *) buffer)[0x1],
3829 ((u8 *) buffer)[0x2],
3830 ((u8 *) buffer)[0x3],
3831 ((u8 *) buffer)[0x4],
3832 ((u8 *) buffer)[0x5],
3833 ((u8 *) buffer)[0x6],
3834 ((u8 *) buffer)[0x7],
3835 ((u8 *) buffer)[0x8],
3836 ((u8 *) buffer)[0x9],
3837 ((u8 *) buffer)[0xa],
3838 ((u8 *) buffer)[0xb],
3839 ((u8 *) buffer)[0xc],
3840 ((u8 *) buffer)[0xd],
3841 ((u8 *) buffer)[0xe],
3842 ((u8 *) buffer)[0xf]);
3844 len += sprintf(buf + len, "%s\n",
3845 snprint_line(line, sizeof(line),
3846 (u8 *) buffer, 16, loop));
3853 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3854 const char *buf, size_t count)
3856 struct ipw2100_priv *priv = dev_get_drvdata(d);
3857 struct net_device *dev = priv->net_dev;
3858 const char *p = buf;
3860 (void)dev; /* kill unused-var warning for debug-only code */
3866 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3867 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3871 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3872 tolower(p[1]) == 'f')) {
3873 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3877 } else if (tolower(p[0]) == 'r') {
3878 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3879 ipw2100_snapshot_free(priv);
3882 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3883 "reset = clear memory snapshot\n", dev->name);
3888 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3890 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3893 struct ipw2100_priv *priv = dev_get_drvdata(d);
3897 static int loop = 0;
3899 if (priv->status & STATUS_RF_KILL_MASK)
3902 if (loop >= ARRAY_SIZE(ord_data))
3905 /* sysfs provides us PAGE_SIZE buffer */
3906 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3907 val_len = sizeof(u32);
3909 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3911 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3912 ord_data[loop].index,
3913 ord_data[loop].desc);
3915 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3916 ord_data[loop].index, val,
3917 ord_data[loop].desc);
3924 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3926 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3929 struct ipw2100_priv *priv = dev_get_drvdata(d);
3932 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3933 priv->interrupts, priv->tx_interrupts,
3934 priv->rx_interrupts, priv->inta_other);
3935 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3936 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3937 #ifdef CONFIG_IPW2100_DEBUG
3938 out += sprintf(out, "packet mismatch image: %s\n",
3939 priv->snapshot[0] ? "YES" : "NO");
3945 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3947 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3951 if (mode == priv->ieee->iw_mode)
3954 err = ipw2100_disable_adapter(priv);
3956 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3957 priv->net_dev->name, err);
3963 priv->net_dev->type = ARPHRD_ETHER;
3966 priv->net_dev->type = ARPHRD_ETHER;
3968 #ifdef CONFIG_IPW2100_MONITOR
3969 case IW_MODE_MONITOR:
3970 priv->last_mode = priv->ieee->iw_mode;
3971 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3973 #endif /* CONFIG_IPW2100_MONITOR */
3976 priv->ieee->iw_mode = mode;
3979 /* Indicate ipw2100_download_firmware download firmware
3980 * from disk instead of memory. */
3981 ipw2100_firmware.version = 0;
3984 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3985 priv->reset_backoff = 0;
3986 schedule_reset(priv);
3991 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3994 struct ipw2100_priv *priv = dev_get_drvdata(d);
3997 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3999 if (priv->status & STATUS_ASSOCIATED)
4000 len += sprintf(buf + len, "connected: %lu\n",
4001 get_seconds() - priv->connect_start);
4003 len += sprintf(buf + len, "not connected\n");
4005 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4006 DUMP_VAR(status, "08lx");
4007 DUMP_VAR(config, "08lx");
4008 DUMP_VAR(capability, "08lx");
4011 sprintf(buf + len, "last_rtc: %lu\n",
4012 (unsigned long)priv->last_rtc);
4014 DUMP_VAR(fatal_error, "d");
4015 DUMP_VAR(stop_hang_check, "d");
4016 DUMP_VAR(stop_rf_kill, "d");
4017 DUMP_VAR(messages_sent, "d");
4019 DUMP_VAR(tx_pend_stat.value, "d");
4020 DUMP_VAR(tx_pend_stat.hi, "d");
4022 DUMP_VAR(tx_free_stat.value, "d");
4023 DUMP_VAR(tx_free_stat.lo, "d");
4025 DUMP_VAR(msg_free_stat.value, "d");
4026 DUMP_VAR(msg_free_stat.lo, "d");
4028 DUMP_VAR(msg_pend_stat.value, "d");
4029 DUMP_VAR(msg_pend_stat.hi, "d");
4031 DUMP_VAR(fw_pend_stat.value, "d");
4032 DUMP_VAR(fw_pend_stat.hi, "d");
4034 DUMP_VAR(txq_stat.value, "d");
4035 DUMP_VAR(txq_stat.lo, "d");
4037 DUMP_VAR(ieee->scans, "d");
4038 DUMP_VAR(reset_backoff, "d");
4043 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4045 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4048 struct ipw2100_priv *priv = dev_get_drvdata(d);
4049 char essid[IW_ESSID_MAX_SIZE + 1];
4055 DECLARE_MAC_BUF(mac);
4057 if (priv->status & STATUS_RF_KILL_MASK)
4060 memset(essid, 0, sizeof(essid));
4061 memset(bssid, 0, sizeof(bssid));
4063 length = IW_ESSID_MAX_SIZE;
4064 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4066 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4069 length = sizeof(bssid);
4070 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4073 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076 length = sizeof(u32);
4077 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4079 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4082 out += sprintf(out, "ESSID: %s\n", essid);
4083 out += sprintf(out, "BSSID: %s\n", print_mac(mac, bssid));
4084 out += sprintf(out, "Channel: %d\n", chan);
4089 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4091 #ifdef CONFIG_IPW2100_DEBUG
4092 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4094 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4097 static ssize_t store_debug_level(struct device_driver *d,
4098 const char *buf, size_t count)
4100 char *p = (char *)buf;
4103 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4105 if (p[0] == 'x' || p[0] == 'X')
4107 val = simple_strtoul(p, &p, 16);
4109 val = simple_strtoul(p, &p, 10);
4111 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4113 ipw2100_debug_level = val;
4115 return strnlen(buf, count);
4118 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4120 #endif /* CONFIG_IPW2100_DEBUG */
4122 static ssize_t show_fatal_error(struct device *d,
4123 struct device_attribute *attr, char *buf)
4125 struct ipw2100_priv *priv = dev_get_drvdata(d);
4129 if (priv->fatal_error)
4130 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4132 out += sprintf(out, "0\n");
4134 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4135 if (!priv->fatal_errors[(priv->fatal_index - i) %
4136 IPW2100_ERROR_QUEUE])
4139 out += sprintf(out, "%d. 0x%08X\n", i,
4140 priv->fatal_errors[(priv->fatal_index - i) %
4141 IPW2100_ERROR_QUEUE]);
4147 static ssize_t store_fatal_error(struct device *d,
4148 struct device_attribute *attr, const char *buf,
4151 struct ipw2100_priv *priv = dev_get_drvdata(d);
4152 schedule_reset(priv);
4156 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4159 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4162 struct ipw2100_priv *priv = dev_get_drvdata(d);
4163 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4166 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4167 const char *buf, size_t count)
4169 struct ipw2100_priv *priv = dev_get_drvdata(d);
4170 struct net_device *dev = priv->net_dev;
4171 char buffer[] = "00000000";
4173 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4177 (void)dev; /* kill unused-var warning for debug-only code */
4179 IPW_DEBUG_INFO("enter\n");
4181 strncpy(buffer, buf, len);
4184 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4186 if (p[0] == 'x' || p[0] == 'X')
4188 val = simple_strtoul(p, &p, 16);
4190 val = simple_strtoul(p, &p, 10);
4192 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4194 priv->ieee->scan_age = val;
4195 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4198 IPW_DEBUG_INFO("exit\n");
4202 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4204 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4207 /* 0 - RF kill not enabled
4208 1 - SW based RF kill active (sysfs)
4209 2 - HW based RF kill active
4210 3 - Both HW and SW baed RF kill active */
4211 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4212 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4213 (rf_kill_active(priv) ? 0x2 : 0x0);
4214 return sprintf(buf, "%i\n", val);
4217 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4219 if ((disable_radio ? 1 : 0) ==
4220 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4223 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4224 disable_radio ? "OFF" : "ON");
4226 mutex_lock(&priv->action_mutex);
4228 if (disable_radio) {
4229 priv->status |= STATUS_RF_KILL_SW;
4232 priv->status &= ~STATUS_RF_KILL_SW;
4233 if (rf_kill_active(priv)) {
4234 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4235 "disabled by HW switch\n");
4236 /* Make sure the RF_KILL check timer is running */
4237 priv->stop_rf_kill = 0;
4238 cancel_delayed_work(&priv->rf_kill);
4239 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4242 schedule_reset(priv);
4245 mutex_unlock(&priv->action_mutex);
4249 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4250 const char *buf, size_t count)
4252 struct ipw2100_priv *priv = dev_get_drvdata(d);
4253 ipw_radio_kill_sw(priv, buf[0] == '1');
4257 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4259 static struct attribute *ipw2100_sysfs_entries[] = {
4260 &dev_attr_hardware.attr,
4261 &dev_attr_registers.attr,
4262 &dev_attr_ordinals.attr,
4264 &dev_attr_stats.attr,
4265 &dev_attr_internals.attr,
4266 &dev_attr_bssinfo.attr,
4267 &dev_attr_memory.attr,
4268 &dev_attr_scan_age.attr,
4269 &dev_attr_fatal_error.attr,
4270 &dev_attr_rf_kill.attr,
4272 &dev_attr_status.attr,
4273 &dev_attr_capability.attr,
4277 static struct attribute_group ipw2100_attribute_group = {
4278 .attrs = ipw2100_sysfs_entries,
4281 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4283 struct ipw2100_status_queue *q = &priv->status_queue;
4285 IPW_DEBUG_INFO("enter\n");
4287 q->size = entries * sizeof(struct ipw2100_status);
4289 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4292 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4296 memset(q->drv, 0, q->size);
4298 IPW_DEBUG_INFO("exit\n");
4303 static void status_queue_free(struct ipw2100_priv *priv)
4305 IPW_DEBUG_INFO("enter\n");
4307 if (priv->status_queue.drv) {
4308 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4309 priv->status_queue.drv,
4310 priv->status_queue.nic);
4311 priv->status_queue.drv = NULL;
4314 IPW_DEBUG_INFO("exit\n");
4317 static int bd_queue_allocate(struct ipw2100_priv *priv,
4318 struct ipw2100_bd_queue *q, int entries)
4320 IPW_DEBUG_INFO("enter\n");
4322 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4324 q->entries = entries;
4325 q->size = entries * sizeof(struct ipw2100_bd);
4326 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4329 ("can't allocate shared memory for buffer descriptors\n");
4332 memset(q->drv, 0, q->size);
4334 IPW_DEBUG_INFO("exit\n");
4339 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4341 IPW_DEBUG_INFO("enter\n");
4347 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4351 IPW_DEBUG_INFO("exit\n");
4354 static void bd_queue_initialize(struct ipw2100_priv *priv,
4355 struct ipw2100_bd_queue *q, u32 base, u32 size,
4358 IPW_DEBUG_INFO("enter\n");
4360 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4363 write_register(priv->net_dev, base, q->nic);
4364 write_register(priv->net_dev, size, q->entries);
4365 write_register(priv->net_dev, r, q->oldest);
4366 write_register(priv->net_dev, w, q->next);
4368 IPW_DEBUG_INFO("exit\n");
4371 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4373 if (priv->workqueue) {
4374 priv->stop_rf_kill = 1;
4375 priv->stop_hang_check = 1;
4376 cancel_delayed_work(&priv->reset_work);
4377 cancel_delayed_work(&priv->security_work);
4378 cancel_delayed_work(&priv->wx_event_work);
4379 cancel_delayed_work(&priv->hang_check);
4380 cancel_delayed_work(&priv->rf_kill);
4381 destroy_workqueue(priv->workqueue);
4382 priv->workqueue = NULL;
4386 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4388 int i, j, err = -EINVAL;
4392 IPW_DEBUG_INFO("enter\n");
4394 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4396 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4397 priv->net_dev->name);
4402 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4406 if (!priv->tx_buffers) {
4407 printk(KERN_ERR DRV_NAME
4408 ": %s: alloc failed form tx buffers.\n",
4409 priv->net_dev->name);
4410 bd_queue_free(priv, &priv->tx_queue);
4414 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4415 v = pci_alloc_consistent(priv->pci_dev,
4416 sizeof(struct ipw2100_data_header),
4419 printk(KERN_ERR DRV_NAME
4420 ": %s: PCI alloc failed for tx " "buffers.\n",
4421 priv->net_dev->name);
4426 priv->tx_buffers[i].type = DATA;
4427 priv->tx_buffers[i].info.d_struct.data =
4428 (struct ipw2100_data_header *)v;
4429 priv->tx_buffers[i].info.d_struct.data_phys = p;
4430 priv->tx_buffers[i].info.d_struct.txb = NULL;
4433 if (i == TX_PENDED_QUEUE_LENGTH)
4436 for (j = 0; j < i; j++) {
4437 pci_free_consistent(priv->pci_dev,
4438 sizeof(struct ipw2100_data_header),
4439 priv->tx_buffers[j].info.d_struct.data,
4440 priv->tx_buffers[j].info.d_struct.
4444 kfree(priv->tx_buffers);
4445 priv->tx_buffers = NULL;
4450 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4454 IPW_DEBUG_INFO("enter\n");
4457 * reinitialize packet info lists
4459 INIT_LIST_HEAD(&priv->fw_pend_list);
4460 INIT_STAT(&priv->fw_pend_stat);
4463 * reinitialize lists
4465 INIT_LIST_HEAD(&priv->tx_pend_list);
4466 INIT_LIST_HEAD(&priv->tx_free_list);
4467 INIT_STAT(&priv->tx_pend_stat);
4468 INIT_STAT(&priv->tx_free_stat);
4470 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4471 /* We simply drop any SKBs that have been queued for
4473 if (priv->tx_buffers[i].info.d_struct.txb) {
4474 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4476 priv->tx_buffers[i].info.d_struct.txb = NULL;
4479 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4482 SET_STAT(&priv->tx_free_stat, i);
4484 priv->tx_queue.oldest = 0;
4485 priv->tx_queue.available = priv->tx_queue.entries;
4486 priv->tx_queue.next = 0;
4487 INIT_STAT(&priv->txq_stat);
4488 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4490 bd_queue_initialize(priv, &priv->tx_queue,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4492 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4493 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4494 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4496 IPW_DEBUG_INFO("exit\n");
4500 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4504 IPW_DEBUG_INFO("enter\n");
4506 bd_queue_free(priv, &priv->tx_queue);
4508 if (!priv->tx_buffers)
4511 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4512 if (priv->tx_buffers[i].info.d_struct.txb) {
4513 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4515 priv->tx_buffers[i].info.d_struct.txb = NULL;
4517 if (priv->tx_buffers[i].info.d_struct.data)
4518 pci_free_consistent(priv->pci_dev,
4519 sizeof(struct ipw2100_data_header),
4520 priv->tx_buffers[i].info.d_struct.
4522 priv->tx_buffers[i].info.d_struct.
4526 kfree(priv->tx_buffers);
4527 priv->tx_buffers = NULL;
4529 IPW_DEBUG_INFO("exit\n");
4532 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4534 int i, j, err = -EINVAL;
4536 IPW_DEBUG_INFO("enter\n");
4538 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4540 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4544 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4546 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4547 bd_queue_free(priv, &priv->rx_queue);
4554 priv->rx_buffers = (struct ipw2100_rx_packet *)
4555 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4557 if (!priv->rx_buffers) {
4558 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4560 bd_queue_free(priv, &priv->rx_queue);
4562 status_queue_free(priv);
4567 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4568 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4570 err = ipw2100_alloc_skb(priv, packet);
4571 if (unlikely(err)) {
4576 /* The BD holds the cache aligned address */
4577 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4578 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4579 priv->status_queue.drv[i].status_fields = 0;
4582 if (i == RX_QUEUE_LENGTH)
4585 for (j = 0; j < i; j++) {
4586 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4587 sizeof(struct ipw2100_rx_packet),
4588 PCI_DMA_FROMDEVICE);
4589 dev_kfree_skb(priv->rx_buffers[j].skb);
4592 kfree(priv->rx_buffers);
4593 priv->rx_buffers = NULL;
4595 bd_queue_free(priv, &priv->rx_queue);
4597 status_queue_free(priv);
4602 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4604 IPW_DEBUG_INFO("enter\n");
4606 priv->rx_queue.oldest = 0;
4607 priv->rx_queue.available = priv->rx_queue.entries - 1;
4608 priv->rx_queue.next = priv->rx_queue.entries - 1;
4610 INIT_STAT(&priv->rxq_stat);
4611 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4613 bd_queue_initialize(priv, &priv->rx_queue,
4614 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4615 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4616 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4617 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4619 /* set up the status queue */
4620 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4621 priv->status_queue.nic);
4623 IPW_DEBUG_INFO("exit\n");
4626 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4630 IPW_DEBUG_INFO("enter\n");
4632 bd_queue_free(priv, &priv->rx_queue);
4633 status_queue_free(priv);
4635 if (!priv->rx_buffers)
4638 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4639 if (priv->rx_buffers[i].rxp) {
4640 pci_unmap_single(priv->pci_dev,
4641 priv->rx_buffers[i].dma_addr,
4642 sizeof(struct ipw2100_rx),
4643 PCI_DMA_FROMDEVICE);
4644 dev_kfree_skb(priv->rx_buffers[i].skb);
4648 kfree(priv->rx_buffers);
4649 priv->rx_buffers = NULL;
4651 IPW_DEBUG_INFO("exit\n");
4654 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4656 u32 length = ETH_ALEN;
4658 DECLARE_MAC_BUF(mac);
4662 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4664 IPW_DEBUG_INFO("MAC address read failed\n");
4668 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4669 IPW_DEBUG_INFO("card MAC is %s\n",
4670 print_mac(mac, priv->net_dev->dev_addr));
4675 /********************************************************************
4679 ********************************************************************/
4681 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4683 struct host_command cmd = {
4684 .host_command = ADAPTER_ADDRESS,
4685 .host_command_sequence = 0,
4686 .host_command_length = ETH_ALEN
4690 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4692 IPW_DEBUG_INFO("enter\n");
4694 if (priv->config & CFG_CUSTOM_MAC) {
4695 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4696 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4698 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4701 err = ipw2100_hw_send_command(priv, &cmd);
4703 IPW_DEBUG_INFO("exit\n");
4707 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4710 struct host_command cmd = {
4711 .host_command = PORT_TYPE,
4712 .host_command_sequence = 0,
4713 .host_command_length = sizeof(u32)
4717 switch (port_type) {
4719 cmd.host_command_parameters[0] = IPW_BSS;
4722 cmd.host_command_parameters[0] = IPW_IBSS;
4726 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4727 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4730 err = ipw2100_disable_adapter(priv);
4732 printk(KERN_ERR DRV_NAME
4733 ": %s: Could not disable adapter %d\n",
4734 priv->net_dev->name, err);
4739 /* send cmd to firmware */
4740 err = ipw2100_hw_send_command(priv, &cmd);
4743 ipw2100_enable_adapter(priv);
4748 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4751 struct host_command cmd = {
4752 .host_command = CHANNEL,
4753 .host_command_sequence = 0,
4754 .host_command_length = sizeof(u32)
4758 cmd.host_command_parameters[0] = channel;
4760 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4762 /* If BSS then we don't support channel selection */
4763 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4766 if ((channel != 0) &&
4767 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4771 err = ipw2100_disable_adapter(priv);
4776 err = ipw2100_hw_send_command(priv, &cmd);
4778 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4783 priv->config |= CFG_STATIC_CHANNEL;
4785 priv->config &= ~CFG_STATIC_CHANNEL;
4787 priv->channel = channel;
4790 err = ipw2100_enable_adapter(priv);
4798 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4800 struct host_command cmd = {
4801 .host_command = SYSTEM_CONFIG,
4802 .host_command_sequence = 0,
4803 .host_command_length = 12,
4805 u32 ibss_mask, len = sizeof(u32);
4808 /* Set system configuration */
4811 err = ipw2100_disable_adapter(priv);
4816 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4817 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4819 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4820 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4822 if (!(priv->config & CFG_LONG_PREAMBLE))
4823 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4825 err = ipw2100_get_ordinal(priv,
4826 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4829 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4831 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4832 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4835 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4837 err = ipw2100_hw_send_command(priv, &cmd);
4841 /* If IPv6 is configured in the kernel then we don't want to filter out all
4842 * of the multicast packets as IPv6 needs some. */
4843 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4844 cmd.host_command = ADD_MULTICAST;
4845 cmd.host_command_sequence = 0;
4846 cmd.host_command_length = 0;
4848 ipw2100_hw_send_command(priv, &cmd);
4851 err = ipw2100_enable_adapter(priv);
4859 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4862 struct host_command cmd = {
4863 .host_command = BASIC_TX_RATES,
4864 .host_command_sequence = 0,
4865 .host_command_length = 4
4869 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4872 err = ipw2100_disable_adapter(priv);
4877 /* Set BASIC TX Rate first */
4878 ipw2100_hw_send_command(priv, &cmd);
4881 cmd.host_command = TX_RATES;
4882 ipw2100_hw_send_command(priv, &cmd);
4884 /* Set MSDU TX Rate */
4885 cmd.host_command = MSDU_TX_RATES;
4886 ipw2100_hw_send_command(priv, &cmd);
4889 err = ipw2100_enable_adapter(priv);
4894 priv->tx_rates = rate;
4899 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4901 struct host_command cmd = {
4902 .host_command = POWER_MODE,
4903 .host_command_sequence = 0,
4904 .host_command_length = 4
4908 cmd.host_command_parameters[0] = power_level;
4910 err = ipw2100_hw_send_command(priv, &cmd);
4914 if (power_level == IPW_POWER_MODE_CAM)
4915 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4917 priv->power_mode = IPW_POWER_ENABLED | power_level;
4919 #ifdef IPW2100_TX_POWER
4920 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4921 /* Set beacon interval */
4922 cmd.host_command = TX_POWER_INDEX;
4923 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4925 err = ipw2100_hw_send_command(priv, &cmd);
4934 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4936 struct host_command cmd = {
4937 .host_command = RTS_THRESHOLD,
4938 .host_command_sequence = 0,
4939 .host_command_length = 4
4943 if (threshold & RTS_DISABLED)
4944 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4946 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4948 err = ipw2100_hw_send_command(priv, &cmd);
4952 priv->rts_threshold = threshold;
4958 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4959 u32 threshold, int batch_mode)
4961 struct host_command cmd = {
4962 .host_command = FRAG_THRESHOLD,
4963 .host_command_sequence = 0,
4964 .host_command_length = 4,
4965 .host_command_parameters[0] = 0,
4970 err = ipw2100_disable_adapter(priv);
4976 threshold = DEFAULT_FRAG_THRESHOLD;
4978 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4979 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4982 cmd.host_command_parameters[0] = threshold;
4984 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4986 err = ipw2100_hw_send_command(priv, &cmd);
4989 ipw2100_enable_adapter(priv);
4992 priv->frag_threshold = threshold;
4998 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5000 struct host_command cmd = {
5001 .host_command = SHORT_RETRY_LIMIT,
5002 .host_command_sequence = 0,
5003 .host_command_length = 4
5007 cmd.host_command_parameters[0] = retry;
5009 err = ipw2100_hw_send_command(priv, &cmd);
5013 priv->short_retry_limit = retry;
5018 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5020 struct host_command cmd = {
5021 .host_command = LONG_RETRY_LIMIT,
5022 .host_command_sequence = 0,
5023 .host_command_length = 4
5027 cmd.host_command_parameters[0] = retry;
5029 err = ipw2100_hw_send_command(priv, &cmd);
5033 priv->long_retry_limit = retry;
5038 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5041 struct host_command cmd = {
5042 .host_command = MANDATORY_BSSID,
5043 .host_command_sequence = 0,
5044 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5048 #ifdef CONFIG_IPW2100_DEBUG
5049 DECLARE_MAC_BUF(mac);
5051 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5052 print_mac(mac, bssid));
5054 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5056 /* if BSSID is empty then we disable mandatory bssid mode */
5058 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5061 err = ipw2100_disable_adapter(priv);
5066 err = ipw2100_hw_send_command(priv, &cmd);
5069 ipw2100_enable_adapter(priv);
5074 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5076 struct host_command cmd = {
5077 .host_command = DISASSOCIATION_BSSID,
5078 .host_command_sequence = 0,
5079 .host_command_length = ETH_ALEN
5084 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5087 /* The Firmware currently ignores the BSSID and just disassociates from
5088 * the currently associated AP -- but in the off chance that a future
5089 * firmware does use the BSSID provided here, we go ahead and try and
5090 * set it to the currently associated AP's BSSID */
5091 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5093 err = ipw2100_hw_send_command(priv, &cmd);
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5099 struct ipw2100_wpa_assoc_frame *, int)
5100 __attribute__ ((unused));
5102 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5103 struct ipw2100_wpa_assoc_frame *wpa_frame,
5106 struct host_command cmd = {
5107 .host_command = SET_WPA_IE,
5108 .host_command_sequence = 0,
5109 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5113 IPW_DEBUG_HC("SET_WPA_IE\n");
5116 err = ipw2100_disable_adapter(priv);
5121 memcpy(cmd.host_command_parameters, wpa_frame,
5122 sizeof(struct ipw2100_wpa_assoc_frame));
5124 err = ipw2100_hw_send_command(priv, &cmd);
5127 if (ipw2100_enable_adapter(priv))
5134 struct security_info_params {
5135 u32 allowed_ciphers;
5138 u8 replay_counters_number;
5139 u8 unicast_using_group;
5140 } __attribute__ ((packed));
5142 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5145 int unicast_using_group,
5148 struct host_command cmd = {
5149 .host_command = SET_SECURITY_INFORMATION,
5150 .host_command_sequence = 0,
5151 .host_command_length = sizeof(struct security_info_params)
5153 struct security_info_params *security =
5154 (struct security_info_params *)&cmd.host_command_parameters;
5156 memset(security, 0, sizeof(*security));
5158 /* If shared key AP authentication is turned on, then we need to
5159 * configure the firmware to try and use it.
5161 * Actual data encryption/decryption is handled by the host. */
5162 security->auth_mode = auth_mode;
5163 security->unicast_using_group = unicast_using_group;
5165 switch (security_level) {
5168 security->allowed_ciphers = IPW_NONE_CIPHER;
5171 security->allowed_ciphers = IPW_WEP40_CIPHER |
5175 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5178 case SEC_LEVEL_2_CKIP:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5183 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5189 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5190 security->auth_mode, security->allowed_ciphers, security_level);
5192 security->replay_counters_number = 0;
5195 err = ipw2100_disable_adapter(priv);
5200 err = ipw2100_hw_send_command(priv, &cmd);
5203 ipw2100_enable_adapter(priv);
5208 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5210 struct host_command cmd = {
5211 .host_command = TX_POWER_INDEX,
5212 .host_command_sequence = 0,
5213 .host_command_length = 4
5218 if (tx_power != IPW_TX_POWER_DEFAULT)
5219 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5220 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5222 cmd.host_command_parameters[0] = tmp;
5224 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5225 err = ipw2100_hw_send_command(priv, &cmd);
5227 priv->tx_power = tx_power;
5232 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5233 u32 interval, int batch_mode)
5235 struct host_command cmd = {
5236 .host_command = BEACON_INTERVAL,
5237 .host_command_sequence = 0,
5238 .host_command_length = 4
5242 cmd.host_command_parameters[0] = interval;
5244 IPW_DEBUG_INFO("enter\n");
5246 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5248 err = ipw2100_disable_adapter(priv);
5253 ipw2100_hw_send_command(priv, &cmd);
5256 err = ipw2100_enable_adapter(priv);
5262 IPW_DEBUG_INFO("exit\n");
5267 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5269 ipw2100_tx_initialize(priv);
5270 ipw2100_rx_initialize(priv);
5271 ipw2100_msg_initialize(priv);
5274 void ipw2100_queues_free(struct ipw2100_priv *priv)
5276 ipw2100_tx_free(priv);
5277 ipw2100_rx_free(priv);
5278 ipw2100_msg_free(priv);
5281 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5283 if (ipw2100_tx_allocate(priv) ||
5284 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5290 ipw2100_tx_free(priv);
5291 ipw2100_rx_free(priv);
5292 ipw2100_msg_free(priv);
5296 #define IPW_PRIVACY_CAPABLE 0x0008
5298 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5301 struct host_command cmd = {
5302 .host_command = WEP_FLAGS,
5303 .host_command_sequence = 0,
5304 .host_command_length = 4
5308 cmd.host_command_parameters[0] = flags;
5310 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5313 err = ipw2100_disable_adapter(priv);
5315 printk(KERN_ERR DRV_NAME
5316 ": %s: Could not disable adapter %d\n",
5317 priv->net_dev->name, err);
5322 /* send cmd to firmware */
5323 err = ipw2100_hw_send_command(priv, &cmd);
5326 ipw2100_enable_adapter(priv);
5331 struct ipw2100_wep_key {
5337 /* Macros to ease up priting WEP keys */
5338 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5339 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5340 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5341 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5346 * @priv: struct to work on
5347 * @idx: index of the key we want to set
5348 * @key: ptr to the key data to set
5349 * @len: length of the buffer at @key
5350 * @batch_mode: FIXME perform the operation in batch mode, not
5351 * disabling the device.
5353 * @returns 0 if OK, < 0 errno code on error.
5355 * Fill out a command structure with the new wep key, length an
5356 * index and send it down the wire.
5358 static int ipw2100_set_key(struct ipw2100_priv *priv,
5359 int idx, char *key, int len, int batch_mode)
5361 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5362 struct host_command cmd = {
5363 .host_command = WEP_KEY_INFO,
5364 .host_command_sequence = 0,
5365 .host_command_length = sizeof(struct ipw2100_wep_key),
5367 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5370 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5373 /* NOTE: We don't check cached values in case the firmware was reset
5374 * or some other problem is occurring. If the user is setting the key,
5375 * then we push the change */
5378 wep_key->len = keylen;
5381 memcpy(wep_key->key, key, len);
5382 memset(wep_key->key + len, 0, keylen - len);
5385 /* Will be optimized out on debug not being configured in */
5387 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5388 priv->net_dev->name, wep_key->idx);
5389 else if (keylen == 5)
5390 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5391 priv->net_dev->name, wep_key->idx, wep_key->len,
5392 WEP_STR_64(wep_key->key));
5394 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5396 priv->net_dev->name, wep_key->idx, wep_key->len,
5397 WEP_STR_128(wep_key->key));
5400 err = ipw2100_disable_adapter(priv);
5401 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5403 printk(KERN_ERR DRV_NAME
5404 ": %s: Could not disable adapter %d\n",
5405 priv->net_dev->name, err);
5410 /* send cmd to firmware */
5411 err = ipw2100_hw_send_command(priv, &cmd);
5414 int err2 = ipw2100_enable_adapter(priv);
5421 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5422 int idx, int batch_mode)
5424 struct host_command cmd = {
5425 .host_command = WEP_KEY_INDEX,
5426 .host_command_sequence = 0,
5427 .host_command_length = 4,
5428 .host_command_parameters = {idx},
5432 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5434 if (idx < 0 || idx > 3)
5438 err = ipw2100_disable_adapter(priv);
5440 printk(KERN_ERR DRV_NAME
5441 ": %s: Could not disable adapter %d\n",
5442 priv->net_dev->name, err);
5447 /* send cmd to firmware */
5448 err = ipw2100_hw_send_command(priv, &cmd);
5451 ipw2100_enable_adapter(priv);
5456 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5458 int i, err, auth_mode, sec_level, use_group;
5460 if (!(priv->status & STATUS_RUNNING))
5464 err = ipw2100_disable_adapter(priv);
5469 if (!priv->ieee->sec.enabled) {
5471 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5474 auth_mode = IPW_AUTH_OPEN;
5475 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5476 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5477 auth_mode = IPW_AUTH_SHARED;
5478 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5479 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5482 sec_level = SEC_LEVEL_0;
5483 if (priv->ieee->sec.flags & SEC_LEVEL)
5484 sec_level = priv->ieee->sec.level;
5487 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5488 use_group = priv->ieee->sec.unicast_uses_group;
5491 ipw2100_set_security_information(priv, auth_mode, sec_level,
5498 if (priv->ieee->sec.enabled) {
5499 for (i = 0; i < 4; i++) {
5500 if (!(priv->ieee->sec.flags & (1 << i))) {
5501 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5502 priv->ieee->sec.key_sizes[i] = 0;
5504 err = ipw2100_set_key(priv, i,
5505 priv->ieee->sec.keys[i],
5513 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5516 /* Always enable privacy so the Host can filter WEP packets if
5517 * encrypted data is sent up */
5519 ipw2100_set_wep_flags(priv,
5521 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5525 priv->status &= ~STATUS_SECURITY_UPDATED;
5529 ipw2100_enable_adapter(priv);
5534 static void ipw2100_security_work(struct work_struct *work)
5536 struct ipw2100_priv *priv =
5537 container_of(work, struct ipw2100_priv, security_work.work);
5539 /* If we happen to have reconnected before we get a chance to
5540 * process this, then update the security settings--which causes
5541 * a disassociation to occur */
5542 if (!(priv->status & STATUS_ASSOCIATED) &&
5543 priv->status & STATUS_SECURITY_UPDATED)
5544 ipw2100_configure_security(priv, 0);
5547 static void shim__set_security(struct net_device *dev,
5548 struct ieee80211_security *sec)
5550 struct ipw2100_priv *priv = ieee80211_priv(dev);
5551 int i, force_update = 0;
5553 mutex_lock(&priv->action_mutex);
5554 if (!(priv->status & STATUS_INITIALIZED))
5557 for (i = 0; i < 4; i++) {
5558 if (sec->flags & (1 << i)) {
5559 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5560 if (sec->key_sizes[i] == 0)
5561 priv->ieee->sec.flags &= ~(1 << i);
5563 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5565 if (sec->level == SEC_LEVEL_1) {
5566 priv->ieee->sec.flags |= (1 << i);
5567 priv->status |= STATUS_SECURITY_UPDATED;
5569 priv->ieee->sec.flags &= ~(1 << i);
5573 if ((sec->flags & SEC_ACTIVE_KEY) &&
5574 priv->ieee->sec.active_key != sec->active_key) {
5575 if (sec->active_key <= 3) {
5576 priv->ieee->sec.active_key = sec->active_key;
5577 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5579 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5581 priv->status |= STATUS_SECURITY_UPDATED;
5584 if ((sec->flags & SEC_AUTH_MODE) &&
5585 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5586 priv->ieee->sec.auth_mode = sec->auth_mode;
5587 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5591 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5592 priv->ieee->sec.flags |= SEC_ENABLED;
5593 priv->ieee->sec.enabled = sec->enabled;
5594 priv->status |= STATUS_SECURITY_UPDATED;
5598 if (sec->flags & SEC_ENCRYPT)
5599 priv->ieee->sec.encrypt = sec->encrypt;
5601 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5602 priv->ieee->sec.level = sec->level;
5603 priv->ieee->sec.flags |= SEC_LEVEL;
5604 priv->status |= STATUS_SECURITY_UPDATED;
5607 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5608 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5614 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5615 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5616 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5618 /* As a temporary work around to enable WPA until we figure out why
5619 * wpa_supplicant toggles the security capability of the driver, which
5620 * forces a disassocation with force_update...
5622 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5623 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5624 ipw2100_configure_security(priv, 0);
5626 mutex_unlock(&priv->action_mutex);
5629 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5635 IPW_DEBUG_INFO("enter\n");
5637 err = ipw2100_disable_adapter(priv);
5640 #ifdef CONFIG_IPW2100_MONITOR
5641 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5642 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5646 IPW_DEBUG_INFO("exit\n");
5650 #endif /* CONFIG_IPW2100_MONITOR */
5652 err = ipw2100_read_mac_address(priv);
5656 err = ipw2100_set_mac_address(priv, batch_mode);
5660 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5664 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5665 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5670 err = ipw2100_system_config(priv, batch_mode);
5674 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5678 /* Default to power mode OFF */
5679 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5683 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5687 if (priv->config & CFG_STATIC_BSSID)
5688 bssid = priv->bssid;
5691 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5695 if (priv->config & CFG_STATIC_ESSID)
5696 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5699 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5703 err = ipw2100_configure_security(priv, batch_mode);
5707 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5709 ipw2100_set_ibss_beacon_interval(priv,
5710 priv->beacon_interval,
5715 err = ipw2100_set_tx_power(priv, priv->tx_power);
5721 err = ipw2100_set_fragmentation_threshold(
5722 priv, priv->frag_threshold, batch_mode);
5727 IPW_DEBUG_INFO("exit\n");
5732 /*************************************************************************
5734 * EXTERNALLY CALLED METHODS
5736 *************************************************************************/
5738 /* This method is called by the network layer -- not to be confused with
5739 * ipw2100_set_mac_address() declared above called by this driver (and this
5740 * method as well) to talk to the firmware */
5741 static int ipw2100_set_address(struct net_device *dev, void *p)
5743 struct ipw2100_priv *priv = ieee80211_priv(dev);
5744 struct sockaddr *addr = p;
5747 if (!is_valid_ether_addr(addr->sa_data))
5748 return -EADDRNOTAVAIL;
5750 mutex_lock(&priv->action_mutex);
5752 priv->config |= CFG_CUSTOM_MAC;
5753 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5755 err = ipw2100_set_mac_address(priv, 0);
5759 priv->reset_backoff = 0;
5760 mutex_unlock(&priv->action_mutex);
5761 ipw2100_reset_adapter(&priv->reset_work.work);
5765 mutex_unlock(&priv->action_mutex);
5769 static int ipw2100_open(struct net_device *dev)
5771 struct ipw2100_priv *priv = ieee80211_priv(dev);
5772 unsigned long flags;
5773 IPW_DEBUG_INFO("dev->open\n");
5775 spin_lock_irqsave(&priv->low_lock, flags);
5776 if (priv->status & STATUS_ASSOCIATED) {
5777 netif_carrier_on(dev);
5778 netif_start_queue(dev);
5780 spin_unlock_irqrestore(&priv->low_lock, flags);
5785 static int ipw2100_close(struct net_device *dev)
5787 struct ipw2100_priv *priv = ieee80211_priv(dev);
5788 unsigned long flags;
5789 struct list_head *element;
5790 struct ipw2100_tx_packet *packet;
5792 IPW_DEBUG_INFO("enter\n");
5794 spin_lock_irqsave(&priv->low_lock, flags);
5796 if (priv->status & STATUS_ASSOCIATED)
5797 netif_carrier_off(dev);
5798 netif_stop_queue(dev);
5800 /* Flush the TX queue ... */
5801 while (!list_empty(&priv->tx_pend_list)) {
5802 element = priv->tx_pend_list.next;
5803 packet = list_entry(element, struct ipw2100_tx_packet, list);
5806 DEC_STAT(&priv->tx_pend_stat);
5808 ieee80211_txb_free(packet->info.d_struct.txb);
5809 packet->info.d_struct.txb = NULL;
5811 list_add_tail(element, &priv->tx_free_list);
5812 INC_STAT(&priv->tx_free_stat);
5814 spin_unlock_irqrestore(&priv->low_lock, flags);
5816 IPW_DEBUG_INFO("exit\n");
5822 * TODO: Fix this function... its just wrong
5824 static void ipw2100_tx_timeout(struct net_device *dev)
5826 struct ipw2100_priv *priv = ieee80211_priv(dev);
5828 priv->ieee->stats.tx_errors++;
5830 #ifdef CONFIG_IPW2100_MONITOR
5831 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5835 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5837 schedule_reset(priv);
5840 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5842 /* This is called when wpa_supplicant loads and closes the driver
5844 priv->ieee->wpa_enabled = value;
5848 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5851 struct ieee80211_device *ieee = priv->ieee;
5852 struct ieee80211_security sec = {
5853 .flags = SEC_AUTH_MODE,
5857 if (value & IW_AUTH_ALG_SHARED_KEY) {
5858 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5860 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5861 sec.auth_mode = WLAN_AUTH_OPEN;
5863 } else if (value & IW_AUTH_ALG_LEAP) {
5864 sec.auth_mode = WLAN_AUTH_LEAP;
5869 if (ieee->set_security)
5870 ieee->set_security(ieee->dev, &sec);
5877 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5878 char *wpa_ie, int wpa_ie_len)
5881 struct ipw2100_wpa_assoc_frame frame;
5883 frame.fixed_ie_mask = 0;
5886 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5887 frame.var_ie_len = wpa_ie_len;
5889 /* make sure WPA is enabled */
5890 ipw2100_wpa_enable(priv, 1);
5891 ipw2100_set_wpa_ie(priv, &frame, 0);
5894 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5895 struct ethtool_drvinfo *info)
5897 struct ipw2100_priv *priv = ieee80211_priv(dev);
5898 char fw_ver[64], ucode_ver[64];
5900 strcpy(info->driver, DRV_NAME);
5901 strcpy(info->version, DRV_VERSION);
5903 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5904 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5906 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5907 fw_ver, priv->eeprom_version, ucode_ver);
5909 strcpy(info->bus_info, pci_name(priv->pci_dev));
5912 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5914 struct ipw2100_priv *priv = ieee80211_priv(dev);
5915 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5918 static const struct ethtool_ops ipw2100_ethtool_ops = {
5919 .get_link = ipw2100_ethtool_get_link,
5920 .get_drvinfo = ipw_ethtool_get_drvinfo,
5923 static void ipw2100_hang_check(struct work_struct *work)
5925 struct ipw2100_priv *priv =
5926 container_of(work, struct ipw2100_priv, hang_check.work);
5927 unsigned long flags;
5928 u32 rtc = 0xa5a5a5a5;
5929 u32 len = sizeof(rtc);
5932 spin_lock_irqsave(&priv->low_lock, flags);
5934 if (priv->fatal_error != 0) {
5935 /* If fatal_error is set then we need to restart */
5936 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5937 priv->net_dev->name);
5940 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5941 (rtc == priv->last_rtc)) {
5942 /* Check if firmware is hung */
5943 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5944 priv->net_dev->name);
5951 priv->stop_hang_check = 1;
5954 /* Restart the NIC */
5955 schedule_reset(priv);
5958 priv->last_rtc = rtc;
5960 if (!priv->stop_hang_check)
5961 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5963 spin_unlock_irqrestore(&priv->low_lock, flags);
5966 static void ipw2100_rf_kill(struct work_struct *work)
5968 struct ipw2100_priv *priv =
5969 container_of(work, struct ipw2100_priv, rf_kill.work);
5970 unsigned long flags;
5972 spin_lock_irqsave(&priv->low_lock, flags);
5974 if (rf_kill_active(priv)) {
5975 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5976 if (!priv->stop_rf_kill)
5977 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5982 /* RF Kill is now disabled, so bring the device back up */
5984 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5987 schedule_reset(priv);
5989 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5993 spin_unlock_irqrestore(&priv->low_lock, flags);
5996 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5998 /* Look into using netdev destructor to shutdown ieee80211? */
6000 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6001 void __iomem * base_addr,
6002 unsigned long mem_start,
6003 unsigned long mem_len)
6005 struct ipw2100_priv *priv;
6006 struct net_device *dev;
6008 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6011 priv = ieee80211_priv(dev);
6012 priv->ieee = netdev_priv(dev);
6013 priv->pci_dev = pci_dev;
6014 priv->net_dev = dev;
6016 priv->ieee->hard_start_xmit = ipw2100_tx;
6017 priv->ieee->set_security = shim__set_security;
6019 priv->ieee->perfect_rssi = -20;
6020 priv->ieee->worst_rssi = -85;
6022 dev->open = ipw2100_open;
6023 dev->stop = ipw2100_close;
6024 dev->init = ipw2100_net_init;
6025 dev->ethtool_ops = &ipw2100_ethtool_ops;
6026 dev->tx_timeout = ipw2100_tx_timeout;
6027 dev->wireless_handlers = &ipw2100_wx_handler_def;
6028 priv->wireless_data.ieee80211 = priv->ieee;
6029 dev->wireless_data = &priv->wireless_data;
6030 dev->set_mac_address = ipw2100_set_address;
6031 dev->watchdog_timeo = 3 * HZ;
6034 dev->base_addr = (unsigned long)base_addr;
6035 dev->mem_start = mem_start;
6036 dev->mem_end = dev->mem_start + mem_len - 1;
6038 /* NOTE: We don't use the wireless_handlers hook
6039 * in dev as the system will start throwing WX requests
6040 * to us before we're actually initialized and it just
6041 * ends up causing problems. So, we just handle
6042 * the WX extensions through the ipw2100_ioctl interface */
6044 /* memset() puts everything to 0, so we only have explicitely set
6045 * those values that need to be something else */
6047 /* If power management is turned on, default to AUTO mode */
6048 priv->power_mode = IPW_POWER_AUTO;
6050 #ifdef CONFIG_IPW2100_MONITOR
6051 priv->config |= CFG_CRC_CHECK;
6053 priv->ieee->wpa_enabled = 0;
6054 priv->ieee->drop_unencrypted = 0;
6055 priv->ieee->privacy_invoked = 0;
6056 priv->ieee->ieee802_1x = 1;
6058 /* Set module parameters */
6061 priv->ieee->iw_mode = IW_MODE_ADHOC;
6063 #ifdef CONFIG_IPW2100_MONITOR
6065 priv->ieee->iw_mode = IW_MODE_MONITOR;
6070 priv->ieee->iw_mode = IW_MODE_INFRA;
6075 priv->status |= STATUS_RF_KILL_SW;
6078 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6079 priv->config |= CFG_STATIC_CHANNEL;
6080 priv->channel = channel;
6084 priv->config |= CFG_ASSOCIATE;
6086 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6087 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6088 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6089 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6090 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6091 priv->tx_power = IPW_TX_POWER_DEFAULT;
6092 priv->tx_rates = DEFAULT_TX_RATES;
6094 strcpy(priv->nick, "ipw2100");
6096 spin_lock_init(&priv->low_lock);
6097 mutex_init(&priv->action_mutex);
6098 mutex_init(&priv->adapter_mutex);
6100 init_waitqueue_head(&priv->wait_command_queue);
6102 netif_carrier_off(dev);
6104 INIT_LIST_HEAD(&priv->msg_free_list);
6105 INIT_LIST_HEAD(&priv->msg_pend_list);
6106 INIT_STAT(&priv->msg_free_stat);
6107 INIT_STAT(&priv->msg_pend_stat);
6109 INIT_LIST_HEAD(&priv->tx_free_list);
6110 INIT_LIST_HEAD(&priv->tx_pend_list);
6111 INIT_STAT(&priv->tx_free_stat);
6112 INIT_STAT(&priv->tx_pend_stat);
6114 INIT_LIST_HEAD(&priv->fw_pend_list);
6115 INIT_STAT(&priv->fw_pend_stat);
6117 priv->workqueue = create_workqueue(DRV_NAME);
6119 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6120 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6121 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6122 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6123 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6125 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6126 ipw2100_irq_tasklet, (unsigned long)priv);
6128 /* NOTE: We do not start the deferred work for status checks yet */
6129 priv->stop_rf_kill = 1;
6130 priv->stop_hang_check = 1;
6135 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6136 const struct pci_device_id *ent)
6138 unsigned long mem_start, mem_len, mem_flags;
6139 void __iomem *base_addr = NULL;
6140 struct net_device *dev = NULL;
6141 struct ipw2100_priv *priv = NULL;
6146 IPW_DEBUG_INFO("enter\n");
6148 mem_start = pci_resource_start(pci_dev, 0);
6149 mem_len = pci_resource_len(pci_dev, 0);
6150 mem_flags = pci_resource_flags(pci_dev, 0);
6152 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6153 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6158 base_addr = ioremap_nocache(mem_start, mem_len);
6160 printk(KERN_WARNING DRV_NAME
6161 "Error calling ioremap_nocache.\n");
6166 /* allocate and initialize our net_device */
6167 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6169 printk(KERN_WARNING DRV_NAME
6170 "Error calling ipw2100_alloc_device.\n");
6175 /* set up PCI mappings for device */
6176 err = pci_enable_device(pci_dev);
6178 printk(KERN_WARNING DRV_NAME
6179 "Error calling pci_enable_device.\n");
6183 priv = ieee80211_priv(dev);
6185 pci_set_master(pci_dev);
6186 pci_set_drvdata(pci_dev, priv);
6188 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6190 printk(KERN_WARNING DRV_NAME
6191 "Error calling pci_set_dma_mask.\n");
6192 pci_disable_device(pci_dev);
6196 err = pci_request_regions(pci_dev, DRV_NAME);
6198 printk(KERN_WARNING DRV_NAME
6199 "Error calling pci_request_regions.\n");
6200 pci_disable_device(pci_dev);
6204 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6205 * PCI Tx retries from interfering with C3 CPU state */
6206 pci_read_config_dword(pci_dev, 0x40, &val);
6207 if ((val & 0x0000ff00) != 0)
6208 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6210 pci_set_power_state(pci_dev, PCI_D0);
6212 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6213 printk(KERN_WARNING DRV_NAME
6214 "Device not found via register read.\n");
6219 SET_NETDEV_DEV(dev, &pci_dev->dev);
6221 /* Force interrupts to be shut off on the device */
6222 priv->status |= STATUS_INT_ENABLED;
6223 ipw2100_disable_interrupts(priv);
6225 /* Allocate and initialize the Tx/Rx queues and lists */
6226 if (ipw2100_queues_allocate(priv)) {
6227 printk(KERN_WARNING DRV_NAME
6228 "Error calling ipw2100_queues_allocate.\n");
6232 ipw2100_queues_initialize(priv);
6234 err = request_irq(pci_dev->irq,
6235 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6237 printk(KERN_WARNING DRV_NAME
6238 "Error calling request_irq: %d.\n", pci_dev->irq);
6241 dev->irq = pci_dev->irq;
6243 IPW_DEBUG_INFO("Attempting to register device...\n");
6245 printk(KERN_INFO DRV_NAME
6246 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6248 /* Bring up the interface. Pre 0.46, after we registered the
6249 * network device we would call ipw2100_up. This introduced a race
6250 * condition with newer hotplug configurations (network was coming
6251 * up and making calls before the device was initialized).
6253 * If we called ipw2100_up before we registered the device, then the
6254 * device name wasn't registered. So, we instead use the net_dev->init
6255 * member to call a function that then just turns and calls ipw2100_up.
6256 * net_dev->init is called after name allocation but before the
6257 * notifier chain is called */
6258 err = register_netdev(dev);
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling register_netdev.\n");
6265 mutex_lock(&priv->action_mutex);
6268 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6270 /* perform this after register_netdev so that dev->name is set */
6271 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6275 /* If the RF Kill switch is disabled, go ahead and complete the
6276 * startup sequence */
6277 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6278 /* Enable the adapter - sends HOST_COMPLETE */
6279 if (ipw2100_enable_adapter(priv)) {
6280 printk(KERN_WARNING DRV_NAME
6281 ": %s: failed in call to enable adapter.\n",
6282 priv->net_dev->name);
6283 ipw2100_hw_stop_adapter(priv);
6288 /* Start a scan . . . */
6289 ipw2100_set_scan_options(priv);
6290 ipw2100_start_scan(priv);
6293 IPW_DEBUG_INFO("exit\n");
6295 priv->status |= STATUS_INITIALIZED;
6297 mutex_unlock(&priv->action_mutex);
6302 mutex_unlock(&priv->action_mutex);
6307 unregister_netdev(dev);
6309 ipw2100_hw_stop_adapter(priv);
6311 ipw2100_disable_interrupts(priv);
6314 free_irq(dev->irq, priv);
6316 ipw2100_kill_workqueue(priv);
6318 /* These are safe to call even if they weren't allocated */
6319 ipw2100_queues_free(priv);
6320 sysfs_remove_group(&pci_dev->dev.kobj,
6321 &ipw2100_attribute_group);
6323 free_ieee80211(dev);
6324 pci_set_drvdata(pci_dev, NULL);
6330 pci_release_regions(pci_dev);
6331 pci_disable_device(pci_dev);
6336 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6338 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6339 struct net_device *dev;
6342 mutex_lock(&priv->action_mutex);
6344 priv->status &= ~STATUS_INITIALIZED;
6346 dev = priv->net_dev;
6347 sysfs_remove_group(&pci_dev->dev.kobj,
6348 &ipw2100_attribute_group);
6351 if (ipw2100_firmware.version)
6352 ipw2100_release_firmware(priv, &ipw2100_firmware);
6354 /* Take down the hardware */
6357 /* Release the mutex so that the network subsystem can
6358 * complete any needed calls into the driver... */
6359 mutex_unlock(&priv->action_mutex);
6361 /* Unregister the device first - this results in close()
6362 * being called if the device is open. If we free storage
6363 * first, then close() will crash. */
6364 unregister_netdev(dev);
6366 /* ipw2100_down will ensure that there is no more pending work
6367 * in the workqueue's, so we can safely remove them now. */
6368 ipw2100_kill_workqueue(priv);
6370 ipw2100_queues_free(priv);
6372 /* Free potential debugging firmware snapshot */
6373 ipw2100_snapshot_free(priv);
6376 free_irq(dev->irq, priv);
6379 iounmap((void __iomem *)dev->base_addr);
6381 free_ieee80211(dev);
6384 pci_release_regions(pci_dev);
6385 pci_disable_device(pci_dev);
6387 IPW_DEBUG_INFO("exit\n");
6391 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6393 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6394 struct net_device *dev = priv->net_dev;
6396 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6398 mutex_lock(&priv->action_mutex);
6399 if (priv->status & STATUS_INITIALIZED) {
6400 /* Take down the device; powers it off, etc. */
6404 /* Remove the PRESENT state of the device */
6405 netif_device_detach(dev);
6407 pci_save_state(pci_dev);
6408 pci_disable_device(pci_dev);
6409 pci_set_power_state(pci_dev, PCI_D3hot);
6411 mutex_unlock(&priv->action_mutex);
6416 static int ipw2100_resume(struct pci_dev *pci_dev)
6418 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419 struct net_device *dev = priv->net_dev;
6423 if (IPW2100_PM_DISABLED)
6426 mutex_lock(&priv->action_mutex);
6428 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6430 pci_set_power_state(pci_dev, PCI_D0);
6431 err = pci_enable_device(pci_dev);
6433 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6437 pci_restore_state(pci_dev);
6440 * Suspend/Resume resets the PCI configuration space, so we have to
6441 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6442 * from interfering with C3 CPU state. pci_restore_state won't help
6443 * here since it only restores the first 64 bytes pci config header.
6445 pci_read_config_dword(pci_dev, 0x40, &val);
6446 if ((val & 0x0000ff00) != 0)
6447 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6449 /* Set the device back into the PRESENT state; this will also wake
6450 * the queue of needed */
6451 netif_device_attach(dev);
6453 /* Bring the device back up */
6454 if (!(priv->status & STATUS_RF_KILL_SW))
6455 ipw2100_up(priv, 0);
6457 mutex_unlock(&priv->action_mutex);
6463 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6465 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6466 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6467 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6470 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6471 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6476 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6480 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6481 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6486 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6489 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6492 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6494 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6515 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6517 static struct pci_driver ipw2100_pci_driver = {
6519 .id_table = ipw2100_pci_id_table,
6520 .probe = ipw2100_pci_init_one,
6521 .remove = __devexit_p(ipw2100_pci_remove_one),
6523 .suspend = ipw2100_suspend,
6524 .resume = ipw2100_resume,
6529 * Initialize the ipw2100 driver/module
6531 * @returns 0 if ok, < 0 errno node con error.
6533 * Note: we cannot init the /proc stuff until the PCI driver is there,
6534 * or we risk an unlikely race condition on someone accessing
6535 * uninitialized data in the PCI dev struct through /proc.
6537 static int __init ipw2100_init(void)
6541 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6542 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6544 ret = pci_register_driver(&ipw2100_pci_driver);
6548 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6549 #ifdef CONFIG_IPW2100_DEBUG
6550 ipw2100_debug_level = debug;
6551 ret = driver_create_file(&ipw2100_pci_driver.driver,
6552 &driver_attr_debug_level);
6560 * Cleanup ipw2100 driver registration
6562 static void __exit ipw2100_exit(void)
6564 /* FIXME: IPG: check that we have no instances of the devices open */
6565 #ifdef CONFIG_IPW2100_DEBUG
6566 driver_remove_file(&ipw2100_pci_driver.driver,
6567 &driver_attr_debug_level);
6569 pci_unregister_driver(&ipw2100_pci_driver);
6570 remove_acceptable_latency("ipw2100");
6573 module_init(ipw2100_init);
6574 module_exit(ipw2100_exit);
6576 #define WEXT_USECHANNELS 1
6578 static const long ipw2100_frequencies[] = {
6579 2412, 2417, 2422, 2427,
6580 2432, 2437, 2442, 2447,
6581 2452, 2457, 2462, 2467,
6585 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6586 sizeof(ipw2100_frequencies[0]))
6588 static const long ipw2100_rates_11b[] = {
6595 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6597 static int ipw2100_wx_get_name(struct net_device *dev,
6598 struct iw_request_info *info,
6599 union iwreq_data *wrqu, char *extra)
6602 * This can be called at any time. No action lock required
6605 struct ipw2100_priv *priv = ieee80211_priv(dev);
6606 if (!(priv->status & STATUS_ASSOCIATED))
6607 strcpy(wrqu->name, "unassociated");
6609 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6611 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6615 static int ipw2100_wx_set_freq(struct net_device *dev,
6616 struct iw_request_info *info,
6617 union iwreq_data *wrqu, char *extra)
6619 struct ipw2100_priv *priv = ieee80211_priv(dev);
6620 struct iw_freq *fwrq = &wrqu->freq;
6623 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6626 mutex_lock(&priv->action_mutex);
6627 if (!(priv->status & STATUS_INITIALIZED)) {
6632 /* if setting by freq convert to channel */
6634 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6635 int f = fwrq->m / 100000;
6638 while ((c < REG_MAX_CHANNEL) &&
6639 (f != ipw2100_frequencies[c]))
6642 /* hack to fall through */
6648 if (fwrq->e > 0 || fwrq->m > 1000) {
6651 } else { /* Set the channel */
6652 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6653 err = ipw2100_set_channel(priv, fwrq->m, 0);
6657 mutex_unlock(&priv->action_mutex);
6661 static int ipw2100_wx_get_freq(struct net_device *dev,
6662 struct iw_request_info *info,
6663 union iwreq_data *wrqu, char *extra)
6666 * This can be called at any time. No action lock required
6669 struct ipw2100_priv *priv = ieee80211_priv(dev);
6673 /* If we are associated, trying to associate, or have a statically
6674 * configured CHANNEL then return that; otherwise return ANY */
6675 if (priv->config & CFG_STATIC_CHANNEL ||
6676 priv->status & STATUS_ASSOCIATED)
6677 wrqu->freq.m = priv->channel;
6681 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6686 static int ipw2100_wx_set_mode(struct net_device *dev,
6687 struct iw_request_info *info,
6688 union iwreq_data *wrqu, char *extra)
6690 struct ipw2100_priv *priv = ieee80211_priv(dev);
6693 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6695 if (wrqu->mode == priv->ieee->iw_mode)
6698 mutex_lock(&priv->action_mutex);
6699 if (!(priv->status & STATUS_INITIALIZED)) {
6704 switch (wrqu->mode) {
6705 #ifdef CONFIG_IPW2100_MONITOR
6706 case IW_MODE_MONITOR:
6707 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6709 #endif /* CONFIG_IPW2100_MONITOR */
6711 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6716 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6721 mutex_unlock(&priv->action_mutex);
6725 static int ipw2100_wx_get_mode(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6730 * This can be called at any time. No action lock required
6733 struct ipw2100_priv *priv = ieee80211_priv(dev);
6735 wrqu->mode = priv->ieee->iw_mode;
6736 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6741 #define POWER_MODES 5
6743 /* Values are in microsecond */
6744 static const s32 timeout_duration[POWER_MODES] = {
6752 static const s32 period_duration[POWER_MODES] = {
6760 static int ipw2100_wx_get_range(struct net_device *dev,
6761 struct iw_request_info *info,
6762 union iwreq_data *wrqu, char *extra)
6765 * This can be called at any time. No action lock required
6768 struct ipw2100_priv *priv = ieee80211_priv(dev);
6769 struct iw_range *range = (struct iw_range *)extra;
6773 wrqu->data.length = sizeof(*range);
6774 memset(range, 0, sizeof(*range));
6776 /* Let's try to keep this struct in the same order as in
6777 * linux/include/wireless.h
6780 /* TODO: See what values we can set, and remove the ones we can't
6781 * set, or fill them with some default data.
6784 /* ~5 Mb/s real (802.11b) */
6785 range->throughput = 5 * 1000 * 1000;
6787 // range->sensitivity; /* signal level threshold range */
6789 range->max_qual.qual = 100;
6790 /* TODO: Find real max RSSI and stick here */
6791 range->max_qual.level = 0;
6792 range->max_qual.noise = 0;
6793 range->max_qual.updated = 7; /* Updated all three */
6795 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6796 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6797 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6798 range->avg_qual.noise = 0;
6799 range->avg_qual.updated = 7; /* Updated all three */
6801 range->num_bitrates = RATE_COUNT;
6803 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6804 range->bitrate[i] = ipw2100_rates_11b[i];
6807 range->min_rts = MIN_RTS_THRESHOLD;
6808 range->max_rts = MAX_RTS_THRESHOLD;
6809 range->min_frag = MIN_FRAG_THRESHOLD;
6810 range->max_frag = MAX_FRAG_THRESHOLD;
6812 range->min_pmp = period_duration[0]; /* Minimal PM period */
6813 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6814 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6815 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6817 /* How to decode max/min PM period */
6818 range->pmp_flags = IW_POWER_PERIOD;
6819 /* How to decode max/min PM period */
6820 range->pmt_flags = IW_POWER_TIMEOUT;
6821 /* What PM options are supported */
6822 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6824 range->encoding_size[0] = 5;
6825 range->encoding_size[1] = 13; /* Different token sizes */
6826 range->num_encoding_sizes = 2; /* Number of entry in the list */
6827 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6828 // range->encoding_login_index; /* token index for login token */
6830 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6831 range->txpower_capa = IW_TXPOW_DBM;
6832 range->num_txpower = IW_MAX_TXPOWER;
6833 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6836 ((IPW_TX_POWER_MAX_DBM -
6837 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6838 range->txpower[i] = level / 16;
6840 range->txpower_capa = 0;
6841 range->num_txpower = 0;
6844 /* Set the Wireless Extension versions */
6845 range->we_version_compiled = WIRELESS_EXT;
6846 range->we_version_source = 18;
6848 // range->retry_capa; /* What retry options are supported */
6849 // range->retry_flags; /* How to decode max/min retry limit */
6850 // range->r_time_flags; /* How to decode max/min retry life */
6851 // range->min_retry; /* Minimal number of retries */
6852 // range->max_retry; /* Maximal number of retries */
6853 // range->min_r_time; /* Minimal retry lifetime */
6854 // range->max_r_time; /* Maximal retry lifetime */
6856 range->num_channels = FREQ_COUNT;
6859 for (i = 0; i < FREQ_COUNT; i++) {
6860 // TODO: Include only legal frequencies for some countries
6861 // if (local->channel_mask & (1 << i)) {
6862 range->freq[val].i = i + 1;
6863 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6864 range->freq[val].e = 1;
6867 if (val == IW_MAX_FREQUENCIES)
6870 range->num_frequency = val;
6872 /* Event capability (kernel + driver) */
6873 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6874 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6875 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6877 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6878 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6880 IPW_DEBUG_WX("GET Range\n");
6885 static int ipw2100_wx_set_wap(struct net_device *dev,
6886 struct iw_request_info *info,
6887 union iwreq_data *wrqu, char *extra)
6889 struct ipw2100_priv *priv = ieee80211_priv(dev);
6892 static const unsigned char any[] = {
6893 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6895 static const unsigned char off[] = {
6896 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6898 DECLARE_MAC_BUF(mac);
6901 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6904 mutex_lock(&priv->action_mutex);
6905 if (!(priv->status & STATUS_INITIALIZED)) {
6910 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6911 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6912 /* we disable mandatory BSSID association */
6913 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6914 priv->config &= ~CFG_STATIC_BSSID;
6915 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6919 priv->config |= CFG_STATIC_BSSID;
6920 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6922 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6924 IPW_DEBUG_WX("SET BSSID -> %s\n",
6925 print_mac(mac, wrqu->ap_addr.sa_data));
6928 mutex_unlock(&priv->action_mutex);
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933 struct iw_request_info *info,
6934 union iwreq_data *wrqu, char *extra)
6937 * This can be called at any time. No action lock required
6940 struct ipw2100_priv *priv = ieee80211_priv(dev);
6941 DECLARE_MAC_BUF(mac);
6943 /* If we are associated, trying to associate, or have a statically
6944 * configured BSSID then return that; otherwise return ANY */
6945 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6946 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6947 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6949 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6951 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6952 print_mac(mac, wrqu->ap_addr.sa_data));
6956 static int ipw2100_wx_set_essid(struct net_device *dev,
6957 struct iw_request_info *info,
6958 union iwreq_data *wrqu, char *extra)
6960 struct ipw2100_priv *priv = ieee80211_priv(dev);
6961 char *essid = ""; /* ANY */
6965 mutex_lock(&priv->action_mutex);
6966 if (!(priv->status & STATUS_INITIALIZED)) {
6971 if (wrqu->essid.flags && wrqu->essid.length) {
6972 length = wrqu->essid.length;
6977 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6978 priv->config &= ~CFG_STATIC_ESSID;
6979 err = ipw2100_set_essid(priv, NULL, 0, 0);
6983 length = min(length, IW_ESSID_MAX_SIZE);
6985 priv->config |= CFG_STATIC_ESSID;
6987 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6988 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6993 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6996 priv->essid_len = length;
6997 memcpy(priv->essid, essid, priv->essid_len);
6999 err = ipw2100_set_essid(priv, essid, length, 0);
7002 mutex_unlock(&priv->action_mutex);
7006 static int ipw2100_wx_get_essid(struct net_device *dev,
7007 struct iw_request_info *info,
7008 union iwreq_data *wrqu, char *extra)
7011 * This can be called at any time. No action lock required
7014 struct ipw2100_priv *priv = ieee80211_priv(dev);
7016 /* If we are associated, trying to associate, or have a statically
7017 * configured ESSID then return that; otherwise return ANY */
7018 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7019 IPW_DEBUG_WX("Getting essid: '%s'\n",
7020 escape_essid(priv->essid, priv->essid_len));
7021 memcpy(extra, priv->essid, priv->essid_len);
7022 wrqu->essid.length = priv->essid_len;
7023 wrqu->essid.flags = 1; /* active */
7025 IPW_DEBUG_WX("Getting essid: ANY\n");
7026 wrqu->essid.length = 0;
7027 wrqu->essid.flags = 0; /* active */
7033 static int ipw2100_wx_set_nick(struct net_device *dev,
7034 struct iw_request_info *info,
7035 union iwreq_data *wrqu, char *extra)
7038 * This can be called at any time. No action lock required
7041 struct ipw2100_priv *priv = ieee80211_priv(dev);
7043 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7046 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7047 memset(priv->nick, 0, sizeof(priv->nick));
7048 memcpy(priv->nick, extra, wrqu->data.length);
7050 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7055 static int ipw2100_wx_get_nick(struct net_device *dev,
7056 struct iw_request_info *info,
7057 union iwreq_data *wrqu, char *extra)
7060 * This can be called at any time. No action lock required
7063 struct ipw2100_priv *priv = ieee80211_priv(dev);
7065 wrqu->data.length = strlen(priv->nick);
7066 memcpy(extra, priv->nick, wrqu->data.length);
7067 wrqu->data.flags = 1; /* active */
7069 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7074 static int ipw2100_wx_set_rate(struct net_device *dev,
7075 struct iw_request_info *info,
7076 union iwreq_data *wrqu, char *extra)
7078 struct ipw2100_priv *priv = ieee80211_priv(dev);
7079 u32 target_rate = wrqu->bitrate.value;
7083 mutex_lock(&priv->action_mutex);
7084 if (!(priv->status & STATUS_INITIALIZED)) {
7091 if (target_rate == 1000000 ||
7092 (!wrqu->bitrate.fixed && target_rate > 1000000))
7093 rate |= TX_RATE_1_MBIT;
7094 if (target_rate == 2000000 ||
7095 (!wrqu->bitrate.fixed && target_rate > 2000000))
7096 rate |= TX_RATE_2_MBIT;
7097 if (target_rate == 5500000 ||
7098 (!wrqu->bitrate.fixed && target_rate > 5500000))
7099 rate |= TX_RATE_5_5_MBIT;
7100 if (target_rate == 11000000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 11000000))
7102 rate |= TX_RATE_11_MBIT;
7104 rate = DEFAULT_TX_RATES;
7106 err = ipw2100_set_tx_rates(priv, rate, 0);
7108 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7110 mutex_unlock(&priv->action_mutex);
7114 static int ipw2100_wx_get_rate(struct net_device *dev,
7115 struct iw_request_info *info,
7116 union iwreq_data *wrqu, char *extra)
7118 struct ipw2100_priv *priv = ieee80211_priv(dev);
7120 int len = sizeof(val);
7123 if (!(priv->status & STATUS_ENABLED) ||
7124 priv->status & STATUS_RF_KILL_MASK ||
7125 !(priv->status & STATUS_ASSOCIATED)) {
7126 wrqu->bitrate.value = 0;
7130 mutex_lock(&priv->action_mutex);
7131 if (!(priv->status & STATUS_INITIALIZED)) {
7136 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7138 IPW_DEBUG_WX("failed querying ordinals.\n");
7142 switch (val & TX_RATE_MASK) {
7143 case TX_RATE_1_MBIT:
7144 wrqu->bitrate.value = 1000000;
7146 case TX_RATE_2_MBIT:
7147 wrqu->bitrate.value = 2000000;
7149 case TX_RATE_5_5_MBIT:
7150 wrqu->bitrate.value = 5500000;
7152 case TX_RATE_11_MBIT:
7153 wrqu->bitrate.value = 11000000;
7156 wrqu->bitrate.value = 0;
7159 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7162 mutex_unlock(&priv->action_mutex);
7166 static int ipw2100_wx_set_rts(struct net_device *dev,
7167 struct iw_request_info *info,
7168 union iwreq_data *wrqu, char *extra)
7170 struct ipw2100_priv *priv = ieee80211_priv(dev);
7173 /* Auto RTS not yet supported */
7174 if (wrqu->rts.fixed == 0)
7177 mutex_lock(&priv->action_mutex);
7178 if (!(priv->status & STATUS_INITIALIZED)) {
7183 if (wrqu->rts.disabled)
7184 value = priv->rts_threshold | RTS_DISABLED;
7186 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7190 value = wrqu->rts.value;
7193 err = ipw2100_set_rts_threshold(priv, value);
7195 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7197 mutex_unlock(&priv->action_mutex);
7201 static int ipw2100_wx_get_rts(struct net_device *dev,
7202 struct iw_request_info *info,
7203 union iwreq_data *wrqu, char *extra)
7206 * This can be called at any time. No action lock required
7209 struct ipw2100_priv *priv = ieee80211_priv(dev);
7211 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7212 wrqu->rts.fixed = 1; /* no auto select */
7214 /* If RTS is set to the default value, then it is disabled */
7215 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7217 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7222 static int ipw2100_wx_set_txpow(struct net_device *dev,
7223 struct iw_request_info *info,
7224 union iwreq_data *wrqu, char *extra)
7226 struct ipw2100_priv *priv = ieee80211_priv(dev);
7229 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7230 return -EINPROGRESS;
7232 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7235 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7238 if (wrqu->txpower.fixed == 0)
7239 value = IPW_TX_POWER_DEFAULT;
7241 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7242 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7245 value = wrqu->txpower.value;
7248 mutex_lock(&priv->action_mutex);
7249 if (!(priv->status & STATUS_INITIALIZED)) {
7254 err = ipw2100_set_tx_power(priv, value);
7256 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7259 mutex_unlock(&priv->action_mutex);
7263 static int ipw2100_wx_get_txpow(struct net_device *dev,
7264 struct iw_request_info *info,
7265 union iwreq_data *wrqu, char *extra)
7268 * This can be called at any time. No action lock required
7271 struct ipw2100_priv *priv = ieee80211_priv(dev);
7273 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7275 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7276 wrqu->txpower.fixed = 0;
7277 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7279 wrqu->txpower.fixed = 1;
7280 wrqu->txpower.value = priv->tx_power;
7283 wrqu->txpower.flags = IW_TXPOW_DBM;
7285 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7290 static int ipw2100_wx_set_frag(struct net_device *dev,
7291 struct iw_request_info *info,
7292 union iwreq_data *wrqu, char *extra)
7295 * This can be called at any time. No action lock required
7298 struct ipw2100_priv *priv = ieee80211_priv(dev);
7300 if (!wrqu->frag.fixed)
7303 if (wrqu->frag.disabled) {
7304 priv->frag_threshold |= FRAG_DISABLED;
7305 priv->ieee->fts = DEFAULT_FTS;
7307 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7308 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7311 priv->ieee->fts = wrqu->frag.value & ~0x1;
7312 priv->frag_threshold = priv->ieee->fts;
7315 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7320 static int ipw2100_wx_get_frag(struct net_device *dev,
7321 struct iw_request_info *info,
7322 union iwreq_data *wrqu, char *extra)
7325 * This can be called at any time. No action lock required
7328 struct ipw2100_priv *priv = ieee80211_priv(dev);
7329 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7330 wrqu->frag.fixed = 0; /* no auto select */
7331 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7333 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7338 static int ipw2100_wx_set_retry(struct net_device *dev,
7339 struct iw_request_info *info,
7340 union iwreq_data *wrqu, char *extra)
7342 struct ipw2100_priv *priv = ieee80211_priv(dev);
7345 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7348 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7351 mutex_lock(&priv->action_mutex);
7352 if (!(priv->status & STATUS_INITIALIZED)) {
7357 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7358 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7359 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7364 if (wrqu->retry.flags & IW_RETRY_LONG) {
7365 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7366 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7371 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7373 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7378 mutex_unlock(&priv->action_mutex);
7382 static int ipw2100_wx_get_retry(struct net_device *dev,
7383 struct iw_request_info *info,
7384 union iwreq_data *wrqu, char *extra)
7387 * This can be called at any time. No action lock required
7390 struct ipw2100_priv *priv = ieee80211_priv(dev);
7392 wrqu->retry.disabled = 0; /* can't be disabled */
7394 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7397 if (wrqu->retry.flags & IW_RETRY_LONG) {
7398 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7399 wrqu->retry.value = priv->long_retry_limit;
7402 (priv->short_retry_limit !=
7403 priv->long_retry_limit) ?
7404 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7406 wrqu->retry.value = priv->short_retry_limit;
7409 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7414 static int ipw2100_wx_set_scan(struct net_device *dev,
7415 struct iw_request_info *info,
7416 union iwreq_data *wrqu, char *extra)
7418 struct ipw2100_priv *priv = ieee80211_priv(dev);
7421 mutex_lock(&priv->action_mutex);
7422 if (!(priv->status & STATUS_INITIALIZED)) {
7427 IPW_DEBUG_WX("Initiating scan...\n");
7428 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7429 IPW_DEBUG_WX("Start scan failed.\n");
7431 /* TODO: Mark a scan as pending so when hardware initialized
7436 mutex_unlock(&priv->action_mutex);
7440 static int ipw2100_wx_get_scan(struct net_device *dev,
7441 struct iw_request_info *info,
7442 union iwreq_data *wrqu, char *extra)
7445 * This can be called at any time. No action lock required
7448 struct ipw2100_priv *priv = ieee80211_priv(dev);
7449 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7453 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7455 static int ipw2100_wx_set_encode(struct net_device *dev,
7456 struct iw_request_info *info,
7457 union iwreq_data *wrqu, char *key)
7460 * No check of STATUS_INITIALIZED required
7463 struct ipw2100_priv *priv = ieee80211_priv(dev);
7464 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7467 static int ipw2100_wx_get_encode(struct net_device *dev,
7468 struct iw_request_info *info,
7469 union iwreq_data *wrqu, char *key)
7472 * This can be called at any time. No action lock required
7475 struct ipw2100_priv *priv = ieee80211_priv(dev);
7476 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7479 static int ipw2100_wx_set_power(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *extra)
7483 struct ipw2100_priv *priv = ieee80211_priv(dev);
7486 mutex_lock(&priv->action_mutex);
7487 if (!(priv->status & STATUS_INITIALIZED)) {
7492 if (wrqu->power.disabled) {
7493 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7494 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7495 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7499 switch (wrqu->power.flags & IW_POWER_MODE) {
7500 case IW_POWER_ON: /* If not specified */
7501 case IW_POWER_MODE: /* If set all mask */
7502 case IW_POWER_ALL_R: /* If explicitely state all */
7504 default: /* Otherwise we don't support it */
7505 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7511 /* If the user hasn't specified a power management mode yet, default
7513 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7514 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7516 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7519 mutex_unlock(&priv->action_mutex);
7524 static int ipw2100_wx_get_power(struct net_device *dev,
7525 struct iw_request_info *info,
7526 union iwreq_data *wrqu, char *extra)
7529 * This can be called at any time. No action lock required
7532 struct ipw2100_priv *priv = ieee80211_priv(dev);
7534 if (!(priv->power_mode & IPW_POWER_ENABLED))
7535 wrqu->power.disabled = 1;
7537 wrqu->power.disabled = 0;
7538 wrqu->power.flags = 0;
7541 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7551 static int ipw2100_wx_set_genie(struct net_device *dev,
7552 struct iw_request_info *info,
7553 union iwreq_data *wrqu, char *extra)
7556 struct ipw2100_priv *priv = ieee80211_priv(dev);
7557 struct ieee80211_device *ieee = priv->ieee;
7560 if (!ieee->wpa_enabled)
7563 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7564 (wrqu->data.length && extra == NULL))
7567 if (wrqu->data.length) {
7568 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7572 kfree(ieee->wpa_ie);
7574 ieee->wpa_ie_len = wrqu->data.length;
7576 kfree(ieee->wpa_ie);
7577 ieee->wpa_ie = NULL;
7578 ieee->wpa_ie_len = 0;
7581 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7587 static int ipw2100_wx_get_genie(struct net_device *dev,
7588 struct iw_request_info *info,
7589 union iwreq_data *wrqu, char *extra)
7591 struct ipw2100_priv *priv = ieee80211_priv(dev);
7592 struct ieee80211_device *ieee = priv->ieee;
7594 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7595 wrqu->data.length = 0;
7599 if (wrqu->data.length < ieee->wpa_ie_len)
7602 wrqu->data.length = ieee->wpa_ie_len;
7603 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7609 static int ipw2100_wx_set_auth(struct net_device *dev,
7610 struct iw_request_info *info,
7611 union iwreq_data *wrqu, char *extra)
7613 struct ipw2100_priv *priv = ieee80211_priv(dev);
7614 struct ieee80211_device *ieee = priv->ieee;
7615 struct iw_param *param = &wrqu->param;
7616 struct ieee80211_crypt_data *crypt;
7617 unsigned long flags;
7620 switch (param->flags & IW_AUTH_INDEX) {
7621 case IW_AUTH_WPA_VERSION:
7622 case IW_AUTH_CIPHER_PAIRWISE:
7623 case IW_AUTH_CIPHER_GROUP:
7624 case IW_AUTH_KEY_MGMT:
7626 * ipw2200 does not use these parameters
7630 case IW_AUTH_TKIP_COUNTERMEASURES:
7631 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7632 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7635 flags = crypt->ops->get_flags(crypt->priv);
7638 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7640 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7642 crypt->ops->set_flags(flags, crypt->priv);
7646 case IW_AUTH_DROP_UNENCRYPTED:{
7649 * wpa_supplicant calls set_wpa_enabled when the driver
7650 * is loaded and unloaded, regardless of if WPA is being
7651 * used. No other calls are made which can be used to
7652 * determine if encryption will be used or not prior to
7653 * association being expected. If encryption is not being
7654 * used, drop_unencrypted is set to false, else true -- we
7655 * can use this to determine if the CAP_PRIVACY_ON bit should
7658 struct ieee80211_security sec = {
7659 .flags = SEC_ENABLED,
7660 .enabled = param->value,
7662 priv->ieee->drop_unencrypted = param->value;
7663 /* We only change SEC_LEVEL for open mode. Others
7664 * are set by ipw_wpa_set_encryption.
7666 if (!param->value) {
7667 sec.flags |= SEC_LEVEL;
7668 sec.level = SEC_LEVEL_0;
7670 sec.flags |= SEC_LEVEL;
7671 sec.level = SEC_LEVEL_1;
7673 if (priv->ieee->set_security)
7674 priv->ieee->set_security(priv->ieee->dev, &sec);
7678 case IW_AUTH_80211_AUTH_ALG:
7679 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7682 case IW_AUTH_WPA_ENABLED:
7683 ret = ipw2100_wpa_enable(priv, param->value);
7686 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7687 ieee->ieee802_1x = param->value;
7690 //case IW_AUTH_ROAMING_CONTROL:
7691 case IW_AUTH_PRIVACY_INVOKED:
7692 ieee->privacy_invoked = param->value;
7702 static int ipw2100_wx_get_auth(struct net_device *dev,
7703 struct iw_request_info *info,
7704 union iwreq_data *wrqu, char *extra)
7706 struct ipw2100_priv *priv = ieee80211_priv(dev);
7707 struct ieee80211_device *ieee = priv->ieee;
7708 struct ieee80211_crypt_data *crypt;
7709 struct iw_param *param = &wrqu->param;
7712 switch (param->flags & IW_AUTH_INDEX) {
7713 case IW_AUTH_WPA_VERSION:
7714 case IW_AUTH_CIPHER_PAIRWISE:
7715 case IW_AUTH_CIPHER_GROUP:
7716 case IW_AUTH_KEY_MGMT:
7718 * wpa_supplicant will control these internally
7723 case IW_AUTH_TKIP_COUNTERMEASURES:
7724 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7725 if (!crypt || !crypt->ops->get_flags) {
7726 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7727 "crypt not set!\n");
7731 param->value = (crypt->ops->get_flags(crypt->priv) &
7732 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7736 case IW_AUTH_DROP_UNENCRYPTED:
7737 param->value = ieee->drop_unencrypted;
7740 case IW_AUTH_80211_AUTH_ALG:
7741 param->value = priv->ieee->sec.auth_mode;
7744 case IW_AUTH_WPA_ENABLED:
7745 param->value = ieee->wpa_enabled;
7748 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7749 param->value = ieee->ieee802_1x;
7752 case IW_AUTH_ROAMING_CONTROL:
7753 case IW_AUTH_PRIVACY_INVOKED:
7754 param->value = ieee->privacy_invoked;
7763 /* SIOCSIWENCODEEXT */
7764 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7765 struct iw_request_info *info,
7766 union iwreq_data *wrqu, char *extra)
7768 struct ipw2100_priv *priv = ieee80211_priv(dev);
7769 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7772 /* SIOCGIWENCODEEXT */
7773 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7774 struct iw_request_info *info,
7775 union iwreq_data *wrqu, char *extra)
7777 struct ipw2100_priv *priv = ieee80211_priv(dev);
7778 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7782 static int ipw2100_wx_set_mlme(struct net_device *dev,
7783 struct iw_request_info *info,
7784 union iwreq_data *wrqu, char *extra)
7786 struct ipw2100_priv *priv = ieee80211_priv(dev);
7787 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7790 reason = cpu_to_le16(mlme->reason_code);
7792 switch (mlme->cmd) {
7793 case IW_MLME_DEAUTH:
7797 case IW_MLME_DISASSOC:
7798 ipw2100_disassociate_bssid(priv);
7812 #ifdef CONFIG_IPW2100_MONITOR
7813 static int ipw2100_wx_set_promisc(struct net_device *dev,
7814 struct iw_request_info *info,
7815 union iwreq_data *wrqu, char *extra)
7817 struct ipw2100_priv *priv = ieee80211_priv(dev);
7818 int *parms = (int *)extra;
7819 int enable = (parms[0] > 0);
7822 mutex_lock(&priv->action_mutex);
7823 if (!(priv->status & STATUS_INITIALIZED)) {
7829 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7830 err = ipw2100_set_channel(priv, parms[1], 0);
7833 priv->channel = parms[1];
7834 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7836 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7837 err = ipw2100_switch_mode(priv, priv->last_mode);
7840 mutex_unlock(&priv->action_mutex);
7844 static int ipw2100_wx_reset(struct net_device *dev,
7845 struct iw_request_info *info,
7846 union iwreq_data *wrqu, char *extra)
7848 struct ipw2100_priv *priv = ieee80211_priv(dev);
7849 if (priv->status & STATUS_INITIALIZED)
7850 schedule_reset(priv);
7856 static int ipw2100_wx_set_powermode(struct net_device *dev,
7857 struct iw_request_info *info,
7858 union iwreq_data *wrqu, char *extra)
7860 struct ipw2100_priv *priv = ieee80211_priv(dev);
7861 int err = 0, mode = *(int *)extra;
7863 mutex_lock(&priv->action_mutex);
7864 if (!(priv->status & STATUS_INITIALIZED)) {
7869 if ((mode < 0) || (mode > POWER_MODES))
7870 mode = IPW_POWER_AUTO;
7872 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7873 err = ipw2100_set_power_mode(priv, mode);
7875 mutex_unlock(&priv->action_mutex);
7879 #define MAX_POWER_STRING 80
7880 static int ipw2100_wx_get_powermode(struct net_device *dev,
7881 struct iw_request_info *info,
7882 union iwreq_data *wrqu, char *extra)
7885 * This can be called at any time. No action lock required
7888 struct ipw2100_priv *priv = ieee80211_priv(dev);
7889 int level = IPW_POWER_LEVEL(priv->power_mode);
7890 s32 timeout, period;
7892 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7893 snprintf(extra, MAX_POWER_STRING,
7894 "Power save level: %d (Off)", level);
7897 case IPW_POWER_MODE_CAM:
7898 snprintf(extra, MAX_POWER_STRING,
7899 "Power save level: %d (None)", level);
7901 case IPW_POWER_AUTO:
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (Auto)", level);
7906 timeout = timeout_duration[level - 1] / 1000;
7907 period = period_duration[level - 1] / 1000;
7908 snprintf(extra, MAX_POWER_STRING,
7909 "Power save level: %d "
7910 "(Timeout %dms, Period %dms)",
7911 level, timeout, period);
7915 wrqu->data.length = strlen(extra) + 1;
7920 static int ipw2100_wx_set_preamble(struct net_device *dev,
7921 struct iw_request_info *info,
7922 union iwreq_data *wrqu, char *extra)
7924 struct ipw2100_priv *priv = ieee80211_priv(dev);
7925 int err, mode = *(int *)extra;
7927 mutex_lock(&priv->action_mutex);
7928 if (!(priv->status & STATUS_INITIALIZED)) {
7934 priv->config |= CFG_LONG_PREAMBLE;
7936 priv->config &= ~CFG_LONG_PREAMBLE;
7942 err = ipw2100_system_config(priv, 0);
7945 mutex_unlock(&priv->action_mutex);
7949 static int ipw2100_wx_get_preamble(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7954 * This can be called at any time. No action lock required
7957 struct ipw2100_priv *priv = ieee80211_priv(dev);
7959 if (priv->config & CFG_LONG_PREAMBLE)
7960 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7962 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7967 #ifdef CONFIG_IPW2100_MONITOR
7968 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7969 struct iw_request_info *info,
7970 union iwreq_data *wrqu, char *extra)
7972 struct ipw2100_priv *priv = ieee80211_priv(dev);
7973 int err, mode = *(int *)extra;
7975 mutex_lock(&priv->action_mutex);
7976 if (!(priv->status & STATUS_INITIALIZED)) {
7982 priv->config |= CFG_CRC_CHECK;
7984 priv->config &= ~CFG_CRC_CHECK;
7992 mutex_unlock(&priv->action_mutex);
7996 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7997 struct iw_request_info *info,
7998 union iwreq_data *wrqu, char *extra)
8001 * This can be called at any time. No action lock required
8004 struct ipw2100_priv *priv = ieee80211_priv(dev);
8006 if (priv->config & CFG_CRC_CHECK)
8007 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8013 #endif /* CONFIG_IPW2100_MONITOR */
8015 static iw_handler ipw2100_wx_handlers[] = {
8016 NULL, /* SIOCSIWCOMMIT */
8017 ipw2100_wx_get_name, /* SIOCGIWNAME */
8018 NULL, /* SIOCSIWNWID */
8019 NULL, /* SIOCGIWNWID */
8020 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8021 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8022 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8023 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8024 NULL, /* SIOCSIWSENS */
8025 NULL, /* SIOCGIWSENS */
8026 NULL, /* SIOCSIWRANGE */
8027 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8028 NULL, /* SIOCSIWPRIV */
8029 NULL, /* SIOCGIWPRIV */
8030 NULL, /* SIOCSIWSTATS */
8031 NULL, /* SIOCGIWSTATS */
8032 NULL, /* SIOCSIWSPY */
8033 NULL, /* SIOCGIWSPY */
8034 NULL, /* SIOCGIWTHRSPY */
8035 NULL, /* SIOCWIWTHRSPY */
8036 ipw2100_wx_set_wap, /* SIOCSIWAP */
8037 ipw2100_wx_get_wap, /* SIOCGIWAP */
8038 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8039 NULL, /* SIOCGIWAPLIST -- deprecated */
8040 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8041 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8042 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8043 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8044 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8045 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8046 NULL, /* -- hole -- */
8047 NULL, /* -- hole -- */
8048 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8049 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8050 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8051 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8052 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8053 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8054 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8055 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8056 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8057 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8058 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8059 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8060 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8061 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8062 NULL, /* -- hole -- */
8063 NULL, /* -- hole -- */
8064 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8065 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8066 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8067 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8068 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8069 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8070 NULL, /* SIOCSIWPMKSA */
8073 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8074 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8075 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8076 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8077 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8078 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8079 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8080 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8082 static const struct iw_priv_args ipw2100_private_args[] = {
8084 #ifdef CONFIG_IPW2100_MONITOR
8086 IPW2100_PRIV_SET_MONITOR,
8087 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8091 #endif /* CONFIG_IPW2100_MONITOR */
8094 IPW2100_PRIV_SET_POWER,
8095 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8097 IPW2100_PRIV_GET_POWER,
8098 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8101 IPW2100_PRIV_SET_LONGPREAMBLE,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8104 IPW2100_PRIV_GET_LONGPREAMBLE,
8105 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8106 #ifdef CONFIG_IPW2100_MONITOR
8108 IPW2100_PRIV_SET_CRC_CHECK,
8109 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8111 IPW2100_PRIV_GET_CRC_CHECK,
8112 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8113 #endif /* CONFIG_IPW2100_MONITOR */
8116 static iw_handler ipw2100_private_handler[] = {
8117 #ifdef CONFIG_IPW2100_MONITOR
8118 ipw2100_wx_set_promisc,
8120 #else /* CONFIG_IPW2100_MONITOR */
8123 #endif /* CONFIG_IPW2100_MONITOR */
8124 ipw2100_wx_set_powermode,
8125 ipw2100_wx_get_powermode,
8126 ipw2100_wx_set_preamble,
8127 ipw2100_wx_get_preamble,
8128 #ifdef CONFIG_IPW2100_MONITOR
8129 ipw2100_wx_set_crc_check,
8130 ipw2100_wx_get_crc_check,
8131 #else /* CONFIG_IPW2100_MONITOR */
8134 #endif /* CONFIG_IPW2100_MONITOR */
8138 * Get wireless statistics.
8139 * Called by /proc/net/wireless
8140 * Also called by SIOCGIWSTATS
8142 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8156 struct ipw2100_priv *priv = ieee80211_priv(dev);
8157 struct iw_statistics *wstats;
8158 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8159 u32 ord_len = sizeof(u32);
8162 return (struct iw_statistics *)NULL;
8164 wstats = &priv->wstats;
8166 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8167 * ipw2100_wx_wireless_stats seems to be called before fw is
8168 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8169 * and associated; if not associcated, the values are all meaningless
8170 * anyway, so set them all to NULL and INVALID */
8171 if (!(priv->status & STATUS_ASSOCIATED)) {
8172 wstats->miss.beacon = 0;
8173 wstats->discard.retries = 0;
8174 wstats->qual.qual = 0;
8175 wstats->qual.level = 0;
8176 wstats->qual.noise = 0;
8177 wstats->qual.updated = 7;
8178 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8179 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8183 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8184 &missed_beacons, &ord_len))
8185 goto fail_get_ordinal;
8187 /* If we don't have a connection the quality and level is 0 */
8188 if (!(priv->status & STATUS_ASSOCIATED)) {
8189 wstats->qual.qual = 0;
8190 wstats->qual.level = 0;
8192 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8194 goto fail_get_ordinal;
8195 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8197 rssi_qual = rssi * POOR / 10;
8199 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8201 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8203 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8206 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8209 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8210 &tx_retries, &ord_len))
8211 goto fail_get_ordinal;
8213 if (tx_retries > 75)
8214 tx_qual = (90 - tx_retries) * POOR / 15;
8215 else if (tx_retries > 70)
8216 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8217 else if (tx_retries > 65)
8218 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8219 else if (tx_retries > 50)
8220 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8223 tx_qual = (50 - tx_retries) *
8224 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8226 if (missed_beacons > 50)
8227 beacon_qual = (60 - missed_beacons) * POOR / 10;
8228 else if (missed_beacons > 40)
8229 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8231 else if (missed_beacons > 32)
8232 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8234 else if (missed_beacons > 20)
8235 beacon_qual = (32 - missed_beacons) *
8236 (VERY_GOOD - GOOD) / 20 + GOOD;
8238 beacon_qual = (20 - missed_beacons) *
8239 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8241 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8243 #ifdef CONFIG_IPW2100_DEBUG
8244 if (beacon_qual == quality)
8245 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246 else if (tx_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248 else if (quality != 100)
8249 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8251 IPW_DEBUG_WX("Quality not clamped.\n");
8254 wstats->qual.qual = quality;
8255 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8258 wstats->qual.noise = 0;
8259 wstats->qual.updated = 7;
8260 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8262 /* FIXME: this is percent and not a # */
8263 wstats->miss.beacon = missed_beacons;
8265 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266 &tx_failures, &ord_len))
8267 goto fail_get_ordinal;
8268 wstats->discard.retries = tx_failures;
8273 IPW_DEBUG_WX("failed querying ordinals.\n");
8275 return (struct iw_statistics *)NULL;
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279 .standard = ipw2100_wx_handlers,
8280 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8281 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8282 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8283 .private = (iw_handler *) ipw2100_private_handler,
8284 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285 .get_wireless_stats = ipw2100_wx_wireless_stats,
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8290 struct ipw2100_priv *priv =
8291 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292 union iwreq_data wrqu;
8295 if (priv->status & STATUS_STOPPING)
8298 mutex_lock(&priv->action_mutex);
8300 IPW_DEBUG_WX("enter\n");
8302 mutex_unlock(&priv->action_mutex);
8304 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8306 /* Fetch BSSID from the hardware */
8307 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308 priv->status & STATUS_RF_KILL_MASK ||
8309 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310 &priv->bssid, &len)) {
8311 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8313 /* We now have the BSSID, so can finish setting to the full
8314 * associated state */
8315 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317 priv->status &= ~STATUS_ASSOCIATING;
8318 priv->status |= STATUS_ASSOCIATED;
8319 netif_carrier_on(priv->net_dev);
8320 netif_wake_queue(priv->net_dev);
8323 if (!(priv->status & STATUS_ASSOCIATED)) {
8324 IPW_DEBUG_WX("Configuring ESSID\n");
8325 mutex_lock(&priv->action_mutex);
8326 /* This is a disassociation event, so kick the firmware to
8327 * look for another AP */
8328 if (priv->config & CFG_STATIC_ESSID)
8329 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8332 ipw2100_set_essid(priv, NULL, 0, 0);
8333 mutex_unlock(&priv->action_mutex);
8336 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346 IPW2100_FW_MAJOR_VERSION)
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355 BINARY FIRMWARE HEADER FORMAT
8359 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8362 C fw_len firmware data
8363 12 + fw_len uc_len microcode data
8367 struct ipw2100_fw_header {
8370 unsigned int fw_size;
8371 unsigned int uc_size;
8372 } __attribute__ ((packed));
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8376 struct ipw2100_fw_header *h =
8377 (struct ipw2100_fw_header *)fw->fw_entry->data;
8379 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381 "(detected version id of %u). "
8382 "See Documentation/networking/README.ipw2100\n",
8387 fw->version = h->version;
8388 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389 fw->fw.size = h->fw_size;
8390 fw->uc.data = fw->fw.data + h->fw_size;
8391 fw->uc.size = h->uc_size;
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397 struct ipw2100_fw *fw)
8402 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403 priv->net_dev->name);
8405 switch (priv->ieee->iw_mode) {
8407 fw_name = IPW2100_FW_NAME("-i");
8409 #ifdef CONFIG_IPW2100_MONITOR
8410 case IW_MODE_MONITOR:
8411 fw_name = IPW2100_FW_NAME("-p");
8416 fw_name = IPW2100_FW_NAME("");
8420 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8423 printk(KERN_ERR DRV_NAME ": "
8424 "%s: Firmware '%s' not available or load failed.\n",
8425 priv->net_dev->name, fw_name);
8428 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429 fw->fw_entry->size);
8431 ipw2100_mod_firmware_load(fw);
8436 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8437 struct ipw2100_fw *fw)
8441 release_firmware(fw->fw_entry);
8442 fw->fw_entry = NULL;
8445 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8448 char ver[MAX_FW_VERSION_LEN];
8449 u32 len = MAX_FW_VERSION_LEN;
8452 /* firmware version is an ascii string (max len of 14) */
8453 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8458 for (i = 0; i < len; i++)
8464 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 u32 len = sizeof(ver);
8469 /* microcode version is a 32 bit integer */
8470 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8472 return snprintf(buf, max, "%08X", ver);
8476 * On exit, the firmware will have been freed from the fw list
8478 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8480 /* firmware is constructed of N contiguous entries, each entry is
8484 * 0 4 address to write to
8485 * 4 2 length of data run
8491 const unsigned char *firmware_data = fw->fw.data;
8492 unsigned int firmware_data_left = fw->fw.size;
8494 while (firmware_data_left > 0) {
8495 addr = *(u32 *) (firmware_data);
8497 firmware_data_left -= 4;
8499 len = *(u16 *) (firmware_data);
8501 firmware_data_left -= 2;
8504 printk(KERN_ERR DRV_NAME ": "
8505 "Invalid firmware run-length of %d bytes\n",
8510 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8511 firmware_data += len;
8512 firmware_data_left -= len;
8518 struct symbol_alive_response {
8527 u16 clock_settle_time; // 1us LSB
8528 u16 powerup_settle_time; // 1us LSB
8529 u16 hop_settle_time; // 1us LSB
8530 u8 date[3]; // month, day, year
8531 u8 time[2]; // hours, minutes
8535 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8536 struct ipw2100_fw *fw)
8538 struct net_device *dev = priv->net_dev;
8539 const unsigned char *microcode_data = fw->uc.data;
8540 unsigned int microcode_data_left = fw->uc.size;
8541 void __iomem *reg = (void __iomem *)dev->base_addr;
8543 struct symbol_alive_response response;
8547 /* Symbol control */
8548 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8550 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8559 /* EN_CS_ACCESS bit to reset control store pointer */
8560 write_nic_byte(dev, 0x210000, 0x40);
8562 write_nic_byte(dev, 0x210000, 0x0);
8564 write_nic_byte(dev, 0x210000, 0x40);
8567 /* copy microcode from buffer into Symbol */
8569 while (microcode_data_left > 0) {
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 write_nic_byte(dev, 0x210010, *microcode_data++);
8572 microcode_data_left -= 2;
8575 /* EN_CS_ACCESS bit to reset the control store pointer */
8576 write_nic_byte(dev, 0x210000, 0x0);
8579 /* Enable System (Reg 0)
8580 * first enable causes garbage in RX FIFO */
8581 write_nic_byte(dev, 0x210000, 0x0);
8583 write_nic_byte(dev, 0x210000, 0x80);
8586 /* Reset External Baseband Reg */
8587 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8589 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8592 /* HW Config (Reg 5) */
8593 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8598 /* Enable System (Reg 0)
8599 * second enable should be OK */
8600 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8602 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8604 /* check Symbol is enabled - upped this from 5 as it wasn't always
8605 * catching the update */
8606 for (i = 0; i < 10; i++) {
8609 /* check Dino is enabled bit */
8610 read_nic_byte(dev, 0x210000, &data);
8616 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8621 /* Get Symbol alive response */
8622 for (i = 0; i < 30; i++) {
8623 /* Read alive response structure */
8625 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8626 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8628 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8634 printk(KERN_ERR DRV_NAME
8635 ": %s: No response from Symbol - hw not alive\n",
8637 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));