powerpc: Fix booke user_disable_single_step()
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27
28 static struct ia64_cpu *sysfs_cpus;
29
30 void arch_fix_phys_package_id(int num, u32 slot)
31 {
32 #ifdef CONFIG_SMP
33         if (cpu_data(num)->socket_id == -1)
34                 cpu_data(num)->socket_id = slot;
35 #endif
36 }
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
38
39
40 #ifdef CONFIG_HOTPLUG_CPU
41 int __ref arch_register_cpu(int num)
42 {
43 #ifdef CONFIG_ACPI
44         /*
45          * If CPEI can be re-targetted or if this is not
46          * CPEI target, then it is hotpluggable
47          */
48         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49                 sysfs_cpus[num].cpu.hotpluggable = 1;
50         map_cpu_to_node(num, node_cpuid[num].nid);
51 #endif
52         return register_cpu(&sysfs_cpus[num].cpu, num);
53 }
54 EXPORT_SYMBOL(arch_register_cpu);
55
56 void __ref arch_unregister_cpu(int num)
57 {
58         unregister_cpu(&sysfs_cpus[num].cpu);
59 #ifdef CONFIG_ACPI
60         unmap_cpu_from_node(num, cpu_to_node(num));
61 #endif
62 }
63 EXPORT_SYMBOL(arch_unregister_cpu);
64 #else
65 static int __init arch_register_cpu(int num)
66 {
67         return register_cpu(&sysfs_cpus[num].cpu, num);
68 }
69 #endif /*CONFIG_HOTPLUG_CPU*/
70
71
72 static int __init topology_init(void)
73 {
74         int i, err = 0;
75
76 #ifdef CONFIG_NUMA
77         /*
78          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
79          */
80         for_each_online_node(i) {
81                 if ((err = register_one_node(i)))
82                         goto out;
83         }
84 #endif
85
86         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
87         if (!sysfs_cpus)
88                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
89
90         for_each_present_cpu(i) {
91                 if((err = arch_register_cpu(i)))
92                         goto out;
93         }
94 out:
95         return err;
96 }
97
98 subsys_initcall(topology_init);
99
100
101 /*
102  * Export cpu cache information through sysfs
103  */
104
105 /*
106  *  A bunch of string array to get pretty printing
107  */
108 static const char *cache_types[] = {
109         "",                     /* not used */
110         "Instruction",
111         "Data",
112         "Unified"       /* unified */
113 };
114
115 static const char *cache_mattrib[]={
116         "WriteThrough",
117         "WriteBack",
118         "",             /* reserved */
119         ""              /* reserved */
120 };
121
122 struct cache_info {
123         pal_cache_config_info_t cci;
124         cpumask_t shared_cpu_map;
125         int level;
126         int type;
127         struct kobject kobj;
128 };
129
130 struct cpu_cache_info {
131         struct cache_info *cache_leaves;
132         int     num_cache_leaves;
133         struct kobject kobj;
134 };
135
136 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS] __cpuinitdata;
137 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
138
139 #ifdef CONFIG_SMP
140 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
141                 struct cache_info * this_leaf)
142 {
143         pal_cache_shared_info_t csi;
144         int num_shared, i = 0;
145         unsigned int j;
146
147         if (cpu_data(cpu)->threads_per_core <= 1 &&
148                 cpu_data(cpu)->cores_per_socket <= 1) {
149                 cpu_set(cpu, this_leaf->shared_cpu_map);
150                 return;
151         }
152
153         if (ia64_pal_cache_shared_info(this_leaf->level,
154                                         this_leaf->type,
155                                         0,
156                                         &csi) != PAL_STATUS_SUCCESS)
157                 return;
158
159         num_shared = (int) csi.num_shared;
160         do {
161                 for_each_possible_cpu(j)
162                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
163                                 && cpu_data(j)->core_id == csi.log1_cid
164                                 && cpu_data(j)->thread_id == csi.log1_tid)
165                                 cpu_set(j, this_leaf->shared_cpu_map);
166
167                 i++;
168         } while (i < num_shared &&
169                 ia64_pal_cache_shared_info(this_leaf->level,
170                                 this_leaf->type,
171                                 i,
172                                 &csi) == PAL_STATUS_SUCCESS);
173 }
174 #else
175 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
176                 struct cache_info * this_leaf)
177 {
178         cpu_set(cpu, this_leaf->shared_cpu_map);
179         return;
180 }
181 #endif
182
183 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
184                                         char *buf)
185 {
186         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
187 }
188
189 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
190                                         char *buf)
191 {
192         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
193 }
194
195 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
196 {
197         return sprintf(buf,
198                         "%s\n",
199                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
200 }
201
202 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
203 {
204         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
205 }
206
207 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
208 {
209         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
210         number_of_sets /= this_leaf->cci.pcci_assoc;
211         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
212
213         return sprintf(buf, "%u\n", number_of_sets);
214 }
215
216 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
217 {
218         ssize_t len;
219         cpumask_t shared_cpu_map;
220
221         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
222         len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
223         len += sprintf(buf+len, "\n");
224         return len;
225 }
226
227 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
228 {
229         int type = this_leaf->type + this_leaf->cci.pcci_unified;
230         return sprintf(buf, "%s\n", cache_types[type]);
231 }
232
233 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
234 {
235         return sprintf(buf, "%u\n", this_leaf->level);
236 }
237
238 struct cache_attr {
239         struct attribute attr;
240         ssize_t (*show)(struct cache_info *, char *);
241         ssize_t (*store)(struct cache_info *, const char *, size_t count);
242 };
243
244 #ifdef define_one_ro
245         #undef define_one_ro
246 #endif
247 #define define_one_ro(_name) \
248         static struct cache_attr _name = \
249 __ATTR(_name, 0444, show_##_name, NULL)
250
251 define_one_ro(level);
252 define_one_ro(type);
253 define_one_ro(coherency_line_size);
254 define_one_ro(ways_of_associativity);
255 define_one_ro(size);
256 define_one_ro(number_of_sets);
257 define_one_ro(shared_cpu_map);
258 define_one_ro(attributes);
259
260 static struct attribute * cache_default_attrs[] = {
261         &type.attr,
262         &level.attr,
263         &coherency_line_size.attr,
264         &ways_of_associativity.attr,
265         &attributes.attr,
266         &size.attr,
267         &number_of_sets.attr,
268         &shared_cpu_map.attr,
269         NULL
270 };
271
272 #define to_object(k) container_of(k, struct cache_info, kobj)
273 #define to_attr(a) container_of(a, struct cache_attr, attr)
274
275 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
276 {
277         struct cache_attr *fattr = to_attr(attr);
278         struct cache_info *this_leaf = to_object(kobj);
279         ssize_t ret;
280
281         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
282         return ret;
283 }
284
285 static struct sysfs_ops cache_sysfs_ops = {
286         .show   = cache_show
287 };
288
289 static struct kobj_type cache_ktype = {
290         .sysfs_ops      = &cache_sysfs_ops,
291         .default_attrs  = cache_default_attrs,
292 };
293
294 static struct kobj_type cache_ktype_percpu_entry = {
295         .sysfs_ops      = &cache_sysfs_ops,
296 };
297
298 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
299 {
300         kfree(all_cpu_cache_info[cpu].cache_leaves);
301         all_cpu_cache_info[cpu].cache_leaves = NULL;
302         all_cpu_cache_info[cpu].num_cache_leaves = 0;
303         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
304         return;
305 }
306
307 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
308 {
309         unsigned long i, levels, unique_caches;
310         pal_cache_config_info_t cci;
311         int j;
312         long status;
313         struct cache_info *this_cache;
314         int num_cache_leaves = 0;
315
316         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
317                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
318                 return -1;
319         }
320
321         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
322                         GFP_KERNEL);
323         if (this_cache == NULL)
324                 return -ENOMEM;
325
326         for (i=0; i < levels; i++) {
327                 for (j=2; j >0 ; j--) {
328                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
329                                         PAL_STATUS_SUCCESS)
330                                 continue;
331
332                         this_cache[num_cache_leaves].cci = cci;
333                         this_cache[num_cache_leaves].level = i + 1;
334                         this_cache[num_cache_leaves].type = j;
335
336                         cache_shared_cpu_map_setup(cpu,
337                                         &this_cache[num_cache_leaves]);
338                         num_cache_leaves ++;
339                 }
340         }
341
342         all_cpu_cache_info[cpu].cache_leaves = this_cache;
343         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
344
345         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
346
347         return 0;
348 }
349
350 /* Add cache interface for CPU device */
351 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
352 {
353         unsigned int cpu = sys_dev->id;
354         unsigned long i, j;
355         struct cache_info *this_object;
356         int retval = 0;
357         cpumask_t oldmask;
358
359         if (all_cpu_cache_info[cpu].kobj.parent)
360                 return 0;
361
362         oldmask = current->cpus_allowed;
363         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
364         if (unlikely(retval))
365                 return retval;
366
367         retval = cpu_cache_sysfs_init(cpu);
368         set_cpus_allowed(current, oldmask);
369         if (unlikely(retval < 0))
370                 return retval;
371
372         retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
373                                       &cache_ktype_percpu_entry, &sys_dev->kobj,
374                                       "%s", "cache");
375
376         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
377                 this_object = LEAF_KOBJECT_PTR(cpu,i);
378                 retval = kobject_init_and_add(&(this_object->kobj),
379                                               &cache_ktype,
380                                               &all_cpu_cache_info[cpu].kobj,
381                                               "index%1lu", i);
382                 if (unlikely(retval)) {
383                         for (j = 0; j < i; j++) {
384                                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
385                         }
386                         kobject_put(&all_cpu_cache_info[cpu].kobj);
387                         cpu_cache_sysfs_exit(cpu);
388                         break;
389                 }
390                 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
391         }
392         kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
393         return retval;
394 }
395
396 /* Remove cache interface for CPU device */
397 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
398 {
399         unsigned int cpu = sys_dev->id;
400         unsigned long i;
401
402         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
403                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
404
405         if (all_cpu_cache_info[cpu].kobj.parent) {
406                 kobject_put(&all_cpu_cache_info[cpu].kobj);
407                 memset(&all_cpu_cache_info[cpu].kobj,
408                         0,
409                         sizeof(struct kobject));
410         }
411
412         cpu_cache_sysfs_exit(cpu);
413
414         return 0;
415 }
416
417 /*
418  * When a cpu is hot-plugged, do a check and initiate
419  * cache kobject if necessary
420  */
421 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
422                 unsigned long action, void *hcpu)
423 {
424         unsigned int cpu = (unsigned long)hcpu;
425         struct sys_device *sys_dev;
426
427         sys_dev = get_cpu_sysdev(cpu);
428         switch (action) {
429         case CPU_ONLINE:
430         case CPU_ONLINE_FROZEN:
431                 cache_add_dev(sys_dev);
432                 break;
433         case CPU_DEAD:
434         case CPU_DEAD_FROZEN:
435                 cache_remove_dev(sys_dev);
436                 break;
437         }
438         return NOTIFY_OK;
439 }
440
441 static struct notifier_block __cpuinitdata cache_cpu_notifier =
442 {
443         .notifier_call = cache_cpu_callback
444 };
445
446 static int __init cache_sysfs_init(void)
447 {
448         int i;
449
450         for_each_online_cpu(i) {
451                 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
452                 cache_add_dev(sys_dev);
453         }
454
455         register_hotcpu_notifier(&cache_cpu_notifier);
456
457         return 0;
458 }
459
460 device_initcall(cache_sysfs_init);
461