Merge branch 'x86/oprofile' into oprofile
[linux-2.6] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <asm/div64.h>
42
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
45     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
52 #endif
53
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
56 #endif
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
59 #endif
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
62 #endif
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
65 #endif
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE  50
68 #endif
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH  8
71 #endif
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS  0
74 #endif
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG        0
77 #endif
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG        0
80 #endif
81
82 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log            = CONFIG_NANDSIM_LOG;
94 static uint dbg            = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
102 static unsigned int rptwear = 0;
103 static unsigned int overridesize = 0;
104
105 module_param(first_id_byte,  uint, 0400);
106 module_param(second_id_byte, uint, 0400);
107 module_param(third_id_byte,  uint, 0400);
108 module_param(fourth_id_byte, uint, 0400);
109 module_param(access_delay,   uint, 0400);
110 module_param(programm_delay, uint, 0400);
111 module_param(erase_delay,    uint, 0400);
112 module_param(output_cycle,   uint, 0400);
113 module_param(input_cycle,    uint, 0400);
114 module_param(bus_width,      uint, 0400);
115 module_param(do_delays,      uint, 0400);
116 module_param(log,            uint, 0400);
117 module_param(dbg,            uint, 0400);
118 module_param_array(parts, ulong, &parts_num, 0400);
119 module_param(badblocks,      charp, 0400);
120 module_param(weakblocks,     charp, 0400);
121 module_param(weakpages,      charp, 0400);
122 module_param(bitflips,       uint, 0400);
123 module_param(gravepages,     charp, 0400);
124 module_param(rptwear,        uint, 0400);
125 module_param(overridesize,   uint, 0400);
126
127 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
128 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
129 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
131 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
132 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
133 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
134 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
135 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
136 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
137 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
138 MODULE_PARM_DESC(log,            "Perform logging if not zero");
139 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
140 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
141 /* Page and erase block positions for the following parameters are independent of any partitions */
142 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
143 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
144                                  " separated by commas e.g. 113:2 means eb 113"
145                                  " can be erased only twice before failing");
146 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
147                                  " separated by commas e.g. 1401:2 means page 1401"
148                                  " can be written only twice before failing");
149 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
150 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
151                                  " separated by commas e.g. 1401:2 means page 1401"
152                                  " can be read only twice before failing");
153 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
154 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
155                                  "The size is specified in erase blocks and as the exponent of a power of two"
156                                  " e.g. 5 means a size of 32 erase blocks");
157
158 /* The largest possible page size */
159 #define NS_LARGEST_PAGE_SIZE    2048
160
161 /* The prefix for simulator output */
162 #define NS_OUTPUT_PREFIX "[nandsim]"
163
164 /* Simulator's output macros (logging, debugging, warning, error) */
165 #define NS_LOG(args...) \
166         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
167 #define NS_DBG(args...) \
168         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
169 #define NS_WARN(args...) \
170         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
171 #define NS_ERR(args...) \
172         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
173 #define NS_INFO(args...) \
174         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
175
176 /* Busy-wait delay macros (microseconds, milliseconds) */
177 #define NS_UDELAY(us) \
178         do { if (do_delays) udelay(us); } while(0)
179 #define NS_MDELAY(us) \
180         do { if (do_delays) mdelay(us); } while(0)
181
182 /* Is the nandsim structure initialized ? */
183 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
184
185 /* Good operation completion status */
186 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
187
188 /* Operation failed completion status */
189 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
190
191 /* Calculate the page offset in flash RAM image by (row, column) address */
192 #define NS_RAW_OFFSET(ns) \
193         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
194
195 /* Calculate the OOB offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
197
198 /* After a command is input, the simulator goes to one of the following states */
199 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
200 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
201 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
202 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
203 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
204 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
205 #define STATE_CMD_STATUS       0x00000007 /* read status */
206 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
207 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
208 #define STATE_CMD_READID       0x0000000A /* read ID */
209 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
210 #define STATE_CMD_RESET        0x0000000C /* reset */
211 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
212 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
213 #define STATE_CMD_MASK         0x0000000F /* command states mask */
214
215 /* After an address is input, the simulator goes to one of these states */
216 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
217 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
218 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
219 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
220 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
221
222 /* Durind data input/output the simulator is in these states */
223 #define STATE_DATAIN           0x00000100 /* waiting for data input */
224 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
225
226 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
227 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
228 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
229 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
230 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
231
232 /* Previous operation is done, ready to accept new requests */
233 #define STATE_READY            0x00000000
234
235 /* This state is used to mark that the next state isn't known yet */
236 #define STATE_UNKNOWN          0x10000000
237
238 /* Simulator's actions bit masks */
239 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
240 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
241 #define ACTION_SECERASE  0x00300000 /* erase sector */
242 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
243 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
244 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
245 #define ACTION_MASK      0x00700000 /* action mask */
246
247 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
248 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
249
250 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
251 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
252 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
253 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
254 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
255 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
256 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
257 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
258 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
259
260 /* Remove action bits ftom state */
261 #define NS_STATE(x) ((x) & ~ACTION_MASK)
262
263 /*
264  * Maximum previous states which need to be saved. Currently saving is
265  * only needed for page programm operation with preceeded read command
266  * (which is only valid for 512-byte pages).
267  */
268 #define NS_MAX_PREVSTATES 1
269
270 /*
271  * A union to represent flash memory contents and flash buffer.
272  */
273 union ns_mem {
274         u_char *byte;    /* for byte access */
275         uint16_t *word;  /* for 16-bit word access */
276 };
277
278 /*
279  * The structure which describes all the internal simulator data.
280  */
281 struct nandsim {
282         struct mtd_partition partitions[MAX_MTD_DEVICES];
283         unsigned int nbparts;
284
285         uint busw;              /* flash chip bus width (8 or 16) */
286         u_char ids[4];          /* chip's ID bytes */
287         uint32_t options;       /* chip's characteristic bits */
288         uint32_t state;         /* current chip state */
289         uint32_t nxstate;       /* next expected state */
290
291         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
292         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
293         uint16_t npstates;      /* number of previous states saved */
294         uint16_t stateidx;      /* current state index */
295
296         /* The simulated NAND flash pages array */
297         union ns_mem *pages;
298
299         /* Internal buffer of page + OOB size bytes */
300         union ns_mem buf;
301
302         /* NAND flash "geometry" */
303         struct nandsin_geometry {
304                 uint64_t totsz;     /* total flash size, bytes */
305                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
306                 uint pgsz;          /* NAND flash page size, bytes */
307                 uint oobsz;         /* page OOB area size, bytes */
308                 uint64_t totszoob;  /* total flash size including OOB, bytes */
309                 uint pgszoob;       /* page size including OOB , bytes*/
310                 uint secszoob;      /* sector size including OOB, bytes */
311                 uint pgnum;         /* total number of pages */
312                 uint pgsec;         /* number of pages per sector */
313                 uint secshift;      /* bits number in sector size */
314                 uint pgshift;       /* bits number in page size */
315                 uint oobshift;      /* bits number in OOB size */
316                 uint pgaddrbytes;   /* bytes per page address */
317                 uint secaddrbytes;  /* bytes per sector address */
318                 uint idbytes;       /* the number ID bytes that this chip outputs */
319         } geom;
320
321         /* NAND flash internal registers */
322         struct nandsim_regs {
323                 unsigned command; /* the command register */
324                 u_char   status;  /* the status register */
325                 uint     row;     /* the page number */
326                 uint     column;  /* the offset within page */
327                 uint     count;   /* internal counter */
328                 uint     num;     /* number of bytes which must be processed */
329                 uint     off;     /* fixed page offset */
330         } regs;
331
332         /* NAND flash lines state */
333         struct ns_lines_status {
334                 int ce;  /* chip Enable */
335                 int cle; /* command Latch Enable */
336                 int ale; /* address Latch Enable */
337                 int wp;  /* write Protect */
338         } lines;
339 };
340
341 /*
342  * Operations array. To perform any operation the simulator must pass
343  * through the correspondent states chain.
344  */
345 static struct nandsim_operations {
346         uint32_t reqopts;  /* options which are required to perform the operation */
347         uint32_t states[NS_OPER_STATES]; /* operation's states */
348 } ops[NS_OPER_NUM] = {
349         /* Read page + OOB from the beginning */
350         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
351                         STATE_DATAOUT, STATE_READY}},
352         /* Read page + OOB from the second half */
353         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
354                         STATE_DATAOUT, STATE_READY}},
355         /* Read OOB */
356         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
357                         STATE_DATAOUT, STATE_READY}},
358         /* Programm page starting from the beginning */
359         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
360                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
361         /* Programm page starting from the beginning */
362         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
363                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
364         /* Programm page starting from the second half */
365         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
366                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
367         /* Programm OOB */
368         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
369                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
370         /* Erase sector */
371         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
372         /* Read status */
373         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
374         /* Read multi-plane status */
375         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
376         /* Read ID */
377         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
378         /* Large page devices read page */
379         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
380                                STATE_DATAOUT, STATE_READY}},
381         /* Large page devices random page read */
382         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
383                                STATE_DATAOUT, STATE_READY}},
384 };
385
386 struct weak_block {
387         struct list_head list;
388         unsigned int erase_block_no;
389         unsigned int max_erases;
390         unsigned int erases_done;
391 };
392
393 static LIST_HEAD(weak_blocks);
394
395 struct weak_page {
396         struct list_head list;
397         unsigned int page_no;
398         unsigned int max_writes;
399         unsigned int writes_done;
400 };
401
402 static LIST_HEAD(weak_pages);
403
404 struct grave_page {
405         struct list_head list;
406         unsigned int page_no;
407         unsigned int max_reads;
408         unsigned int reads_done;
409 };
410
411 static LIST_HEAD(grave_pages);
412
413 static unsigned long *erase_block_wear = NULL;
414 static unsigned int wear_eb_count = 0;
415 static unsigned long total_wear = 0;
416 static unsigned int rptwear_cnt = 0;
417
418 /* MTD structure for NAND controller */
419 static struct mtd_info *nsmtd;
420
421 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
422
423 /*
424  * Allocate array of page pointers and initialize the array to NULL
425  * pointers.
426  *
427  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
428  */
429 static int alloc_device(struct nandsim *ns)
430 {
431         int i;
432
433         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
434         if (!ns->pages) {
435                 NS_ERR("alloc_map: unable to allocate page array\n");
436                 return -ENOMEM;
437         }
438         for (i = 0; i < ns->geom.pgnum; i++) {
439                 ns->pages[i].byte = NULL;
440         }
441
442         return 0;
443 }
444
445 /*
446  * Free any allocated pages, and free the array of page pointers.
447  */
448 static void free_device(struct nandsim *ns)
449 {
450         int i;
451
452         if (ns->pages) {
453                 for (i = 0; i < ns->geom.pgnum; i++) {
454                         if (ns->pages[i].byte)
455                                 kfree(ns->pages[i].byte);
456                 }
457                 vfree(ns->pages);
458         }
459 }
460
461 static char *get_partition_name(int i)
462 {
463         char buf[64];
464         sprintf(buf, "NAND simulator partition %d", i);
465         return kstrdup(buf, GFP_KERNEL);
466 }
467
468 static u_int64_t divide(u_int64_t n, u_int32_t d)
469 {
470         do_div(n, d);
471         return n;
472 }
473
474 /*
475  * Initialize the nandsim structure.
476  *
477  * RETURNS: 0 if success, -ERRNO if failure.
478  */
479 static int init_nandsim(struct mtd_info *mtd)
480 {
481         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
482         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
483         int i, ret = 0;
484         u_int64_t remains;
485         u_int64_t next_offset;
486
487         if (NS_IS_INITIALIZED(ns)) {
488                 NS_ERR("init_nandsim: nandsim is already initialized\n");
489                 return -EIO;
490         }
491
492         /* Force mtd to not do delays */
493         chip->chip_delay = 0;
494
495         /* Initialize the NAND flash parameters */
496         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
497         ns->geom.totsz    = mtd->size;
498         ns->geom.pgsz     = mtd->writesize;
499         ns->geom.oobsz    = mtd->oobsize;
500         ns->geom.secsz    = mtd->erasesize;
501         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
502         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
503         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
504         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
505         ns->geom.pgshift  = chip->page_shift;
506         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
507         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
508         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
509         ns->options = 0;
510
511         if (ns->geom.pgsz == 256) {
512                 ns->options |= OPT_PAGE256;
513         }
514         else if (ns->geom.pgsz == 512) {
515                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
516                 if (ns->busw == 8)
517                         ns->options |= OPT_PAGE512_8BIT;
518         } else if (ns->geom.pgsz == 2048) {
519                 ns->options |= OPT_PAGE2048;
520         } else {
521                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
522                 return -EIO;
523         }
524
525         if (ns->options & OPT_SMALLPAGE) {
526                 if (ns->geom.totsz <= (32 << 20)) {
527                         ns->geom.pgaddrbytes  = 3;
528                         ns->geom.secaddrbytes = 2;
529                 } else {
530                         ns->geom.pgaddrbytes  = 4;
531                         ns->geom.secaddrbytes = 3;
532                 }
533         } else {
534                 if (ns->geom.totsz <= (128 << 20)) {
535                         ns->geom.pgaddrbytes  = 4;
536                         ns->geom.secaddrbytes = 2;
537                 } else {
538                         ns->geom.pgaddrbytes  = 5;
539                         ns->geom.secaddrbytes = 3;
540                 }
541         }
542
543         /* Fill the partition_info structure */
544         if (parts_num > ARRAY_SIZE(ns->partitions)) {
545                 NS_ERR("too many partitions.\n");
546                 ret = -EINVAL;
547                 goto error;
548         }
549         remains = ns->geom.totsz;
550         next_offset = 0;
551         for (i = 0; i < parts_num; ++i) {
552                 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
553
554                 if (!part_sz || part_sz > remains) {
555                         NS_ERR("bad partition size.\n");
556                         ret = -EINVAL;
557                         goto error;
558                 }
559                 ns->partitions[i].name   = get_partition_name(i);
560                 ns->partitions[i].offset = next_offset;
561                 ns->partitions[i].size   = part_sz;
562                 next_offset += ns->partitions[i].size;
563                 remains -= ns->partitions[i].size;
564         }
565         ns->nbparts = parts_num;
566         if (remains) {
567                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
568                         NS_ERR("too many partitions.\n");
569                         ret = -EINVAL;
570                         goto error;
571                 }
572                 ns->partitions[i].name   = get_partition_name(i);
573                 ns->partitions[i].offset = next_offset;
574                 ns->partitions[i].size   = remains;
575                 ns->nbparts += 1;
576         }
577
578         /* Detect how many ID bytes the NAND chip outputs */
579         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
580                 if (second_id_byte != nand_flash_ids[i].id)
581                         continue;
582                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
583                         ns->options |= OPT_AUTOINCR;
584         }
585
586         if (ns->busw == 16)
587                 NS_WARN("16-bit flashes support wasn't tested\n");
588
589         printk("flash size: %llu MiB\n",
590                         (unsigned long long)ns->geom.totsz >> 20);
591         printk("page size: %u bytes\n",         ns->geom.pgsz);
592         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
593         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
594         printk("pages number: %u\n",            ns->geom.pgnum);
595         printk("pages per sector: %u\n",        ns->geom.pgsec);
596         printk("bus width: %u\n",               ns->busw);
597         printk("bits in sector size: %u\n",     ns->geom.secshift);
598         printk("bits in page size: %u\n",       ns->geom.pgshift);
599         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
600         printk("flash size with OOB: %llu KiB\n",
601                         (unsigned long long)ns->geom.totszoob >> 10);
602         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
603         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
604         printk("options: %#x\n",                ns->options);
605
606         if ((ret = alloc_device(ns)) != 0)
607                 goto error;
608
609         /* Allocate / initialize the internal buffer */
610         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
611         if (!ns->buf.byte) {
612                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
613                         ns->geom.pgszoob);
614                 ret = -ENOMEM;
615                 goto error;
616         }
617         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
618
619         return 0;
620
621 error:
622         free_device(ns);
623
624         return ret;
625 }
626
627 /*
628  * Free the nandsim structure.
629  */
630 static void free_nandsim(struct nandsim *ns)
631 {
632         kfree(ns->buf.byte);
633         free_device(ns);
634
635         return;
636 }
637
638 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
639 {
640         char *w;
641         int zero_ok;
642         unsigned int erase_block_no;
643         loff_t offset;
644
645         if (!badblocks)
646                 return 0;
647         w = badblocks;
648         do {
649                 zero_ok = (*w == '0' ? 1 : 0);
650                 erase_block_no = simple_strtoul(w, &w, 0);
651                 if (!zero_ok && !erase_block_no) {
652                         NS_ERR("invalid badblocks.\n");
653                         return -EINVAL;
654                 }
655                 offset = erase_block_no * ns->geom.secsz;
656                 if (mtd->block_markbad(mtd, offset)) {
657                         NS_ERR("invalid badblocks.\n");
658                         return -EINVAL;
659                 }
660                 if (*w == ',')
661                         w += 1;
662         } while (*w);
663         return 0;
664 }
665
666 static int parse_weakblocks(void)
667 {
668         char *w;
669         int zero_ok;
670         unsigned int erase_block_no;
671         unsigned int max_erases;
672         struct weak_block *wb;
673
674         if (!weakblocks)
675                 return 0;
676         w = weakblocks;
677         do {
678                 zero_ok = (*w == '0' ? 1 : 0);
679                 erase_block_no = simple_strtoul(w, &w, 0);
680                 if (!zero_ok && !erase_block_no) {
681                         NS_ERR("invalid weakblocks.\n");
682                         return -EINVAL;
683                 }
684                 max_erases = 3;
685                 if (*w == ':') {
686                         w += 1;
687                         max_erases = simple_strtoul(w, &w, 0);
688                 }
689                 if (*w == ',')
690                         w += 1;
691                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
692                 if (!wb) {
693                         NS_ERR("unable to allocate memory.\n");
694                         return -ENOMEM;
695                 }
696                 wb->erase_block_no = erase_block_no;
697                 wb->max_erases = max_erases;
698                 list_add(&wb->list, &weak_blocks);
699         } while (*w);
700         return 0;
701 }
702
703 static int erase_error(unsigned int erase_block_no)
704 {
705         struct weak_block *wb;
706
707         list_for_each_entry(wb, &weak_blocks, list)
708                 if (wb->erase_block_no == erase_block_no) {
709                         if (wb->erases_done >= wb->max_erases)
710                                 return 1;
711                         wb->erases_done += 1;
712                         return 0;
713                 }
714         return 0;
715 }
716
717 static int parse_weakpages(void)
718 {
719         char *w;
720         int zero_ok;
721         unsigned int page_no;
722         unsigned int max_writes;
723         struct weak_page *wp;
724
725         if (!weakpages)
726                 return 0;
727         w = weakpages;
728         do {
729                 zero_ok = (*w == '0' ? 1 : 0);
730                 page_no = simple_strtoul(w, &w, 0);
731                 if (!zero_ok && !page_no) {
732                         NS_ERR("invalid weakpagess.\n");
733                         return -EINVAL;
734                 }
735                 max_writes = 3;
736                 if (*w == ':') {
737                         w += 1;
738                         max_writes = simple_strtoul(w, &w, 0);
739                 }
740                 if (*w == ',')
741                         w += 1;
742                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
743                 if (!wp) {
744                         NS_ERR("unable to allocate memory.\n");
745                         return -ENOMEM;
746                 }
747                 wp->page_no = page_no;
748                 wp->max_writes = max_writes;
749                 list_add(&wp->list, &weak_pages);
750         } while (*w);
751         return 0;
752 }
753
754 static int write_error(unsigned int page_no)
755 {
756         struct weak_page *wp;
757
758         list_for_each_entry(wp, &weak_pages, list)
759                 if (wp->page_no == page_no) {
760                         if (wp->writes_done >= wp->max_writes)
761                                 return 1;
762                         wp->writes_done += 1;
763                         return 0;
764                 }
765         return 0;
766 }
767
768 static int parse_gravepages(void)
769 {
770         char *g;
771         int zero_ok;
772         unsigned int page_no;
773         unsigned int max_reads;
774         struct grave_page *gp;
775
776         if (!gravepages)
777                 return 0;
778         g = gravepages;
779         do {
780                 zero_ok = (*g == '0' ? 1 : 0);
781                 page_no = simple_strtoul(g, &g, 0);
782                 if (!zero_ok && !page_no) {
783                         NS_ERR("invalid gravepagess.\n");
784                         return -EINVAL;
785                 }
786                 max_reads = 3;
787                 if (*g == ':') {
788                         g += 1;
789                         max_reads = simple_strtoul(g, &g, 0);
790                 }
791                 if (*g == ',')
792                         g += 1;
793                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
794                 if (!gp) {
795                         NS_ERR("unable to allocate memory.\n");
796                         return -ENOMEM;
797                 }
798                 gp->page_no = page_no;
799                 gp->max_reads = max_reads;
800                 list_add(&gp->list, &grave_pages);
801         } while (*g);
802         return 0;
803 }
804
805 static int read_error(unsigned int page_no)
806 {
807         struct grave_page *gp;
808
809         list_for_each_entry(gp, &grave_pages, list)
810                 if (gp->page_no == page_no) {
811                         if (gp->reads_done >= gp->max_reads)
812                                 return 1;
813                         gp->reads_done += 1;
814                         return 0;
815                 }
816         return 0;
817 }
818
819 static void free_lists(void)
820 {
821         struct list_head *pos, *n;
822         list_for_each_safe(pos, n, &weak_blocks) {
823                 list_del(pos);
824                 kfree(list_entry(pos, struct weak_block, list));
825         }
826         list_for_each_safe(pos, n, &weak_pages) {
827                 list_del(pos);
828                 kfree(list_entry(pos, struct weak_page, list));
829         }
830         list_for_each_safe(pos, n, &grave_pages) {
831                 list_del(pos);
832                 kfree(list_entry(pos, struct grave_page, list));
833         }
834         kfree(erase_block_wear);
835 }
836
837 static int setup_wear_reporting(struct mtd_info *mtd)
838 {
839         size_t mem;
840
841         if (!rptwear)
842                 return 0;
843         wear_eb_count = divide(mtd->size, mtd->erasesize);
844         mem = wear_eb_count * sizeof(unsigned long);
845         if (mem / sizeof(unsigned long) != wear_eb_count) {
846                 NS_ERR("Too many erase blocks for wear reporting\n");
847                 return -ENOMEM;
848         }
849         erase_block_wear = kzalloc(mem, GFP_KERNEL);
850         if (!erase_block_wear) {
851                 NS_ERR("Too many erase blocks for wear reporting\n");
852                 return -ENOMEM;
853         }
854         return 0;
855 }
856
857 static void update_wear(unsigned int erase_block_no)
858 {
859         unsigned long wmin = -1, wmax = 0, avg;
860         unsigned long deciles[10], decile_max[10], tot = 0;
861         unsigned int i;
862
863         if (!erase_block_wear)
864                 return;
865         total_wear += 1;
866         if (total_wear == 0)
867                 NS_ERR("Erase counter total overflow\n");
868         erase_block_wear[erase_block_no] += 1;
869         if (erase_block_wear[erase_block_no] == 0)
870                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
871         rptwear_cnt += 1;
872         if (rptwear_cnt < rptwear)
873                 return;
874         rptwear_cnt = 0;
875         /* Calc wear stats */
876         for (i = 0; i < wear_eb_count; ++i) {
877                 unsigned long wear = erase_block_wear[i];
878                 if (wear < wmin)
879                         wmin = wear;
880                 if (wear > wmax)
881                         wmax = wear;
882                 tot += wear;
883         }
884         for (i = 0; i < 9; ++i) {
885                 deciles[i] = 0;
886                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
887         }
888         deciles[9] = 0;
889         decile_max[9] = wmax;
890         for (i = 0; i < wear_eb_count; ++i) {
891                 int d;
892                 unsigned long wear = erase_block_wear[i];
893                 for (d = 0; d < 10; ++d)
894                         if (wear <= decile_max[d]) {
895                                 deciles[d] += 1;
896                                 break;
897                         }
898         }
899         avg = tot / wear_eb_count;
900         /* Output wear report */
901         NS_INFO("*** Wear Report ***\n");
902         NS_INFO("Total numbers of erases:  %lu\n", tot);
903         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
904         NS_INFO("Average number of erases: %lu\n", avg);
905         NS_INFO("Maximum number of erases: %lu\n", wmax);
906         NS_INFO("Minimum number of erases: %lu\n", wmin);
907         for (i = 0; i < 10; ++i) {
908                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
909                 if (from > decile_max[i])
910                         continue;
911                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
912                         from,
913                         decile_max[i],
914                         deciles[i]);
915         }
916         NS_INFO("*** End of Wear Report ***\n");
917 }
918
919 /*
920  * Returns the string representation of 'state' state.
921  */
922 static char *get_state_name(uint32_t state)
923 {
924         switch (NS_STATE(state)) {
925                 case STATE_CMD_READ0:
926                         return "STATE_CMD_READ0";
927                 case STATE_CMD_READ1:
928                         return "STATE_CMD_READ1";
929                 case STATE_CMD_PAGEPROG:
930                         return "STATE_CMD_PAGEPROG";
931                 case STATE_CMD_READOOB:
932                         return "STATE_CMD_READOOB";
933                 case STATE_CMD_READSTART:
934                         return "STATE_CMD_READSTART";
935                 case STATE_CMD_ERASE1:
936                         return "STATE_CMD_ERASE1";
937                 case STATE_CMD_STATUS:
938                         return "STATE_CMD_STATUS";
939                 case STATE_CMD_STATUS_M:
940                         return "STATE_CMD_STATUS_M";
941                 case STATE_CMD_SEQIN:
942                         return "STATE_CMD_SEQIN";
943                 case STATE_CMD_READID:
944                         return "STATE_CMD_READID";
945                 case STATE_CMD_ERASE2:
946                         return "STATE_CMD_ERASE2";
947                 case STATE_CMD_RESET:
948                         return "STATE_CMD_RESET";
949                 case STATE_CMD_RNDOUT:
950                         return "STATE_CMD_RNDOUT";
951                 case STATE_CMD_RNDOUTSTART:
952                         return "STATE_CMD_RNDOUTSTART";
953                 case STATE_ADDR_PAGE:
954                         return "STATE_ADDR_PAGE";
955                 case STATE_ADDR_SEC:
956                         return "STATE_ADDR_SEC";
957                 case STATE_ADDR_ZERO:
958                         return "STATE_ADDR_ZERO";
959                 case STATE_ADDR_COLUMN:
960                         return "STATE_ADDR_COLUMN";
961                 case STATE_DATAIN:
962                         return "STATE_DATAIN";
963                 case STATE_DATAOUT:
964                         return "STATE_DATAOUT";
965                 case STATE_DATAOUT_ID:
966                         return "STATE_DATAOUT_ID";
967                 case STATE_DATAOUT_STATUS:
968                         return "STATE_DATAOUT_STATUS";
969                 case STATE_DATAOUT_STATUS_M:
970                         return "STATE_DATAOUT_STATUS_M";
971                 case STATE_READY:
972                         return "STATE_READY";
973                 case STATE_UNKNOWN:
974                         return "STATE_UNKNOWN";
975         }
976
977         NS_ERR("get_state_name: unknown state, BUG\n");
978         return NULL;
979 }
980
981 /*
982  * Check if command is valid.
983  *
984  * RETURNS: 1 if wrong command, 0 if right.
985  */
986 static int check_command(int cmd)
987 {
988         switch (cmd) {
989
990         case NAND_CMD_READ0:
991         case NAND_CMD_READ1:
992         case NAND_CMD_READSTART:
993         case NAND_CMD_PAGEPROG:
994         case NAND_CMD_READOOB:
995         case NAND_CMD_ERASE1:
996         case NAND_CMD_STATUS:
997         case NAND_CMD_SEQIN:
998         case NAND_CMD_READID:
999         case NAND_CMD_ERASE2:
1000         case NAND_CMD_RESET:
1001         case NAND_CMD_RNDOUT:
1002         case NAND_CMD_RNDOUTSTART:
1003                 return 0;
1004
1005         case NAND_CMD_STATUS_MULTI:
1006         default:
1007                 return 1;
1008         }
1009 }
1010
1011 /*
1012  * Returns state after command is accepted by command number.
1013  */
1014 static uint32_t get_state_by_command(unsigned command)
1015 {
1016         switch (command) {
1017                 case NAND_CMD_READ0:
1018                         return STATE_CMD_READ0;
1019                 case NAND_CMD_READ1:
1020                         return STATE_CMD_READ1;
1021                 case NAND_CMD_PAGEPROG:
1022                         return STATE_CMD_PAGEPROG;
1023                 case NAND_CMD_READSTART:
1024                         return STATE_CMD_READSTART;
1025                 case NAND_CMD_READOOB:
1026                         return STATE_CMD_READOOB;
1027                 case NAND_CMD_ERASE1:
1028                         return STATE_CMD_ERASE1;
1029                 case NAND_CMD_STATUS:
1030                         return STATE_CMD_STATUS;
1031                 case NAND_CMD_STATUS_MULTI:
1032                         return STATE_CMD_STATUS_M;
1033                 case NAND_CMD_SEQIN:
1034                         return STATE_CMD_SEQIN;
1035                 case NAND_CMD_READID:
1036                         return STATE_CMD_READID;
1037                 case NAND_CMD_ERASE2:
1038                         return STATE_CMD_ERASE2;
1039                 case NAND_CMD_RESET:
1040                         return STATE_CMD_RESET;
1041                 case NAND_CMD_RNDOUT:
1042                         return STATE_CMD_RNDOUT;
1043                 case NAND_CMD_RNDOUTSTART:
1044                         return STATE_CMD_RNDOUTSTART;
1045         }
1046
1047         NS_ERR("get_state_by_command: unknown command, BUG\n");
1048         return 0;
1049 }
1050
1051 /*
1052  * Move an address byte to the correspondent internal register.
1053  */
1054 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1055 {
1056         uint byte = (uint)bt;
1057
1058         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1059                 ns->regs.column |= (byte << 8 * ns->regs.count);
1060         else {
1061                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1062                                                 ns->geom.pgaddrbytes +
1063                                                 ns->geom.secaddrbytes));
1064         }
1065
1066         return;
1067 }
1068
1069 /*
1070  * Switch to STATE_READY state.
1071  */
1072 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1073 {
1074         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1075
1076         ns->state       = STATE_READY;
1077         ns->nxstate     = STATE_UNKNOWN;
1078         ns->op          = NULL;
1079         ns->npstates    = 0;
1080         ns->stateidx    = 0;
1081         ns->regs.num    = 0;
1082         ns->regs.count  = 0;
1083         ns->regs.off    = 0;
1084         ns->regs.row    = 0;
1085         ns->regs.column = 0;
1086         ns->regs.status = status;
1087 }
1088
1089 /*
1090  * If the operation isn't known yet, try to find it in the global array
1091  * of supported operations.
1092  *
1093  * Operation can be unknown because of the following.
1094  *   1. New command was accepted and this is the firs call to find the
1095  *      correspondent states chain. In this case ns->npstates = 0;
1096  *   2. There is several operations which begin with the same command(s)
1097  *      (for example program from the second half and read from the
1098  *      second half operations both begin with the READ1 command). In this
1099  *      case the ns->pstates[] array contains previous states.
1100  *
1101  * Thus, the function tries to find operation containing the following
1102  * states (if the 'flag' parameter is 0):
1103  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1104  *
1105  * If (one and only one) matching operation is found, it is accepted (
1106  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1107  * zeroed).
1108  *
1109  * If there are several maches, the current state is pushed to the
1110  * ns->pstates.
1111  *
1112  * The operation can be unknown only while commands are input to the chip.
1113  * As soon as address command is accepted, the operation must be known.
1114  * In such situation the function is called with 'flag' != 0, and the
1115  * operation is searched using the following pattern:
1116  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1117  *
1118  * It is supposed that this pattern must either match one operation on
1119  * none. There can't be ambiguity in that case.
1120  *
1121  * If no matches found, the functions does the following:
1122  *   1. if there are saved states present, try to ignore them and search
1123  *      again only using the last command. If nothing was found, switch
1124  *      to the STATE_READY state.
1125  *   2. if there are no saved states, switch to the STATE_READY state.
1126  *
1127  * RETURNS: -2 - no matched operations found.
1128  *          -1 - several matches.
1129  *           0 - operation is found.
1130  */
1131 static int find_operation(struct nandsim *ns, uint32_t flag)
1132 {
1133         int opsfound = 0;
1134         int i, j, idx = 0;
1135
1136         for (i = 0; i < NS_OPER_NUM; i++) {
1137
1138                 int found = 1;
1139
1140                 if (!(ns->options & ops[i].reqopts))
1141                         /* Ignore operations we can't perform */
1142                         continue;
1143
1144                 if (flag) {
1145                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1146                                 continue;
1147                 } else {
1148                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1149                                 continue;
1150                 }
1151
1152                 for (j = 0; j < ns->npstates; j++)
1153                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1154                                 && (ns->options & ops[idx].reqopts)) {
1155                                 found = 0;
1156                                 break;
1157                         }
1158
1159                 if (found) {
1160                         idx = i;
1161                         opsfound += 1;
1162                 }
1163         }
1164
1165         if (opsfound == 1) {
1166                 /* Exact match */
1167                 ns->op = &ops[idx].states[0];
1168                 if (flag) {
1169                         /*
1170                          * In this case the find_operation function was
1171                          * called when address has just began input. But it isn't
1172                          * yet fully input and the current state must
1173                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1174                          * state must be the next state (ns->nxstate).
1175                          */
1176                         ns->stateidx = ns->npstates - 1;
1177                 } else {
1178                         ns->stateidx = ns->npstates;
1179                 }
1180                 ns->npstates = 0;
1181                 ns->state = ns->op[ns->stateidx];
1182                 ns->nxstate = ns->op[ns->stateidx + 1];
1183                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1184                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1185                 return 0;
1186         }
1187
1188         if (opsfound == 0) {
1189                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1190                 if (ns->npstates != 0) {
1191                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1192                                         get_state_name(ns->state));
1193                         ns->npstates = 0;
1194                         return find_operation(ns, 0);
1195
1196                 }
1197                 NS_DBG("find_operation: no operations found\n");
1198                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1199                 return -2;
1200         }
1201
1202         if (flag) {
1203                 /* This shouldn't happen */
1204                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1205                 return -2;
1206         }
1207
1208         NS_DBG("find_operation: there is still ambiguity\n");
1209
1210         ns->pstates[ns->npstates++] = ns->state;
1211
1212         return -1;
1213 }
1214
1215 /*
1216  * Returns a pointer to the current page.
1217  */
1218 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1219 {
1220         return &(ns->pages[ns->regs.row]);
1221 }
1222
1223 /*
1224  * Retuns a pointer to the current byte, within the current page.
1225  */
1226 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1227 {
1228         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1229 }
1230
1231 /*
1232  * Fill the NAND buffer with data read from the specified page.
1233  */
1234 static void read_page(struct nandsim *ns, int num)
1235 {
1236         union ns_mem *mypage;
1237
1238         mypage = NS_GET_PAGE(ns);
1239         if (mypage->byte == NULL) {
1240                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1241                 memset(ns->buf.byte, 0xFF, num);
1242         } else {
1243                 unsigned int page_no = ns->regs.row;
1244                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1245                         ns->regs.row, ns->regs.column + ns->regs.off);
1246                 if (read_error(page_no)) {
1247                         int i;
1248                         memset(ns->buf.byte, 0xFF, num);
1249                         for (i = 0; i < num; ++i)
1250                                 ns->buf.byte[i] = random32();
1251                         NS_WARN("simulating read error in page %u\n", page_no);
1252                         return;
1253                 }
1254                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1255                 if (bitflips && random32() < (1 << 22)) {
1256                         int flips = 1;
1257                         if (bitflips > 1)
1258                                 flips = (random32() % (int) bitflips) + 1;
1259                         while (flips--) {
1260                                 int pos = random32() % (num * 8);
1261                                 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1262                                 NS_WARN("read_page: flipping bit %d in page %d "
1263                                         "reading from %d ecc: corrected=%u failed=%u\n",
1264                                         pos, ns->regs.row, ns->regs.column + ns->regs.off,
1265                                         nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1266                         }
1267                 }
1268         }
1269 }
1270
1271 /*
1272  * Erase all pages in the specified sector.
1273  */
1274 static void erase_sector(struct nandsim *ns)
1275 {
1276         union ns_mem *mypage;
1277         int i;
1278
1279         mypage = NS_GET_PAGE(ns);
1280         for (i = 0; i < ns->geom.pgsec; i++) {
1281                 if (mypage->byte != NULL) {
1282                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1283                         kfree(mypage->byte);
1284                         mypage->byte = NULL;
1285                 }
1286                 mypage++;
1287         }
1288 }
1289
1290 /*
1291  * Program the specified page with the contents from the NAND buffer.
1292  */
1293 static int prog_page(struct nandsim *ns, int num)
1294 {
1295         int i;
1296         union ns_mem *mypage;
1297         u_char *pg_off;
1298
1299         mypage = NS_GET_PAGE(ns);
1300         if (mypage->byte == NULL) {
1301                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1302                 /*
1303                  * We allocate memory with GFP_NOFS because a flash FS may
1304                  * utilize this. If it is holding an FS lock, then gets here,
1305                  * then kmalloc runs writeback which goes to the FS again
1306                  * and deadlocks. This was seen in practice.
1307                  */
1308                 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1309                 if (mypage->byte == NULL) {
1310                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1311                         return -1;
1312                 }
1313                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1314         }
1315
1316         pg_off = NS_PAGE_BYTE_OFF(ns);
1317         for (i = 0; i < num; i++)
1318                 pg_off[i] &= ns->buf.byte[i];
1319
1320         return 0;
1321 }
1322
1323 /*
1324  * If state has any action bit, perform this action.
1325  *
1326  * RETURNS: 0 if success, -1 if error.
1327  */
1328 static int do_state_action(struct nandsim *ns, uint32_t action)
1329 {
1330         int num;
1331         int busdiv = ns->busw == 8 ? 1 : 2;
1332         unsigned int erase_block_no, page_no;
1333
1334         action &= ACTION_MASK;
1335
1336         /* Check that page address input is correct */
1337         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1338                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1339                 return -1;
1340         }
1341
1342         switch (action) {
1343
1344         case ACTION_CPY:
1345                 /*
1346                  * Copy page data to the internal buffer.
1347                  */
1348
1349                 /* Column shouldn't be very large */
1350                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1351                         NS_ERR("do_state_action: column number is too large\n");
1352                         break;
1353                 }
1354                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1355                 read_page(ns, num);
1356
1357                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1358                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1359
1360                 if (ns->regs.off == 0)
1361                         NS_LOG("read page %d\n", ns->regs.row);
1362                 else if (ns->regs.off < ns->geom.pgsz)
1363                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1364                 else
1365                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1366
1367                 NS_UDELAY(access_delay);
1368                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1369
1370                 break;
1371
1372         case ACTION_SECERASE:
1373                 /*
1374                  * Erase sector.
1375                  */
1376
1377                 if (ns->lines.wp) {
1378                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1379                         return -1;
1380                 }
1381
1382                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1383                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1384                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1385                         return -1;
1386                 }
1387
1388                 ns->regs.row = (ns->regs.row <<
1389                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1390                 ns->regs.column = 0;
1391
1392                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1393
1394                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1395                                 ns->regs.row, NS_RAW_OFFSET(ns));
1396                 NS_LOG("erase sector %u\n", erase_block_no);
1397
1398                 erase_sector(ns);
1399
1400                 NS_MDELAY(erase_delay);
1401
1402                 if (erase_block_wear)
1403                         update_wear(erase_block_no);
1404
1405                 if (erase_error(erase_block_no)) {
1406                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1407                         return -1;
1408                 }
1409
1410                 break;
1411
1412         case ACTION_PRGPAGE:
1413                 /*
1414                  * Programm page - move internal buffer data to the page.
1415                  */
1416
1417                 if (ns->lines.wp) {
1418                         NS_WARN("do_state_action: device is write-protected, programm\n");
1419                         return -1;
1420                 }
1421
1422                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1423                 if (num != ns->regs.count) {
1424                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1425                                         ns->regs.count, num);
1426                         return -1;
1427                 }
1428
1429                 if (prog_page(ns, num) == -1)
1430                         return -1;
1431
1432                 page_no = ns->regs.row;
1433
1434                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1435                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1436                 NS_LOG("programm page %d\n", ns->regs.row);
1437
1438                 NS_UDELAY(programm_delay);
1439                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1440
1441                 if (write_error(page_no)) {
1442                         NS_WARN("simulating write failure in page %u\n", page_no);
1443                         return -1;
1444                 }
1445
1446                 break;
1447
1448         case ACTION_ZEROOFF:
1449                 NS_DBG("do_state_action: set internal offset to 0\n");
1450                 ns->regs.off = 0;
1451                 break;
1452
1453         case ACTION_HALFOFF:
1454                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1455                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1456                                 "byte page size 8x chips\n");
1457                         return -1;
1458                 }
1459                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1460                 ns->regs.off = ns->geom.pgsz/2;
1461                 break;
1462
1463         case ACTION_OOBOFF:
1464                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1465                 ns->regs.off = ns->geom.pgsz;
1466                 break;
1467
1468         default:
1469                 NS_DBG("do_state_action: BUG! unknown action\n");
1470         }
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * Switch simulator's state.
1477  */
1478 static void switch_state(struct nandsim *ns)
1479 {
1480         if (ns->op) {
1481                 /*
1482                  * The current operation have already been identified.
1483                  * Just follow the states chain.
1484                  */
1485
1486                 ns->stateidx += 1;
1487                 ns->state = ns->nxstate;
1488                 ns->nxstate = ns->op[ns->stateidx + 1];
1489
1490                 NS_DBG("switch_state: operation is known, switch to the next state, "
1491                         "state: %s, nxstate: %s\n",
1492                         get_state_name(ns->state), get_state_name(ns->nxstate));
1493
1494                 /* See, whether we need to do some action */
1495                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1496                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1497                         return;
1498                 }
1499
1500         } else {
1501                 /*
1502                  * We don't yet know which operation we perform.
1503                  * Try to identify it.
1504                  */
1505
1506                 /*
1507                  *  The only event causing the switch_state function to
1508                  *  be called with yet unknown operation is new command.
1509                  */
1510                 ns->state = get_state_by_command(ns->regs.command);
1511
1512                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1513
1514                 if (find_operation(ns, 0) != 0)
1515                         return;
1516
1517                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1518                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1519                         return;
1520                 }
1521         }
1522
1523         /* For 16x devices column means the page offset in words */
1524         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1525                 NS_DBG("switch_state: double the column number for 16x device\n");
1526                 ns->regs.column <<= 1;
1527         }
1528
1529         if (NS_STATE(ns->nxstate) == STATE_READY) {
1530                 /*
1531                  * The current state is the last. Return to STATE_READY
1532                  */
1533
1534                 u_char status = NS_STATUS_OK(ns);
1535
1536                 /* In case of data states, see if all bytes were input/output */
1537                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1538                         && ns->regs.count != ns->regs.num) {
1539                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1540                                         ns->regs.num - ns->regs.count);
1541                         status = NS_STATUS_FAILED(ns);
1542                 }
1543
1544                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1545
1546                 switch_to_ready_state(ns, status);
1547
1548                 return;
1549         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1550                 /*
1551                  * If the next state is data input/output, switch to it now
1552                  */
1553
1554                 ns->state      = ns->nxstate;
1555                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1556                 ns->regs.num   = ns->regs.count = 0;
1557
1558                 NS_DBG("switch_state: the next state is data I/O, switch, "
1559                         "state: %s, nxstate: %s\n",
1560                         get_state_name(ns->state), get_state_name(ns->nxstate));
1561
1562                 /*
1563                  * Set the internal register to the count of bytes which
1564                  * are expected to be input or output
1565                  */
1566                 switch (NS_STATE(ns->state)) {
1567                         case STATE_DATAIN:
1568                         case STATE_DATAOUT:
1569                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1570                                 break;
1571
1572                         case STATE_DATAOUT_ID:
1573                                 ns->regs.num = ns->geom.idbytes;
1574                                 break;
1575
1576                         case STATE_DATAOUT_STATUS:
1577                         case STATE_DATAOUT_STATUS_M:
1578                                 ns->regs.count = ns->regs.num = 0;
1579                                 break;
1580
1581                         default:
1582                                 NS_ERR("switch_state: BUG! unknown data state\n");
1583                 }
1584
1585         } else if (ns->nxstate & STATE_ADDR_MASK) {
1586                 /*
1587                  * If the next state is address input, set the internal
1588                  * register to the number of expected address bytes
1589                  */
1590
1591                 ns->regs.count = 0;
1592
1593                 switch (NS_STATE(ns->nxstate)) {
1594                         case STATE_ADDR_PAGE:
1595                                 ns->regs.num = ns->geom.pgaddrbytes;
1596
1597                                 break;
1598                         case STATE_ADDR_SEC:
1599                                 ns->regs.num = ns->geom.secaddrbytes;
1600                                 break;
1601
1602                         case STATE_ADDR_ZERO:
1603                                 ns->regs.num = 1;
1604                                 break;
1605
1606                         case STATE_ADDR_COLUMN:
1607                                 /* Column address is always 2 bytes */
1608                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1609                                 break;
1610
1611                         default:
1612                                 NS_ERR("switch_state: BUG! unknown address state\n");
1613                 }
1614         } else {
1615                 /*
1616                  * Just reset internal counters.
1617                  */
1618
1619                 ns->regs.num = 0;
1620                 ns->regs.count = 0;
1621         }
1622 }
1623
1624 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1625 {
1626         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1627         u_char outb = 0x00;
1628
1629         /* Sanity and correctness checks */
1630         if (!ns->lines.ce) {
1631                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1632                 return outb;
1633         }
1634         if (ns->lines.ale || ns->lines.cle) {
1635                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1636                 return outb;
1637         }
1638         if (!(ns->state & STATE_DATAOUT_MASK)) {
1639                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1640                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1641                 return outb;
1642         }
1643
1644         /* Status register may be read as many times as it is wanted */
1645         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1646                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1647                 return ns->regs.status;
1648         }
1649
1650         /* Check if there is any data in the internal buffer which may be read */
1651         if (ns->regs.count == ns->regs.num) {
1652                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1653                 return outb;
1654         }
1655
1656         switch (NS_STATE(ns->state)) {
1657                 case STATE_DATAOUT:
1658                         if (ns->busw == 8) {
1659                                 outb = ns->buf.byte[ns->regs.count];
1660                                 ns->regs.count += 1;
1661                         } else {
1662                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1663                                 ns->regs.count += 2;
1664                         }
1665                         break;
1666                 case STATE_DATAOUT_ID:
1667                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1668                         outb = ns->ids[ns->regs.count];
1669                         ns->regs.count += 1;
1670                         break;
1671                 default:
1672                         BUG();
1673         }
1674
1675         if (ns->regs.count == ns->regs.num) {
1676                 NS_DBG("read_byte: all bytes were read\n");
1677
1678                 /*
1679                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1680                  * new read operation cycle.
1681                  */
1682                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1683                         ns->regs.count = 0;
1684                         if (ns->regs.row + 1 < ns->geom.pgnum)
1685                                 ns->regs.row += 1;
1686                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1687                         do_state_action(ns, ACTION_CPY);
1688                 }
1689                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1690                         switch_state(ns);
1691
1692         }
1693
1694         return outb;
1695 }
1696
1697 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1698 {
1699         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1700
1701         /* Sanity and correctness checks */
1702         if (!ns->lines.ce) {
1703                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1704                 return;
1705         }
1706         if (ns->lines.ale && ns->lines.cle) {
1707                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1708                 return;
1709         }
1710
1711         if (ns->lines.cle == 1) {
1712                 /*
1713                  * The byte written is a command.
1714                  */
1715
1716                 if (byte == NAND_CMD_RESET) {
1717                         NS_LOG("reset chip\n");
1718                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1719                         return;
1720                 }
1721
1722                 /* Check that the command byte is correct */
1723                 if (check_command(byte)) {
1724                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1725                         return;
1726                 }
1727
1728                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1729                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1730                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1731                         int row = ns->regs.row;
1732
1733                         switch_state(ns);
1734                         if (byte == NAND_CMD_RNDOUT)
1735                                 ns->regs.row = row;
1736                 }
1737
1738                 /* Check if chip is expecting command */
1739                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1740                         /*
1741                          * We are in situation when something else (not command)
1742                          * was expected but command was input. In this case ignore
1743                          * previous command(s)/state(s) and accept the last one.
1744                          */
1745                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1746                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1747                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748                 }
1749
1750                 NS_DBG("command byte corresponding to %s state accepted\n",
1751                         get_state_name(get_state_by_command(byte)));
1752                 ns->regs.command = byte;
1753                 switch_state(ns);
1754
1755         } else if (ns->lines.ale == 1) {
1756                 /*
1757                  * The byte written is an address.
1758                  */
1759
1760                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1761
1762                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1763
1764                         if (find_operation(ns, 1) < 0)
1765                                 return;
1766
1767                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1768                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1769                                 return;
1770                         }
1771
1772                         ns->regs.count = 0;
1773                         switch (NS_STATE(ns->nxstate)) {
1774                                 case STATE_ADDR_PAGE:
1775                                         ns->regs.num = ns->geom.pgaddrbytes;
1776                                         break;
1777                                 case STATE_ADDR_SEC:
1778                                         ns->regs.num = ns->geom.secaddrbytes;
1779                                         break;
1780                                 case STATE_ADDR_ZERO:
1781                                         ns->regs.num = 1;
1782                                         break;
1783                                 default:
1784                                         BUG();
1785                         }
1786                 }
1787
1788                 /* Check that chip is expecting address */
1789                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1790                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1791                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1792                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1793                         return;
1794                 }
1795
1796                 /* Check if this is expected byte */
1797                 if (ns->regs.count == ns->regs.num) {
1798                         NS_ERR("write_byte: no more address bytes expected\n");
1799                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1800                         return;
1801                 }
1802
1803                 accept_addr_byte(ns, byte);
1804
1805                 ns->regs.count += 1;
1806
1807                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1808                                 (uint)byte, ns->regs.count, ns->regs.num);
1809
1810                 if (ns->regs.count == ns->regs.num) {
1811                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1812                         switch_state(ns);
1813                 }
1814
1815         } else {
1816                 /*
1817                  * The byte written is an input data.
1818                  */
1819
1820                 /* Check that chip is expecting data input */
1821                 if (!(ns->state & STATE_DATAIN_MASK)) {
1822                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1823                                 "switch to %s\n", (uint)byte,
1824                                 get_state_name(ns->state), get_state_name(STATE_READY));
1825                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1826                         return;
1827                 }
1828
1829                 /* Check if this is expected byte */
1830                 if (ns->regs.count == ns->regs.num) {
1831                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1832                                         ns->regs.num);
1833                         return;
1834                 }
1835
1836                 if (ns->busw == 8) {
1837                         ns->buf.byte[ns->regs.count] = byte;
1838                         ns->regs.count += 1;
1839                 } else {
1840                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1841                         ns->regs.count += 2;
1842                 }
1843         }
1844
1845         return;
1846 }
1847
1848 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1849 {
1850         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1851
1852         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1853         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1854         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1855
1856         if (cmd != NAND_CMD_NONE)
1857                 ns_nand_write_byte(mtd, cmd);
1858 }
1859
1860 static int ns_device_ready(struct mtd_info *mtd)
1861 {
1862         NS_DBG("device_ready\n");
1863         return 1;
1864 }
1865
1866 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1867 {
1868         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1869
1870         NS_DBG("read_word\n");
1871
1872         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1873 }
1874
1875 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1876 {
1877         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1878
1879         /* Check that chip is expecting data input */
1880         if (!(ns->state & STATE_DATAIN_MASK)) {
1881                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1882                         "switch to STATE_READY\n", get_state_name(ns->state));
1883                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1884                 return;
1885         }
1886
1887         /* Check if these are expected bytes */
1888         if (ns->regs.count + len > ns->regs.num) {
1889                 NS_ERR("write_buf: too many input bytes\n");
1890                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1891                 return;
1892         }
1893
1894         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1895         ns->regs.count += len;
1896
1897         if (ns->regs.count == ns->regs.num) {
1898                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1899         }
1900 }
1901
1902 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1903 {
1904         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1905
1906         /* Sanity and correctness checks */
1907         if (!ns->lines.ce) {
1908                 NS_ERR("read_buf: chip is disabled\n");
1909                 return;
1910         }
1911         if (ns->lines.ale || ns->lines.cle) {
1912                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1913                 return;
1914         }
1915         if (!(ns->state & STATE_DATAOUT_MASK)) {
1916                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1917                         get_state_name(ns->state));
1918                 return;
1919         }
1920
1921         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1922                 int i;
1923
1924                 for (i = 0; i < len; i++)
1925                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1926
1927                 return;
1928         }
1929
1930         /* Check if these are expected bytes */
1931         if (ns->regs.count + len > ns->regs.num) {
1932                 NS_ERR("read_buf: too many bytes to read\n");
1933                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1934                 return;
1935         }
1936
1937         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1938         ns->regs.count += len;
1939
1940         if (ns->regs.count == ns->regs.num) {
1941                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1942                         ns->regs.count = 0;
1943                         if (ns->regs.row + 1 < ns->geom.pgnum)
1944                                 ns->regs.row += 1;
1945                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1946                         do_state_action(ns, ACTION_CPY);
1947                 }
1948                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1949                         switch_state(ns);
1950         }
1951
1952         return;
1953 }
1954
1955 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1956 {
1957         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1958
1959         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1960                 NS_DBG("verify_buf: the buffer is OK\n");
1961                 return 0;
1962         } else {
1963                 NS_DBG("verify_buf: the buffer is wrong\n");
1964                 return -EFAULT;
1965         }
1966 }
1967
1968 /*
1969  * Module initialization function
1970  */
1971 static int __init ns_init_module(void)
1972 {
1973         struct nand_chip *chip;
1974         struct nandsim *nand;
1975         int retval = -ENOMEM, i;
1976
1977         if (bus_width != 8 && bus_width != 16) {
1978                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1979                 return -EINVAL;
1980         }
1981
1982         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1983         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1984                                 + sizeof(struct nandsim), GFP_KERNEL);
1985         if (!nsmtd) {
1986                 NS_ERR("unable to allocate core structures.\n");
1987                 return -ENOMEM;
1988         }
1989         chip        = (struct nand_chip *)(nsmtd + 1);
1990         nsmtd->priv = (void *)chip;
1991         nand        = (struct nandsim *)(chip + 1);
1992         chip->priv  = (void *)nand;
1993
1994         /*
1995          * Register simulator's callbacks.
1996          */
1997         chip->cmd_ctrl   = ns_hwcontrol;
1998         chip->read_byte  = ns_nand_read_byte;
1999         chip->dev_ready  = ns_device_ready;
2000         chip->write_buf  = ns_nand_write_buf;
2001         chip->read_buf   = ns_nand_read_buf;
2002         chip->verify_buf = ns_nand_verify_buf;
2003         chip->read_word  = ns_nand_read_word;
2004         chip->ecc.mode   = NAND_ECC_SOFT;
2005         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2006         /* and 'badblocks' parameters to work */
2007         chip->options   |= NAND_SKIP_BBTSCAN;
2008
2009         /*
2010          * Perform minimum nandsim structure initialization to handle
2011          * the initial ID read command correctly
2012          */
2013         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2014                 nand->geom.idbytes = 4;
2015         else
2016                 nand->geom.idbytes = 2;
2017         nand->regs.status = NS_STATUS_OK(nand);
2018         nand->nxstate = STATE_UNKNOWN;
2019         nand->options |= OPT_PAGE256; /* temporary value */
2020         nand->ids[0] = first_id_byte;
2021         nand->ids[1] = second_id_byte;
2022         nand->ids[2] = third_id_byte;
2023         nand->ids[3] = fourth_id_byte;
2024         if (bus_width == 16) {
2025                 nand->busw = 16;
2026                 chip->options |= NAND_BUSWIDTH_16;
2027         }
2028
2029         nsmtd->owner = THIS_MODULE;
2030
2031         if ((retval = parse_weakblocks()) != 0)
2032                 goto error;
2033
2034         if ((retval = parse_weakpages()) != 0)
2035                 goto error;
2036
2037         if ((retval = parse_gravepages()) != 0)
2038                 goto error;
2039
2040         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2041                 NS_ERR("can't register NAND Simulator\n");
2042                 if (retval > 0)
2043                         retval = -ENXIO;
2044                 goto error;
2045         }
2046
2047         if (overridesize) {
2048                 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2049                 if (new_size >> overridesize != nsmtd->erasesize) {
2050                         NS_ERR("overridesize is too big\n");
2051                         goto err_exit;
2052                 }
2053                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2054                 nsmtd->size = new_size;
2055                 chip->chipsize = new_size;
2056                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2057                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2058         }
2059
2060         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2061                 goto err_exit;
2062
2063         if ((retval = init_nandsim(nsmtd)) != 0)
2064                 goto err_exit;
2065
2066         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2067                 goto err_exit;
2068
2069         if ((retval = nand_default_bbt(nsmtd)) != 0)
2070                 goto err_exit;
2071
2072         /* Register NAND partitions */
2073         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2074                 goto err_exit;
2075
2076         return 0;
2077
2078 err_exit:
2079         free_nandsim(nand);
2080         nand_release(nsmtd);
2081         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2082                 kfree(nand->partitions[i].name);
2083 error:
2084         kfree(nsmtd);
2085         free_lists();
2086
2087         return retval;
2088 }
2089
2090 module_init(ns_init_module);
2091
2092 /*
2093  * Module clean-up function
2094  */
2095 static void __exit ns_cleanup_module(void)
2096 {
2097         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2098         int i;
2099
2100         free_nandsim(ns);    /* Free nandsim private resources */
2101         nand_release(nsmtd); /* Unregister driver */
2102         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2103                 kfree(ns->partitions[i].name);
2104         kfree(nsmtd);        /* Free other structures */
2105         free_lists();
2106 }
2107
2108 module_exit(ns_cleanup_module);
2109
2110 MODULE_LICENSE ("GPL");
2111 MODULE_AUTHOR ("Artem B. Bityuckiy");
2112 MODULE_DESCRIPTION ("The NAND flash simulator");