1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126 /* Offset 04h HSFSTS */
127 union ich8_hws_flash_status {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
142 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143 /* Offset 06h FLCTL */
144 union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
155 /* ICH Flash Region Access Permissions */
156 union ich8_hws_flash_regacc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
166 /* ICH Flash Protected Region */
167 union ich8_flash_protected_range {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
179 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
186 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
188 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
190 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
192 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
194 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
195 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
204 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
206 return readw(hw->flash_address + reg);
209 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
211 return readl(hw->flash_address + reg);
214 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
216 writew(val, hw->flash_address + reg);
219 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
221 writel(val, hw->flash_address + reg);
224 #define er16flash(reg) __er16flash(hw, (reg))
225 #define er32flash(reg) __er32flash(hw, (reg))
226 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
233 * Initialize family-specific PHY parameters and function pointers.
235 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
237 struct e1000_phy_info *phy = &hw->phy;
241 phy->reset_delay_us = 100;
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
268 * Initialize family-specific PHY parameters and function pointers.
270 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
272 struct e1000_phy_info *phy = &hw->phy;
277 phy->reset_delay_us = 100;
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
283 ret_val = e1000e_determine_phy_address(hw);
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
296 ret_val = e1000e_get_phy_id(hw);
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
308 case IFE_PLUS_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
321 return -E1000_ERR_PHY;
325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
334 * Initialize family-specific NVM parameters and function
337 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
341 union ich8_hws_flash_status hsfsts;
343 u32 sector_base_addr;
347 /* Can't read flash registers if the register set isn't mapped. */
348 if (!hw->flash_address) {
349 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
350 return -E1000_ERR_CONFIG;
353 nvm->type = e1000_nvm_flash_sw;
355 gfpreg = er32flash(ICH_FLASH_GFPREG);
358 * sector_X_addr is a "sector"-aligned address (4096 bytes)
359 * Add 1 to sector_end_addr since this sector is included in
362 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
363 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
365 /* flash_base_addr is byte-aligned */
366 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
369 * find total size of the NVM, then cut in half since the total
370 * size represents two separate NVM banks.
372 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
373 << FLASH_SECTOR_ADDR_SHIFT;
374 nvm->flash_bank_size /= 2;
375 /* Adjust to word count */
376 nvm->flash_bank_size /= sizeof(u16);
379 * Make sure the flash bank size does not overwrite the 4k
380 * sector ranges. We may have 64k allotted to us but we only care
381 * about the first 2 4k sectors. Therefore, if we have anything less
382 * than 64k set in the HSFSTS register, we will reduce the bank size
383 * down to 4k and let the rest remain unused. If berasesz == 3, then
384 * we are working in 64k mode. Otherwise we are not.
386 if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
387 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
388 if (hsfsts.hsf_status.berasesz != 3)
389 nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
392 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
394 /* Clear shadow ram */
395 for (i = 0; i < nvm->word_size; i++) {
396 dev_spec->shadow_ram[i].modified = 0;
397 dev_spec->shadow_ram[i].value = 0xFFFF;
404 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
405 * @hw: pointer to the HW structure
407 * Initialize family-specific MAC parameters and function
410 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
412 struct e1000_hw *hw = &adapter->hw;
413 struct e1000_mac_info *mac = &hw->mac;
415 /* Set media type function pointer */
416 hw->phy.media_type = e1000_media_type_copper;
418 /* Set mta register count */
419 mac->mta_reg_count = 32;
420 /* Set rar entry count */
421 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
422 if (mac->type == e1000_ich8lan)
423 mac->rar_entry_count--;
424 /* Set if manageability features are enabled. */
425 mac->arc_subsystem_valid = 1;
433 mac->ops.id_led_init = e1000e_id_led_init;
435 mac->ops.setup_led = e1000e_setup_led_generic;
437 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
438 /* turn on/off LED */
439 mac->ops.led_on = e1000_led_on_ich8lan;
440 mac->ops.led_off = e1000_led_off_ich8lan;
444 mac->ops.id_led_init = e1000_id_led_init_pchlan;
446 mac->ops.setup_led = e1000_setup_led_pchlan;
448 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
449 /* turn on/off LED */
450 mac->ops.led_on = e1000_led_on_pchlan;
451 mac->ops.led_off = e1000_led_off_pchlan;
457 /* Enable PCS Lock-loss workaround for ICH8 */
458 if (mac->type == e1000_ich8lan)
459 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
464 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
466 struct e1000_hw *hw = &adapter->hw;
469 rc = e1000_init_mac_params_ich8lan(adapter);
473 rc = e1000_init_nvm_params_ich8lan(hw);
477 if (hw->mac.type == e1000_pchlan)
478 rc = e1000_init_phy_params_pchlan(hw);
480 rc = e1000_init_phy_params_ich8lan(hw);
484 if (adapter->hw.phy.type == e1000_phy_ife) {
485 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
486 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
489 if ((adapter->hw.mac.type == e1000_ich8lan) &&
490 (adapter->hw.phy.type == e1000_phy_igp_3))
491 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
496 static DEFINE_MUTEX(nvm_mutex);
499 * e1000_acquire_swflag_ich8lan - Acquire software control flag
500 * @hw: pointer to the HW structure
502 * Acquires the software control flag for performing NVM and PHY
503 * operations. This is a function pointer entry point only called by
504 * read/write routines for the PHY and NVM parts.
506 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
509 u32 timeout = PHY_CFG_TIMEOUT;
513 mutex_lock(&nvm_mutex);
516 extcnf_ctrl = er32(EXTCNF_CTRL);
518 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
519 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
520 ew32(EXTCNF_CTRL, extcnf_ctrl);
522 extcnf_ctrl = er32(EXTCNF_CTRL);
523 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
531 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
532 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
533 ew32(EXTCNF_CTRL, extcnf_ctrl);
534 mutex_unlock(&nvm_mutex);
535 return -E1000_ERR_CONFIG;
542 * e1000_release_swflag_ich8lan - Release software control flag
543 * @hw: pointer to the HW structure
545 * Releases the software control flag for performing NVM and PHY operations.
546 * This is a function pointer entry point only called by read/write
547 * routines for the PHY and NVM parts.
549 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
553 extcnf_ctrl = er32(EXTCNF_CTRL);
554 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
555 ew32(EXTCNF_CTRL, extcnf_ctrl);
557 mutex_unlock(&nvm_mutex);
561 * e1000_check_mng_mode_ich8lan - Checks management mode
562 * @hw: pointer to the HW structure
564 * This checks if the adapter has manageability enabled.
565 * This is a function pointer entry point only called by read/write
566 * routines for the PHY and NVM parts.
568 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
570 u32 fwsm = er32(FWSM);
572 return (fwsm & E1000_FWSM_MODE_MASK) ==
573 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
577 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
578 * @hw: pointer to the HW structure
580 * Checks if firmware is blocking the reset of the PHY.
581 * This is a function pointer entry point only called by
584 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
590 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
594 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
595 * @hw: pointer to the HW structure
597 * Forces the speed and duplex settings of the PHY.
598 * This is a function pointer entry point only called by
599 * PHY setup routines.
601 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
603 struct e1000_phy_info *phy = &hw->phy;
608 if (phy->type != e1000_phy_ife) {
609 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
613 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
617 e1000e_phy_force_speed_duplex_setup(hw, &data);
619 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
623 /* Disable MDI-X support for 10/100 */
624 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
628 data &= ~IFE_PMC_AUTO_MDIX;
629 data &= ~IFE_PMC_FORCE_MDIX;
631 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
635 hw_dbg(hw, "IFE PMC: %X\n", data);
639 if (phy->autoneg_wait_to_complete) {
640 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
642 ret_val = e1000e_phy_has_link_generic(hw,
650 hw_dbg(hw, "Link taking longer than expected.\n");
653 ret_val = e1000e_phy_has_link_generic(hw,
665 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
666 * done after every PHY reset.
668 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
672 if (hw->mac.type != e1000_pchlan)
675 if (((hw->phy.type == e1000_phy_82577) &&
676 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
677 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
678 /* Disable generation of early preamble */
679 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
683 /* Preamble tuning for SSC */
684 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
689 if (hw->phy.type == e1000_phy_82578) {
691 * Return registers to default by doing a soft reset then
692 * writing 0x3140 to the control register.
694 if (hw->phy.revision < 2) {
695 e1000e_phy_sw_reset(hw);
696 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
701 ret_val = hw->phy.ops.acquire_phy(hw);
705 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
706 hw->phy.ops.release_phy(hw);
712 * e1000_lan_init_done_ich8lan - Check for PHY config completion
713 * @hw: pointer to the HW structure
715 * Check the appropriate indication the MAC has finished configuring the
716 * PHY after a software reset.
718 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
720 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
722 /* Wait for basic configuration completes before proceeding */
725 data &= E1000_STATUS_LAN_INIT_DONE;
727 } while ((!data) && --loop);
730 * If basic configuration is incomplete before the above loop
731 * count reaches 0, loading the configuration from NVM will
732 * leave the PHY in a bad state possibly resulting in no link.
735 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
737 /* Clear the Init Done bit for the next init event */
739 data &= ~E1000_STATUS_LAN_INIT_DONE;
744 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
745 * @hw: pointer to the HW structure
748 * This is a function pointer entry point called by drivers
749 * or other shared routines.
751 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
753 struct e1000_phy_info *phy = &hw->phy;
755 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
757 u16 word_addr, reg_data, reg_addr, phy_page = 0;
759 ret_val = e1000e_phy_hw_reset_generic(hw);
763 /* Allow time for h/w to get to a quiescent state after reset */
766 if (hw->mac.type == e1000_pchlan) {
767 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
773 * Initialize the PHY from the NVM on ICH platforms. This
774 * is needed due to an issue where the NVM configuration is
775 * not properly autoloaded after power transitions.
776 * Therefore, after each PHY reset, we will load the
777 * configuration data out of the NVM manually.
779 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
780 struct e1000_adapter *adapter = hw->adapter;
782 /* Check if SW needs configure the PHY */
783 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
784 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
785 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
787 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
789 data = er32(FEXTNVM);
790 if (!(data & sw_cfg_mask))
793 /* Wait for basic configuration completes before proceeding */
794 e1000_lan_init_done_ich8lan(hw);
797 * Make sure HW does not configure LCD from PHY
798 * extended configuration before SW configuration
800 data = er32(EXTCNF_CTRL);
801 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
804 cnf_size = er32(EXTCNF_SIZE);
805 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
806 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
810 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
811 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
813 /* Configure LCD from extended configuration region. */
815 /* cnf_base_addr is in DWORD */
816 word_addr = (u16)(cnf_base_addr << 1);
818 for (i = 0; i < cnf_size; i++) {
819 ret_val = e1000_read_nvm(hw,
826 ret_val = e1000_read_nvm(hw,
827 (word_addr + i * 2 + 1),
833 /* Save off the PHY page for future writes. */
834 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
839 reg_addr |= phy_page;
841 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
851 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
852 * @hw: pointer to the HW structure
854 * Populates "phy" structure with various feature states.
855 * This function is only called by other family-specific
858 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
860 struct e1000_phy_info *phy = &hw->phy;
865 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
870 hw_dbg(hw, "Phy info is only valid if link is up\n");
871 return -E1000_ERR_CONFIG;
874 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
877 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
879 if (phy->polarity_correction) {
880 ret_val = phy->ops.check_polarity(hw);
884 /* Polarity is forced */
885 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
886 ? e1000_rev_polarity_reversed
887 : e1000_rev_polarity_normal;
890 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
894 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
896 /* The following parameters are undefined for 10/100 operation. */
897 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
898 phy->local_rx = e1000_1000t_rx_status_undefined;
899 phy->remote_rx = e1000_1000t_rx_status_undefined;
905 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
906 * @hw: pointer to the HW structure
908 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
909 * This is a function pointer entry point called by drivers
910 * or other shared routines.
912 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
914 switch (hw->phy.type) {
916 return e1000_get_phy_info_ife_ich8lan(hw);
918 case e1000_phy_igp_3:
920 case e1000_phy_82578:
921 case e1000_phy_82577:
922 return e1000e_get_phy_info_igp(hw);
928 return -E1000_ERR_PHY_TYPE;
932 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
933 * @hw: pointer to the HW structure
935 * Polarity is determined on the polarity reversal feature being enabled.
936 * This function is only called by other family-specific
939 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
941 struct e1000_phy_info *phy = &hw->phy;
943 u16 phy_data, offset, mask;
946 * Polarity is determined based on the reversal feature being enabled.
948 if (phy->polarity_correction) {
949 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
950 mask = IFE_PESC_POLARITY_REVERSED;
952 offset = IFE_PHY_SPECIAL_CONTROL;
953 mask = IFE_PSC_FORCE_POLARITY;
956 ret_val = e1e_rphy(hw, offset, &phy_data);
959 phy->cable_polarity = (phy_data & mask)
960 ? e1000_rev_polarity_reversed
961 : e1000_rev_polarity_normal;
967 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
968 * @hw: pointer to the HW structure
969 * @active: TRUE to enable LPLU, FALSE to disable
971 * Sets the LPLU D0 state according to the active flag. When
972 * activating LPLU this function also disables smart speed
973 * and vice versa. LPLU will not be activated unless the
974 * device autonegotiation advertisement meets standards of
975 * either 10 or 10/100 or 10/100/1000 at all duplexes.
976 * This is a function pointer entry point only called by
977 * PHY setup routines.
979 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
981 struct e1000_phy_info *phy = &hw->phy;
986 if (phy->type == e1000_phy_ife)
989 phy_ctrl = er32(PHY_CTRL);
992 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
993 ew32(PHY_CTRL, phy_ctrl);
995 if (phy->type != e1000_phy_igp_3)
999 * Call gig speed drop workaround on LPLU before accessing
1002 if (hw->mac.type == e1000_ich8lan)
1003 e1000e_gig_downshift_workaround_ich8lan(hw);
1005 /* When LPLU is enabled, we should disable SmartSpeed */
1006 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1007 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1008 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1012 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1013 ew32(PHY_CTRL, phy_ctrl);
1015 if (phy->type != e1000_phy_igp_3)
1019 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1020 * during Dx states where the power conservation is most
1021 * important. During driver activity we should enable
1022 * SmartSpeed, so performance is maintained.
1024 if (phy->smart_speed == e1000_smart_speed_on) {
1025 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1030 data |= IGP01E1000_PSCFR_SMART_SPEED;
1031 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1035 } else if (phy->smart_speed == e1000_smart_speed_off) {
1036 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1041 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1042 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1053 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1054 * @hw: pointer to the HW structure
1055 * @active: TRUE to enable LPLU, FALSE to disable
1057 * Sets the LPLU D3 state according to the active flag. When
1058 * activating LPLU this function also disables smart speed
1059 * and vice versa. LPLU will not be activated unless the
1060 * device autonegotiation advertisement meets standards of
1061 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1062 * This is a function pointer entry point only called by
1063 * PHY setup routines.
1065 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1067 struct e1000_phy_info *phy = &hw->phy;
1072 phy_ctrl = er32(PHY_CTRL);
1075 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1076 ew32(PHY_CTRL, phy_ctrl);
1078 if (phy->type != e1000_phy_igp_3)
1082 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1083 * during Dx states where the power conservation is most
1084 * important. During driver activity we should enable
1085 * SmartSpeed, so performance is maintained.
1087 if (phy->smart_speed == e1000_smart_speed_on) {
1088 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1093 data |= IGP01E1000_PSCFR_SMART_SPEED;
1094 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1098 } else if (phy->smart_speed == e1000_smart_speed_off) {
1099 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1104 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1105 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1110 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1111 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1112 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1113 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1114 ew32(PHY_CTRL, phy_ctrl);
1116 if (phy->type != e1000_phy_igp_3)
1120 * Call gig speed drop workaround on LPLU before accessing
1123 if (hw->mac.type == e1000_ich8lan)
1124 e1000e_gig_downshift_workaround_ich8lan(hw);
1126 /* When LPLU is enabled, we should disable SmartSpeed */
1127 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1131 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1132 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1139 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1140 * @hw: pointer to the HW structure
1141 * @bank: pointer to the variable that returns the active bank
1143 * Reads signature byte from the NVM using the flash access registers.
1144 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1146 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1149 struct e1000_nvm_info *nvm = &hw->nvm;
1150 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1151 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1155 switch (hw->mac.type) {
1159 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1160 E1000_EECD_SEC1VAL_VALID_MASK) {
1161 if (eecd & E1000_EECD_SEC1VAL)
1168 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1169 "reading flash signature\n");
1172 /* set bank to 0 in case flash read fails */
1176 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1180 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1181 E1000_ICH_NVM_SIG_VALUE) {
1187 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1192 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1193 E1000_ICH_NVM_SIG_VALUE) {
1198 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1199 return -E1000_ERR_NVM;
1206 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1207 * @hw: pointer to the HW structure
1208 * @offset: The offset (in bytes) of the word(s) to read.
1209 * @words: Size of data to read in words
1210 * @data: Pointer to the word(s) to read at offset.
1212 * Reads a word(s) from the NVM using the flash access registers.
1214 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1217 struct e1000_nvm_info *nvm = &hw->nvm;
1218 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1224 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1226 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1227 return -E1000_ERR_NVM;
1230 ret_val = e1000_acquire_swflag_ich8lan(hw);
1234 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1238 act_offset = (bank) ? nvm->flash_bank_size : 0;
1239 act_offset += offset;
1241 for (i = 0; i < words; i++) {
1242 if ((dev_spec->shadow_ram) &&
1243 (dev_spec->shadow_ram[offset+i].modified)) {
1244 data[i] = dev_spec->shadow_ram[offset+i].value;
1246 ret_val = e1000_read_flash_word_ich8lan(hw,
1256 e1000_release_swflag_ich8lan(hw);
1260 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1266 * e1000_flash_cycle_init_ich8lan - Initialize flash
1267 * @hw: pointer to the HW structure
1269 * This function does initial flash setup so that a new read/write/erase cycle
1272 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1274 union ich8_hws_flash_status hsfsts;
1275 s32 ret_val = -E1000_ERR_NVM;
1278 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1280 /* Check if the flash descriptor is valid */
1281 if (hsfsts.hsf_status.fldesvalid == 0) {
1282 hw_dbg(hw, "Flash descriptor invalid. "
1283 "SW Sequencing must be used.");
1284 return -E1000_ERR_NVM;
1287 /* Clear FCERR and DAEL in hw status by writing 1 */
1288 hsfsts.hsf_status.flcerr = 1;
1289 hsfsts.hsf_status.dael = 1;
1291 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1294 * Either we should have a hardware SPI cycle in progress
1295 * bit to check against, in order to start a new cycle or
1296 * FDONE bit should be changed in the hardware so that it
1297 * is 1 after hardware reset, which can then be used as an
1298 * indication whether a cycle is in progress or has been
1302 if (hsfsts.hsf_status.flcinprog == 0) {
1304 * There is no cycle running at present,
1305 * so we can start a cycle
1306 * Begin by setting Flash Cycle Done.
1308 hsfsts.hsf_status.flcdone = 1;
1309 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1313 * otherwise poll for sometime so the current
1314 * cycle has a chance to end before giving up.
1316 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1317 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1318 if (hsfsts.hsf_status.flcinprog == 0) {
1326 * Successful in waiting for previous cycle to timeout,
1327 * now set the Flash Cycle Done.
1329 hsfsts.hsf_status.flcdone = 1;
1330 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1332 hw_dbg(hw, "Flash controller busy, cannot get access");
1340 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1341 * @hw: pointer to the HW structure
1342 * @timeout: maximum time to wait for completion
1344 * This function starts a flash cycle and waits for its completion.
1346 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1348 union ich8_hws_flash_ctrl hsflctl;
1349 union ich8_hws_flash_status hsfsts;
1350 s32 ret_val = -E1000_ERR_NVM;
1353 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1354 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1355 hsflctl.hsf_ctrl.flcgo = 1;
1356 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1358 /* wait till FDONE bit is set to 1 */
1360 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1361 if (hsfsts.hsf_status.flcdone == 1)
1364 } while (i++ < timeout);
1366 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1373 * e1000_read_flash_word_ich8lan - Read word from flash
1374 * @hw: pointer to the HW structure
1375 * @offset: offset to data location
1376 * @data: pointer to the location for storing the data
1378 * Reads the flash word at offset into data. Offset is converted
1379 * to bytes before read.
1381 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1384 /* Must convert offset into bytes. */
1387 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1391 * e1000_read_flash_byte_ich8lan - Read byte from flash
1392 * @hw: pointer to the HW structure
1393 * @offset: The offset of the byte to read.
1394 * @data: Pointer to a byte to store the value read.
1396 * Reads a single byte from the NVM using the flash access registers.
1398 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1404 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1414 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1415 * @hw: pointer to the HW structure
1416 * @offset: The offset (in bytes) of the byte or word to read.
1417 * @size: Size of data to read, 1=byte 2=word
1418 * @data: Pointer to the word to store the value read.
1420 * Reads a byte or word from the NVM using the flash access registers.
1422 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1425 union ich8_hws_flash_status hsfsts;
1426 union ich8_hws_flash_ctrl hsflctl;
1427 u32 flash_linear_addr;
1429 s32 ret_val = -E1000_ERR_NVM;
1432 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1433 return -E1000_ERR_NVM;
1435 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1436 hw->nvm.flash_base_addr;
1441 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1445 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1446 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1447 hsflctl.hsf_ctrl.fldbcount = size - 1;
1448 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1449 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1451 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1453 ret_val = e1000_flash_cycle_ich8lan(hw,
1454 ICH_FLASH_READ_COMMAND_TIMEOUT);
1457 * Check if FCERR is set to 1, if set to 1, clear it
1458 * and try the whole sequence a few more times, else
1459 * read in (shift in) the Flash Data0, the order is
1460 * least significant byte first msb to lsb
1463 flash_data = er32flash(ICH_FLASH_FDATA0);
1465 *data = (u8)(flash_data & 0x000000FF);
1466 } else if (size == 2) {
1467 *data = (u16)(flash_data & 0x0000FFFF);
1472 * If we've gotten here, then things are probably
1473 * completely hosed, but if the error condition is
1474 * detected, it won't hurt to give it another try...
1475 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1477 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1478 if (hsfsts.hsf_status.flcerr == 1) {
1479 /* Repeat for some time before giving up. */
1481 } else if (hsfsts.hsf_status.flcdone == 0) {
1482 hw_dbg(hw, "Timeout error - flash cycle "
1483 "did not complete.");
1487 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1493 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1494 * @hw: pointer to the HW structure
1495 * @offset: The offset (in bytes) of the word(s) to write.
1496 * @words: Size of data to write in words
1497 * @data: Pointer to the word(s) to write at offset.
1499 * Writes a byte or word to the NVM using the flash access registers.
1501 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1504 struct e1000_nvm_info *nvm = &hw->nvm;
1505 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1509 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1511 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1512 return -E1000_ERR_NVM;
1515 ret_val = e1000_acquire_swflag_ich8lan(hw);
1519 for (i = 0; i < words; i++) {
1520 dev_spec->shadow_ram[offset+i].modified = 1;
1521 dev_spec->shadow_ram[offset+i].value = data[i];
1524 e1000_release_swflag_ich8lan(hw);
1530 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1531 * @hw: pointer to the HW structure
1533 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1534 * which writes the checksum to the shadow ram. The changes in the shadow
1535 * ram are then committed to the EEPROM by processing each bank at a time
1536 * checking for the modified bit and writing only the pending changes.
1537 * After a successful commit, the shadow ram is cleared and is ready for
1540 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1542 struct e1000_nvm_info *nvm = &hw->nvm;
1543 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1544 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1548 ret_val = e1000e_update_nvm_checksum_generic(hw);
1552 if (nvm->type != e1000_nvm_flash_sw)
1555 ret_val = e1000_acquire_swflag_ich8lan(hw);
1560 * We're writing to the opposite bank so if we're on bank 1,
1561 * write to bank 0 etc. We also need to erase the segment that
1562 * is going to be written
1564 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1566 e1000_release_swflag_ich8lan(hw);
1571 new_bank_offset = nvm->flash_bank_size;
1572 old_bank_offset = 0;
1573 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1575 e1000_release_swflag_ich8lan(hw);
1579 old_bank_offset = nvm->flash_bank_size;
1580 new_bank_offset = 0;
1581 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1583 e1000_release_swflag_ich8lan(hw);
1588 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1590 * Determine whether to write the value stored
1591 * in the other NVM bank or a modified value stored
1594 if (dev_spec->shadow_ram[i].modified) {
1595 data = dev_spec->shadow_ram[i].value;
1597 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1605 * If the word is 0x13, then make sure the signature bits
1606 * (15:14) are 11b until the commit has completed.
1607 * This will allow us to write 10b which indicates the
1608 * signature is valid. We want to do this after the write
1609 * has completed so that we don't mark the segment valid
1610 * while the write is still in progress
1612 if (i == E1000_ICH_NVM_SIG_WORD)
1613 data |= E1000_ICH_NVM_SIG_MASK;
1615 /* Convert offset to bytes. */
1616 act_offset = (i + new_bank_offset) << 1;
1619 /* Write the bytes to the new bank. */
1620 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1627 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1635 * Don't bother writing the segment valid bits if sector
1636 * programming failed.
1639 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1640 hw_dbg(hw, "Flash commit failed.\n");
1641 e1000_release_swflag_ich8lan(hw);
1646 * Finally validate the new segment by setting bit 15:14
1647 * to 10b in word 0x13 , this can be done without an
1648 * erase as well since these bits are 11 to start with
1649 * and we need to change bit 14 to 0b
1651 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1652 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1654 e1000_release_swflag_ich8lan(hw);
1658 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1662 e1000_release_swflag_ich8lan(hw);
1667 * And invalidate the previously valid segment by setting
1668 * its signature word (0x13) high_byte to 0b. This can be
1669 * done without an erase because flash erase sets all bits
1670 * to 1's. We can write 1's to 0's without an erase
1672 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1673 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1675 e1000_release_swflag_ich8lan(hw);
1679 /* Great! Everything worked, we can now clear the cached entries. */
1680 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1681 dev_spec->shadow_ram[i].modified = 0;
1682 dev_spec->shadow_ram[i].value = 0xFFFF;
1685 e1000_release_swflag_ich8lan(hw);
1688 * Reload the EEPROM, or else modifications will not appear
1689 * until after the next adapter reset.
1691 e1000e_reload_nvm(hw);
1696 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1702 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1703 * @hw: pointer to the HW structure
1705 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1706 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1707 * calculated, in which case we need to calculate the checksum and set bit 6.
1709 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1715 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1716 * needs to be fixed. This bit is an indication that the NVM
1717 * was prepared by OEM software and did not calculate the
1718 * checksum...a likely scenario.
1720 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1724 if ((data & 0x40) == 0) {
1726 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1729 ret_val = e1000e_update_nvm_checksum(hw);
1734 return e1000e_validate_nvm_checksum_generic(hw);
1738 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1739 * @hw: pointer to the HW structure
1741 * To prevent malicious write/erase of the NVM, set it to be read-only
1742 * so that the hardware ignores all write/erase cycles of the NVM via
1743 * the flash control registers. The shadow-ram copy of the NVM will
1744 * still be updated, however any updates to this copy will not stick
1745 * across driver reloads.
1747 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1749 union ich8_flash_protected_range pr0;
1750 union ich8_hws_flash_status hsfsts;
1754 ret_val = e1000_acquire_swflag_ich8lan(hw);
1758 gfpreg = er32flash(ICH_FLASH_GFPREG);
1760 /* Write-protect GbE Sector of NVM */
1761 pr0.regval = er32flash(ICH_FLASH_PR0);
1762 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1763 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1764 pr0.range.wpe = true;
1765 ew32flash(ICH_FLASH_PR0, pr0.regval);
1768 * Lock down a subset of GbE Flash Control Registers, e.g.
1769 * PR0 to prevent the write-protection from being lifted.
1770 * Once FLOCKDN is set, the registers protected by it cannot
1771 * be written until FLOCKDN is cleared by a hardware reset.
1773 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1774 hsfsts.hsf_status.flockdn = true;
1775 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1777 e1000_release_swflag_ich8lan(hw);
1781 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1782 * @hw: pointer to the HW structure
1783 * @offset: The offset (in bytes) of the byte/word to read.
1784 * @size: Size of data to read, 1=byte 2=word
1785 * @data: The byte(s) to write to the NVM.
1787 * Writes one/two bytes to the NVM using the flash access registers.
1789 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1792 union ich8_hws_flash_status hsfsts;
1793 union ich8_hws_flash_ctrl hsflctl;
1794 u32 flash_linear_addr;
1799 if (size < 1 || size > 2 || data > size * 0xff ||
1800 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1801 return -E1000_ERR_NVM;
1803 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1804 hw->nvm.flash_base_addr;
1809 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1813 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1814 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1815 hsflctl.hsf_ctrl.fldbcount = size -1;
1816 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1817 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1819 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1822 flash_data = (u32)data & 0x00FF;
1824 flash_data = (u32)data;
1826 ew32flash(ICH_FLASH_FDATA0, flash_data);
1829 * check if FCERR is set to 1 , if set to 1, clear it
1830 * and try the whole sequence a few more times else done
1832 ret_val = e1000_flash_cycle_ich8lan(hw,
1833 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1838 * If we're here, then things are most likely
1839 * completely hosed, but if the error condition
1840 * is detected, it won't hurt to give it another
1841 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1843 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1844 if (hsfsts.hsf_status.flcerr == 1)
1845 /* Repeat for some time before giving up. */
1847 if (hsfsts.hsf_status.flcdone == 0) {
1848 hw_dbg(hw, "Timeout error - flash cycle "
1849 "did not complete.");
1852 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1858 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1859 * @hw: pointer to the HW structure
1860 * @offset: The index of the byte to read.
1861 * @data: The byte to write to the NVM.
1863 * Writes a single byte to the NVM using the flash access registers.
1865 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1868 u16 word = (u16)data;
1870 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1874 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1875 * @hw: pointer to the HW structure
1876 * @offset: The offset of the byte to write.
1877 * @byte: The byte to write to the NVM.
1879 * Writes a single byte to the NVM using the flash access registers.
1880 * Goes through a retry algorithm before giving up.
1882 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1883 u32 offset, u8 byte)
1886 u16 program_retries;
1888 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1892 for (program_retries = 0; program_retries < 100; program_retries++) {
1893 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1895 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1899 if (program_retries == 100)
1900 return -E1000_ERR_NVM;
1906 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1907 * @hw: pointer to the HW structure
1908 * @bank: 0 for first bank, 1 for second bank, etc.
1910 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1911 * bank N is 4096 * N + flash_reg_addr.
1913 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1915 struct e1000_nvm_info *nvm = &hw->nvm;
1916 union ich8_hws_flash_status hsfsts;
1917 union ich8_hws_flash_ctrl hsflctl;
1918 u32 flash_linear_addr;
1919 /* bank size is in 16bit words - adjust to bytes */
1920 u32 flash_bank_size = nvm->flash_bank_size * 2;
1927 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1930 * Determine HW Sector size: Read BERASE bits of hw flash status
1932 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1933 * consecutive sectors. The start index for the nth Hw sector
1934 * can be calculated as = bank * 4096 + n * 256
1935 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1936 * The start index for the nth Hw sector can be calculated
1938 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1939 * (ich9 only, otherwise error condition)
1940 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1942 switch (hsfsts.hsf_status.berasesz) {
1944 /* Hw sector size 256 */
1945 sector_size = ICH_FLASH_SEG_SIZE_256;
1946 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1949 sector_size = ICH_FLASH_SEG_SIZE_4K;
1953 if (hw->mac.type == e1000_ich9lan) {
1954 sector_size = ICH_FLASH_SEG_SIZE_8K;
1955 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1957 return -E1000_ERR_NVM;
1961 sector_size = ICH_FLASH_SEG_SIZE_64K;
1965 return -E1000_ERR_NVM;
1968 /* Start with the base address, then add the sector offset. */
1969 flash_linear_addr = hw->nvm.flash_base_addr;
1970 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1972 for (j = 0; j < iteration ; j++) {
1975 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1980 * Write a value 11 (block Erase) in Flash
1981 * Cycle field in hw flash control
1983 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1984 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1985 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1988 * Write the last 24 bits of an index within the
1989 * block into Flash Linear address field in Flash
1992 flash_linear_addr += (j * sector_size);
1993 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1995 ret_val = e1000_flash_cycle_ich8lan(hw,
1996 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2001 * Check if FCERR is set to 1. If 1,
2002 * clear it and try the whole sequence
2003 * a few more times else Done
2005 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2006 if (hsfsts.hsf_status.flcerr == 1)
2007 /* repeat for some time before giving up */
2009 else if (hsfsts.hsf_status.flcdone == 0)
2011 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2018 * e1000_valid_led_default_ich8lan - Set the default LED settings
2019 * @hw: pointer to the HW structure
2020 * @data: Pointer to the LED settings
2022 * Reads the LED default settings from the NVM to data. If the NVM LED
2023 * settings is all 0's or F's, set the LED default to a valid LED default
2026 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2030 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2032 hw_dbg(hw, "NVM Read Error\n");
2036 if (*data == ID_LED_RESERVED_0000 ||
2037 *data == ID_LED_RESERVED_FFFF)
2038 *data = ID_LED_DEFAULT_ICH8LAN;
2044 * e1000_id_led_init_pchlan - store LED configurations
2045 * @hw: pointer to the HW structure
2047 * PCH does not control LEDs via the LEDCTL register, rather it uses
2048 * the PHY LED configuration register.
2050 * PCH also does not have an "always on" or "always off" mode which
2051 * complicates the ID feature. Instead of using the "on" mode to indicate
2052 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2053 * use "link_up" mode. The LEDs will still ID on request if there is no
2054 * link based on logic in e1000_led_[on|off]_pchlan().
2056 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2058 struct e1000_mac_info *mac = &hw->mac;
2060 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2061 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2062 u16 data, i, temp, shift;
2064 /* Get default ID LED modes */
2065 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2069 mac->ledctl_default = er32(LEDCTL);
2070 mac->ledctl_mode1 = mac->ledctl_default;
2071 mac->ledctl_mode2 = mac->ledctl_default;
2073 for (i = 0; i < 4; i++) {
2074 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2077 case ID_LED_ON1_DEF2:
2078 case ID_LED_ON1_ON2:
2079 case ID_LED_ON1_OFF2:
2080 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2081 mac->ledctl_mode1 |= (ledctl_on << shift);
2083 case ID_LED_OFF1_DEF2:
2084 case ID_LED_OFF1_ON2:
2085 case ID_LED_OFF1_OFF2:
2086 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2087 mac->ledctl_mode1 |= (ledctl_off << shift);
2094 case ID_LED_DEF1_ON2:
2095 case ID_LED_ON1_ON2:
2096 case ID_LED_OFF1_ON2:
2097 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2098 mac->ledctl_mode2 |= (ledctl_on << shift);
2100 case ID_LED_DEF1_OFF2:
2101 case ID_LED_ON1_OFF2:
2102 case ID_LED_OFF1_OFF2:
2103 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2104 mac->ledctl_mode2 |= (ledctl_off << shift);
2117 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2118 * @hw: pointer to the HW structure
2120 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2121 * register, so the the bus width is hard coded.
2123 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2125 struct e1000_bus_info *bus = &hw->bus;
2128 ret_val = e1000e_get_bus_info_pcie(hw);
2131 * ICH devices are "PCI Express"-ish. They have
2132 * a configuration space, but do not contain
2133 * PCI Express Capability registers, so bus width
2134 * must be hardcoded.
2136 if (bus->width == e1000_bus_width_unknown)
2137 bus->width = e1000_bus_width_pcie_x1;
2143 * e1000_reset_hw_ich8lan - Reset the hardware
2144 * @hw: pointer to the HW structure
2146 * Does a full reset of the hardware which includes a reset of the PHY and
2149 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2155 * Prevent the PCI-E bus from sticking if there is no TLP connection
2156 * on the last TLP read/write transaction when MAC is reset.
2158 ret_val = e1000e_disable_pcie_master(hw);
2160 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2163 hw_dbg(hw, "Masking off all interrupts\n");
2164 ew32(IMC, 0xffffffff);
2167 * Disable the Transmit and Receive units. Then delay to allow
2168 * any pending transactions to complete before we hit the MAC
2169 * with the global reset.
2172 ew32(TCTL, E1000_TCTL_PSP);
2177 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2178 if (hw->mac.type == e1000_ich8lan) {
2179 /* Set Tx and Rx buffer allocation to 8k apiece. */
2180 ew32(PBA, E1000_PBA_8K);
2181 /* Set Packet Buffer Size to 16k. */
2182 ew32(PBS, E1000_PBS_16K);
2187 if (!e1000_check_reset_block(hw)) {
2188 /* Clear PHY Reset Asserted bit */
2189 if (hw->mac.type >= e1000_pchlan) {
2190 u32 status = er32(STATUS);
2191 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2195 * PHY HW reset requires MAC CORE reset at the same
2196 * time to make sure the interface between MAC and the
2197 * external PHY is reset.
2199 ctrl |= E1000_CTRL_PHY_RST;
2201 ret_val = e1000_acquire_swflag_ich8lan(hw);
2202 /* Whether or not the swflag was acquired, we need to reset the part */
2203 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2204 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2208 e1000_release_swflag_ich8lan(hw);
2210 if (ctrl & E1000_CTRL_PHY_RST)
2211 ret_val = hw->phy.ops.get_cfg_done(hw);
2213 if (hw->mac.type >= e1000_ich10lan) {
2214 e1000_lan_init_done_ich8lan(hw);
2216 ret_val = e1000e_get_auto_rd_done(hw);
2219 * When auto config read does not complete, do not
2220 * return with an error. This can happen in situations
2221 * where there is no eeprom and prevents getting link.
2223 hw_dbg(hw, "Auto Read Done did not complete\n");
2227 ew32(IMC, 0xffffffff);
2230 kab = er32(KABGTXD);
2231 kab |= E1000_KABGTXD_BGSQLBIAS;
2234 if (hw->mac.type == e1000_pchlan)
2235 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2241 * e1000_init_hw_ich8lan - Initialize the hardware
2242 * @hw: pointer to the HW structure
2244 * Prepares the hardware for transmit and receive by doing the following:
2245 * - initialize hardware bits
2246 * - initialize LED identification
2247 * - setup receive address registers
2248 * - setup flow control
2249 * - setup transmit descriptors
2250 * - clear statistics
2252 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2254 struct e1000_mac_info *mac = &hw->mac;
2255 u32 ctrl_ext, txdctl, snoop;
2259 e1000_initialize_hw_bits_ich8lan(hw);
2261 /* Initialize identification LED */
2262 ret_val = mac->ops.id_led_init(hw);
2264 hw_dbg(hw, "Error initializing identification LED\n");
2268 /* Setup the receive address. */
2269 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2271 /* Zero out the Multicast HASH table */
2272 hw_dbg(hw, "Zeroing the MTA\n");
2273 for (i = 0; i < mac->mta_reg_count; i++)
2274 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2277 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2278 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2279 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2281 if (hw->phy.type == e1000_phy_82578) {
2282 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2283 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2288 /* Setup link and flow control */
2289 ret_val = e1000_setup_link_ich8lan(hw);
2291 /* Set the transmit descriptor write-back policy for both queues */
2292 txdctl = er32(TXDCTL(0));
2293 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2294 E1000_TXDCTL_FULL_TX_DESC_WB;
2295 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2296 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2297 ew32(TXDCTL(0), txdctl);
2298 txdctl = er32(TXDCTL(1));
2299 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2300 E1000_TXDCTL_FULL_TX_DESC_WB;
2301 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2302 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2303 ew32(TXDCTL(1), txdctl);
2306 * ICH8 has opposite polarity of no_snoop bits.
2307 * By default, we should use snoop behavior.
2309 if (mac->type == e1000_ich8lan)
2310 snoop = PCIE_ICH8_SNOOP_ALL;
2312 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2313 e1000e_set_pcie_no_snoop(hw, snoop);
2315 ctrl_ext = er32(CTRL_EXT);
2316 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2317 ew32(CTRL_EXT, ctrl_ext);
2320 * Clear all of the statistics registers (clear on read). It is
2321 * important that we do this after we have tried to establish link
2322 * because the symbol error count will increment wildly if there
2325 e1000_clear_hw_cntrs_ich8lan(hw);
2330 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2331 * @hw: pointer to the HW structure
2333 * Sets/Clears required hardware bits necessary for correctly setting up the
2334 * hardware for transmit and receive.
2336 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2340 /* Extended Device Control */
2341 reg = er32(CTRL_EXT);
2343 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2344 if (hw->mac.type >= e1000_pchlan)
2345 reg |= E1000_CTRL_EXT_PHYPDEN;
2346 ew32(CTRL_EXT, reg);
2348 /* Transmit Descriptor Control 0 */
2349 reg = er32(TXDCTL(0));
2351 ew32(TXDCTL(0), reg);
2353 /* Transmit Descriptor Control 1 */
2354 reg = er32(TXDCTL(1));
2356 ew32(TXDCTL(1), reg);
2358 /* Transmit Arbitration Control 0 */
2359 reg = er32(TARC(0));
2360 if (hw->mac.type == e1000_ich8lan)
2361 reg |= (1 << 28) | (1 << 29);
2362 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2365 /* Transmit Arbitration Control 1 */
2366 reg = er32(TARC(1));
2367 if (er32(TCTL) & E1000_TCTL_MULR)
2371 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2375 if (hw->mac.type == e1000_ich8lan) {
2383 * e1000_setup_link_ich8lan - Setup flow control and link settings
2384 * @hw: pointer to the HW structure
2386 * Determines which flow control settings to use, then configures flow
2387 * control. Calls the appropriate media-specific link configuration
2388 * function. Assuming the adapter has a valid link partner, a valid link
2389 * should be established. Assumes the hardware has previously been reset
2390 * and the transmitter and receiver are not enabled.
2392 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2396 if (e1000_check_reset_block(hw))
2400 * ICH parts do not have a word in the NVM to determine
2401 * the default flow control setting, so we explicitly
2404 if (hw->fc.requested_mode == e1000_fc_default) {
2405 /* Workaround h/w hang when Tx flow control enabled */
2406 if (hw->mac.type == e1000_pchlan)
2407 hw->fc.requested_mode = e1000_fc_rx_pause;
2409 hw->fc.requested_mode = e1000_fc_full;
2413 * Save off the requested flow control mode for use later. Depending
2414 * on the link partner's capabilities, we may or may not use this mode.
2416 hw->fc.current_mode = hw->fc.requested_mode;
2418 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2419 hw->fc.current_mode);
2421 /* Continue to configure the copper link. */
2422 ret_val = e1000_setup_copper_link_ich8lan(hw);
2426 ew32(FCTTV, hw->fc.pause_time);
2427 if ((hw->phy.type == e1000_phy_82578) ||
2428 (hw->phy.type == e1000_phy_82577)) {
2429 ret_val = hw->phy.ops.write_phy_reg(hw,
2430 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2436 return e1000e_set_fc_watermarks(hw);
2440 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2441 * @hw: pointer to the HW structure
2443 * Configures the kumeran interface to the PHY to wait the appropriate time
2444 * when polling the PHY, then call the generic setup_copper_link to finish
2445 * configuring the copper link.
2447 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2454 ctrl |= E1000_CTRL_SLU;
2455 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2459 * Set the mac to wait the maximum time between each iteration
2460 * and increase the max iterations when polling the phy;
2461 * this fixes erroneous timeouts at 10Mbps.
2463 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2466 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
2470 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2474 switch (hw->phy.type) {
2475 case e1000_phy_igp_3:
2476 ret_val = e1000e_copper_link_setup_igp(hw);
2481 case e1000_phy_82578:
2482 ret_val = e1000e_copper_link_setup_m88(hw);
2486 case e1000_phy_82577:
2487 ret_val = e1000_copper_link_setup_82577(hw);
2492 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2497 reg_data &= ~IFE_PMC_AUTO_MDIX;
2499 switch (hw->phy.mdix) {
2501 reg_data &= ~IFE_PMC_FORCE_MDIX;
2504 reg_data |= IFE_PMC_FORCE_MDIX;
2508 reg_data |= IFE_PMC_AUTO_MDIX;
2511 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2519 return e1000e_setup_copper_link(hw);
2523 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2524 * @hw: pointer to the HW structure
2525 * @speed: pointer to store current link speed
2526 * @duplex: pointer to store the current link duplex
2528 * Calls the generic get_speed_and_duplex to retrieve the current link
2529 * information and then calls the Kumeran lock loss workaround for links at
2532 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2537 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2541 if ((hw->mac.type == e1000_ich8lan) &&
2542 (hw->phy.type == e1000_phy_igp_3) &&
2543 (*speed == SPEED_1000)) {
2544 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2551 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2552 * @hw: pointer to the HW structure
2554 * Work-around for 82566 Kumeran PCS lock loss:
2555 * On link status change (i.e. PCI reset, speed change) and link is up and
2557 * 0) if workaround is optionally disabled do nothing
2558 * 1) wait 1ms for Kumeran link to come up
2559 * 2) check Kumeran Diagnostic register PCS lock loss bit
2560 * 3) if not set the link is locked (all is good), otherwise...
2562 * 5) repeat up to 10 times
2563 * Note: this is only called for IGP3 copper when speed is 1gb.
2565 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2567 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2573 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2577 * Make sure link is up before proceeding. If not just return.
2578 * Attempting this while link is negotiating fouled up link
2581 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2585 for (i = 0; i < 10; i++) {
2586 /* read once to clear */
2587 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2590 /* and again to get new status */
2591 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2595 /* check for PCS lock */
2596 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2599 /* Issue PHY reset */
2600 e1000_phy_hw_reset(hw);
2603 /* Disable GigE link negotiation */
2604 phy_ctrl = er32(PHY_CTRL);
2605 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2606 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2607 ew32(PHY_CTRL, phy_ctrl);
2610 * Call gig speed drop workaround on Gig disable before accessing
2613 e1000e_gig_downshift_workaround_ich8lan(hw);
2615 /* unable to acquire PCS lock */
2616 return -E1000_ERR_PHY;
2620 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2621 * @hw: pointer to the HW structure
2622 * @state: boolean value used to set the current Kumeran workaround state
2624 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2625 * /disabled - FALSE).
2627 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2630 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2632 if (hw->mac.type != e1000_ich8lan) {
2633 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2637 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2641 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2642 * @hw: pointer to the HW structure
2644 * Workaround for 82566 power-down on D3 entry:
2645 * 1) disable gigabit link
2646 * 2) write VR power-down enable
2648 * Continue if successful, else issue LCD reset and repeat
2650 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2656 if (hw->phy.type != e1000_phy_igp_3)
2659 /* Try the workaround twice (if needed) */
2662 reg = er32(PHY_CTRL);
2663 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2664 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2665 ew32(PHY_CTRL, reg);
2668 * Call gig speed drop workaround on Gig disable before
2669 * accessing any PHY registers
2671 if (hw->mac.type == e1000_ich8lan)
2672 e1000e_gig_downshift_workaround_ich8lan(hw);
2674 /* Write VR power-down enable */
2675 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2676 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2677 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2679 /* Read it back and test */
2680 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2681 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2682 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2685 /* Issue PHY reset and repeat at most one more time */
2687 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2693 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2694 * @hw: pointer to the HW structure
2696 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2697 * LPLU, Gig disable, MDIC PHY reset):
2698 * 1) Set Kumeran Near-end loopback
2699 * 2) Clear Kumeran Near-end loopback
2700 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2702 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2707 if ((hw->mac.type != e1000_ich8lan) ||
2708 (hw->phy.type != e1000_phy_igp_3))
2711 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2715 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2716 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2720 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2721 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2726 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2727 * @hw: pointer to the HW structure
2729 * During S0 to Sx transition, it is possible the link remains at gig
2730 * instead of negotiating to a lower speed. Before going to Sx, set
2731 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2734 * Should only be called for applicable parts.
2736 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2740 switch (hw->mac.type) {
2742 case e1000_ich10lan:
2744 phy_ctrl = er32(PHY_CTRL);
2745 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2746 E1000_PHY_CTRL_GBE_DISABLE;
2747 ew32(PHY_CTRL, phy_ctrl);
2749 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2750 if (hw->mac.type == e1000_pchlan)
2760 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2761 * @hw: pointer to the HW structure
2763 * Return the LED back to the default configuration.
2765 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2767 if (hw->phy.type == e1000_phy_ife)
2768 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2770 ew32(LEDCTL, hw->mac.ledctl_default);
2775 * e1000_led_on_ich8lan - Turn LEDs on
2776 * @hw: pointer to the HW structure
2780 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2782 if (hw->phy.type == e1000_phy_ife)
2783 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2784 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2786 ew32(LEDCTL, hw->mac.ledctl_mode2);
2791 * e1000_led_off_ich8lan - Turn LEDs off
2792 * @hw: pointer to the HW structure
2794 * Turn off the LEDs.
2796 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2798 if (hw->phy.type == e1000_phy_ife)
2799 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2800 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2802 ew32(LEDCTL, hw->mac.ledctl_mode1);
2807 * e1000_setup_led_pchlan - Configures SW controllable LED
2808 * @hw: pointer to the HW structure
2810 * This prepares the SW controllable LED for use.
2812 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2814 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2815 (u16)hw->mac.ledctl_mode1);
2819 * e1000_cleanup_led_pchlan - Restore the default LED operation
2820 * @hw: pointer to the HW structure
2822 * Return the LED back to the default configuration.
2824 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2826 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2827 (u16)hw->mac.ledctl_default);
2831 * e1000_led_on_pchlan - Turn LEDs on
2832 * @hw: pointer to the HW structure
2836 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2838 u16 data = (u16)hw->mac.ledctl_mode2;
2842 * If no link, then turn LED on by setting the invert bit
2843 * for each LED that's mode is "link_up" in ledctl_mode2.
2845 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2846 for (i = 0; i < 3; i++) {
2847 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2848 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2849 E1000_LEDCTL_MODE_LINK_UP)
2851 if (led & E1000_PHY_LED0_IVRT)
2852 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2854 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2858 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2862 * e1000_led_off_pchlan - Turn LEDs off
2863 * @hw: pointer to the HW structure
2865 * Turn off the LEDs.
2867 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2869 u16 data = (u16)hw->mac.ledctl_mode1;
2873 * If no link, then turn LED off by clearing the invert bit
2874 * for each LED that's mode is "link_up" in ledctl_mode1.
2876 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2877 for (i = 0; i < 3; i++) {
2878 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2879 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2880 E1000_LEDCTL_MODE_LINK_UP)
2882 if (led & E1000_PHY_LED0_IVRT)
2883 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2885 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2889 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2893 * e1000_get_cfg_done_ich8lan - Read config done bit
2894 * @hw: pointer to the HW structure
2896 * Read the management control register for the config done bit for
2897 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2898 * to read the config done bit, so an error is *ONLY* logged and returns
2899 * 0. If we were to return with error, EEPROM-less silicon
2900 * would not be able to be reset or change link.
2902 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2906 if (hw->mac.type >= e1000_pchlan) {
2907 u32 status = er32(STATUS);
2909 if (status & E1000_STATUS_PHYRA)
2910 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2913 "PHY Reset Asserted not set - needs delay\n");
2916 e1000e_get_cfg_done(hw);
2918 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2919 if ((hw->mac.type != e1000_ich10lan) &&
2920 (hw->mac.type != e1000_pchlan)) {
2921 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2922 (hw->phy.type == e1000_phy_igp_3)) {
2923 e1000e_phy_init_script_igp3(hw);
2926 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2927 /* Maybe we should do a basic PHY config */
2928 hw_dbg(hw, "EEPROM not present\n");
2929 return -E1000_ERR_CONFIG;
2937 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2938 * @hw: pointer to the HW structure
2940 * Clears hardware counters specific to the silicon family and calls
2941 * clear_hw_cntrs_generic to clear all general purpose counters.
2943 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2948 e1000e_clear_hw_cntrs_base(hw);
2950 temp = er32(ALGNERRC);
2951 temp = er32(RXERRC);
2953 temp = er32(CEXTERR);
2955 temp = er32(TSCTFC);
2957 temp = er32(MGTPRC);
2958 temp = er32(MGTPDC);
2959 temp = er32(MGTPTC);
2962 temp = er32(ICRXOC);
2964 /* Clear PHY statistics registers */
2965 if ((hw->phy.type == e1000_phy_82578) ||
2966 (hw->phy.type == e1000_phy_82577)) {
2967 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
2968 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
2969 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
2970 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
2971 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
2972 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
2973 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
2974 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
2975 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
2976 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
2977 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
2978 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
2979 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
2980 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
2984 static struct e1000_mac_operations ich8_mac_ops = {
2985 .id_led_init = e1000e_id_led_init,
2986 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2987 .check_for_link = e1000e_check_for_copper_link,
2988 /* cleanup_led dependent on mac type */
2989 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2990 .get_bus_info = e1000_get_bus_info_ich8lan,
2991 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2992 /* led_on dependent on mac type */
2993 /* led_off dependent on mac type */
2994 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2995 .reset_hw = e1000_reset_hw_ich8lan,
2996 .init_hw = e1000_init_hw_ich8lan,
2997 .setup_link = e1000_setup_link_ich8lan,
2998 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2999 /* id_led_init dependent on mac type */
3002 static struct e1000_phy_operations ich8_phy_ops = {
3003 .acquire_phy = e1000_acquire_swflag_ich8lan,
3004 .check_reset_block = e1000_check_reset_block_ich8lan,
3006 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
3007 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3008 .get_cable_length = e1000e_get_cable_length_igp_2,
3009 .get_phy_info = e1000_get_phy_info_ich8lan,
3010 .read_phy_reg = e1000e_read_phy_reg_igp,
3011 .release_phy = e1000_release_swflag_ich8lan,
3012 .reset_phy = e1000_phy_hw_reset_ich8lan,
3013 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3014 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3015 .write_phy_reg = e1000e_write_phy_reg_igp,
3018 static struct e1000_nvm_operations ich8_nvm_ops = {
3019 .acquire_nvm = e1000_acquire_swflag_ich8lan,
3020 .read_nvm = e1000_read_nvm_ich8lan,
3021 .release_nvm = e1000_release_swflag_ich8lan,
3022 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3023 .valid_led_default = e1000_valid_led_default_ich8lan,
3024 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3025 .write_nvm = e1000_write_nvm_ich8lan,
3028 struct e1000_info e1000_ich8_info = {
3029 .mac = e1000_ich8lan,
3030 .flags = FLAG_HAS_WOL
3032 | FLAG_RX_CSUM_ENABLED
3033 | FLAG_HAS_CTRLEXT_ON_LOAD
3038 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3039 .get_variants = e1000_get_variants_ich8lan,
3040 .mac_ops = &ich8_mac_ops,
3041 .phy_ops = &ich8_phy_ops,
3042 .nvm_ops = &ich8_nvm_ops,
3045 struct e1000_info e1000_ich9_info = {
3046 .mac = e1000_ich9lan,
3047 .flags = FLAG_HAS_JUMBO_FRAMES
3050 | FLAG_RX_CSUM_ENABLED
3051 | FLAG_HAS_CTRLEXT_ON_LOAD
3057 .max_hw_frame_size = DEFAULT_JUMBO,
3058 .get_variants = e1000_get_variants_ich8lan,
3059 .mac_ops = &ich8_mac_ops,
3060 .phy_ops = &ich8_phy_ops,
3061 .nvm_ops = &ich8_nvm_ops,
3064 struct e1000_info e1000_ich10_info = {
3065 .mac = e1000_ich10lan,
3066 .flags = FLAG_HAS_JUMBO_FRAMES
3069 | FLAG_RX_CSUM_ENABLED
3070 | FLAG_HAS_CTRLEXT_ON_LOAD
3076 .max_hw_frame_size = DEFAULT_JUMBO,
3077 .get_variants = e1000_get_variants_ich8lan,
3078 .mac_ops = &ich8_mac_ops,
3079 .phy_ops = &ich8_phy_ops,
3080 .nvm_ops = &ich8_nvm_ops,
3083 struct e1000_info e1000_pch_info = {
3084 .mac = e1000_pchlan,
3085 .flags = FLAG_IS_ICH
3087 | FLAG_RX_CSUM_ENABLED
3088 | FLAG_HAS_CTRLEXT_ON_LOAD
3091 | FLAG_HAS_JUMBO_FRAMES
3094 .max_hw_frame_size = 4096,
3095 .get_variants = e1000_get_variants_ich8lan,
3096 .mac_ops = &ich8_mac_ops,
3097 .phy_ops = &ich8_phy_ops,
3098 .nvm_ops = &ich8_nvm_ops,