Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.3.9        12/16/2005
33  *   o incorporate fix for recycled skbs from IBM LTC
34  * 6.3.7        11/18/2005
35  *   o Honor eeprom setting for enabling/disabling Wake On Lan
36  * 6.3.5        11/17/2005
37  *   o Fix memory leak in rx ring handling for PCI Express adapters
38  * 6.3.4        11/8/05
39  *   o Patch from Jesper Juhl to remove redundant NULL checks for kfree
40  * 6.3.2        9/20/05
41  *   o Render logic that sets/resets DRV_LOAD as inline functions to 
42  *     avoid code replication. If f/w is AMT then set DRV_LOAD only when
43  *     network interface is open.
44  *   o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
45  *   o Adjust PBA partioning for Jumbo frames using MTU size and not
46  *     rx_buffer_len
47  * 6.3.1        9/19/05
48  *   o Use adapter->tx_timeout_factor in Tx Hung Detect logic 
49        (e1000_clean_tx_irq)
50  *   o Support for 8086:10B5 device (Quad Port)
51  * 6.2.14       9/15/05
52  *   o In AMT enabled configurations, set/reset DRV_LOAD bit on interface 
53  *     open/close 
54  * 6.2.13       9/14/05
55  *   o Invoke e1000_check_mng_mode only for 8257x controllers since it 
56  *     accesses the FWSM that is not supported in other controllers
57  * 6.2.12       9/9/05
58  *   o Add support for device id E1000_DEV_ID_82546GB_QUAD_COPPER
59  *   o set RCTL:SECRC only for controllers newer than 82543. 
60  *   o When the n/w interface comes down reset DRV_LOAD bit to notify f/w.
61  *     This code was moved from e1000_remove to e1000_close
62  * 6.2.10       9/6/05
63  *   o Fix error in updating RDT in el1000_alloc_rx_buffers[_ps] -- one off.
64  *   o Enable fc by default on 82573 controllers (do not read eeprom)
65  *   o Fix rx_errors statistic not to include missed_packet_count
66  *   o Fix rx_dropped statistic not to include missed_packet_count 
67        (Padraig Brady)
68  * 6.2.9        8/30/05
69  *   o Remove call to update statistics from the controller ib e1000_get_stats
70  * 6.2.8        8/30/05
71  *   o Improved algorithm for rx buffer allocation/rdt update
72  *   o Flow control watermarks relative to rx PBA size
73  *   o Simplified 'Tx Hung' detect logic
74  * 6.2.7        8/17/05
75  *   o Report rx buffer allocation failures and tx timeout counts in stats
76  * 6.2.6        8/16/05
77  *   o Implement workaround for controller erratum -- linear non-tso packet
78  *     following a TSO gets written back prematurely
79  * 6.2.5        8/15/05
80  *   o Set netdev->tx_queue_len based on link speed/duplex settings.
81  *   o Fix net_stats.rx_fifo_errors <p@draigBrady.com>
82  *   o Do not power off PHY if SoL/IDER session is active
83  * 6.2.4        8/10/05
84  *   o Fix loopback test setup/cleanup for 82571/3 controllers
85  *   o Fix parsing of outgoing packets (e1000_transfer_dhcp_info) to treat
86  *     all packets as raw
87  *   o Prevent operations that will cause the PHY to be reset if SoL/IDER
88  *     sessions are active and log a message
89  * 6.2.2        7/21/05
90  *   o used fixed size descriptors for all MTU sizes, reduces memory load
91  * 6.1.2        4/13/05
92  *   o Fixed ethtool diagnostics
93  *   o Enabled flow control to take default eeprom settings
94  *   o Added stats_lock around e1000_read_phy_reg commands to avoid concurrent
95  *     calls, one from mii_ioctl and other from within update_stats while 
96  *     processing MIIREG ioctl.
97  */
98
99 char e1000_driver_name[] = "e1000";
100 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
101 #ifndef CONFIG_E1000_NAPI
102 #define DRIVERNAPI
103 #else
104 #define DRIVERNAPI "-NAPI"
105 #endif
106 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
107 char e1000_driver_version[] = DRV_VERSION;
108 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
109
110 /* e1000_pci_tbl - PCI Device ID Table
111  *
112  * Last entry must be all 0s
113  *
114  * Macro expands to...
115  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
116  */
117 static struct pci_device_id e1000_pci_tbl[] = {
118         INTEL_E1000_ETHERNET_DEVICE(0x1000),
119         INTEL_E1000_ETHERNET_DEVICE(0x1001),
120         INTEL_E1000_ETHERNET_DEVICE(0x1004),
121         INTEL_E1000_ETHERNET_DEVICE(0x1008),
122         INTEL_E1000_ETHERNET_DEVICE(0x1009),
123         INTEL_E1000_ETHERNET_DEVICE(0x100C),
124         INTEL_E1000_ETHERNET_DEVICE(0x100D),
125         INTEL_E1000_ETHERNET_DEVICE(0x100E),
126         INTEL_E1000_ETHERNET_DEVICE(0x100F),
127         INTEL_E1000_ETHERNET_DEVICE(0x1010),
128         INTEL_E1000_ETHERNET_DEVICE(0x1011),
129         INTEL_E1000_ETHERNET_DEVICE(0x1012),
130         INTEL_E1000_ETHERNET_DEVICE(0x1013),
131         INTEL_E1000_ETHERNET_DEVICE(0x1014),
132         INTEL_E1000_ETHERNET_DEVICE(0x1015),
133         INTEL_E1000_ETHERNET_DEVICE(0x1016),
134         INTEL_E1000_ETHERNET_DEVICE(0x1017),
135         INTEL_E1000_ETHERNET_DEVICE(0x1018),
136         INTEL_E1000_ETHERNET_DEVICE(0x1019),
137         INTEL_E1000_ETHERNET_DEVICE(0x101A),
138         INTEL_E1000_ETHERNET_DEVICE(0x101D),
139         INTEL_E1000_ETHERNET_DEVICE(0x101E),
140         INTEL_E1000_ETHERNET_DEVICE(0x1026),
141         INTEL_E1000_ETHERNET_DEVICE(0x1027),
142         INTEL_E1000_ETHERNET_DEVICE(0x1028),
143         INTEL_E1000_ETHERNET_DEVICE(0x105E),
144         INTEL_E1000_ETHERNET_DEVICE(0x105F),
145         INTEL_E1000_ETHERNET_DEVICE(0x1060),
146         INTEL_E1000_ETHERNET_DEVICE(0x1075),
147         INTEL_E1000_ETHERNET_DEVICE(0x1076),
148         INTEL_E1000_ETHERNET_DEVICE(0x1077),
149         INTEL_E1000_ETHERNET_DEVICE(0x1078),
150         INTEL_E1000_ETHERNET_DEVICE(0x1079),
151         INTEL_E1000_ETHERNET_DEVICE(0x107A),
152         INTEL_E1000_ETHERNET_DEVICE(0x107B),
153         INTEL_E1000_ETHERNET_DEVICE(0x107C),
154         INTEL_E1000_ETHERNET_DEVICE(0x107D),
155         INTEL_E1000_ETHERNET_DEVICE(0x107E),
156         INTEL_E1000_ETHERNET_DEVICE(0x107F),
157         INTEL_E1000_ETHERNET_DEVICE(0x108A),
158         INTEL_E1000_ETHERNET_DEVICE(0x108B),
159         INTEL_E1000_ETHERNET_DEVICE(0x108C),
160         INTEL_E1000_ETHERNET_DEVICE(0x1099),
161         INTEL_E1000_ETHERNET_DEVICE(0x109A),
162         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
163         /* required last entry */
164         {0,}
165 };
166
167 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
168
169 int e1000_up(struct e1000_adapter *adapter);
170 void e1000_down(struct e1000_adapter *adapter);
171 void e1000_reset(struct e1000_adapter *adapter);
172 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
173 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
174 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
175 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
176 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
177 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
178                                     struct e1000_tx_ring *txdr);
179 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
180                                     struct e1000_rx_ring *rxdr);
181 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
182                                     struct e1000_tx_ring *tx_ring);
183 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
184                                     struct e1000_rx_ring *rx_ring);
185 void e1000_update_stats(struct e1000_adapter *adapter);
186
187 /* Local Function Prototypes */
188
189 static int e1000_init_module(void);
190 static void e1000_exit_module(void);
191 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
192 static void __devexit e1000_remove(struct pci_dev *pdev);
193 static int e1000_alloc_queues(struct e1000_adapter *adapter);
194 #ifdef CONFIG_E1000_MQ
195 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
196 #endif
197 static int e1000_sw_init(struct e1000_adapter *adapter);
198 static int e1000_open(struct net_device *netdev);
199 static int e1000_close(struct net_device *netdev);
200 static void e1000_configure_tx(struct e1000_adapter *adapter);
201 static void e1000_configure_rx(struct e1000_adapter *adapter);
202 static void e1000_setup_rctl(struct e1000_adapter *adapter);
203 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
204 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
205 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
206                                 struct e1000_tx_ring *tx_ring);
207 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
208                                 struct e1000_rx_ring *rx_ring);
209 static void e1000_set_multi(struct net_device *netdev);
210 static void e1000_update_phy_info(unsigned long data);
211 static void e1000_watchdog(unsigned long data);
212 static void e1000_watchdog_task(struct e1000_adapter *adapter);
213 static void e1000_82547_tx_fifo_stall(unsigned long data);
214 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
215 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
216 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
217 static int e1000_set_mac(struct net_device *netdev, void *p);
218 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
219 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
220                                     struct e1000_tx_ring *tx_ring);
221 #ifdef CONFIG_E1000_NAPI
222 static int e1000_clean(struct net_device *poll_dev, int *budget);
223 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
224                                     struct e1000_rx_ring *rx_ring,
225                                     int *work_done, int work_to_do);
226 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
227                                        struct e1000_rx_ring *rx_ring,
228                                        int *work_done, int work_to_do);
229 #else
230 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
231                                     struct e1000_rx_ring *rx_ring);
232 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
233                                        struct e1000_rx_ring *rx_ring);
234 #endif
235 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
236                                    struct e1000_rx_ring *rx_ring,
237                                    int cleaned_count);
238 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
239                                       struct e1000_rx_ring *rx_ring,
240                                       int cleaned_count);
241 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
242 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
243                            int cmd);
244 void e1000_set_ethtool_ops(struct net_device *netdev);
245 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
246 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
247 static void e1000_tx_timeout(struct net_device *dev);
248 static void e1000_tx_timeout_task(struct net_device *dev);
249 static void e1000_smartspeed(struct e1000_adapter *adapter);
250 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
251                                               struct sk_buff *skb);
252
253 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
254 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
255 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
256 static void e1000_restore_vlan(struct e1000_adapter *adapter);
257
258 #ifdef CONFIG_PM
259 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
260 static int e1000_resume(struct pci_dev *pdev);
261 #endif
262
263 #ifdef CONFIG_NET_POLL_CONTROLLER
264 /* for netdump / net console */
265 static void e1000_netpoll (struct net_device *netdev);
266 #endif
267
268 #ifdef CONFIG_E1000_MQ
269 /* for multiple Rx queues */
270 void e1000_rx_schedule(void *data);
271 #endif
272
273 /* Exported from other modules */
274
275 extern void e1000_check_options(struct e1000_adapter *adapter);
276
277 static struct pci_driver e1000_driver = {
278         .name     = e1000_driver_name,
279         .id_table = e1000_pci_tbl,
280         .probe    = e1000_probe,
281         .remove   = __devexit_p(e1000_remove),
282         /* Power Managment Hooks */
283 #ifdef CONFIG_PM
284         .suspend  = e1000_suspend,
285         .resume   = e1000_resume
286 #endif
287 };
288
289 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
290 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
291 MODULE_LICENSE("GPL");
292 MODULE_VERSION(DRV_VERSION);
293
294 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
295 module_param(debug, int, 0);
296 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
297
298 /**
299  * e1000_init_module - Driver Registration Routine
300  *
301  * e1000_init_module is the first routine called when the driver is
302  * loaded. All it does is register with the PCI subsystem.
303  **/
304
305 static int __init
306 e1000_init_module(void)
307 {
308         int ret;
309         printk(KERN_INFO "%s - version %s\n",
310                e1000_driver_string, e1000_driver_version);
311
312         printk(KERN_INFO "%s\n", e1000_copyright);
313
314         ret = pci_module_init(&e1000_driver);
315
316         return ret;
317 }
318
319 module_init(e1000_init_module);
320
321 /**
322  * e1000_exit_module - Driver Exit Cleanup Routine
323  *
324  * e1000_exit_module is called just before the driver is removed
325  * from memory.
326  **/
327
328 static void __exit
329 e1000_exit_module(void)
330 {
331         pci_unregister_driver(&e1000_driver);
332 }
333
334 module_exit(e1000_exit_module);
335
336 /**
337  * e1000_irq_disable - Mask off interrupt generation on the NIC
338  * @adapter: board private structure
339  **/
340
341 static inline void
342 e1000_irq_disable(struct e1000_adapter *adapter)
343 {
344         atomic_inc(&adapter->irq_sem);
345         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
346         E1000_WRITE_FLUSH(&adapter->hw);
347         synchronize_irq(adapter->pdev->irq);
348 }
349
350 /**
351  * e1000_irq_enable - Enable default interrupt generation settings
352  * @adapter: board private structure
353  **/
354
355 static inline void
356 e1000_irq_enable(struct e1000_adapter *adapter)
357 {
358         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
359                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
360                 E1000_WRITE_FLUSH(&adapter->hw);
361         }
362 }
363
364 static void
365 e1000_update_mng_vlan(struct e1000_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
369         uint16_t old_vid = adapter->mng_vlan_id;
370         if (adapter->vlgrp) {
371                 if (!adapter->vlgrp->vlan_devices[vid]) {
372                         if (adapter->hw.mng_cookie.status &
373                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
374                                 e1000_vlan_rx_add_vid(netdev, vid);
375                                 adapter->mng_vlan_id = vid;
376                         } else
377                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
378
379                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
380                                         (vid != old_vid) &&
381                                         !adapter->vlgrp->vlan_devices[old_vid])
382                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
383                 }
384         }
385 }
386
387 /**
388  * e1000_release_hw_control - release control of the h/w to f/w
389  * @adapter: address of board private structure
390  *
391  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
392  * For ASF and Pass Through versions of f/w this means that the
393  * driver is no longer loaded. For AMT version (only with 82573) i
394  * of the f/w this means that the netowrk i/f is closed.
395  * 
396  **/
397
398 static inline void 
399 e1000_release_hw_control(struct e1000_adapter *adapter)
400 {
401         uint32_t ctrl_ext;
402         uint32_t swsm;
403
404         /* Let firmware taken over control of h/w */
405         switch (adapter->hw.mac_type) {
406         case e1000_82571:
407         case e1000_82572:
408                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
409                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
410                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
411                 break;
412         case e1000_82573:
413                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
414                 E1000_WRITE_REG(&adapter->hw, SWSM,
415                                 swsm & ~E1000_SWSM_DRV_LOAD);
416         default:
417                 break;
418         }
419 }
420
421 /**
422  * e1000_get_hw_control - get control of the h/w from f/w
423  * @adapter: address of board private structure
424  *
425  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
426  * For ASF and Pass Through versions of f/w this means that 
427  * the driver is loaded. For AMT version (only with 82573) 
428  * of the f/w this means that the netowrk i/f is open.
429  * 
430  **/
431
432 static inline void 
433 e1000_get_hw_control(struct e1000_adapter *adapter)
434 {
435         uint32_t ctrl_ext;
436         uint32_t swsm;
437         /* Let firmware know the driver has taken over */
438         switch (adapter->hw.mac_type) {
439         case e1000_82571:
440         case e1000_82572:
441                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
442                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
443                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
444                 break;
445         case e1000_82573:
446                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
447                 E1000_WRITE_REG(&adapter->hw, SWSM,
448                                 swsm | E1000_SWSM_DRV_LOAD);
449                 break;
450         default:
451                 break;
452         }
453 }
454
455 int
456 e1000_up(struct e1000_adapter *adapter)
457 {
458         struct net_device *netdev = adapter->netdev;
459         int i, err;
460
461         /* hardware has been reset, we need to reload some things */
462
463         /* Reset the PHY if it was previously powered down */
464         if (adapter->hw.media_type == e1000_media_type_copper) {
465                 uint16_t mii_reg;
466                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
467                 if (mii_reg & MII_CR_POWER_DOWN)
468                         e1000_phy_reset(&adapter->hw);
469         }
470
471         e1000_set_multi(netdev);
472
473         e1000_restore_vlan(adapter);
474
475         e1000_configure_tx(adapter);
476         e1000_setup_rctl(adapter);
477         e1000_configure_rx(adapter);
478         /* call E1000_DESC_UNUSED which always leaves
479          * at least 1 descriptor unused to make sure
480          * next_to_use != next_to_clean */
481         for (i = 0; i < adapter->num_rx_queues; i++) {
482                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
483                 adapter->alloc_rx_buf(adapter, ring,
484                                       E1000_DESC_UNUSED(ring));
485         }
486
487 #ifdef CONFIG_PCI_MSI
488         if (adapter->hw.mac_type > e1000_82547_rev_2) {
489                 adapter->have_msi = TRUE;
490                 if ((err = pci_enable_msi(adapter->pdev))) {
491                         DPRINTK(PROBE, ERR,
492                          "Unable to allocate MSI interrupt Error: %d\n", err);
493                         adapter->have_msi = FALSE;
494                 }
495         }
496 #endif
497         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
498                               SA_SHIRQ | SA_SAMPLE_RANDOM,
499                               netdev->name, netdev))) {
500                 DPRINTK(PROBE, ERR,
501                     "Unable to allocate interrupt Error: %d\n", err);
502                 return err;
503         }
504
505 #ifdef CONFIG_E1000_MQ
506         e1000_setup_queue_mapping(adapter);
507 #endif
508
509         adapter->tx_queue_len = netdev->tx_queue_len;
510
511         mod_timer(&adapter->watchdog_timer, jiffies);
512
513 #ifdef CONFIG_E1000_NAPI
514         netif_poll_enable(netdev);
515 #endif
516         e1000_irq_enable(adapter);
517
518         return 0;
519 }
520
521 void
522 e1000_down(struct e1000_adapter *adapter)
523 {
524         struct net_device *netdev = adapter->netdev;
525         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
526                                      e1000_check_mng_mode(&adapter->hw);
527
528         e1000_irq_disable(adapter);
529 #ifdef CONFIG_E1000_MQ
530         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
531 #endif
532         free_irq(adapter->pdev->irq, netdev);
533 #ifdef CONFIG_PCI_MSI
534         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
535            adapter->have_msi == TRUE)
536                 pci_disable_msi(adapter->pdev);
537 #endif
538         del_timer_sync(&adapter->tx_fifo_stall_timer);
539         del_timer_sync(&adapter->watchdog_timer);
540         del_timer_sync(&adapter->phy_info_timer);
541
542 #ifdef CONFIG_E1000_NAPI
543         netif_poll_disable(netdev);
544 #endif
545         netdev->tx_queue_len = adapter->tx_queue_len;
546         adapter->link_speed = 0;
547         adapter->link_duplex = 0;
548         netif_carrier_off(netdev);
549         netif_stop_queue(netdev);
550
551         e1000_reset(adapter);
552         e1000_clean_all_tx_rings(adapter);
553         e1000_clean_all_rx_rings(adapter);
554
555         /* Power down the PHY so no link is implied when interface is down *
556          * The PHY cannot be powered down if any of the following is TRUE *
557          * (a) WoL is enabled
558          * (b) AMT is active
559          * (c) SoL/IDER session is active */
560         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
561            adapter->hw.media_type == e1000_media_type_copper &&
562            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
563            !mng_mode_enabled &&
564            !e1000_check_phy_reset_block(&adapter->hw)) {
565                 uint16_t mii_reg;
566                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
567                 mii_reg |= MII_CR_POWER_DOWN;
568                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
569                 mdelay(1);
570         }
571 }
572
573 void
574 e1000_reset(struct e1000_adapter *adapter)
575 {
576         uint32_t pba, manc;
577         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
578
579         /* Repartition Pba for greater than 9k mtu
580          * To take effect CTRL.RST is required.
581          */
582
583         switch (adapter->hw.mac_type) {
584         case e1000_82547:
585         case e1000_82547_rev_2:
586                 pba = E1000_PBA_30K;
587                 break;
588         case e1000_82571:
589         case e1000_82572:
590                 pba = E1000_PBA_38K;
591                 break;
592         case e1000_82573:
593                 pba = E1000_PBA_12K;
594                 break;
595         default:
596                 pba = E1000_PBA_48K;
597                 break;
598         }
599
600         if ((adapter->hw.mac_type != e1000_82573) &&
601            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
602                 pba -= 8; /* allocate more FIFO for Tx */
603
604
605         if (adapter->hw.mac_type == e1000_82547) {
606                 adapter->tx_fifo_head = 0;
607                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
608                 adapter->tx_fifo_size =
609                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
610                 atomic_set(&adapter->tx_fifo_stall, 0);
611         }
612
613         E1000_WRITE_REG(&adapter->hw, PBA, pba);
614
615         /* flow control settings */
616         /* Set the FC high water mark to 90% of the FIFO size.
617          * Required to clear last 3 LSB */
618         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
619
620         adapter->hw.fc_high_water = fc_high_water_mark;
621         adapter->hw.fc_low_water = fc_high_water_mark - 8;
622         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638         if (adapter->en_mng_pt) {
639                 manc = E1000_READ_REG(&adapter->hw, MANC);
640                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
641                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
642         }
643 }
644
645 /**
646  * e1000_probe - Device Initialization Routine
647  * @pdev: PCI device information struct
648  * @ent: entry in e1000_pci_tbl
649  *
650  * Returns 0 on success, negative on failure
651  *
652  * e1000_probe initializes an adapter identified by a pci_dev structure.
653  * The OS initialization, configuring of the adapter private structure,
654  * and a hardware reset occur.
655  **/
656
657 static int __devinit
658 e1000_probe(struct pci_dev *pdev,
659             const struct pci_device_id *ent)
660 {
661         struct net_device *netdev;
662         struct e1000_adapter *adapter;
663         unsigned long mmio_start, mmio_len;
664
665         static int cards_found = 0;
666         int i, err, pci_using_dac;
667         uint16_t eeprom_data;
668         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
669         if ((err = pci_enable_device(pdev)))
670                 return err;
671
672         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
673                 pci_using_dac = 1;
674         } else {
675                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
676                         E1000_ERR("No usable DMA configuration, aborting\n");
677                         return err;
678                 }
679                 pci_using_dac = 0;
680         }
681
682         if ((err = pci_request_regions(pdev, e1000_driver_name)))
683                 return err;
684
685         pci_set_master(pdev);
686
687         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
688         if (!netdev) {
689                 err = -ENOMEM;
690                 goto err_alloc_etherdev;
691         }
692
693         SET_MODULE_OWNER(netdev);
694         SET_NETDEV_DEV(netdev, &pdev->dev);
695
696         pci_set_drvdata(pdev, netdev);
697         adapter = netdev_priv(netdev);
698         adapter->netdev = netdev;
699         adapter->pdev = pdev;
700         adapter->hw.back = adapter;
701         adapter->msg_enable = (1 << debug) - 1;
702
703         mmio_start = pci_resource_start(pdev, BAR_0);
704         mmio_len = pci_resource_len(pdev, BAR_0);
705
706         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
707         if (!adapter->hw.hw_addr) {
708                 err = -EIO;
709                 goto err_ioremap;
710         }
711
712         for (i = BAR_1; i <= BAR_5; i++) {
713                 if (pci_resource_len(pdev, i) == 0)
714                         continue;
715                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
716                         adapter->hw.io_base = pci_resource_start(pdev, i);
717                         break;
718                 }
719         }
720
721         netdev->open = &e1000_open;
722         netdev->stop = &e1000_close;
723         netdev->hard_start_xmit = &e1000_xmit_frame;
724         netdev->get_stats = &e1000_get_stats;
725         netdev->set_multicast_list = &e1000_set_multi;
726         netdev->set_mac_address = &e1000_set_mac;
727         netdev->change_mtu = &e1000_change_mtu;
728         netdev->do_ioctl = &e1000_ioctl;
729         e1000_set_ethtool_ops(netdev);
730         netdev->tx_timeout = &e1000_tx_timeout;
731         netdev->watchdog_timeo = 5 * HZ;
732 #ifdef CONFIG_E1000_NAPI
733         netdev->poll = &e1000_clean;
734         netdev->weight = 64;
735 #endif
736         netdev->vlan_rx_register = e1000_vlan_rx_register;
737         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
738         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
739 #ifdef CONFIG_NET_POLL_CONTROLLER
740         netdev->poll_controller = e1000_netpoll;
741 #endif
742         strcpy(netdev->name, pci_name(pdev));
743
744         netdev->mem_start = mmio_start;
745         netdev->mem_end = mmio_start + mmio_len;
746         netdev->base_addr = adapter->hw.io_base;
747
748         adapter->bd_number = cards_found;
749
750         /* setup the private structure */
751
752         if ((err = e1000_sw_init(adapter)))
753                 goto err_sw_init;
754
755         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
756                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
757
758         if (adapter->hw.mac_type >= e1000_82543) {
759                 netdev->features = NETIF_F_SG |
760                                    NETIF_F_HW_CSUM |
761                                    NETIF_F_HW_VLAN_TX |
762                                    NETIF_F_HW_VLAN_RX |
763                                    NETIF_F_HW_VLAN_FILTER;
764         }
765
766 #ifdef NETIF_F_TSO
767         if ((adapter->hw.mac_type >= e1000_82544) &&
768            (adapter->hw.mac_type != e1000_82547))
769                 netdev->features |= NETIF_F_TSO;
770
771 #ifdef NETIF_F_TSO_IPV6
772         if (adapter->hw.mac_type > e1000_82547_rev_2)
773                 netdev->features |= NETIF_F_TSO_IPV6;
774 #endif
775 #endif
776         if (pci_using_dac)
777                 netdev->features |= NETIF_F_HIGHDMA;
778
779         /* hard_start_xmit is safe against parallel locking */
780         netdev->features |= NETIF_F_LLTX; 
781  
782         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
783
784         /* before reading the EEPROM, reset the controller to
785          * put the device in a known good starting state */
786
787         e1000_reset_hw(&adapter->hw);
788
789         /* make sure the EEPROM is good */
790
791         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
792                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
793                 err = -EIO;
794                 goto err_eeprom;
795         }
796
797         /* copy the MAC address out of the EEPROM */
798
799         if (e1000_read_mac_addr(&adapter->hw))
800                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
801         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
802         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
803
804         if (!is_valid_ether_addr(netdev->perm_addr)) {
805                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
806                 err = -EIO;
807                 goto err_eeprom;
808         }
809
810         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
811
812         e1000_get_bus_info(&adapter->hw);
813
814         init_timer(&adapter->tx_fifo_stall_timer);
815         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
816         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
817
818         init_timer(&adapter->watchdog_timer);
819         adapter->watchdog_timer.function = &e1000_watchdog;
820         adapter->watchdog_timer.data = (unsigned long) adapter;
821
822         INIT_WORK(&adapter->watchdog_task,
823                 (void (*)(void *))e1000_watchdog_task, adapter);
824
825         init_timer(&adapter->phy_info_timer);
826         adapter->phy_info_timer.function = &e1000_update_phy_info;
827         adapter->phy_info_timer.data = (unsigned long) adapter;
828
829         INIT_WORK(&adapter->tx_timeout_task,
830                 (void (*)(void *))e1000_tx_timeout_task, netdev);
831
832         /* we're going to reset, so assume we have no link for now */
833
834         netif_carrier_off(netdev);
835         netif_stop_queue(netdev);
836
837         e1000_check_options(adapter);
838
839         /* Initial Wake on LAN setting
840          * If APM wake is enabled in the EEPROM,
841          * enable the ACPI Magic Packet filter
842          */
843
844         switch (adapter->hw.mac_type) {
845         case e1000_82542_rev2_0:
846         case e1000_82542_rev2_1:
847         case e1000_82543:
848                 break;
849         case e1000_82544:
850                 e1000_read_eeprom(&adapter->hw,
851                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
852                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
853                 break;
854         case e1000_82546:
855         case e1000_82546_rev_3:
856         case e1000_82571:
857                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
858                         e1000_read_eeprom(&adapter->hw,
859                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
860                         break;
861                 }
862                 /* Fall Through */
863         default:
864                 e1000_read_eeprom(&adapter->hw,
865                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
866                 break;
867         }
868         if (eeprom_data & eeprom_apme_mask)
869                 adapter->wol |= E1000_WUFC_MAG;
870
871         /* print bus type/speed/width info */
872         {
873         struct e1000_hw *hw = &adapter->hw;
874         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
875                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
876                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
877                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
878                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
879                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
880                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
881                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
882                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
883                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
884                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
885                  "32-bit"));
886         }
887
888         for (i = 0; i < 6; i++)
889                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
890
891         /* reset the hardware with the new settings */
892         e1000_reset(adapter);
893
894         /* If the controller is 82573 and f/w is AMT, do not set
895          * DRV_LOAD until the interface is up.  For all other cases,
896          * let the f/w know that the h/w is now under the control
897          * of the driver. */
898         if (adapter->hw.mac_type != e1000_82573 ||
899             !e1000_check_mng_mode(&adapter->hw))
900                 e1000_get_hw_control(adapter);
901
902         strcpy(netdev->name, "eth%d");
903         if ((err = register_netdev(netdev)))
904                 goto err_register;
905
906         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
907
908         cards_found++;
909         return 0;
910
911 err_register:
912 err_sw_init:
913 err_eeprom:
914         iounmap(adapter->hw.hw_addr);
915 err_ioremap:
916         free_netdev(netdev);
917 err_alloc_etherdev:
918         pci_release_regions(pdev);
919         return err;
920 }
921
922 /**
923  * e1000_remove - Device Removal Routine
924  * @pdev: PCI device information struct
925  *
926  * e1000_remove is called by the PCI subsystem to alert the driver
927  * that it should release a PCI device.  The could be caused by a
928  * Hot-Plug event, or because the driver is going to be removed from
929  * memory.
930  **/
931
932 static void __devexit
933 e1000_remove(struct pci_dev *pdev)
934 {
935         struct net_device *netdev = pci_get_drvdata(pdev);
936         struct e1000_adapter *adapter = netdev_priv(netdev);
937         uint32_t manc;
938 #ifdef CONFIG_E1000_NAPI
939         int i;
940 #endif
941
942         flush_scheduled_work();
943
944         if (adapter->hw.mac_type >= e1000_82540 &&
945            adapter->hw.media_type == e1000_media_type_copper) {
946                 manc = E1000_READ_REG(&adapter->hw, MANC);
947                 if (manc & E1000_MANC_SMBUS_EN) {
948                         manc |= E1000_MANC_ARP_EN;
949                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
950                 }
951         }
952
953         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
954          * would have already happened in close and is redundant. */
955         e1000_release_hw_control(adapter);
956
957         unregister_netdev(netdev);
958 #ifdef CONFIG_E1000_NAPI
959         for (i = 0; i < adapter->num_rx_queues; i++)
960                 __dev_put(&adapter->polling_netdev[i]);
961 #endif
962
963         if (!e1000_check_phy_reset_block(&adapter->hw))
964                 e1000_phy_hw_reset(&adapter->hw);
965
966         kfree(adapter->tx_ring);
967         kfree(adapter->rx_ring);
968 #ifdef CONFIG_E1000_NAPI
969         kfree(adapter->polling_netdev);
970 #endif
971
972         iounmap(adapter->hw.hw_addr);
973         pci_release_regions(pdev);
974
975 #ifdef CONFIG_E1000_MQ
976         free_percpu(adapter->cpu_netdev);
977         free_percpu(adapter->cpu_tx_ring);
978 #endif
979         free_netdev(netdev);
980
981         pci_disable_device(pdev);
982 }
983
984 /**
985  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
986  * @adapter: board private structure to initialize
987  *
988  * e1000_sw_init initializes the Adapter private data structure.
989  * Fields are initialized based on PCI device information and
990  * OS network device settings (MTU size).
991  **/
992
993 static int __devinit
994 e1000_sw_init(struct e1000_adapter *adapter)
995 {
996         struct e1000_hw *hw = &adapter->hw;
997         struct net_device *netdev = adapter->netdev;
998         struct pci_dev *pdev = adapter->pdev;
999 #ifdef CONFIG_E1000_NAPI
1000         int i;
1001 #endif
1002
1003         /* PCI config space info */
1004
1005         hw->vendor_id = pdev->vendor;
1006         hw->device_id = pdev->device;
1007         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1008         hw->subsystem_id = pdev->subsystem_device;
1009
1010         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1011
1012         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1013
1014         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
1015         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
1016         hw->max_frame_size = netdev->mtu +
1017                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1018         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1019
1020         /* identify the MAC */
1021
1022         if (e1000_set_mac_type(hw)) {
1023                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1024                 return -EIO;
1025         }
1026
1027         /* initialize eeprom parameters */
1028
1029         if (e1000_init_eeprom_params(hw)) {
1030                 E1000_ERR("EEPROM initialization failed\n");
1031                 return -EIO;
1032         }
1033
1034         switch (hw->mac_type) {
1035         default:
1036                 break;
1037         case e1000_82541:
1038         case e1000_82547:
1039         case e1000_82541_rev_2:
1040         case e1000_82547_rev_2:
1041                 hw->phy_init_script = 1;
1042                 break;
1043         }
1044
1045         e1000_set_media_type(hw);
1046
1047         hw->wait_autoneg_complete = FALSE;
1048         hw->tbi_compatibility_en = TRUE;
1049         hw->adaptive_ifs = TRUE;
1050
1051         /* Copper options */
1052
1053         if (hw->media_type == e1000_media_type_copper) {
1054                 hw->mdix = AUTO_ALL_MODES;
1055                 hw->disable_polarity_correction = FALSE;
1056                 hw->master_slave = E1000_MASTER_SLAVE;
1057         }
1058
1059 #ifdef CONFIG_E1000_MQ
1060         /* Number of supported queues */
1061         switch (hw->mac_type) {
1062         case e1000_82571:
1063         case e1000_82572:
1064                 /* These controllers support 2 tx queues, but with a single
1065                  * qdisc implementation, multiple tx queues aren't quite as
1066                  * interesting.  If we can find a logical way of mapping
1067                  * flows to a queue, then perhaps we can up the num_tx_queue
1068                  * count back to its default.  Until then, we run the risk of
1069                  * terrible performance due to SACK overload. */
1070                 adapter->num_tx_queues = 1;
1071                 adapter->num_rx_queues = 2;
1072                 break;
1073         default:
1074                 adapter->num_tx_queues = 1;
1075                 adapter->num_rx_queues = 1;
1076                 break;
1077         }
1078         adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
1079         adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
1080         DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
1081                 adapter->num_rx_queues,
1082                 ((adapter->num_rx_queues == 1)
1083                  ? ((num_online_cpus() > 1)
1084                         ? "(due to unsupported feature in current adapter)"
1085                         : "(due to unsupported system configuration)")
1086                  : ""));
1087         DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
1088                 adapter->num_tx_queues);
1089 #else
1090         adapter->num_tx_queues = 1;
1091         adapter->num_rx_queues = 1;
1092 #endif
1093
1094         if (e1000_alloc_queues(adapter)) {
1095                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1096                 return -ENOMEM;
1097         }
1098
1099 #ifdef CONFIG_E1000_NAPI
1100         for (i = 0; i < adapter->num_rx_queues; i++) {
1101                 adapter->polling_netdev[i].priv = adapter;
1102                 adapter->polling_netdev[i].poll = &e1000_clean;
1103                 adapter->polling_netdev[i].weight = 64;
1104                 dev_hold(&adapter->polling_netdev[i]);
1105                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1106         }
1107         spin_lock_init(&adapter->tx_queue_lock);
1108 #endif
1109
1110         atomic_set(&adapter->irq_sem, 1);
1111         spin_lock_init(&adapter->stats_lock);
1112
1113         return 0;
1114 }
1115
1116 /**
1117  * e1000_alloc_queues - Allocate memory for all rings
1118  * @adapter: board private structure to initialize
1119  *
1120  * We allocate one ring per queue at run-time since we don't know the
1121  * number of queues at compile-time.  The polling_netdev array is
1122  * intended for Multiqueue, but should work fine with a single queue.
1123  **/
1124
1125 static int __devinit
1126 e1000_alloc_queues(struct e1000_adapter *adapter)
1127 {
1128         int size;
1129
1130         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1131         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1132         if (!adapter->tx_ring)
1133                 return -ENOMEM;
1134         memset(adapter->tx_ring, 0, size);
1135
1136         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1137         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1138         if (!adapter->rx_ring) {
1139                 kfree(adapter->tx_ring);
1140                 return -ENOMEM;
1141         }
1142         memset(adapter->rx_ring, 0, size);
1143
1144 #ifdef CONFIG_E1000_NAPI
1145         size = sizeof(struct net_device) * adapter->num_rx_queues;
1146         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1147         if (!adapter->polling_netdev) {
1148                 kfree(adapter->tx_ring);
1149                 kfree(adapter->rx_ring);
1150                 return -ENOMEM;
1151         }
1152         memset(adapter->polling_netdev, 0, size);
1153 #endif
1154
1155 #ifdef CONFIG_E1000_MQ
1156         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1157         adapter->rx_sched_call_data.info = adapter->netdev;
1158
1159         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1160         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1161 #endif
1162
1163         return E1000_SUCCESS;
1164 }
1165
1166 #ifdef CONFIG_E1000_MQ
1167 static void __devinit
1168 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1169 {
1170         int i, cpu;
1171
1172         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1173         adapter->rx_sched_call_data.info = adapter->netdev;
1174         cpus_clear(adapter->rx_sched_call_data.cpumask);
1175
1176         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1177         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1178
1179         lock_cpu_hotplug();
1180         i = 0;
1181         for_each_online_cpu(cpu) {
1182                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
1183                 /* This is incomplete because we'd like to assign separate
1184                  * physical cpus to these netdev polling structures and
1185                  * avoid saturating a subset of cpus.
1186                  */
1187                 if (i < adapter->num_rx_queues) {
1188                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1189                         adapter->rx_ring[i].cpu = cpu;
1190                         cpu_set(cpu, adapter->cpumask);
1191                 } else
1192                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1193
1194                 i++;
1195         }
1196         unlock_cpu_hotplug();
1197 }
1198 #endif
1199
1200 /**
1201  * e1000_open - Called when a network interface is made active
1202  * @netdev: network interface device structure
1203  *
1204  * Returns 0 on success, negative value on failure
1205  *
1206  * The open entry point is called when a network interface is made
1207  * active by the system (IFF_UP).  At this point all resources needed
1208  * for transmit and receive operations are allocated, the interrupt
1209  * handler is registered with the OS, the watchdog timer is started,
1210  * and the stack is notified that the interface is ready.
1211  **/
1212
1213 static int
1214 e1000_open(struct net_device *netdev)
1215 {
1216         struct e1000_adapter *adapter = netdev_priv(netdev);
1217         int err;
1218
1219         /* allocate transmit descriptors */
1220
1221         if ((err = e1000_setup_all_tx_resources(adapter)))
1222                 goto err_setup_tx;
1223
1224         /* allocate receive descriptors */
1225
1226         if ((err = e1000_setup_all_rx_resources(adapter)))
1227                 goto err_setup_rx;
1228
1229         if ((err = e1000_up(adapter)))
1230                 goto err_up;
1231         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1232         if ((adapter->hw.mng_cookie.status &
1233                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1234                 e1000_update_mng_vlan(adapter);
1235         }
1236
1237         /* If AMT is enabled, let the firmware know that the network
1238          * interface is now open */
1239         if (adapter->hw.mac_type == e1000_82573 &&
1240             e1000_check_mng_mode(&adapter->hw))
1241                 e1000_get_hw_control(adapter);
1242
1243         return E1000_SUCCESS;
1244
1245 err_up:
1246         e1000_free_all_rx_resources(adapter);
1247 err_setup_rx:
1248         e1000_free_all_tx_resources(adapter);
1249 err_setup_tx:
1250         e1000_reset(adapter);
1251
1252         return err;
1253 }
1254
1255 /**
1256  * e1000_close - Disables a network interface
1257  * @netdev: network interface device structure
1258  *
1259  * Returns 0, this is not allowed to fail
1260  *
1261  * The close entry point is called when an interface is de-activated
1262  * by the OS.  The hardware is still under the drivers control, but
1263  * needs to be disabled.  A global MAC reset is issued to stop the
1264  * hardware, and all transmit and receive resources are freed.
1265  **/
1266
1267 static int
1268 e1000_close(struct net_device *netdev)
1269 {
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271
1272         e1000_down(adapter);
1273
1274         e1000_free_all_tx_resources(adapter);
1275         e1000_free_all_rx_resources(adapter);
1276
1277         if ((adapter->hw.mng_cookie.status &
1278                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1279                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1280         }
1281
1282         /* If AMT is enabled, let the firmware know that the network
1283          * interface is now closed */
1284         if (adapter->hw.mac_type == e1000_82573 &&
1285             e1000_check_mng_mode(&adapter->hw))
1286                 e1000_release_hw_control(adapter);
1287
1288         return 0;
1289 }
1290
1291 /**
1292  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1293  * @adapter: address of board private structure
1294  * @start: address of beginning of memory
1295  * @len: length of memory
1296  **/
1297 static inline boolean_t
1298 e1000_check_64k_bound(struct e1000_adapter *adapter,
1299                       void *start, unsigned long len)
1300 {
1301         unsigned long begin = (unsigned long) start;
1302         unsigned long end = begin + len;
1303
1304         /* First rev 82545 and 82546 need to not allow any memory
1305          * write location to cross 64k boundary due to errata 23 */
1306         if (adapter->hw.mac_type == e1000_82545 ||
1307             adapter->hw.mac_type == e1000_82546) {
1308                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1309         }
1310
1311         return TRUE;
1312 }
1313
1314 /**
1315  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1316  * @adapter: board private structure
1317  * @txdr:    tx descriptor ring (for a specific queue) to setup
1318  *
1319  * Return 0 on success, negative on failure
1320  **/
1321
1322 static int
1323 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1324                          struct e1000_tx_ring *txdr)
1325 {
1326         struct pci_dev *pdev = adapter->pdev;
1327         int size;
1328
1329         size = sizeof(struct e1000_buffer) * txdr->count;
1330
1331         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1332         if (!txdr->buffer_info) {
1333                 DPRINTK(PROBE, ERR,
1334                 "Unable to allocate memory for the transmit descriptor ring\n");
1335                 return -ENOMEM;
1336         }
1337         memset(txdr->buffer_info, 0, size);
1338
1339         /* round up to nearest 4K */
1340
1341         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1342         E1000_ROUNDUP(txdr->size, 4096);
1343
1344         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1345         if (!txdr->desc) {
1346 setup_tx_desc_die:
1347                 vfree(txdr->buffer_info);
1348                 DPRINTK(PROBE, ERR,
1349                 "Unable to allocate memory for the transmit descriptor ring\n");
1350                 return -ENOMEM;
1351         }
1352
1353         /* Fix for errata 23, can't cross 64kB boundary */
1354         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1355                 void *olddesc = txdr->desc;
1356                 dma_addr_t olddma = txdr->dma;
1357                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1358                                      "at %p\n", txdr->size, txdr->desc);
1359                 /* Try again, without freeing the previous */
1360                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1361                 /* Failed allocation, critical failure */
1362                 if (!txdr->desc) {
1363                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1364                         goto setup_tx_desc_die;
1365                 }
1366
1367                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1368                         /* give up */
1369                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1370                                             txdr->dma);
1371                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1372                         DPRINTK(PROBE, ERR,
1373                                 "Unable to allocate aligned memory "
1374                                 "for the transmit descriptor ring\n");
1375                         vfree(txdr->buffer_info);
1376                         return -ENOMEM;
1377                 } else {
1378                         /* Free old allocation, new allocation was successful */
1379                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1380                 }
1381         }
1382         memset(txdr->desc, 0, txdr->size);
1383
1384         txdr->next_to_use = 0;
1385         txdr->next_to_clean = 0;
1386         spin_lock_init(&txdr->tx_lock);
1387
1388         return 0;
1389 }
1390
1391 /**
1392  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1393  *                                (Descriptors) for all queues
1394  * @adapter: board private structure
1395  *
1396  * If this function returns with an error, then it's possible one or
1397  * more of the rings is populated (while the rest are not).  It is the
1398  * callers duty to clean those orphaned rings.
1399  *
1400  * Return 0 on success, negative on failure
1401  **/
1402
1403 int
1404 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1405 {
1406         int i, err = 0;
1407
1408         for (i = 0; i < adapter->num_tx_queues; i++) {
1409                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1410                 if (err) {
1411                         DPRINTK(PROBE, ERR,
1412                                 "Allocation for Tx Queue %u failed\n", i);
1413                         break;
1414                 }
1415         }
1416
1417         return err;
1418 }
1419
1420 /**
1421  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1422  * @adapter: board private structure
1423  *
1424  * Configure the Tx unit of the MAC after a reset.
1425  **/
1426
1427 static void
1428 e1000_configure_tx(struct e1000_adapter *adapter)
1429 {
1430         uint64_t tdba;
1431         struct e1000_hw *hw = &adapter->hw;
1432         uint32_t tdlen, tctl, tipg, tarc;
1433         uint32_t ipgr1, ipgr2;
1434
1435         /* Setup the HW Tx Head and Tail descriptor pointers */
1436
1437         switch (adapter->num_tx_queues) {
1438         case 2:
1439                 tdba = adapter->tx_ring[1].dma;
1440                 tdlen = adapter->tx_ring[1].count *
1441                         sizeof(struct e1000_tx_desc);
1442                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1443                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1444                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1445                 E1000_WRITE_REG(hw, TDH1, 0);
1446                 E1000_WRITE_REG(hw, TDT1, 0);
1447                 adapter->tx_ring[1].tdh = E1000_TDH1;
1448                 adapter->tx_ring[1].tdt = E1000_TDT1;
1449                 /* Fall Through */
1450         case 1:
1451         default:
1452                 tdba = adapter->tx_ring[0].dma;
1453                 tdlen = adapter->tx_ring[0].count *
1454                         sizeof(struct e1000_tx_desc);
1455                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1456                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1457                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1458                 E1000_WRITE_REG(hw, TDH, 0);
1459                 E1000_WRITE_REG(hw, TDT, 0);
1460                 adapter->tx_ring[0].tdh = E1000_TDH;
1461                 adapter->tx_ring[0].tdt = E1000_TDT;
1462                 break;
1463         }
1464
1465         /* Set the default values for the Tx Inter Packet Gap timer */
1466
1467         if (hw->media_type == e1000_media_type_fiber ||
1468             hw->media_type == e1000_media_type_internal_serdes)
1469                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1470         else
1471                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1472
1473         switch (hw->mac_type) {
1474         case e1000_82542_rev2_0:
1475         case e1000_82542_rev2_1:
1476                 tipg = DEFAULT_82542_TIPG_IPGT;
1477                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1478                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1479                 break;
1480         default:
1481                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1482                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1483                 break;
1484         }
1485         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1486         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1487         E1000_WRITE_REG(hw, TIPG, tipg);
1488
1489         /* Set the Tx Interrupt Delay register */
1490
1491         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1492         if (hw->mac_type >= e1000_82540)
1493                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1494
1495         /* Program the Transmit Control Register */
1496
1497         tctl = E1000_READ_REG(hw, TCTL);
1498
1499         tctl &= ~E1000_TCTL_CT;
1500         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1501                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1502
1503         E1000_WRITE_REG(hw, TCTL, tctl);
1504
1505         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1506                 tarc = E1000_READ_REG(hw, TARC0);
1507                 tarc |= ((1 << 25) | (1 << 21));
1508                 E1000_WRITE_REG(hw, TARC0, tarc);
1509                 tarc = E1000_READ_REG(hw, TARC1);
1510                 tarc |= (1 << 25);
1511                 if (tctl & E1000_TCTL_MULR)
1512                         tarc &= ~(1 << 28);
1513                 else
1514                         tarc |= (1 << 28);
1515                 E1000_WRITE_REG(hw, TARC1, tarc);
1516         }
1517
1518         e1000_config_collision_dist(hw);
1519
1520         /* Setup Transmit Descriptor Settings for eop descriptor */
1521         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1522                 E1000_TXD_CMD_IFCS;
1523
1524         if (hw->mac_type < e1000_82543)
1525                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1526         else
1527                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1528
1529         /* Cache if we're 82544 running in PCI-X because we'll
1530          * need this to apply a workaround later in the send path. */
1531         if (hw->mac_type == e1000_82544 &&
1532             hw->bus_type == e1000_bus_type_pcix)
1533                 adapter->pcix_82544 = 1;
1534 }
1535
1536 /**
1537  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1538  * @adapter: board private structure
1539  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1540  *
1541  * Returns 0 on success, negative on failure
1542  **/
1543
1544 static int
1545 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1546                          struct e1000_rx_ring *rxdr)
1547 {
1548         struct pci_dev *pdev = adapter->pdev;
1549         int size, desc_len;
1550
1551         size = sizeof(struct e1000_buffer) * rxdr->count;
1552         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1553         if (!rxdr->buffer_info) {
1554                 DPRINTK(PROBE, ERR,
1555                 "Unable to allocate memory for the receive descriptor ring\n");
1556                 return -ENOMEM;
1557         }
1558         memset(rxdr->buffer_info, 0, size);
1559
1560         size = sizeof(struct e1000_ps_page) * rxdr->count;
1561         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1562         if (!rxdr->ps_page) {
1563                 vfree(rxdr->buffer_info);
1564                 DPRINTK(PROBE, ERR,
1565                 "Unable to allocate memory for the receive descriptor ring\n");
1566                 return -ENOMEM;
1567         }
1568         memset(rxdr->ps_page, 0, size);
1569
1570         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1571         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1572         if (!rxdr->ps_page_dma) {
1573                 vfree(rxdr->buffer_info);
1574                 kfree(rxdr->ps_page);
1575                 DPRINTK(PROBE, ERR,
1576                 "Unable to allocate memory for the receive descriptor ring\n");
1577                 return -ENOMEM;
1578         }
1579         memset(rxdr->ps_page_dma, 0, size);
1580
1581         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1582                 desc_len = sizeof(struct e1000_rx_desc);
1583         else
1584                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1585
1586         /* Round up to nearest 4K */
1587
1588         rxdr->size = rxdr->count * desc_len;
1589         E1000_ROUNDUP(rxdr->size, 4096);
1590
1591         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1592
1593         if (!rxdr->desc) {
1594                 DPRINTK(PROBE, ERR,
1595                 "Unable to allocate memory for the receive descriptor ring\n");
1596 setup_rx_desc_die:
1597                 vfree(rxdr->buffer_info);
1598                 kfree(rxdr->ps_page);
1599                 kfree(rxdr->ps_page_dma);
1600                 return -ENOMEM;
1601         }
1602
1603         /* Fix for errata 23, can't cross 64kB boundary */
1604         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605                 void *olddesc = rxdr->desc;
1606                 dma_addr_t olddma = rxdr->dma;
1607                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608                                      "at %p\n", rxdr->size, rxdr->desc);
1609                 /* Try again, without freeing the previous */
1610                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611                 /* Failed allocation, critical failure */
1612                 if (!rxdr->desc) {
1613                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614                         DPRINTK(PROBE, ERR,
1615                                 "Unable to allocate memory "
1616                                 "for the receive descriptor ring\n");
1617                         goto setup_rx_desc_die;
1618                 }
1619
1620                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621                         /* give up */
1622                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623                                             rxdr->dma);
1624                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625                         DPRINTK(PROBE, ERR,
1626                                 "Unable to allocate aligned memory "
1627                                 "for the receive descriptor ring\n");
1628                         goto setup_rx_desc_die;
1629                 } else {
1630                         /* Free old allocation, new allocation was successful */
1631                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632                 }
1633         }
1634         memset(rxdr->desc, 0, rxdr->size);
1635
1636         rxdr->next_to_clean = 0;
1637         rxdr->next_to_use = 0;
1638         rxdr->rx_skb_top = NULL;
1639         rxdr->rx_skb_prev = NULL;
1640
1641         return 0;
1642 }
1643
1644 /**
1645  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1646  *                                (Descriptors) for all queues
1647  * @adapter: board private structure
1648  *
1649  * If this function returns with an error, then it's possible one or
1650  * more of the rings is populated (while the rest are not).  It is the
1651  * callers duty to clean those orphaned rings.
1652  *
1653  * Return 0 on success, negative on failure
1654  **/
1655
1656 int
1657 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1658 {
1659         int i, err = 0;
1660
1661         for (i = 0; i < adapter->num_rx_queues; i++) {
1662                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1663                 if (err) {
1664                         DPRINTK(PROBE, ERR,
1665                                 "Allocation for Rx Queue %u failed\n", i);
1666                         break;
1667                 }
1668         }
1669
1670         return err;
1671 }
1672
1673 /**
1674  * e1000_setup_rctl - configure the receive control registers
1675  * @adapter: Board private structure
1676  **/
1677 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1678                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1679 static void
1680 e1000_setup_rctl(struct e1000_adapter *adapter)
1681 {
1682         uint32_t rctl, rfctl;
1683         uint32_t psrctl = 0;
1684 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1685         uint32_t pages = 0;
1686 #endif
1687
1688         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1689
1690         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1691
1692         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1693                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1694                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1695
1696         if (adapter->hw.mac_type > e1000_82543)
1697                 rctl |= E1000_RCTL_SECRC;
1698
1699         if (adapter->hw.tbi_compatibility_on == 1)
1700                 rctl |= E1000_RCTL_SBP;
1701         else
1702                 rctl &= ~E1000_RCTL_SBP;
1703
1704         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1705                 rctl &= ~E1000_RCTL_LPE;
1706         else
1707                 rctl |= E1000_RCTL_LPE;
1708
1709         /* Setup buffer sizes */
1710         if (adapter->hw.mac_type >= e1000_82571) {
1711                 /* We can now specify buffers in 1K increments.
1712                  * BSIZE and BSEX are ignored in this case. */
1713                 rctl |= adapter->rx_buffer_len << 0x11;
1714         } else {
1715                 rctl &= ~E1000_RCTL_SZ_4096;
1716                 rctl &= ~E1000_RCTL_BSEX;
1717                 rctl |= E1000_RCTL_SZ_2048;
1718         }
1719
1720 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1721         /* 82571 and greater support packet-split where the protocol
1722          * header is placed in skb->data and the packet data is
1723          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1724          * In the case of a non-split, skb->data is linearly filled,
1725          * followed by the page buffers.  Therefore, skb->data is
1726          * sized to hold the largest protocol header.
1727          */
1728         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1729         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1730             PAGE_SIZE <= 16384)
1731                 adapter->rx_ps_pages = pages;
1732         else
1733                 adapter->rx_ps_pages = 0;
1734 #endif
1735         if (adapter->rx_ps_pages) {
1736                 /* Configure extra packet-split registers */
1737                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1738                 rfctl |= E1000_RFCTL_EXTEN;
1739                 /* disable IPv6 packet split support */
1740                 rfctl |= E1000_RFCTL_IPV6_DIS;
1741                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1742
1743                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1744
1745                 psrctl |= adapter->rx_ps_bsize0 >>
1746                         E1000_PSRCTL_BSIZE0_SHIFT;
1747
1748                 switch (adapter->rx_ps_pages) {
1749                 case 3:
1750                         psrctl |= PAGE_SIZE <<
1751                                 E1000_PSRCTL_BSIZE3_SHIFT;
1752                 case 2:
1753                         psrctl |= PAGE_SIZE <<
1754                                 E1000_PSRCTL_BSIZE2_SHIFT;
1755                 case 1:
1756                         psrctl |= PAGE_SIZE >>
1757                                 E1000_PSRCTL_BSIZE1_SHIFT;
1758                         break;
1759                 }
1760
1761                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1762         }
1763
1764         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1765 }
1766
1767 /**
1768  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1769  * @adapter: board private structure
1770  *
1771  * Configure the Rx unit of the MAC after a reset.
1772  **/
1773
1774 static void
1775 e1000_configure_rx(struct e1000_adapter *adapter)
1776 {
1777         uint64_t rdba;
1778         struct e1000_hw *hw = &adapter->hw;
1779         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1780 #ifdef CONFIG_E1000_MQ
1781         uint32_t reta, mrqc;
1782         int i;
1783 #endif
1784
1785         if (adapter->rx_ps_pages) {
1786                 rdlen = adapter->rx_ring[0].count *
1787                         sizeof(union e1000_rx_desc_packet_split);
1788                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1789                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1790         } else {
1791                 rdlen = adapter->rx_ring[0].count *
1792                         sizeof(struct e1000_rx_desc);
1793                 adapter->clean_rx = e1000_clean_rx_irq;
1794                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1795         }
1796
1797         /* disable receives while setting up the descriptors */
1798         rctl = E1000_READ_REG(hw, RCTL);
1799         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1800
1801         /* set the Receive Delay Timer Register */
1802         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1803
1804         if (hw->mac_type >= e1000_82540) {
1805                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1806                 if (adapter->itr > 1)
1807                         E1000_WRITE_REG(hw, ITR,
1808                                 1000000000 / (adapter->itr * 256));
1809         }
1810
1811         if (hw->mac_type >= e1000_82571) {
1812                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1813                 /* Reset delay timers after every interrupt */
1814                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1815 #ifdef CONFIG_E1000_NAPI
1816                 /* Auto-Mask interrupts upon ICR read. */
1817                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1818 #endif
1819                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1820                 E1000_WRITE_REG(hw, IAM, ~0);
1821                 E1000_WRITE_FLUSH(hw);
1822         }
1823
1824         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1825          * the Base and Length of the Rx Descriptor Ring */
1826         switch (adapter->num_rx_queues) {
1827 #ifdef CONFIG_E1000_MQ
1828         case 2:
1829                 rdba = adapter->rx_ring[1].dma;
1830                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1831                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1832                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1833                 E1000_WRITE_REG(hw, RDH1, 0);
1834                 E1000_WRITE_REG(hw, RDT1, 0);
1835                 adapter->rx_ring[1].rdh = E1000_RDH1;
1836                 adapter->rx_ring[1].rdt = E1000_RDT1;
1837                 /* Fall Through */
1838 #endif
1839         case 1:
1840         default:
1841                 rdba = adapter->rx_ring[0].dma;
1842                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1843                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1844                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1845                 E1000_WRITE_REG(hw, RDH, 0);
1846                 E1000_WRITE_REG(hw, RDT, 0);
1847                 adapter->rx_ring[0].rdh = E1000_RDH;
1848                 adapter->rx_ring[0].rdt = E1000_RDT;
1849                 break;
1850         }
1851
1852 #ifdef CONFIG_E1000_MQ
1853         if (adapter->num_rx_queues > 1) {
1854                 uint32_t random[10];
1855
1856                 get_random_bytes(&random[0], 40);
1857
1858                 if (hw->mac_type <= e1000_82572) {
1859                         E1000_WRITE_REG(hw, RSSIR, 0);
1860                         E1000_WRITE_REG(hw, RSSIM, 0);
1861                 }
1862
1863                 switch (adapter->num_rx_queues) {
1864                 case 2:
1865                 default:
1866                         reta = 0x00800080;
1867                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1868                         break;
1869                 }
1870
1871                 /* Fill out redirection table */
1872                 for (i = 0; i < 32; i++)
1873                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1874                 /* Fill out hash function seeds */
1875                 for (i = 0; i < 10; i++)
1876                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1877
1878                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1879                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1880                 E1000_WRITE_REG(hw, MRQC, mrqc);
1881         }
1882
1883         /* Multiqueue and packet checksumming are mutually exclusive. */
1884         if (hw->mac_type >= e1000_82571) {
1885                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1886                 rxcsum |= E1000_RXCSUM_PCSD;
1887                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1888         }
1889
1890 #else
1891
1892         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1893         if (hw->mac_type >= e1000_82543) {
1894                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1895                 if (adapter->rx_csum == TRUE) {
1896                         rxcsum |= E1000_RXCSUM_TUOFL;
1897
1898                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1899                          * Must be used in conjunction with packet-split. */
1900                         if ((hw->mac_type >= e1000_82571) &&
1901                             (adapter->rx_ps_pages)) {
1902                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1903                         }
1904                 } else {
1905                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1906                         /* don't need to clear IPPCSE as it defaults to 0 */
1907                 }
1908                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1909         }
1910 #endif /* CONFIG_E1000_MQ */
1911
1912         if (hw->mac_type == e1000_82573)
1913                 E1000_WRITE_REG(hw, ERT, 0x0100);
1914
1915         /* Enable Receives */
1916         E1000_WRITE_REG(hw, RCTL, rctl);
1917 }
1918
1919 /**
1920  * e1000_free_tx_resources - Free Tx Resources per Queue
1921  * @adapter: board private structure
1922  * @tx_ring: Tx descriptor ring for a specific queue
1923  *
1924  * Free all transmit software resources
1925  **/
1926
1927 static void
1928 e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                         struct e1000_tx_ring *tx_ring)
1930 {
1931         struct pci_dev *pdev = adapter->pdev;
1932
1933         e1000_clean_tx_ring(adapter, tx_ring);
1934
1935         vfree(tx_ring->buffer_info);
1936         tx_ring->buffer_info = NULL;
1937
1938         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1939
1940         tx_ring->desc = NULL;
1941 }
1942
1943 /**
1944  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1945  * @adapter: board private structure
1946  *
1947  * Free all transmit software resources
1948  **/
1949
1950 void
1951 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1952 {
1953         int i;
1954
1955         for (i = 0; i < adapter->num_tx_queues; i++)
1956                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1957 }
1958
1959 static inline void
1960 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1961                         struct e1000_buffer *buffer_info)
1962 {
1963         if (buffer_info->dma) {
1964                 pci_unmap_page(adapter->pdev,
1965                                 buffer_info->dma,
1966                                 buffer_info->length,
1967                                 PCI_DMA_TODEVICE);
1968         }
1969         if (buffer_info->skb)
1970                 dev_kfree_skb_any(buffer_info->skb);
1971         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1972 }
1973
1974 /**
1975  * e1000_clean_tx_ring - Free Tx Buffers
1976  * @adapter: board private structure
1977  * @tx_ring: ring to be cleaned
1978  **/
1979
1980 static void
1981 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1982                     struct e1000_tx_ring *tx_ring)
1983 {
1984         struct e1000_buffer *buffer_info;
1985         unsigned long size;
1986         unsigned int i;
1987
1988         /* Free all the Tx ring sk_buffs */
1989
1990         for (i = 0; i < tx_ring->count; i++) {
1991                 buffer_info = &tx_ring->buffer_info[i];
1992                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993         }
1994
1995         size = sizeof(struct e1000_buffer) * tx_ring->count;
1996         memset(tx_ring->buffer_info, 0, size);
1997
1998         /* Zero out the descriptor ring */
1999
2000         memset(tx_ring->desc, 0, tx_ring->size);
2001
2002         tx_ring->next_to_use = 0;
2003         tx_ring->next_to_clean = 0;
2004         tx_ring->last_tx_tso = 0;
2005
2006         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2007         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2008 }
2009
2010 /**
2011  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2012  * @adapter: board private structure
2013  **/
2014
2015 static void
2016 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2017 {
2018         int i;
2019
2020         for (i = 0; i < adapter->num_tx_queues; i++)
2021                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2022 }
2023
2024 /**
2025  * e1000_free_rx_resources - Free Rx Resources
2026  * @adapter: board private structure
2027  * @rx_ring: ring to clean the resources from
2028  *
2029  * Free all receive software resources
2030  **/
2031
2032 static void
2033 e1000_free_rx_resources(struct e1000_adapter *adapter,
2034                         struct e1000_rx_ring *rx_ring)
2035 {
2036         struct pci_dev *pdev = adapter->pdev;
2037
2038         e1000_clean_rx_ring(adapter, rx_ring);
2039
2040         vfree(rx_ring->buffer_info);
2041         rx_ring->buffer_info = NULL;
2042         kfree(rx_ring->ps_page);
2043         rx_ring->ps_page = NULL;
2044         kfree(rx_ring->ps_page_dma);
2045         rx_ring->ps_page_dma = NULL;
2046
2047         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2048
2049         rx_ring->desc = NULL;
2050 }
2051
2052 /**
2053  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2054  * @adapter: board private structure
2055  *
2056  * Free all receive software resources
2057  **/
2058
2059 void
2060 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2061 {
2062         int i;
2063
2064         for (i = 0; i < adapter->num_rx_queues; i++)
2065                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2066 }
2067
2068 /**
2069  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2070  * @adapter: board private structure
2071  * @rx_ring: ring to free buffers from
2072  **/
2073
2074 static void
2075 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2076                     struct e1000_rx_ring *rx_ring)
2077 {
2078         struct e1000_buffer *buffer_info;
2079         struct e1000_ps_page *ps_page;
2080         struct e1000_ps_page_dma *ps_page_dma;
2081         struct pci_dev *pdev = adapter->pdev;
2082         unsigned long size;
2083         unsigned int i, j;
2084
2085         /* Free all the Rx ring sk_buffs */
2086         for (i = 0; i < rx_ring->count; i++) {
2087                 buffer_info = &rx_ring->buffer_info[i];
2088                 if (buffer_info->skb) {
2089                         pci_unmap_single(pdev,
2090                                          buffer_info->dma,
2091                                          buffer_info->length,
2092                                          PCI_DMA_FROMDEVICE);
2093
2094                         dev_kfree_skb(buffer_info->skb);
2095                         buffer_info->skb = NULL;
2096                 }
2097                 ps_page = &rx_ring->ps_page[i];
2098                 ps_page_dma = &rx_ring->ps_page_dma[i];
2099                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2100                         if (!ps_page->ps_page[j]) break;
2101                         pci_unmap_page(pdev,
2102                                        ps_page_dma->ps_page_dma[j],
2103                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2104                         ps_page_dma->ps_page_dma[j] = 0;
2105                         put_page(ps_page->ps_page[j]);
2106                         ps_page->ps_page[j] = NULL;
2107                 }
2108         }
2109
2110         /* there also may be some cached data in our adapter */
2111         if (rx_ring->rx_skb_top) {
2112                 dev_kfree_skb(rx_ring->rx_skb_top);
2113
2114                 /* rx_skb_prev will be wiped out by rx_skb_top */
2115                 rx_ring->rx_skb_top = NULL;
2116                 rx_ring->rx_skb_prev = NULL;
2117         }
2118
2119
2120         size = sizeof(struct e1000_buffer) * rx_ring->count;
2121         memset(rx_ring->buffer_info, 0, size);
2122         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2123         memset(rx_ring->ps_page, 0, size);
2124         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2125         memset(rx_ring->ps_page_dma, 0, size);
2126
2127         /* Zero out the descriptor ring */
2128
2129         memset(rx_ring->desc, 0, rx_ring->size);
2130
2131         rx_ring->next_to_clean = 0;
2132         rx_ring->next_to_use = 0;
2133
2134         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2135         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2136 }
2137
2138 /**
2139  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140  * @adapter: board private structure
2141  **/
2142
2143 static void
2144 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2145 {
2146         int i;
2147
2148         for (i = 0; i < adapter->num_rx_queues; i++)
2149                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2150 }
2151
2152 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2153  * and memory write and invalidate disabled for certain operations
2154  */
2155 static void
2156 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2157 {
2158         struct net_device *netdev = adapter->netdev;
2159         uint32_t rctl;
2160
2161         e1000_pci_clear_mwi(&adapter->hw);
2162
2163         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2164         rctl |= E1000_RCTL_RST;
2165         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2166         E1000_WRITE_FLUSH(&adapter->hw);
2167         mdelay(5);
2168
2169         if (netif_running(netdev))
2170                 e1000_clean_all_rx_rings(adapter);
2171 }
2172
2173 static void
2174 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2175 {
2176         struct net_device *netdev = adapter->netdev;
2177         uint32_t rctl;
2178
2179         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2180         rctl &= ~E1000_RCTL_RST;
2181         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2182         E1000_WRITE_FLUSH(&adapter->hw);
2183         mdelay(5);
2184
2185         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2186                 e1000_pci_set_mwi(&adapter->hw);
2187
2188         if (netif_running(netdev)) {
2189                 /* No need to loop, because 82542 supports only 1 queue */
2190                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2191                 e1000_configure_rx(adapter);
2192                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2193         }
2194 }
2195
2196 /**
2197  * e1000_set_mac - Change the Ethernet Address of the NIC
2198  * @netdev: network interface device structure
2199  * @p: pointer to an address structure
2200  *
2201  * Returns 0 on success, negative on failure
2202  **/
2203
2204 static int
2205 e1000_set_mac(struct net_device *netdev, void *p)
2206 {
2207         struct e1000_adapter *adapter = netdev_priv(netdev);
2208         struct sockaddr *addr = p;
2209
2210         if (!is_valid_ether_addr(addr->sa_data))
2211                 return -EADDRNOTAVAIL;
2212
2213         /* 82542 2.0 needs to be in reset to write receive address registers */
2214
2215         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2216                 e1000_enter_82542_rst(adapter);
2217
2218         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2219         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2220
2221         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2222
2223         /* With 82571 controllers, LAA may be overwritten (with the default)
2224          * due to controller reset from the other port. */
2225         if (adapter->hw.mac_type == e1000_82571) {
2226                 /* activate the work around */
2227                 adapter->hw.laa_is_present = 1;
2228
2229                 /* Hold a copy of the LAA in RAR[14] This is done so that
2230                  * between the time RAR[0] gets clobbered  and the time it
2231                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2232                  * of the RARs and no incoming packets directed to this port
2233                  * are dropped. Eventaully the LAA will be in RAR[0] and
2234                  * RAR[14] */
2235                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2236                                         E1000_RAR_ENTRIES - 1);
2237         }
2238
2239         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2240                 e1000_leave_82542_rst(adapter);
2241
2242         return 0;
2243 }
2244
2245 /**
2246  * e1000_set_multi - Multicast and Promiscuous mode set
2247  * @netdev: network interface device structure
2248  *
2249  * The set_multi entry point is called whenever the multicast address
2250  * list or the network interface flags are updated.  This routine is
2251  * responsible for configuring the hardware for proper multicast,
2252  * promiscuous mode, and all-multi behavior.
2253  **/
2254
2255 static void
2256 e1000_set_multi(struct net_device *netdev)
2257 {
2258         struct e1000_adapter *adapter = netdev_priv(netdev);
2259         struct e1000_hw *hw = &adapter->hw;
2260         struct dev_mc_list *mc_ptr;
2261         uint32_t rctl;
2262         uint32_t hash_value;
2263         int i, rar_entries = E1000_RAR_ENTRIES;
2264
2265         /* reserve RAR[14] for LAA over-write work-around */
2266         if (adapter->hw.mac_type == e1000_82571)
2267                 rar_entries--;
2268
2269         /* Check for Promiscuous and All Multicast modes */
2270
2271         rctl = E1000_READ_REG(hw, RCTL);
2272
2273         if (netdev->flags & IFF_PROMISC) {
2274                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2275         } else if (netdev->flags & IFF_ALLMULTI) {
2276                 rctl |= E1000_RCTL_MPE;
2277                 rctl &= ~E1000_RCTL_UPE;
2278         } else {
2279                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2280         }
2281
2282         E1000_WRITE_REG(hw, RCTL, rctl);
2283
2284         /* 82542 2.0 needs to be in reset to write receive address registers */
2285
2286         if (hw->mac_type == e1000_82542_rev2_0)
2287                 e1000_enter_82542_rst(adapter);
2288
2289         /* load the first 14 multicast address into the exact filters 1-14
2290          * RAR 0 is used for the station MAC adddress
2291          * if there are not 14 addresses, go ahead and clear the filters
2292          * -- with 82571 controllers only 0-13 entries are filled here
2293          */
2294         mc_ptr = netdev->mc_list;
2295
2296         for (i = 1; i < rar_entries; i++) {
2297                 if (mc_ptr) {
2298                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2299                         mc_ptr = mc_ptr->next;
2300                 } else {
2301                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2302                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2303                 }
2304         }
2305
2306         /* clear the old settings from the multicast hash table */
2307
2308         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2309                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2310
2311         /* load any remaining addresses into the hash table */
2312
2313         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2314                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2315                 e1000_mta_set(hw, hash_value);
2316         }
2317
2318         if (hw->mac_type == e1000_82542_rev2_0)
2319                 e1000_leave_82542_rst(adapter);
2320 }
2321
2322 /* Need to wait a few seconds after link up to get diagnostic information from
2323  * the phy */
2324
2325 static void
2326 e1000_update_phy_info(unsigned long data)
2327 {
2328         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2329         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2330 }
2331
2332 /**
2333  * e1000_82547_tx_fifo_stall - Timer Call-back
2334  * @data: pointer to adapter cast into an unsigned long
2335  **/
2336
2337 static void
2338 e1000_82547_tx_fifo_stall(unsigned long data)
2339 {
2340         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2341         struct net_device *netdev = adapter->netdev;
2342         uint32_t tctl;
2343
2344         if (atomic_read(&adapter->tx_fifo_stall)) {
2345                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2346                     E1000_READ_REG(&adapter->hw, TDH)) &&
2347                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2348                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2349                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2350                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2351                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2352                         E1000_WRITE_REG(&adapter->hw, TCTL,
2353                                         tctl & ~E1000_TCTL_EN);
2354                         E1000_WRITE_REG(&adapter->hw, TDFT,
2355                                         adapter->tx_head_addr);
2356                         E1000_WRITE_REG(&adapter->hw, TDFH,
2357                                         adapter->tx_head_addr);
2358                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2359                                         adapter->tx_head_addr);
2360                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2361                                         adapter->tx_head_addr);
2362                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2363                         E1000_WRITE_FLUSH(&adapter->hw);
2364
2365                         adapter->tx_fifo_head = 0;
2366                         atomic_set(&adapter->tx_fifo_stall, 0);
2367                         netif_wake_queue(netdev);
2368                 } else {
2369                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2370                 }
2371         }
2372 }
2373
2374 /**
2375  * e1000_watchdog - Timer Call-back
2376  * @data: pointer to adapter cast into an unsigned long
2377  **/
2378 static void
2379 e1000_watchdog(unsigned long data)
2380 {
2381         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2382
2383         /* Do the rest outside of interrupt context */
2384         schedule_work(&adapter->watchdog_task);
2385 }
2386
2387 static void
2388 e1000_watchdog_task(struct e1000_adapter *adapter)
2389 {
2390         struct net_device *netdev = adapter->netdev;
2391         struct e1000_tx_ring *txdr = adapter->tx_ring;
2392         uint32_t link;
2393
2394         e1000_check_for_link(&adapter->hw);
2395         if (adapter->hw.mac_type == e1000_82573) {
2396                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2397                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2398                         e1000_update_mng_vlan(adapter);
2399         }
2400
2401         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2402            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2403                 link = !adapter->hw.serdes_link_down;
2404         else
2405                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2406
2407         if (link) {
2408                 if (!netif_carrier_ok(netdev)) {
2409                         e1000_get_speed_and_duplex(&adapter->hw,
2410                                                    &adapter->link_speed,
2411                                                    &adapter->link_duplex);
2412
2413                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2414                                adapter->link_speed,
2415                                adapter->link_duplex == FULL_DUPLEX ?
2416                                "Full Duplex" : "Half Duplex");
2417
2418                         /* tweak tx_queue_len according to speed/duplex */
2419                         netdev->tx_queue_len = adapter->tx_queue_len;
2420                         adapter->tx_timeout_factor = 1;
2421                         if (adapter->link_duplex == HALF_DUPLEX) {
2422                                 switch (adapter->link_speed) {
2423                                 case SPEED_10:
2424                                         netdev->tx_queue_len = 10;
2425                                         adapter->tx_timeout_factor = 8;
2426                                         break;
2427                                 case SPEED_100:
2428                                         netdev->tx_queue_len = 100;
2429                                         break;
2430                                 }
2431                         }
2432
2433                         netif_carrier_on(netdev);
2434                         netif_wake_queue(netdev);
2435                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2436                         adapter->smartspeed = 0;
2437                 }
2438         } else {
2439                 if (netif_carrier_ok(netdev)) {
2440                         adapter->link_speed = 0;
2441                         adapter->link_duplex = 0;
2442                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2443                         netif_carrier_off(netdev);
2444                         netif_stop_queue(netdev);
2445                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2446                 }
2447
2448                 e1000_smartspeed(adapter);
2449         }
2450
2451         e1000_update_stats(adapter);
2452
2453         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2454         adapter->tpt_old = adapter->stats.tpt;
2455         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2456         adapter->colc_old = adapter->stats.colc;
2457
2458         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2459         adapter->gorcl_old = adapter->stats.gorcl;
2460         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2461         adapter->gotcl_old = adapter->stats.gotcl;
2462
2463         e1000_update_adaptive(&adapter->hw);
2464
2465 #ifdef CONFIG_E1000_MQ
2466         txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2467 #endif
2468         if (!netif_carrier_ok(netdev)) {
2469                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2470                         /* We've lost link, so the controller stops DMA,
2471                          * but we've got queued Tx work that's never going
2472                          * to get done, so reset controller to flush Tx.
2473                          * (Do the reset outside of interrupt context). */
2474                         schedule_work(&adapter->tx_timeout_task);
2475                 }
2476         }
2477
2478         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2479         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2480                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2481                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2482                  * else is between 2000-8000. */
2483                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2484                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2485                         adapter->gotcl - adapter->gorcl :
2486                         adapter->gorcl - adapter->gotcl) / 10000;
2487                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2488                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2489         }
2490
2491         /* Cause software interrupt to ensure rx ring is cleaned */
2492         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2493
2494         /* Force detection of hung controller every watchdog period */
2495         adapter->detect_tx_hung = TRUE;
2496
2497         /* With 82571 controllers, LAA may be overwritten due to controller
2498          * reset from the other port. Set the appropriate LAA in RAR[0] */
2499         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2500                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2501
2502         /* Reset the timer */
2503         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2504 }
2505
2506 #define E1000_TX_FLAGS_CSUM             0x00000001
2507 #define E1000_TX_FLAGS_VLAN             0x00000002
2508 #define E1000_TX_FLAGS_TSO              0x00000004
2509 #define E1000_TX_FLAGS_IPV4             0x00000008
2510 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2511 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2512
2513 static inline int
2514 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2515           struct sk_buff *skb)
2516 {
2517 #ifdef NETIF_F_TSO
2518         struct e1000_context_desc *context_desc;
2519         struct e1000_buffer *buffer_info;
2520         unsigned int i;
2521         uint32_t cmd_length = 0;
2522         uint16_t ipcse = 0, tucse, mss;
2523         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2524         int err;
2525
2526         if (skb_shinfo(skb)->tso_size) {
2527                 if (skb_header_cloned(skb)) {
2528                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2529                         if (err)
2530                                 return err;
2531                 }
2532
2533                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2534                 mss = skb_shinfo(skb)->tso_size;
2535                 if (skb->protocol == ntohs(ETH_P_IP)) {
2536                         skb->nh.iph->tot_len = 0;
2537                         skb->nh.iph->check = 0;
2538                         skb->h.th->check =
2539                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2540                                                    skb->nh.iph->daddr,
2541                                                    0,
2542                                                    IPPROTO_TCP,
2543                                                    0);
2544                         cmd_length = E1000_TXD_CMD_IP;
2545                         ipcse = skb->h.raw - skb->data - 1;
2546 #ifdef NETIF_F_TSO_IPV6
2547                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2548                         skb->nh.ipv6h->payload_len = 0;
2549                         skb->h.th->check =
2550                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2551                                                  &skb->nh.ipv6h->daddr,
2552                                                  0,
2553                                                  IPPROTO_TCP,
2554                                                  0);
2555                         ipcse = 0;
2556 #endif
2557                 }
2558                 ipcss = skb->nh.raw - skb->data;
2559                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2560                 tucss = skb->h.raw - skb->data;
2561                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2562                 tucse = 0;
2563
2564                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2565                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2566
2567                 i = tx_ring->next_to_use;
2568                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2569                 buffer_info = &tx_ring->buffer_info[i];
2570
2571                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2572                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2573                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2574                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2575                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2576                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2577                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2578                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2579                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2580
2581                 buffer_info->time_stamp = jiffies;
2582
2583                 if (++i == tx_ring->count) i = 0;
2584                 tx_ring->next_to_use = i;
2585
2586                 return TRUE;
2587         }
2588 #endif
2589
2590         return FALSE;
2591 }
2592
2593 static inline boolean_t
2594 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2595               struct sk_buff *skb)
2596 {
2597         struct e1000_context_desc *context_desc;
2598         struct e1000_buffer *buffer_info;
2599         unsigned int i;
2600         uint8_t css;
2601
2602         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2603                 css = skb->h.raw - skb->data;
2604
2605                 i = tx_ring->next_to_use;
2606                 buffer_info = &tx_ring->buffer_info[i];
2607                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2608
2609                 context_desc->upper_setup.tcp_fields.tucss = css;
2610                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2611                 context_desc->upper_setup.tcp_fields.tucse = 0;
2612                 context_desc->tcp_seg_setup.data = 0;
2613                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2614
2615                 buffer_info->time_stamp = jiffies;
2616
2617                 if (unlikely(++i == tx_ring->count)) i = 0;
2618                 tx_ring->next_to_use = i;
2619
2620                 return TRUE;
2621         }
2622
2623         return FALSE;
2624 }
2625
2626 #define E1000_MAX_TXD_PWR       12
2627 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2628
2629 static inline int
2630 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2631              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2632              unsigned int nr_frags, unsigned int mss)
2633 {
2634         struct e1000_buffer *buffer_info;
2635         unsigned int len = skb->len;
2636         unsigned int offset = 0, size, count = 0, i;
2637         unsigned int f;
2638         len -= skb->data_len;
2639
2640         i = tx_ring->next_to_use;
2641
2642         while (len) {
2643                 buffer_info = &tx_ring->buffer_info[i];
2644                 size = min(len, max_per_txd);
2645 #ifdef NETIF_F_TSO
2646                 /* Workaround for Controller erratum --
2647                  * descriptor for non-tso packet in a linear SKB that follows a
2648                  * tso gets written back prematurely before the data is fully
2649                  * DMAd to the controller */
2650                 if (!skb->data_len && tx_ring->last_tx_tso &&
2651                                 !skb_shinfo(skb)->tso_size) {
2652                         tx_ring->last_tx_tso = 0;
2653                         size -= 4;
2654                 }
2655
2656                 /* Workaround for premature desc write-backs
2657                  * in TSO mode.  Append 4-byte sentinel desc */
2658                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2659                         size -= 4;
2660 #endif
2661                 /* work-around for errata 10 and it applies
2662                  * to all controllers in PCI-X mode
2663                  * The fix is to make sure that the first descriptor of a
2664                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2665                  */
2666                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2667                                 (size > 2015) && count == 0))
2668                         size = 2015;
2669
2670                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2671                  * terminating buffers within evenly-aligned dwords. */
2672                 if (unlikely(adapter->pcix_82544 &&
2673                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2674                    size > 4))
2675                         size -= 4;
2676
2677                 buffer_info->length = size;
2678                 buffer_info->dma =
2679                         pci_map_single(adapter->pdev,
2680                                 skb->data + offset,
2681                                 size,
2682                                 PCI_DMA_TODEVICE);
2683                 buffer_info->time_stamp = jiffies;
2684
2685                 len -= size;
2686                 offset += size;
2687                 count++;
2688                 if (unlikely(++i == tx_ring->count)) i = 0;
2689         }
2690
2691         for (f = 0; f < nr_frags; f++) {
2692                 struct skb_frag_struct *frag;
2693
2694                 frag = &skb_shinfo(skb)->frags[f];
2695                 len = frag->size;
2696                 offset = frag->page_offset;
2697
2698                 while (len) {
2699                         buffer_info = &tx_ring->buffer_info[i];
2700                         size = min(len, max_per_txd);
2701 #ifdef NETIF_F_TSO
2702                         /* Workaround for premature desc write-backs
2703                          * in TSO mode.  Append 4-byte sentinel desc */
2704                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2705                                 size -= 4;
2706 #endif
2707                         /* Workaround for potential 82544 hang in PCI-X.
2708                          * Avoid terminating buffers within evenly-aligned
2709                          * dwords. */
2710                         if (unlikely(adapter->pcix_82544 &&
2711                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2712                            size > 4))
2713                                 size -= 4;
2714
2715                         buffer_info->length = size;
2716                         buffer_info->dma =
2717                                 pci_map_page(adapter->pdev,
2718                                         frag->page,
2719                                         offset,
2720                                         size,
2721                                         PCI_DMA_TODEVICE);
2722                         buffer_info->time_stamp = jiffies;
2723
2724                         len -= size;
2725                         offset += size;
2726                         count++;
2727                         if (unlikely(++i == tx_ring->count)) i = 0;
2728                 }
2729         }
2730
2731         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2732         tx_ring->buffer_info[i].skb = skb;
2733         tx_ring->buffer_info[first].next_to_watch = i;
2734
2735         return count;
2736 }
2737
2738 static inline void
2739 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2740                int tx_flags, int count)
2741 {
2742         struct e1000_tx_desc *tx_desc = NULL;
2743         struct e1000_buffer *buffer_info;
2744         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2745         unsigned int i;
2746
2747         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2748                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2749                              E1000_TXD_CMD_TSE;
2750                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2751
2752                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2753                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2754         }
2755
2756         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2757                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2758                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2759         }
2760
2761         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2762                 txd_lower |= E1000_TXD_CMD_VLE;
2763                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2764         }
2765
2766         i = tx_ring->next_to_use;
2767
2768         while (count--) {
2769                 buffer_info = &tx_ring->buffer_info[i];
2770                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2771                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2772                 tx_desc->lower.data =
2773                         cpu_to_le32(txd_lower | buffer_info->length);
2774                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2775                 if (unlikely(++i == tx_ring->count)) i = 0;
2776         }
2777
2778         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2779
2780         /* Force memory writes to complete before letting h/w
2781          * know there are new descriptors to fetch.  (Only
2782          * applicable for weak-ordered memory model archs,
2783          * such as IA-64). */
2784         wmb();
2785
2786         tx_ring->next_to_use = i;
2787         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2788 }
2789
2790 /**
2791  * 82547 workaround to avoid controller hang in half-duplex environment.
2792  * The workaround is to avoid queuing a large packet that would span
2793  * the internal Tx FIFO ring boundary by notifying the stack to resend
2794  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2795  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2796  * to the beginning of the Tx FIFO.
2797  **/
2798
2799 #define E1000_FIFO_HDR                  0x10
2800 #define E1000_82547_PAD_LEN             0x3E0
2801
2802 static inline int
2803 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2804 {
2805         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2806         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2807
2808         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2809
2810         if (adapter->link_duplex != HALF_DUPLEX)
2811                 goto no_fifo_stall_required;
2812
2813         if (atomic_read(&adapter->tx_fifo_stall))
2814                 return 1;
2815
2816         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2817                 atomic_set(&adapter->tx_fifo_stall, 1);
2818                 return 1;
2819         }
2820
2821 no_fifo_stall_required:
2822         adapter->tx_fifo_head += skb_fifo_len;
2823         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2824                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2825         return 0;
2826 }
2827
2828 #define MINIMUM_DHCP_PACKET_SIZE 282
2829 static inline int
2830 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2831 {
2832         struct e1000_hw *hw =  &adapter->hw;
2833         uint16_t length, offset;
2834         if (vlan_tx_tag_present(skb)) {
2835                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2836                         ( adapter->hw.mng_cookie.status &
2837                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2838                         return 0;
2839         }
2840         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2841                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2842                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2843                         const struct iphdr *ip =
2844                                 (struct iphdr *)((uint8_t *)skb->data+14);
2845                         if (IPPROTO_UDP == ip->protocol) {
2846                                 struct udphdr *udp =
2847                                         (struct udphdr *)((uint8_t *)ip +
2848                                                 (ip->ihl << 2));
2849                                 if (ntohs(udp->dest) == 67) {
2850                                         offset = (uint8_t *)udp + 8 - skb->data;
2851                                         length = skb->len - offset;
2852
2853                                         return e1000_mng_write_dhcp_info(hw,
2854                                                         (uint8_t *)udp + 8,
2855                                                         length);
2856                                 }
2857                         }
2858                 }
2859         }
2860         return 0;
2861 }
2862
2863 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2864 static int
2865 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2866 {
2867         struct e1000_adapter *adapter = netdev_priv(netdev);
2868         struct e1000_tx_ring *tx_ring;
2869         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2870         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2871         unsigned int tx_flags = 0;
2872         unsigned int len = skb->len;
2873         unsigned long flags;
2874         unsigned int nr_frags = 0;
2875         unsigned int mss = 0;
2876         int count = 0;
2877         int tso;
2878         unsigned int f;
2879         len -= skb->data_len;
2880
2881 #ifdef CONFIG_E1000_MQ
2882         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2883 #else
2884         tx_ring = adapter->tx_ring;
2885 #endif
2886
2887         if (unlikely(skb->len <= 0)) {
2888                 dev_kfree_skb_any(skb);
2889                 return NETDEV_TX_OK;
2890         }
2891
2892 #ifdef NETIF_F_TSO
2893         mss = skb_shinfo(skb)->tso_size;
2894         /* The controller does a simple calculation to 
2895          * make sure there is enough room in the FIFO before
2896          * initiating the DMA for each buffer.  The calc is:
2897          * 4 = ceil(buffer len/mss).  To make sure we don't
2898          * overrun the FIFO, adjust the max buffer len if mss
2899          * drops. */
2900         if (mss) {
2901                 uint8_t hdr_len;
2902                 max_per_txd = min(mss << 2, max_per_txd);
2903                 max_txd_pwr = fls(max_per_txd) - 1;
2904
2905         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2906          * points to just header, pull a few bytes of payload from
2907          * frags into skb->data */
2908                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2909                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2910                         (adapter->hw.mac_type == e1000_82571 ||
2911                         adapter->hw.mac_type == e1000_82572)) {
2912                         unsigned int pull_size;
2913                         pull_size = min((unsigned int)4, skb->data_len);
2914                         if (!__pskb_pull_tail(skb, pull_size)) {
2915                                 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2916                                 dev_kfree_skb_any(skb);
2917                                 return -EFAULT;
2918                         }
2919                         len = skb->len - skb->data_len;
2920                 }
2921         }
2922
2923         /* reserve a descriptor for the offload context */
2924         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2925                 count++;
2926         count++;
2927 #else
2928         if (skb->ip_summed == CHECKSUM_HW)
2929                 count++;
2930 #endif
2931
2932 #ifdef NETIF_F_TSO
2933         /* Controller Erratum workaround */
2934         if (!skb->data_len && tx_ring->last_tx_tso &&
2935                 !skb_shinfo(skb)->tso_size)
2936                 count++;
2937 #endif
2938
2939         count += TXD_USE_COUNT(len, max_txd_pwr);
2940
2941         if (adapter->pcix_82544)
2942                 count++;
2943
2944         /* work-around for errata 10 and it applies to all controllers
2945          * in PCI-X mode, so add one more descriptor to the count
2946          */
2947         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2948                         (len > 2015)))
2949                 count++;
2950
2951         nr_frags = skb_shinfo(skb)->nr_frags;
2952         for (f = 0; f < nr_frags; f++)
2953                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2954                                        max_txd_pwr);
2955         if (adapter->pcix_82544)
2956                 count += nr_frags;
2957
2958         if (adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2959                 e1000_transfer_dhcp_info(adapter, skb);
2960
2961         local_irq_save(flags);
2962         if (!spin_trylock(&tx_ring->tx_lock)) {
2963                 /* Collision - tell upper layer to requeue */
2964                 local_irq_restore(flags);
2965                 return NETDEV_TX_LOCKED;
2966         }
2967
2968         /* need: count + 2 desc gap to keep tail from touching
2969          * head, otherwise try next time */
2970         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2971                 netif_stop_queue(netdev);
2972                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2973                 return NETDEV_TX_BUSY;
2974         }
2975
2976         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2977                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2978                         netif_stop_queue(netdev);
2979                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2980                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2981                         return NETDEV_TX_BUSY;
2982                 }
2983         }
2984
2985         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2986                 tx_flags |= E1000_TX_FLAGS_VLAN;
2987                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2988         }
2989
2990         first = tx_ring->next_to_use;
2991
2992         tso = e1000_tso(adapter, tx_ring, skb);
2993         if (tso < 0) {
2994                 dev_kfree_skb_any(skb);
2995                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2996                 return NETDEV_TX_OK;
2997         }
2998
2999         if (likely(tso)) {
3000                 tx_ring->last_tx_tso = 1;
3001                 tx_flags |= E1000_TX_FLAGS_TSO;
3002         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3003                 tx_flags |= E1000_TX_FLAGS_CSUM;
3004
3005         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3006          * 82571 hardware supports TSO capabilities for IPv6 as well...
3007          * no longer assume, we must. */
3008         if (likely(skb->protocol == ntohs(ETH_P_IP)))
3009                 tx_flags |= E1000_TX_FLAGS_IPV4;
3010
3011         e1000_tx_queue(adapter, tx_ring, tx_flags,
3012                        e1000_tx_map(adapter, tx_ring, skb, first,
3013                                     max_per_txd, nr_frags, mss));
3014
3015         netdev->trans_start = jiffies;
3016
3017         /* Make sure there is space in the ring for the next send. */
3018         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3019                 netif_stop_queue(netdev);
3020
3021         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3022         return NETDEV_TX_OK;
3023 }
3024
3025 /**
3026  * e1000_tx_timeout - Respond to a Tx Hang
3027  * @netdev: network interface device structure
3028  **/
3029
3030 static void
3031 e1000_tx_timeout(struct net_device *netdev)
3032 {
3033         struct e1000_adapter *adapter = netdev_priv(netdev);
3034
3035         /* Do the reset outside of interrupt context */
3036         schedule_work(&adapter->tx_timeout_task);
3037 }
3038
3039 static void
3040 e1000_tx_timeout_task(struct net_device *netdev)
3041 {
3042         struct e1000_adapter *adapter = netdev_priv(netdev);
3043
3044         adapter->tx_timeout_count++;
3045         e1000_down(adapter);
3046         e1000_up(adapter);
3047 }
3048
3049 /**
3050  * e1000_get_stats - Get System Network Statistics
3051  * @netdev: network interface device structure
3052  *
3053  * Returns the address of the device statistics structure.
3054  * The statistics are actually updated from the timer callback.
3055  **/
3056
3057 static struct net_device_stats *
3058 e1000_get_stats(struct net_device *netdev)
3059 {
3060         struct e1000_adapter *adapter = netdev_priv(netdev);
3061
3062         /* only return the current stats */
3063         return &adapter->net_stats;
3064 }
3065
3066 /**
3067  * e1000_change_mtu - Change the Maximum Transfer Unit
3068  * @netdev: network interface device structure
3069  * @new_mtu: new value for maximum frame size
3070  *
3071  * Returns 0 on success, negative on failure
3072  **/
3073
3074 static int
3075 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3076 {
3077         struct e1000_adapter *adapter = netdev_priv(netdev);
3078         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3079
3080         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3081             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3082                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3083                 return -EINVAL;
3084         }
3085
3086         /* Adapter-specific max frame size limits. */
3087         switch (adapter->hw.mac_type) {
3088         case e1000_82542_rev2_0:
3089         case e1000_82542_rev2_1:
3090         case e1000_82573:
3091                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3092                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3093                         return -EINVAL;
3094                 }
3095                 break;
3096         case e1000_82571:
3097         case e1000_82572:
3098 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3099                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3100                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3101                         return -EINVAL;
3102                 }
3103                 break;
3104         default:
3105                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3106                 break;
3107         }
3108
3109         /* since the driver code now supports splitting a packet across
3110          * multiple descriptors, most of the fifo related limitations on
3111          * jumbo frame traffic have gone away.
3112          * simply use 2k descriptors for everything.
3113          *
3114          * NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3115          * means we reserve 2 more, this pushes us to allocate from the next
3116          * larger slab size
3117          * i.e. RXBUFFER_2048 --> size-4096 slab */
3118
3119         /* recent hardware supports 1KB granularity */
3120         if (adapter->hw.mac_type > e1000_82547_rev_2) {
3121                 adapter->rx_buffer_len =
3122                     ((max_frame < E1000_RXBUFFER_2048) ?
3123                         max_frame : E1000_RXBUFFER_2048);
3124                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
3125         } else
3126                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3127
3128         netdev->mtu = new_mtu;
3129
3130         if (netif_running(netdev)) {
3131                 e1000_down(adapter);
3132                 e1000_up(adapter);
3133         }
3134
3135         adapter->hw.max_frame_size = max_frame;
3136
3137         return 0;
3138 }
3139
3140 /**
3141  * e1000_update_stats - Update the board statistics counters
3142  * @adapter: board private structure
3143  **/
3144
3145 void
3146 e1000_update_stats(struct e1000_adapter *adapter)
3147 {
3148         struct e1000_hw *hw = &adapter->hw;
3149         unsigned long flags;
3150         uint16_t phy_tmp;
3151
3152 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3153
3154         spin_lock_irqsave(&adapter->stats_lock, flags);
3155
3156         /* these counters are modified from e1000_adjust_tbi_stats,
3157          * called from the interrupt context, so they must only
3158          * be written while holding adapter->stats_lock
3159          */
3160
3161         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3162         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3163         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3164         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3165         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3166         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3167         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3168         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3169         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3170         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3171         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3172         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3173         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3174
3175         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3176         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3177         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3178         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3179         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3180         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3181         adapter->stats.dc += E1000_READ_REG(hw, DC);
3182         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3183         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3184         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3185         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3186         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3187         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3188         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3189         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3190         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3191         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3192         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3193         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3194         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3195         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3196         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3197         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3198         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3199         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3200         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3201         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3202         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3203         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3204         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3205         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3206         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3207         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3208         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3209
3210         /* used for adaptive IFS */
3211
3212         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3213         adapter->stats.tpt += hw->tx_packet_delta;
3214         hw->collision_delta = E1000_READ_REG(hw, COLC);
3215         adapter->stats.colc += hw->collision_delta;
3216
3217         if (hw->mac_type >= e1000_82543) {
3218                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3219                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3220                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3221                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3222                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3223                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3224         }
3225         if (hw->mac_type > e1000_82547_rev_2) {
3226                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3227                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3228                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3229                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3230                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3231                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3232                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3233                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3234                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3235         }
3236
3237         /* Fill out the OS statistics structure */
3238
3239         adapter->net_stats.rx_packets = adapter->stats.gprc;
3240         adapter->net_stats.tx_packets = adapter->stats.gptc;
3241         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3242         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3243         adapter->net_stats.multicast = adapter->stats.mprc;
3244         adapter->net_stats.collisions = adapter->stats.colc;
3245
3246         /* Rx Errors */
3247
3248         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3249                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3250                 adapter->stats.rlec + adapter->stats.cexterr;
3251         adapter->net_stats.rx_dropped = 0;
3252         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3253         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3254         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3255         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3256
3257         /* Tx Errors */
3258
3259         adapter->net_stats.tx_errors = adapter->stats.ecol +
3260                                        adapter->stats.latecol;
3261         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3262         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3263         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3264
3265         /* Tx Dropped needs to be maintained elsewhere */
3266
3267         /* Phy Stats */
3268
3269         if (hw->media_type == e1000_media_type_copper) {
3270                 if ((adapter->link_speed == SPEED_1000) &&
3271                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3272                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3273                         adapter->phy_stats.idle_errors += phy_tmp;
3274                 }
3275
3276                 if ((hw->mac_type <= e1000_82546) &&
3277                    (hw->phy_type == e1000_phy_m88) &&
3278                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3279                         adapter->phy_stats.receive_errors += phy_tmp;
3280         }
3281
3282         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3283 }
3284
3285 #ifdef CONFIG_E1000_MQ
3286 void
3287 e1000_rx_schedule(void *data)
3288 {
3289         struct net_device *poll_dev, *netdev = data;
3290         struct e1000_adapter *adapter = netdev->priv;
3291         int this_cpu = get_cpu();
3292
3293         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3294         if (poll_dev == NULL) {
3295                 put_cpu();
3296                 return;
3297         }
3298
3299         if (likely(netif_rx_schedule_prep(poll_dev)))
3300                 __netif_rx_schedule(poll_dev);
3301         else
3302                 e1000_irq_enable(adapter);
3303
3304         put_cpu();
3305 }
3306 #endif
3307
3308 /**
3309  * e1000_intr - Interrupt Handler
3310  * @irq: interrupt number
3311  * @data: pointer to a network interface device structure
3312  * @pt_regs: CPU registers structure
3313  **/
3314
3315 static irqreturn_t
3316 e1000_intr(int irq, void *data, struct pt_regs *regs)
3317 {
3318         struct net_device *netdev = data;
3319         struct e1000_adapter *adapter = netdev_priv(netdev);
3320         struct e1000_hw *hw = &adapter->hw;
3321         uint32_t icr = E1000_READ_REG(hw, ICR);
3322 #ifndef CONFIG_E1000_NAPI
3323         int i;
3324 #else
3325         /* Interrupt Auto-Mask...upon reading ICR,
3326          * interrupts are masked.  No need for the
3327          * IMC write, but it does mean we should
3328          * account for it ASAP. */
3329         if (likely(hw->mac_type >= e1000_82571))
3330                 atomic_inc(&adapter->irq_sem);
3331 #endif
3332
3333         if (unlikely(!icr)) {
3334 #ifdef CONFIG_E1000_NAPI
3335                 if (hw->mac_type >= e1000_82571)
3336                         e1000_irq_enable(adapter);
3337 #endif
3338                 return IRQ_NONE;  /* Not our interrupt */
3339         }
3340
3341         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3342                 hw->get_link_status = 1;
3343                 mod_timer(&adapter->watchdog_timer, jiffies);
3344         }
3345
3346 #ifdef CONFIG_E1000_NAPI
3347         if (unlikely(hw->mac_type < e1000_82571)) {
3348                 atomic_inc(&adapter->irq_sem);
3349                 E1000_WRITE_REG(hw, IMC, ~0);
3350                 E1000_WRITE_FLUSH(hw);
3351         }
3352 #ifdef CONFIG_E1000_MQ
3353         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3354                 /* We must setup the cpumask once count == 0 since
3355                  * each cpu bit is cleared when the work is done. */
3356                 adapter->rx_sched_call_data.cpumask = adapter->cpumask;
3357                 atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
3358                 atomic_set(&adapter->rx_sched_call_data.count,
3359                            adapter->num_rx_queues);
3360                 smp_call_async_mask(&adapter->rx_sched_call_data);
3361         } else {
3362                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3363         }
3364 #else /* if !CONFIG_E1000_MQ */
3365         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3366                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3367         else
3368                 e1000_irq_enable(adapter);
3369 #endif /* CONFIG_E1000_MQ */
3370
3371 #else /* if !CONFIG_E1000_NAPI */
3372         /* Writing IMC and IMS is needed for 82547.
3373          * Due to Hub Link bus being occupied, an interrupt
3374          * de-assertion message is not able to be sent.
3375          * When an interrupt assertion message is generated later,
3376          * two messages are re-ordered and sent out.
3377          * That causes APIC to think 82547 is in de-assertion
3378          * state, while 82547 is in assertion state, resulting
3379          * in dead lock. Writing IMC forces 82547 into
3380          * de-assertion state.
3381          */
3382         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3383                 atomic_inc(&adapter->irq_sem);
3384                 E1000_WRITE_REG(hw, IMC, ~0);
3385         }
3386
3387         for (i = 0; i < E1000_MAX_INTR; i++)
3388                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3389                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3390                         break;
3391
3392         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3393                 e1000_irq_enable(adapter);
3394
3395 #endif /* CONFIG_E1000_NAPI */
3396
3397         return IRQ_HANDLED;
3398 }
3399
3400 #ifdef CONFIG_E1000_NAPI
3401 /**
3402  * e1000_clean - NAPI Rx polling callback
3403  * @adapter: board private structure
3404  **/
3405
3406 static int
3407 e1000_clean(struct net_device *poll_dev, int *budget)
3408 {
3409         struct e1000_adapter *adapter;
3410         int work_to_do = min(*budget, poll_dev->quota);
3411         int tx_cleaned = 0, i = 0, work_done = 0;
3412
3413         /* Must NOT use netdev_priv macro here. */
3414         adapter = poll_dev->priv;
3415
3416         /* Keep link state information with original netdev */
3417         if (!netif_carrier_ok(adapter->netdev))
3418                 goto quit_polling;
3419
3420         while (poll_dev != &adapter->polling_netdev[i]) {
3421                 i++;
3422                 if (unlikely(i == adapter->num_rx_queues))
3423                         BUG();
3424         }
3425
3426         if (likely(adapter->num_tx_queues == 1)) {
3427                 /* e1000_clean is called per-cpu.  This lock protects
3428                  * tx_ring[0] from being cleaned by multiple cpus
3429                  * simultaneously.  A failure obtaining the lock means
3430                  * tx_ring[0] is currently being cleaned anyway. */
3431                 if (spin_trylock(&adapter->tx_queue_lock)) {
3432                         tx_cleaned = e1000_clean_tx_irq(adapter,
3433                                                         &adapter->tx_ring[0]);
3434                         spin_unlock(&adapter->tx_queue_lock);
3435                 }
3436         } else
3437                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3438
3439         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3440                           &work_done, work_to_do);
3441
3442         *budget -= work_done;
3443         poll_dev->quota -= work_done;
3444
3445         /* If no Tx and not enough Rx work done, exit the polling mode */
3446         if ((!tx_cleaned && (work_done == 0)) ||
3447            !netif_running(adapter->netdev)) {
3448 quit_polling:
3449                 netif_rx_complete(poll_dev);
3450                 e1000_irq_enable(adapter);
3451                 return 0;
3452         }
3453
3454         return 1;
3455 }
3456
3457 #endif
3458 /**
3459  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3460  * @adapter: board private structure
3461  **/
3462
3463 static boolean_t
3464 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3465                    struct e1000_tx_ring *tx_ring)
3466 {
3467         struct net_device *netdev = adapter->netdev;
3468         struct e1000_tx_desc *tx_desc, *eop_desc;
3469         struct e1000_buffer *buffer_info;
3470         unsigned int i, eop;
3471         boolean_t cleaned = FALSE;
3472
3473         i = tx_ring->next_to_clean;
3474         eop = tx_ring->buffer_info[i].next_to_watch;
3475         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3476
3477         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3478                 for (cleaned = FALSE; !cleaned; ) {
3479                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3480                         buffer_info = &tx_ring->buffer_info[i];
3481                         cleaned = (i == eop);
3482
3483 #ifdef CONFIG_E1000_MQ
3484                         tx_ring->tx_stats.bytes += buffer_info->length;
3485 #endif
3486                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3487                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3488
3489                         if (unlikely(++i == tx_ring->count)) i = 0;
3490                 }
3491
3492 #ifdef CONFIG_E1000_MQ
3493                 tx_ring->tx_stats.packets++;
3494 #endif
3495
3496                 eop = tx_ring->buffer_info[i].next_to_watch;
3497                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3498         }
3499
3500         tx_ring->next_to_clean = i;
3501
3502         spin_lock(&tx_ring->tx_lock);
3503
3504         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3505                     netif_carrier_ok(netdev)))
3506                 netif_wake_queue(netdev);
3507
3508         spin_unlock(&tx_ring->tx_lock);
3509
3510         if (adapter->detect_tx_hung) {
3511                 /* Detect a transmit hang in hardware, this serializes the
3512                  * check with the clearing of time_stamp and movement of i */
3513                 adapter->detect_tx_hung = FALSE;
3514                 if (tx_ring->buffer_info[eop].dma &&
3515                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3516                                adapter->tx_timeout_factor * HZ)
3517                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3518                          E1000_STATUS_TXOFF)) {
3519
3520                         /* detected Tx unit hang */
3521                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3522                                         "  Tx Queue             <%lu>\n"
3523                                         "  TDH                  <%x>\n"
3524                                         "  TDT                  <%x>\n"
3525                                         "  next_to_use          <%x>\n"
3526                                         "  next_to_clean        <%x>\n"
3527                                         "buffer_info[next_to_clean]\n"
3528                                         "  time_stamp           <%lx>\n"
3529                                         "  next_to_watch        <%x>\n"
3530                                         "  jiffies              <%lx>\n"
3531                                         "  next_to_watch.status <%x>\n",
3532                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3533                                         sizeof(struct e1000_tx_ring)),
3534                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3535                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3536                                 tx_ring->next_to_use,
3537                                 tx_ring->next_to_clean,
3538                                 tx_ring->buffer_info[eop].time_stamp,
3539                                 eop,
3540                                 jiffies,
3541                                 eop_desc->upper.fields.status);
3542                         netif_stop_queue(netdev);
3543                 }
3544         }
3545         return cleaned;
3546 }
3547
3548 /**
3549  * e1000_rx_checksum - Receive Checksum Offload for 82543
3550  * @adapter:     board private structure
3551  * @status_err:  receive descriptor status and error fields
3552  * @csum:        receive descriptor csum field
3553  * @sk_buff:     socket buffer with received data
3554  **/
3555
3556 static inline void
3557 e1000_rx_checksum(struct e1000_adapter *adapter,
3558                   uint32_t status_err, uint32_t csum,
3559                   struct sk_buff *skb)
3560 {
3561         uint16_t status = (uint16_t)status_err;
3562         uint8_t errors = (uint8_t)(status_err >> 24);
3563         skb->ip_summed = CHECKSUM_NONE;
3564
3565         /* 82543 or newer only */
3566         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3567         /* Ignore Checksum bit is set */
3568         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3569         /* TCP/UDP checksum error bit is set */
3570         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3571                 /* let the stack verify checksum errors */
3572                 adapter->hw_csum_err++;
3573                 return;
3574         }
3575         /* TCP/UDP Checksum has not been calculated */
3576         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3577                 if (!(status & E1000_RXD_STAT_TCPCS))
3578                         return;
3579         } else {
3580                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3581                         return;
3582         }
3583         /* It must be a TCP or UDP packet with a valid checksum */
3584         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3585                 /* TCP checksum is good */
3586                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3587         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3588                 /* IP fragment with UDP payload */
3589                 /* Hardware complements the payload checksum, so we undo it
3590                  * and then put the value in host order for further stack use.
3591                  */
3592                 csum = ntohl(csum ^ 0xFFFF);
3593                 skb->csum = csum;
3594                 skb->ip_summed = CHECKSUM_HW;
3595         }
3596         adapter->hw_csum_good++;
3597 }
3598
3599 /**
3600  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3601  * @adapter: board private structure
3602  **/
3603
3604 static boolean_t
3605 #ifdef CONFIG_E1000_NAPI
3606 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3607                    struct e1000_rx_ring *rx_ring,
3608                    int *work_done, int work_to_do)
3609 #else
3610 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3611                    struct e1000_rx_ring *rx_ring)
3612 #endif
3613 {
3614         struct net_device *netdev = adapter->netdev;
3615         struct pci_dev *pdev = adapter->pdev;
3616         struct e1000_rx_desc *rx_desc, *next_rxd;
3617         struct e1000_buffer *buffer_info, *next_buffer;
3618         unsigned long flags;
3619         uint32_t length;
3620         uint8_t last_byte;
3621         unsigned int i;
3622         int cleaned_count = 0;
3623         boolean_t cleaned = FALSE, multi_descriptor = FALSE;
3624
3625         i = rx_ring->next_to_clean;
3626         rx_desc = E1000_RX_DESC(*rx_ring, i);
3627         buffer_info = &rx_ring->buffer_info[i];
3628
3629         while (rx_desc->status & E1000_RXD_STAT_DD) {
3630                 struct sk_buff *skb, *next_skb;
3631                 u8 status;
3632 #ifdef CONFIG_E1000_NAPI
3633                 if (*work_done >= work_to_do)
3634                         break;
3635                 (*work_done)++;
3636 #endif
3637                 status = rx_desc->status;
3638                 skb = buffer_info->skb;
3639                 buffer_info->skb = NULL;
3640
3641                 if (++i == rx_ring->count) i = 0;
3642                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3643                 next_buffer = &rx_ring->buffer_info[i];
3644                 next_skb = next_buffer->skb;
3645
3646                 cleaned = TRUE;
3647                 cleaned_count++;
3648                 pci_unmap_single(pdev,
3649                                  buffer_info->dma,
3650                                  buffer_info->length,
3651                                  PCI_DMA_FROMDEVICE);
3652
3653                 length = le16_to_cpu(rx_desc->length);
3654
3655                 skb_put(skb, length);
3656
3657                 if (!(status & E1000_RXD_STAT_EOP)) {
3658                         if (!rx_ring->rx_skb_top) {
3659                                 rx_ring->rx_skb_top = skb;
3660                                 rx_ring->rx_skb_top->len = length;
3661                                 rx_ring->rx_skb_prev = skb;
3662                         } else {
3663                                 if (skb_shinfo(rx_ring->rx_skb_top)->frag_list) {
3664                                         rx_ring->rx_skb_prev->next = skb;
3665                                         skb->prev = rx_ring->rx_skb_prev;
3666                                 } else {
3667                                         skb_shinfo(rx_ring->rx_skb_top)->frag_list = skb;
3668                                 }
3669                                 rx_ring->rx_skb_prev = skb;
3670                                 rx_ring->rx_skb_top->data_len += length;
3671                         }
3672                         goto next_desc;
3673                 } else {
3674                         if (rx_ring->rx_skb_top) {
3675                                 if (skb_shinfo(rx_ring->rx_skb_top)
3676                                                         ->frag_list) {
3677                                         rx_ring->rx_skb_prev->next = skb;
3678                                         skb->prev = rx_ring->rx_skb_prev;
3679                                 } else
3680                                         skb_shinfo(rx_ring->rx_skb_top)
3681                                                         ->frag_list = skb;
3682
3683                                 rx_ring->rx_skb_top->data_len += length;
3684                                 rx_ring->rx_skb_top->len +=
3685                                         rx_ring->rx_skb_top->data_len;
3686
3687                                 skb = rx_ring->rx_skb_top;
3688                                 multi_descriptor = TRUE;
3689                                 rx_ring->rx_skb_top = NULL;
3690                                 rx_ring->rx_skb_prev = NULL;
3691                         }
3692                 }
3693
3694                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3695                         last_byte = *(skb->data + length - 1);
3696                         if (TBI_ACCEPT(&adapter->hw, status,
3697                                       rx_desc->errors, length, last_byte)) {
3698                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3699                                 e1000_tbi_adjust_stats(&adapter->hw,
3700                                                        &adapter->stats,
3701                                                        length, skb->data);
3702                                 spin_unlock_irqrestore(&adapter->stats_lock,
3703                                                        flags);
3704                                 length--;
3705                         } else {
3706                                 dev_kfree_skb_irq(skb);
3707                                 goto next_desc;
3708                         }
3709                 }
3710
3711                 /* code added for copybreak, this should improve
3712                  * performance for small packets with large amounts
3713                  * of reassembly being done in the stack */
3714 #define E1000_CB_LENGTH 256
3715                 if ((length < E1000_CB_LENGTH) &&
3716                    !rx_ring->rx_skb_top &&
3717                    /* or maybe (status & E1000_RXD_STAT_EOP) && */
3718                    !multi_descriptor) {
3719                         struct sk_buff *new_skb =
3720                             dev_alloc_skb(length + NET_IP_ALIGN);
3721                         if (new_skb) {
3722                                 skb_reserve(new_skb, NET_IP_ALIGN);
3723                                 new_skb->dev = netdev;
3724                                 memcpy(new_skb->data - NET_IP_ALIGN,
3725                                        skb->data - NET_IP_ALIGN,
3726                                        length + NET_IP_ALIGN);
3727                                 /* save the skb in buffer_info as good */
3728                                 buffer_info->skb = skb;
3729                                 skb = new_skb;
3730                                 skb_put(skb, length);
3731                         }
3732                 }
3733
3734                 /* end copybreak code */
3735
3736                 /* Receive Checksum Offload */
3737                 e1000_rx_checksum(adapter,
3738                                   (uint32_t)(status) |
3739                                   ((uint32_t)(rx_desc->errors) << 24),
3740                                   rx_desc->csum, skb);
3741
3742                 skb->protocol = eth_type_trans(skb, netdev);
3743 #ifdef CONFIG_E1000_NAPI
3744                 if (unlikely(adapter->vlgrp &&
3745                             (status & E1000_RXD_STAT_VP))) {
3746                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3747                                                  le16_to_cpu(rx_desc->special) &
3748                                                  E1000_RXD_SPC_VLAN_MASK);
3749                 } else {
3750                         netif_receive_skb(skb);
3751                 }
3752 #else /* CONFIG_E1000_NAPI */
3753                 if (unlikely(adapter->vlgrp &&
3754                             (status & E1000_RXD_STAT_VP))) {
3755                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3756                                         le16_to_cpu(rx_desc->special) &
3757                                         E1000_RXD_SPC_VLAN_MASK);
3758                 } else {
3759                         netif_rx(skb);
3760                 }
3761 #endif /* CONFIG_E1000_NAPI */
3762                 netdev->last_rx = jiffies;
3763 #ifdef CONFIG_E1000_MQ
3764                 rx_ring->rx_stats.packets++;
3765                 rx_ring->rx_stats.bytes += length;
3766 #endif
3767
3768 next_desc:
3769                 rx_desc->status = 0;
3770
3771                 /* return some buffers to hardware, one at a time is too slow */
3772                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3773                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3774                         cleaned_count = 0;
3775                 }
3776
3777                 rx_desc = next_rxd;
3778                 buffer_info = next_buffer;
3779         }
3780         rx_ring->next_to_clean = i;
3781
3782         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3783         if (cleaned_count)
3784                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3785
3786         return cleaned;
3787 }
3788
3789 /**
3790  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3791  * @adapter: board private structure
3792  **/
3793
3794 static boolean_t
3795 #ifdef CONFIG_E1000_NAPI
3796 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3797                       struct e1000_rx_ring *rx_ring,
3798                       int *work_done, int work_to_do)
3799 #else
3800 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3801                       struct e1000_rx_ring *rx_ring)
3802 #endif
3803 {
3804         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3805         struct net_device *netdev = adapter->netdev;
3806         struct pci_dev *pdev = adapter->pdev;
3807         struct e1000_buffer *buffer_info, *next_buffer;
3808         struct e1000_ps_page *ps_page;
3809         struct e1000_ps_page_dma *ps_page_dma;
3810         struct sk_buff *skb, *next_skb;
3811         unsigned int i, j;
3812         uint32_t length, staterr;
3813         int cleaned_count = 0;
3814         boolean_t cleaned = FALSE;
3815
3816         i = rx_ring->next_to_clean;
3817         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3818         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3819         buffer_info = &rx_ring->buffer_info[i];
3820
3821         while (staterr & E1000_RXD_STAT_DD) {
3822                 ps_page = &rx_ring->ps_page[i];
3823                 ps_page_dma = &rx_ring->ps_page_dma[i];
3824 #ifdef CONFIG_E1000_NAPI
3825                 if (unlikely(*work_done >= work_to_do))
3826                         break;
3827                 (*work_done)++;
3828 #endif
3829                 skb = buffer_info->skb;
3830
3831                 if (++i == rx_ring->count) i = 0;
3832                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3833                 next_buffer = &rx_ring->buffer_info[i];
3834                 next_skb = next_buffer->skb;
3835
3836                 cleaned = TRUE;
3837                 cleaned_count++;
3838                 pci_unmap_single(pdev, buffer_info->dma,
3839                                  buffer_info->length,
3840                                  PCI_DMA_FROMDEVICE);
3841
3842                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3843                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3844                                   " the full packet\n", netdev->name);
3845                         dev_kfree_skb_irq(skb);
3846                         goto next_desc;
3847                 }
3848
3849                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3850                         dev_kfree_skb_irq(skb);
3851                         goto next_desc;
3852                 }
3853
3854                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3855
3856                 if (unlikely(!length)) {
3857                         E1000_DBG("%s: Last part of the packet spanning"
3858                                   " multiple descriptors\n", netdev->name);
3859                         dev_kfree_skb_irq(skb);
3860                         goto next_desc;
3861                 }
3862
3863                 /* Good Receive */
3864                 skb_put(skb, length);
3865
3866                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3867                         if (!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3868                                 break;
3869
3870                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3871                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3872                         ps_page_dma->ps_page_dma[j] = 0;
3873                         skb_shinfo(skb)->frags[j].page =
3874                                 ps_page->ps_page[j];
3875                         ps_page->ps_page[j] = NULL;
3876                         skb_shinfo(skb)->frags[j].page_offset = 0;
3877                         skb_shinfo(skb)->frags[j].size = length;
3878                         skb_shinfo(skb)->nr_frags++;
3879                         skb->len += length;
3880                         skb->data_len += length;
3881                 }
3882
3883                 e1000_rx_checksum(adapter, staterr,
3884                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3885                 skb->protocol = eth_type_trans(skb, netdev);
3886
3887                 if (likely(rx_desc->wb.upper.header_status &
3888                           E1000_RXDPS_HDRSTAT_HDRSP))
3889                         adapter->rx_hdr_split++;
3890 #ifdef CONFIG_E1000_NAPI
3891                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3892                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3893                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3894                                 E1000_RXD_SPC_VLAN_MASK);
3895                 } else {
3896                         netif_receive_skb(skb);
3897                 }
3898 #else /* CONFIG_E1000_NAPI */
3899                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3900                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3901                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3902                                 E1000_RXD_SPC_VLAN_MASK);
3903                 } else {
3904                         netif_rx(skb);
3905                 }
3906 #endif /* CONFIG_E1000_NAPI */
3907                 netdev->last_rx = jiffies;
3908 #ifdef CONFIG_E1000_MQ
3909                 rx_ring->rx_stats.packets++;
3910                 rx_ring->rx_stats.bytes += length;
3911 #endif
3912
3913 next_desc:
3914                 rx_desc->wb.middle.status_error &= ~0xFF;
3915                 buffer_info->skb = NULL;
3916
3917                 /* return some buffers to hardware, one at a time is too slow */
3918                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3919                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3920                         cleaned_count = 0;
3921                 }
3922
3923                 rx_desc = next_rxd;
3924                 buffer_info = next_buffer;
3925
3926                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3927         }
3928         rx_ring->next_to_clean = i;
3929
3930         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3931         if (cleaned_count)
3932                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3933
3934         return cleaned;
3935 }
3936
3937 /**
3938  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3939  * @adapter: address of board private structure
3940  **/
3941
3942 static void
3943 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3944                        struct e1000_rx_ring *rx_ring,
3945                        int cleaned_count)
3946 {
3947         struct net_device *netdev = adapter->netdev;
3948         struct pci_dev *pdev = adapter->pdev;
3949         struct e1000_rx_desc *rx_desc;
3950         struct e1000_buffer *buffer_info;
3951         struct sk_buff *skb;
3952         unsigned int i;
3953         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3954
3955         i = rx_ring->next_to_use;
3956         buffer_info = &rx_ring->buffer_info[i];
3957
3958         while (cleaned_count--) {
3959                 if (!(skb = buffer_info->skb))
3960                         skb = dev_alloc_skb(bufsz);
3961                 else {
3962                         skb_trim(skb, 0);
3963                         goto map_skb;
3964                 }
3965
3966
3967                 if (unlikely(!skb)) {
3968                         /* Better luck next round */
3969                         adapter->alloc_rx_buff_failed++;
3970                         break;
3971                 }
3972
3973                 /* Fix for errata 23, can't cross 64kB boundary */
3974                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3975                         struct sk_buff *oldskb = skb;
3976                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3977                                              "at %p\n", bufsz, skb->data);
3978                         /* Try again, without freeing the previous */
3979                         skb = dev_alloc_skb(bufsz);
3980                         /* Failed allocation, critical failure */
3981                         if (!skb) {
3982                                 dev_kfree_skb(oldskb);
3983                                 break;
3984                         }
3985
3986                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3987                                 /* give up */
3988                                 dev_kfree_skb(skb);
3989                                 dev_kfree_skb(oldskb);
3990                                 break; /* while !buffer_info->skb */
3991                         } else {
3992                                 /* Use new allocation */
3993                                 dev_kfree_skb(oldskb);
3994                         }
3995                 }
3996                 /* Make buffer alignment 2 beyond a 16 byte boundary
3997                  * this will result in a 16 byte aligned IP header after
3998                  * the 14 byte MAC header is removed
3999                  */
4000                 skb_reserve(skb, NET_IP_ALIGN);
4001
4002                 skb->dev = netdev;
4003
4004                 buffer_info->skb = skb;
4005                 buffer_info->length = adapter->rx_buffer_len;
4006 map_skb:
4007                 buffer_info->dma = pci_map_single(pdev,
4008                                                   skb->data,
4009                                                   adapter->rx_buffer_len,
4010                                                   PCI_DMA_FROMDEVICE);
4011
4012                 /* Fix for errata 23, can't cross 64kB boundary */
4013                 if (!e1000_check_64k_bound(adapter,
4014                                         (void *)(unsigned long)buffer_info->dma,
4015                                         adapter->rx_buffer_len)) {
4016                         DPRINTK(RX_ERR, ERR,
4017                                 "dma align check failed: %u bytes at %p\n",
4018                                 adapter->rx_buffer_len,
4019                                 (void *)(unsigned long)buffer_info->dma);
4020                         dev_kfree_skb(skb);
4021                         buffer_info->skb = NULL;
4022
4023                         pci_unmap_single(pdev, buffer_info->dma,
4024                                          adapter->rx_buffer_len,
4025                                          PCI_DMA_FROMDEVICE);
4026
4027                         break; /* while !buffer_info->skb */
4028                 }
4029                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4030                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4031
4032                 if (unlikely(++i == rx_ring->count))
4033                         i = 0;
4034                 buffer_info = &rx_ring->buffer_info[i];
4035         }
4036
4037         if (likely(rx_ring->next_to_use != i)) {
4038                 rx_ring->next_to_use = i;
4039                 if (unlikely(i-- == 0))
4040                         i = (rx_ring->count - 1);
4041
4042                 /* Force memory writes to complete before letting h/w
4043                  * know there are new descriptors to fetch.  (Only
4044                  * applicable for weak-ordered memory model archs,
4045                  * such as IA-64). */
4046                 wmb();
4047                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4048         }
4049 }
4050
4051 /**
4052  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4053  * @adapter: address of board private structure
4054  **/
4055
4056 static void
4057 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4058                           struct e1000_rx_ring *rx_ring,
4059                           int cleaned_count)
4060 {
4061         struct net_device *netdev = adapter->netdev;
4062         struct pci_dev *pdev = adapter->pdev;
4063         union e1000_rx_desc_packet_split *rx_desc;
4064         struct e1000_buffer *buffer_info;
4065         struct e1000_ps_page *ps_page;
4066         struct e1000_ps_page_dma *ps_page_dma;
4067         struct sk_buff *skb;
4068         unsigned int i, j;
4069
4070         i = rx_ring->next_to_use;
4071         buffer_info = &rx_ring->buffer_info[i];
4072         ps_page = &rx_ring->ps_page[i];
4073         ps_page_dma = &rx_ring->ps_page_dma[i];
4074
4075         while (cleaned_count--) {
4076                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4077
4078                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4079                         if (j < adapter->rx_ps_pages) {
4080                                 if (likely(!ps_page->ps_page[j])) {
4081                                         ps_page->ps_page[j] =
4082                                                 alloc_page(GFP_ATOMIC);
4083                                         if (unlikely(!ps_page->ps_page[j])) {
4084                                                 adapter->alloc_rx_buff_failed++;
4085                                                 goto no_buffers;
4086                                         }
4087                                         ps_page_dma->ps_page_dma[j] =
4088                                                 pci_map_page(pdev,
4089                                                             ps_page->ps_page[j],
4090                                                             0, PAGE_SIZE,
4091                                                             PCI_DMA_FROMDEVICE);
4092                                 }
4093                                 /* Refresh the desc even if buffer_addrs didn't
4094                                  * change because each write-back erases
4095                                  * this info.
4096                                  */
4097                                 rx_desc->read.buffer_addr[j+1] =
4098                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4099                         } else
4100                                 rx_desc->read.buffer_addr[j+1] = ~0;
4101                 }
4102
4103                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4104
4105                 if (unlikely(!skb)) {
4106                         adapter->alloc_rx_buff_failed++;
4107                         break;
4108                 }
4109
4110                 /* Make buffer alignment 2 beyond a 16 byte boundary
4111                  * this will result in a 16 byte aligned IP header after
4112                  * the 14 byte MAC header is removed
4113                  */
4114                 skb_reserve(skb, NET_IP_ALIGN);
4115
4116                 skb->dev = netdev;
4117
4118                 buffer_info->skb = skb;
4119                 buffer_info->length = adapter->rx_ps_bsize0;
4120                 buffer_info->dma = pci_map_single(pdev, skb->data,
4121                                                   adapter->rx_ps_bsize0,
4122                                                   PCI_DMA_FROMDEVICE);
4123
4124                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4125
4126                 if (unlikely(++i == rx_ring->count)) i = 0;
4127                 buffer_info = &rx_ring->buffer_info[i];
4128                 ps_page = &rx_ring->ps_page[i];
4129                 ps_page_dma = &rx_ring->ps_page_dma[i];
4130         }
4131
4132 no_buffers:
4133         if (likely(rx_ring->next_to_use != i)) {
4134                 rx_ring->next_to_use = i;
4135                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4136
4137                 /* Force memory writes to complete before letting h/w
4138                  * know there are new descriptors to fetch.  (Only
4139                  * applicable for weak-ordered memory model archs,
4140                  * such as IA-64). */
4141                 wmb();
4142                 /* Hardware increments by 16 bytes, but packet split
4143                  * descriptors are 32 bytes...so we increment tail
4144                  * twice as much.
4145                  */
4146                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4147         }
4148 }
4149
4150 /**
4151  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4152  * @adapter:
4153  **/
4154
4155 static void
4156 e1000_smartspeed(struct e1000_adapter *adapter)
4157 {
4158         uint16_t phy_status;
4159         uint16_t phy_ctrl;
4160
4161         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4162            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4163                 return;
4164
4165         if (adapter->smartspeed == 0) {
4166                 /* If Master/Slave config fault is asserted twice,
4167                  * we assume back-to-back */
4168                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4169                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4170                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4171                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4172                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4173                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4174                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4175                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4176                                             phy_ctrl);
4177                         adapter->smartspeed++;
4178                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4179                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4180                                                &phy_ctrl)) {
4181                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4182                                              MII_CR_RESTART_AUTO_NEG);
4183                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4184                                                     phy_ctrl);
4185                         }
4186                 }
4187                 return;
4188         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4189                 /* If still no link, perhaps using 2/3 pair cable */
4190                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4191                 phy_ctrl |= CR_1000T_MS_ENABLE;
4192                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4193                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4194                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4195                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4196                                      MII_CR_RESTART_AUTO_NEG);
4197                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4198                 }
4199         }
4200         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4201         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4202                 adapter->smartspeed = 0;
4203 }
4204
4205 /**
4206  * e1000_ioctl -
4207  * @netdev:
4208  * @ifreq:
4209  * @cmd:
4210  **/
4211
4212 static int
4213 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4214 {
4215         switch (cmd) {
4216         case SIOCGMIIPHY:
4217         case SIOCGMIIREG:
4218         case SIOCSMIIREG:
4219                 return e1000_mii_ioctl(netdev, ifr, cmd);
4220         default:
4221                 return -EOPNOTSUPP;
4222         }
4223 }
4224
4225 /**
4226  * e1000_mii_ioctl -
4227  * @netdev:
4228  * @ifreq:
4229  * @cmd:
4230  **/
4231
4232 static int
4233 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4234 {
4235         struct e1000_adapter *adapter = netdev_priv(netdev);
4236         struct mii_ioctl_data *data = if_mii(ifr);
4237         int retval;
4238         uint16_t mii_reg;
4239         uint16_t spddplx;
4240         unsigned long flags;
4241
4242         if (adapter->hw.media_type != e1000_media_type_copper)
4243                 return -EOPNOTSUPP;
4244
4245         switch (cmd) {
4246         case SIOCGMIIPHY:
4247                 data->phy_id = adapter->hw.phy_addr;
4248                 break;
4249         case SIOCGMIIREG:
4250                 if (!capable(CAP_NET_ADMIN))
4251                         return -EPERM;
4252                 spin_lock_irqsave(&adapter->stats_lock, flags);
4253                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4254                                    &data->val_out)) {
4255                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4256                         return -EIO;
4257                 }
4258                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4259                 break;
4260         case SIOCSMIIREG:
4261                 if (!capable(CAP_NET_ADMIN))
4262                         return -EPERM;
4263                 if (data->reg_num & ~(0x1F))
4264                         return -EFAULT;
4265                 mii_reg = data->val_in;
4266                 spin_lock_irqsave(&adapter->stats_lock, flags);
4267                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4268                                         mii_reg)) {
4269                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4270                         return -EIO;
4271                 }
4272                 if (adapter->hw.phy_type == e1000_phy_m88) {
4273                         switch (data->reg_num) {
4274                         case PHY_CTRL:
4275                                 if (mii_reg & MII_CR_POWER_DOWN)
4276                                         break;
4277                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4278                                         adapter->hw.autoneg = 1;
4279                                         adapter->hw.autoneg_advertised = 0x2F;
4280                                 } else {
4281                                         if (mii_reg & 0x40)
4282                                                 spddplx = SPEED_1000;
4283                                         else if (mii_reg & 0x2000)
4284                                                 spddplx = SPEED_100;
4285                                         else
4286                                                 spddplx = SPEED_10;
4287                                         spddplx += (mii_reg & 0x100)
4288                                                    ? FULL_DUPLEX :
4289                                                    HALF_DUPLEX;
4290                                         retval = e1000_set_spd_dplx(adapter,
4291                                                                     spddplx);
4292                                         if (retval) {
4293                                                 spin_unlock_irqrestore(
4294                                                         &adapter->stats_lock,
4295                                                         flags);
4296                                                 return retval;
4297                                         }
4298                                 }
4299                                 if (netif_running(adapter->netdev)) {
4300                                         e1000_down(adapter);
4301                                         e1000_up(adapter);
4302                                 } else
4303                                         e1000_reset(adapter);
4304                                 break;
4305                         case M88E1000_PHY_SPEC_CTRL:
4306                         case M88E1000_EXT_PHY_SPEC_CTRL:
4307                                 if (e1000_phy_reset(&adapter->hw)) {
4308                                         spin_unlock_irqrestore(
4309                                                 &adapter->stats_lock, flags);
4310                                         return -EIO;
4311                                 }
4312                                 break;
4313                         }
4314                 } else {
4315                         switch (data->reg_num) {
4316                         case PHY_CTRL:
4317                                 if (mii_reg & MII_CR_POWER_DOWN)
4318                                         break;
4319                                 if (netif_running(adapter->netdev)) {
4320                                         e1000_down(adapter);
4321                                         e1000_up(adapter);
4322                                 } else
4323                                         e1000_reset(adapter);
4324                                 break;
4325                         }
4326                 }
4327                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4328                 break;
4329         default:
4330                 return -EOPNOTSUPP;
4331         }
4332         return E1000_SUCCESS;
4333 }
4334
4335 void
4336 e1000_pci_set_mwi(struct e1000_hw *hw)
4337 {
4338         struct e1000_adapter *adapter = hw->back;
4339         int ret_val = pci_set_mwi(adapter->pdev);
4340
4341         if (ret_val)
4342                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4343 }
4344
4345 void
4346 e1000_pci_clear_mwi(struct e1000_hw *hw)
4347 {
4348         struct e1000_adapter *adapter = hw->back;
4349
4350         pci_clear_mwi(adapter->pdev);
4351 }
4352
4353 void
4354 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4355 {
4356         struct e1000_adapter *adapter = hw->back;
4357
4358         pci_read_config_word(adapter->pdev, reg, value);
4359 }
4360
4361 void
4362 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4363 {
4364         struct e1000_adapter *adapter = hw->back;
4365
4366         pci_write_config_word(adapter->pdev, reg, *value);
4367 }
4368
4369 uint32_t
4370 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4371 {
4372         return inl(port);
4373 }
4374
4375 void
4376 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4377 {
4378         outl(value, port);
4379 }
4380
4381 static void
4382 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4383 {
4384         struct e1000_adapter *adapter = netdev_priv(netdev);
4385         uint32_t ctrl, rctl;
4386
4387         e1000_irq_disable(adapter);
4388         adapter->vlgrp = grp;
4389
4390         if (grp) {
4391                 /* enable VLAN tag insert/strip */
4392                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4393                 ctrl |= E1000_CTRL_VME;
4394                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4395
4396                 /* enable VLAN receive filtering */
4397                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4398                 rctl |= E1000_RCTL_VFE;
4399                 rctl &= ~E1000_RCTL_CFIEN;
4400                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4401                 e1000_update_mng_vlan(adapter);
4402         } else {
4403                 /* disable VLAN tag insert/strip */
4404                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4405                 ctrl &= ~E1000_CTRL_VME;
4406                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4407
4408                 /* disable VLAN filtering */
4409                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4410                 rctl &= ~E1000_RCTL_VFE;
4411                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4412                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4413                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4414                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4415                 }
4416         }
4417
4418         e1000_irq_enable(adapter);
4419 }
4420
4421 static void
4422 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4423 {
4424         struct e1000_adapter *adapter = netdev_priv(netdev);
4425         uint32_t vfta, index;
4426
4427         if ((adapter->hw.mng_cookie.status &
4428              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4429             (vid == adapter->mng_vlan_id))
4430                 return;
4431         /* add VID to filter table */
4432         index = (vid >> 5) & 0x7F;
4433         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4434         vfta |= (1 << (vid & 0x1F));
4435         e1000_write_vfta(&adapter->hw, index, vfta);
4436 }
4437
4438 static void
4439 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4440 {
4441         struct e1000_adapter *adapter = netdev_priv(netdev);
4442         uint32_t vfta, index;
4443
4444         e1000_irq_disable(adapter);
4445
4446         if (adapter->vlgrp)
4447                 adapter->vlgrp->vlan_devices[vid] = NULL;
4448
4449         e1000_irq_enable(adapter);
4450
4451         if ((adapter->hw.mng_cookie.status &
4452              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4453             (vid == adapter->mng_vlan_id)) {
4454                 /* release control to f/w */
4455                 e1000_release_hw_control(adapter);
4456                 return;
4457         }
4458
4459         /* remove VID from filter table */
4460         index = (vid >> 5) & 0x7F;
4461         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4462         vfta &= ~(1 << (vid & 0x1F));
4463         e1000_write_vfta(&adapter->hw, index, vfta);
4464 }
4465
4466 static void
4467 e1000_restore_vlan(struct e1000_adapter *adapter)
4468 {
4469         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4470
4471         if (adapter->vlgrp) {
4472                 uint16_t vid;
4473                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4474                         if (!adapter->vlgrp->vlan_devices[vid])
4475                                 continue;
4476                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4477                 }
4478         }
4479 }
4480
4481 int
4482 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4483 {
4484         adapter->hw.autoneg = 0;
4485
4486         /* Fiber NICs only allow 1000 gbps Full duplex */
4487         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4488                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4489                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4490                 return -EINVAL;
4491         }
4492
4493         switch (spddplx) {
4494         case SPEED_10 + DUPLEX_HALF:
4495                 adapter->hw.forced_speed_duplex = e1000_10_half;
4496                 break;
4497         case SPEED_10 + DUPLEX_FULL:
4498                 adapter->hw.forced_speed_duplex = e1000_10_full;
4499                 break;
4500         case SPEED_100 + DUPLEX_HALF:
4501                 adapter->hw.forced_speed_duplex = e1000_100_half;
4502                 break;
4503         case SPEED_100 + DUPLEX_FULL:
4504                 adapter->hw.forced_speed_duplex = e1000_100_full;
4505                 break;
4506         case SPEED_1000 + DUPLEX_FULL:
4507                 adapter->hw.autoneg = 1;
4508                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4509                 break;
4510         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4511         default:
4512                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4513                 return -EINVAL;
4514         }
4515         return 0;
4516 }
4517
4518 #ifdef CONFIG_PM
4519 /* these functions save and restore 16 or 64 dwords (64-256 bytes) of config
4520  * space versus the 64 bytes that pci_[save|restore]_state handle
4521  */
4522 #define PCIE_CONFIG_SPACE_LEN 256
4523 #define PCI_CONFIG_SPACE_LEN 64
4524 static int
4525 e1000_pci_save_state(struct e1000_adapter *adapter)
4526 {
4527         struct pci_dev *dev = adapter->pdev;
4528         int size;
4529         int i;
4530         if (adapter->hw.mac_type >= e1000_82571)
4531                 size = PCIE_CONFIG_SPACE_LEN;
4532         else
4533                 size = PCI_CONFIG_SPACE_LEN;
4534
4535         WARN_ON(adapter->config_space != NULL);
4536
4537         adapter->config_space = kmalloc(size, GFP_KERNEL);
4538         if (!adapter->config_space) {
4539                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4540                 return -ENOMEM;
4541         }
4542         for (i = 0; i < (size / 4); i++)
4543                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4544         return 0;
4545 }
4546
4547 static void
4548 e1000_pci_restore_state(struct e1000_adapter *adapter)
4549 {
4550         struct pci_dev *dev = adapter->pdev;
4551         int size;
4552         int i;
4553         if (adapter->config_space == NULL)
4554                 return;
4555         if (adapter->hw.mac_type >= e1000_82571)
4556                 size = PCIE_CONFIG_SPACE_LEN;
4557         else
4558                 size = PCI_CONFIG_SPACE_LEN;
4559         for (i = 0; i < (size / 4); i++)
4560                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4561         kfree(adapter->config_space);
4562         adapter->config_space = NULL;
4563         return;
4564 }
4565 #endif /* CONFIG_PM */
4566
4567 static int
4568 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4569 {
4570         struct net_device *netdev = pci_get_drvdata(pdev);
4571         struct e1000_adapter *adapter = netdev_priv(netdev);
4572         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4573         uint32_t wufc = adapter->wol;
4574         int retval = 0;
4575
4576         netif_device_detach(netdev);
4577
4578         if (netif_running(netdev))
4579                 e1000_down(adapter);
4580
4581 #ifdef CONFIG_PM
4582         /* implement our own version of pci_save_state(pdev) because pci 
4583          * express adapters have larger 256 byte config spaces */
4584         retval = e1000_pci_save_state(adapter);
4585         if (retval)
4586                 return retval;
4587 #endif
4588
4589         status = E1000_READ_REG(&adapter->hw, STATUS);
4590         if (status & E1000_STATUS_LU)
4591                 wufc &= ~E1000_WUFC_LNKC;
4592
4593         if (wufc) {
4594                 e1000_setup_rctl(adapter);
4595                 e1000_set_multi(netdev);
4596
4597                 /* turn on all-multi mode if wake on multicast is enabled */
4598                 if (adapter->wol & E1000_WUFC_MC) {
4599                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4600                         rctl |= E1000_RCTL_MPE;
4601                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4602                 }
4603
4604                 if (adapter->hw.mac_type >= e1000_82540) {
4605                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4606                         /* advertise wake from D3Cold */
4607                         #define E1000_CTRL_ADVD3WUC 0x00100000
4608                         /* phy power management enable */
4609                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4610                         ctrl |= E1000_CTRL_ADVD3WUC |
4611                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4612                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4613                 }
4614
4615                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4616                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4617                         /* keep the laser running in D3 */
4618                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4619                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4620                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4621                 }
4622
4623                 /* Allow time for pending master requests to run */
4624                 e1000_disable_pciex_master(&adapter->hw);
4625
4626                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4627                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4628                 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4629                 if (retval)
4630                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4631                 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4632                 if (retval)
4633                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4634         } else {
4635                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4636                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4637                 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4638                 if (retval)
4639                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4640                 retval = pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
4641                 if (retval)
4642                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4643         }
4644
4645         if (adapter->hw.mac_type >= e1000_82540 &&
4646            adapter->hw.media_type == e1000_media_type_copper) {
4647                 manc = E1000_READ_REG(&adapter->hw, MANC);
4648                 if (manc & E1000_MANC_SMBUS_EN) {
4649                         manc |= E1000_MANC_ARP_EN;
4650                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4651                         retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4652                         if (retval)
4653                                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4654                         retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4655                         if (retval)
4656                                 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4657                 }
4658         }
4659
4660         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4661          * would have already happened in close and is redundant. */
4662         e1000_release_hw_control(adapter);
4663
4664         pci_disable_device(pdev);
4665
4666         retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
4667         if (retval)
4668                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4669
4670         return 0;
4671 }
4672
4673 #ifdef CONFIG_PM
4674 static int
4675 e1000_resume(struct pci_dev *pdev)
4676 {
4677         struct net_device *netdev = pci_get_drvdata(pdev);
4678         struct e1000_adapter *adapter = netdev_priv(netdev);
4679         int retval;
4680         uint32_t manc, ret_val;
4681
4682         retval = pci_set_power_state(pdev, PCI_D0);
4683         if (retval)
4684                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4685         e1000_pci_restore_state(adapter);
4686         ret_val = pci_enable_device(pdev);
4687         pci_set_master(pdev);
4688
4689         retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4690         if (retval)
4691                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4692         retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4693         if (retval)
4694                 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4695
4696         e1000_reset(adapter);
4697         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4698
4699         if (netif_running(netdev))
4700                 e1000_up(adapter);
4701
4702         netif_device_attach(netdev);
4703
4704         if (adapter->hw.mac_type >= e1000_82540 &&
4705            adapter->hw.media_type == e1000_media_type_copper) {
4706                 manc = E1000_READ_REG(&adapter->hw, MANC);
4707                 manc &= ~(E1000_MANC_ARP_EN);
4708                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4709         }
4710
4711         /* If the controller is 82573 and f/w is AMT, do not set
4712          * DRV_LOAD until the interface is up.  For all other cases,
4713          * let the f/w know that the h/w is now under the control
4714          * of the driver. */
4715         if (adapter->hw.mac_type != e1000_82573 ||
4716             !e1000_check_mng_mode(&adapter->hw))
4717                 e1000_get_hw_control(adapter);
4718
4719         return 0;
4720 }
4721 #endif
4722 #ifdef CONFIG_NET_POLL_CONTROLLER
4723 /*
4724  * Polling 'interrupt' - used by things like netconsole to send skbs
4725  * without having to re-enable interrupts. It's not called while
4726  * the interrupt routine is executing.
4727  */
4728 static void
4729 e1000_netpoll(struct net_device *netdev)
4730 {
4731         struct e1000_adapter *adapter = netdev_priv(netdev);
4732         disable_irq(adapter->pdev->irq);
4733         e1000_intr(adapter->pdev->irq, netdev, NULL);
4734         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4735 #ifndef CONFIG_E1000_NAPI
4736         adapter->clean_rx(adapter, adapter->rx_ring);
4737 #endif
4738         enable_irq(adapter->pdev->irq);
4739 }
4740 #endif
4741
4742 /* e1000_main.c */