[SCSI] aic94xx: new driver
[linux-2.6] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
45
46 /* ---------- SMP task management ---------- */
47
48 static void smp_task_timedout(unsigned long _task)
49 {
50         struct sas_task *task = (void *) _task;
51         unsigned long flags;
52
53         spin_lock_irqsave(&task->task_state_lock, flags);
54         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56         spin_unlock_irqrestore(&task->task_state_lock, flags);
57
58         complete(&task->completion);
59 }
60
61 static void smp_task_done(struct sas_task *task)
62 {
63         if (!del_timer(&task->timer))
64                 return;
65         complete(&task->completion);
66 }
67
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
70
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72                             void *resp, int resp_size)
73 {
74         int res;
75         struct sas_task *task = sas_alloc_task(GFP_KERNEL);
76         struct sas_internal *i =
77                 to_sas_internal(dev->port->ha->core.shost->transportt);
78
79         if (!task)
80                 return -ENOMEM;
81
82         task->dev = dev;
83         task->task_proto = dev->tproto;
84         sg_init_one(&task->smp_task.smp_req, req, req_size);
85         sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
86
87         task->task_done = smp_task_done;
88
89         task->timer.data = (unsigned long) task;
90         task->timer.function = smp_task_timedout;
91         task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
92         add_timer(&task->timer);
93
94         res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
95
96         if (res) {
97                 del_timer(&task->timer);
98                 SAS_DPRINTK("executing SMP task failed:%d\n", res);
99                 goto ex_err;
100         }
101
102         wait_for_completion(&task->completion);
103         res = -ETASK;
104         if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
105                 SAS_DPRINTK("smp task timed out or aborted\n");
106                 i->dft->lldd_abort_task(task);
107                 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
108                         SAS_DPRINTK("SMP task aborted and not done\n");
109                         goto ex_err;
110                 }
111         }
112         if (task->task_status.resp == SAS_TASK_COMPLETE &&
113             task->task_status.stat == SAM_GOOD)
114                 res = 0;
115         else
116                 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
117                             "status 0x%x\n", __FUNCTION__,
118                             SAS_ADDR(dev->sas_addr),
119                             task->task_status.resp,
120                             task->task_status.stat);
121 ex_err:
122         sas_free_task(task);
123         return res;
124 }
125
126 /* ---------- Allocations ---------- */
127
128 static inline void *alloc_smp_req(int size)
129 {
130         u8 *p = kzalloc(size, GFP_KERNEL);
131         if (p)
132                 p[0] = SMP_REQUEST;
133         return p;
134 }
135
136 static inline void *alloc_smp_resp(int size)
137 {
138         return kzalloc(size, GFP_KERNEL);
139 }
140
141 /* ---------- Expander configuration ---------- */
142
143 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
144                            void *disc_resp)
145 {
146         struct expander_device *ex = &dev->ex_dev;
147         struct ex_phy *phy = &ex->ex_phy[phy_id];
148         struct smp_resp *resp = disc_resp;
149         struct discover_resp *dr = &resp->disc;
150         struct sas_rphy *rphy = dev->rphy;
151         int rediscover = (phy->phy != NULL);
152
153         if (!rediscover) {
154                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
155
156                 /* FIXME: error_handling */
157                 BUG_ON(!phy->phy);
158         }
159
160         switch (resp->result) {
161         case SMP_RESP_PHY_VACANT:
162                 phy->phy_state = PHY_VACANT;
163                 return;
164         default:
165                 phy->phy_state = PHY_NOT_PRESENT;
166                 return;
167         case SMP_RESP_FUNC_ACC:
168                 phy->phy_state = PHY_EMPTY; /* do not know yet */
169                 break;
170         }
171
172         phy->phy_id = phy_id;
173         phy->attached_dev_type = dr->attached_dev_type;
174         phy->linkrate = dr->linkrate;
175         phy->attached_sata_host = dr->attached_sata_host;
176         phy->attached_sata_dev  = dr->attached_sata_dev;
177         phy->attached_sata_ps   = dr->attached_sata_ps;
178         phy->attached_iproto = dr->iproto << 1;
179         phy->attached_tproto = dr->tproto << 1;
180         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
181         phy->attached_phy_id = dr->attached_phy_id;
182         phy->phy_change_count = dr->change_count;
183         phy->routing_attr = dr->routing_attr;
184         phy->virtual = dr->virtual;
185         phy->last_da_index = -1;
186
187         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
188         phy->phy->identify.target_port_protocols = phy->attached_tproto;
189         phy->phy->identify.phy_identifier = phy_id;
190         phy->phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
191         phy->phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
192         phy->phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
193         phy->phy->maximum_linkrate = SAS_LINK_RATE_3_0_GBPS;
194         switch (phy->linkrate) {
195         case PHY_LINKRATE_1_5:
196                 phy->phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
197                 break;
198         case PHY_LINKRATE_3:
199                 phy->phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
200                 break;
201         case PHY_LINKRATE_6:
202                 phy->phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
203                 break;
204         default:
205                 phy->phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
206                 break;
207         }
208
209         if (!rediscover)
210                 sas_phy_add(phy->phy);
211
212         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
213                     SAS_ADDR(dev->sas_addr), phy->phy_id,
214                     phy->routing_attr == TABLE_ROUTING ? 'T' :
215                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
216                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
217                     SAS_ADDR(phy->attached_sas_addr));
218
219         return;
220 }
221
222 #define DISCOVER_REQ_SIZE  16
223 #define DISCOVER_RESP_SIZE 56
224
225 static int sas_ex_phy_discover(struct domain_device *dev, int single)
226 {
227         struct expander_device *ex = &dev->ex_dev;
228         int  res = 0;
229         u8   *disc_req;
230         u8   *disc_resp;
231
232         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
233         if (!disc_req)
234                 return -ENOMEM;
235
236         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
237         if (!disc_resp) {
238                 kfree(disc_req);
239                 return -ENOMEM;
240         }
241
242         disc_req[1] = SMP_DISCOVER;
243
244         if (0 <= single && single < ex->num_phys) {
245                 disc_req[9] = single;
246                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
247                                        disc_resp, DISCOVER_RESP_SIZE);
248                 if (res)
249                         goto out_err;
250                 sas_set_ex_phy(dev, single, disc_resp);
251         } else {
252                 int i;
253
254                 for (i = 0; i < ex->num_phys; i++) {
255                         disc_req[9] = i;
256                         res = smp_execute_task(dev, disc_req,
257                                                DISCOVER_REQ_SIZE, disc_resp,
258                                                DISCOVER_RESP_SIZE);
259                         if (res)
260                                 goto out_err;
261                         sas_set_ex_phy(dev, i, disc_resp);
262                 }
263         }
264 out_err:
265         kfree(disc_resp);
266         kfree(disc_req);
267         return res;
268 }
269
270 static int sas_expander_discover(struct domain_device *dev)
271 {
272         struct expander_device *ex = &dev->ex_dev;
273         int res = -ENOMEM;
274
275         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
276         if (!ex->ex_phy)
277                 return -ENOMEM;
278
279         res = sas_ex_phy_discover(dev, -1);
280         if (res)
281                 goto out_err;
282
283         return 0;
284  out_err:
285         kfree(ex->ex_phy);
286         ex->ex_phy = NULL;
287         return res;
288 }
289
290 #define MAX_EXPANDER_PHYS 128
291
292 static void ex_assign_report_general(struct domain_device *dev,
293                                             struct smp_resp *resp)
294 {
295         struct report_general_resp *rg = &resp->rg;
296
297         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
298         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
299         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
300         dev->ex_dev.conf_route_table = rg->conf_route_table;
301         dev->ex_dev.configuring = rg->configuring;
302         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
303 }
304
305 #define RG_REQ_SIZE   8
306 #define RG_RESP_SIZE 32
307
308 static int sas_ex_general(struct domain_device *dev)
309 {
310         u8 *rg_req;
311         struct smp_resp *rg_resp;
312         int res;
313         int i;
314
315         rg_req = alloc_smp_req(RG_REQ_SIZE);
316         if (!rg_req)
317                 return -ENOMEM;
318
319         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
320         if (!rg_resp) {
321                 kfree(rg_req);
322                 return -ENOMEM;
323         }
324
325         rg_req[1] = SMP_REPORT_GENERAL;
326
327         for (i = 0; i < 5; i++) {
328                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
329                                        RG_RESP_SIZE);
330
331                 if (res) {
332                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
333                                     SAS_ADDR(dev->sas_addr), res);
334                         goto out;
335                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
336                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
337                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
338                         res = rg_resp->result;
339                         goto out;
340                 }
341
342                 ex_assign_report_general(dev, rg_resp);
343
344                 if (dev->ex_dev.configuring) {
345                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
346                                     SAS_ADDR(dev->sas_addr));
347                         schedule_timeout_interruptible(5*HZ);
348                 } else
349                         break;
350         }
351 out:
352         kfree(rg_req);
353         kfree(rg_resp);
354         return res;
355 }
356
357 static void ex_assign_manuf_info(struct domain_device *dev, void
358                                         *_mi_resp)
359 {
360         u8 *mi_resp = _mi_resp;
361         struct sas_rphy *rphy = dev->rphy;
362         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
363
364         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
365         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
366         memcpy(edev->product_rev, mi_resp + 36,
367                SAS_EXPANDER_PRODUCT_REV_LEN);
368
369         if (mi_resp[8] & 1) {
370                 memcpy(edev->component_vendor_id, mi_resp + 40,
371                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
372                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
373                 edev->component_revision_id = mi_resp[50];
374         }
375 }
376
377 #define MI_REQ_SIZE   8
378 #define MI_RESP_SIZE 64
379
380 static int sas_ex_manuf_info(struct domain_device *dev)
381 {
382         u8 *mi_req;
383         u8 *mi_resp;
384         int res;
385
386         mi_req = alloc_smp_req(MI_REQ_SIZE);
387         if (!mi_req)
388                 return -ENOMEM;
389
390         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
391         if (!mi_resp) {
392                 kfree(mi_req);
393                 return -ENOMEM;
394         }
395
396         mi_req[1] = SMP_REPORT_MANUF_INFO;
397
398         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
399         if (res) {
400                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
401                             SAS_ADDR(dev->sas_addr), res);
402                 goto out;
403         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
404                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
405                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
406                 goto out;
407         }
408
409         ex_assign_manuf_info(dev, mi_resp);
410 out:
411         kfree(mi_req);
412         kfree(mi_resp);
413         return res;
414 }
415
416 #define PC_REQ_SIZE  44
417 #define PC_RESP_SIZE 8
418
419 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
420                         enum phy_func phy_func)
421 {
422         u8 *pc_req;
423         u8 *pc_resp;
424         int res;
425
426         pc_req = alloc_smp_req(PC_REQ_SIZE);
427         if (!pc_req)
428                 return -ENOMEM;
429
430         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
431         if (!pc_resp) {
432                 kfree(pc_req);
433                 return -ENOMEM;
434         }
435
436         pc_req[1] = SMP_PHY_CONTROL;
437         pc_req[9] = phy_id;
438         pc_req[10]= phy_func;
439
440         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
441
442         kfree(pc_resp);
443         kfree(pc_req);
444         return res;
445 }
446
447 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
448 {
449         struct expander_device *ex = &dev->ex_dev;
450         struct ex_phy *phy = &ex->ex_phy[phy_id];
451
452         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE);
453         phy->linkrate = PHY_DISABLED;
454 }
455
456 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
457 {
458         struct expander_device *ex = &dev->ex_dev;
459         int i;
460
461         for (i = 0; i < ex->num_phys; i++) {
462                 struct ex_phy *phy = &ex->ex_phy[i];
463
464                 if (phy->phy_state == PHY_VACANT ||
465                     phy->phy_state == PHY_NOT_PRESENT)
466                         continue;
467
468                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
469                         sas_ex_disable_phy(dev, i);
470         }
471 }
472
473 static int sas_dev_present_in_domain(struct asd_sas_port *port,
474                                             u8 *sas_addr)
475 {
476         struct domain_device *dev;
477
478         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
479                 return 1;
480         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
481                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
482                         return 1;
483         }
484         return 0;
485 }
486
487 #define RPEL_REQ_SIZE   16
488 #define RPEL_RESP_SIZE  32
489 int sas_smp_get_phy_events(struct sas_phy *phy)
490 {
491         int res;
492         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
493         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
494         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
495         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
496
497         if (!resp)
498                 return -ENOMEM;
499
500         req[1] = SMP_REPORT_PHY_ERR_LOG;
501         req[9] = phy->number;
502
503         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
504                                     resp, RPEL_RESP_SIZE);
505
506         if (!res)
507                 goto out;
508
509         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
510         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
511         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
512         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
513
514  out:
515         kfree(resp);
516         return res;
517
518 }
519
520 #define RPS_REQ_SIZE  16
521 #define RPS_RESP_SIZE 60
522
523 static int sas_get_report_phy_sata(struct domain_device *dev,
524                                           int phy_id,
525                                           struct smp_resp *rps_resp)
526 {
527         int res;
528         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
529
530         if (!rps_req)
531                 return -ENOMEM;
532
533         rps_req[1] = SMP_REPORT_PHY_SATA;
534         rps_req[9] = phy_id;
535
536         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
537                                     rps_resp, RPS_RESP_SIZE);
538
539         kfree(rps_req);
540         return 0;
541 }
542
543 static void sas_ex_get_linkrate(struct domain_device *parent,
544                                        struct domain_device *child,
545                                        struct ex_phy *parent_phy)
546 {
547         struct expander_device *parent_ex = &parent->ex_dev;
548         struct sas_port *port;
549         int i;
550
551         child->pathways = 0;
552
553         port = parent_phy->port;
554
555         for (i = 0; i < parent_ex->num_phys; i++) {
556                 struct ex_phy *phy = &parent_ex->ex_phy[i];
557
558                 if (phy->phy_state == PHY_VACANT ||
559                     phy->phy_state == PHY_NOT_PRESENT)
560                         continue;
561
562                 if (SAS_ADDR(phy->attached_sas_addr) ==
563                     SAS_ADDR(child->sas_addr)) {
564
565                         child->min_linkrate = min(parent->min_linkrate,
566                                                   phy->linkrate);
567                         child->max_linkrate = max(parent->max_linkrate,
568                                                   phy->linkrate);
569                         child->pathways++;
570                         sas_port_add_phy(port, phy->phy);
571                 }
572         }
573         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
574         child->pathways = min(child->pathways, parent->pathways);
575 }
576
577 static struct domain_device *sas_ex_discover_end_dev(
578         struct domain_device *parent, int phy_id)
579 {
580         struct expander_device *parent_ex = &parent->ex_dev;
581         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
582         struct domain_device *child = NULL;
583         struct sas_rphy *rphy;
584         int res;
585
586         if (phy->attached_sata_host || phy->attached_sata_ps)
587                 return NULL;
588
589         child = kzalloc(sizeof(*child), GFP_KERNEL);
590         if (!child)
591                 return NULL;
592
593         child->parent = parent;
594         child->port   = parent->port;
595         child->iproto = phy->attached_iproto;
596         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
597         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
598         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
599         BUG_ON(!phy->port);
600         /* FIXME: better error handling*/
601         BUG_ON(sas_port_add(phy->port) != 0);
602         sas_ex_get_linkrate(parent, child, phy);
603
604         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
605                 child->dev_type = SATA_DEV;
606                 if (phy->attached_tproto & SAS_PROTO_STP)
607                         child->tproto = phy->attached_tproto;
608                 if (phy->attached_sata_dev)
609                         child->tproto |= SATA_DEV;
610                 res = sas_get_report_phy_sata(parent, phy_id,
611                                               &child->sata_dev.rps_resp);
612                 if (res) {
613                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
614                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
615                                     phy_id, res);
616                         kfree(child);
617                         return NULL;
618                 }
619                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
620                        sizeof(struct dev_to_host_fis));
621                 sas_init_dev(child);
622                 res = sas_discover_sata(child);
623                 if (res) {
624                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
625                                     "%016llx:0x%x returned 0x%x\n",
626                                     SAS_ADDR(child->sas_addr),
627                                     SAS_ADDR(parent->sas_addr), phy_id, res);
628                         kfree(child);
629                         return NULL;
630                 }
631         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
632                 child->dev_type = SAS_END_DEV;
633                 rphy = sas_end_device_alloc(phy->port);
634                 /* FIXME: error handling */
635                 BUG_ON(!rphy);
636                 child->tproto = phy->attached_tproto;
637                 sas_init_dev(child);
638
639                 child->rphy = rphy;
640                 sas_fill_in_rphy(child, rphy);
641
642                 spin_lock(&parent->port->dev_list_lock);
643                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
644                 spin_unlock(&parent->port->dev_list_lock);
645
646                 res = sas_discover_end_dev(child);
647                 if (res) {
648                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
649                                     "at %016llx:0x%x returned 0x%x\n",
650                                     SAS_ADDR(child->sas_addr),
651                                     SAS_ADDR(parent->sas_addr), phy_id, res);
652                         /* FIXME: this kfrees list elements without removing them */
653                         //kfree(child);
654                         return NULL;
655                 }
656         } else {
657                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
658                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
659                             phy_id);
660         }
661
662         list_add_tail(&child->siblings, &parent_ex->children);
663         return child;
664 }
665
666 static struct domain_device *sas_ex_discover_expander(
667         struct domain_device *parent, int phy_id)
668 {
669         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
670         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
671         struct domain_device *child = NULL;
672         struct sas_rphy *rphy;
673         struct sas_expander_device *edev;
674         struct asd_sas_port *port;
675         int res;
676
677         if (phy->routing_attr == DIRECT_ROUTING) {
678                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
679                             "allowed\n",
680                             SAS_ADDR(parent->sas_addr), phy_id,
681                             SAS_ADDR(phy->attached_sas_addr),
682                             phy->attached_phy_id);
683                 return NULL;
684         }
685         child = kzalloc(sizeof(*child), GFP_KERNEL);
686         if (!child)
687                 return NULL;
688
689         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
690         /* FIXME: better error handling */
691         BUG_ON(sas_port_add(phy->port) != 0);
692
693
694         switch (phy->attached_dev_type) {
695         case EDGE_DEV:
696                 rphy = sas_expander_alloc(phy->port,
697                                           SAS_EDGE_EXPANDER_DEVICE);
698                 break;
699         case FANOUT_DEV:
700                 rphy = sas_expander_alloc(phy->port,
701                                           SAS_FANOUT_EXPANDER_DEVICE);
702                 break;
703         default:
704                 rphy = NULL;    /* shut gcc up */
705                 BUG();
706         }
707         port = parent->port;
708         child->rphy = rphy;
709         edev = rphy_to_expander_device(rphy);
710         child->dev_type = phy->attached_dev_type;
711         child->parent = parent;
712         child->port = port;
713         child->iproto = phy->attached_iproto;
714         child->tproto = phy->attached_tproto;
715         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
716         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
717         sas_ex_get_linkrate(parent, child, phy);
718         edev->level = parent_ex->level + 1;
719         parent->port->disc.max_level = max(parent->port->disc.max_level,
720                                            edev->level);
721         sas_init_dev(child);
722         sas_fill_in_rphy(child, rphy);
723         sas_rphy_add(rphy);
724
725         spin_lock(&parent->port->dev_list_lock);
726         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
727         spin_unlock(&parent->port->dev_list_lock);
728
729         res = sas_discover_expander(child);
730         if (res) {
731                 kfree(child);
732                 return NULL;
733         }
734         list_add_tail(&child->siblings, &parent->ex_dev.children);
735         return child;
736 }
737
738 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
739 {
740         struct expander_device *ex = &dev->ex_dev;
741         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
742         struct domain_device *child = NULL;
743         int res = 0;
744
745         /* Phy state */
746         if (ex_phy->linkrate == PHY_SPINUP_HOLD) {
747                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET))
748                         res = sas_ex_phy_discover(dev, phy_id);
749                 if (res)
750                         return res;
751         }
752
753         /* Parent and domain coherency */
754         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
755                              SAS_ADDR(dev->port->sas_addr))) {
756                 sas_add_parent_port(dev, phy_id);
757                 return 0;
758         }
759         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
760                             SAS_ADDR(dev->parent->sas_addr))) {
761                 sas_add_parent_port(dev, phy_id);
762                 if (ex_phy->routing_attr == TABLE_ROUTING)
763                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
764                 return 0;
765         }
766
767         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
768                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
769
770         if (ex_phy->attached_dev_type == NO_DEVICE) {
771                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
772                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
773                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
774                 }
775                 return 0;
776         } else if (ex_phy->linkrate == PHY_LINKRATE_UNKNOWN)
777                 return 0;
778
779         if (ex_phy->attached_dev_type != SAS_END_DEV &&
780             ex_phy->attached_dev_type != FANOUT_DEV &&
781             ex_phy->attached_dev_type != EDGE_DEV) {
782                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
783                             "phy 0x%x\n", ex_phy->attached_dev_type,
784                             SAS_ADDR(dev->sas_addr),
785                             phy_id);
786                 return 0;
787         }
788
789         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
790         if (res) {
791                 SAS_DPRINTK("configure routing for dev %016llx "
792                             "reported 0x%x. Forgotten\n",
793                             SAS_ADDR(ex_phy->attached_sas_addr), res);
794                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
795                 return res;
796         }
797
798         switch (ex_phy->attached_dev_type) {
799         case SAS_END_DEV:
800                 child = sas_ex_discover_end_dev(dev, phy_id);
801                 break;
802         case FANOUT_DEV:
803                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
804                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
805                                     "attached to ex %016llx phy 0x%x\n",
806                                     SAS_ADDR(ex_phy->attached_sas_addr),
807                                     ex_phy->attached_phy_id,
808                                     SAS_ADDR(dev->sas_addr),
809                                     phy_id);
810                         sas_ex_disable_phy(dev, phy_id);
811                         break;
812                 } else
813                         memcpy(dev->port->disc.fanout_sas_addr,
814                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
815                 /* fallthrough */
816         case EDGE_DEV:
817                 child = sas_ex_discover_expander(dev, phy_id);
818                 break;
819         default:
820                 break;
821         }
822
823         if (child) {
824                 int i;
825
826                 for (i = 0; i < ex->num_phys; i++) {
827                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
828                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
829                                 continue;
830
831                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
832                             SAS_ADDR(child->sas_addr))
833                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
834                 }
835         }
836
837         return res;
838 }
839
840 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
841 {
842         struct expander_device *ex = &dev->ex_dev;
843         int i;
844
845         for (i = 0; i < ex->num_phys; i++) {
846                 struct ex_phy *phy = &ex->ex_phy[i];
847
848                 if (phy->phy_state == PHY_VACANT ||
849                     phy->phy_state == PHY_NOT_PRESENT)
850                         continue;
851
852                 if ((phy->attached_dev_type == EDGE_DEV ||
853                      phy->attached_dev_type == FANOUT_DEV) &&
854                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
855
856                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
857
858                         return 1;
859                 }
860         }
861         return 0;
862 }
863
864 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
865 {
866         struct expander_device *ex = &dev->ex_dev;
867         struct domain_device *child;
868         u8 sub_addr[8] = {0, };
869
870         list_for_each_entry(child, &ex->children, siblings) {
871                 if (child->dev_type != EDGE_DEV &&
872                     child->dev_type != FANOUT_DEV)
873                         continue;
874                 if (sub_addr[0] == 0) {
875                         sas_find_sub_addr(child, sub_addr);
876                         continue;
877                 } else {
878                         u8 s2[8];
879
880                         if (sas_find_sub_addr(child, s2) &&
881                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
882
883                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
884                                             "diverges from subtractive "
885                                             "boundary %016llx\n",
886                                             SAS_ADDR(dev->sas_addr),
887                                             SAS_ADDR(child->sas_addr),
888                                             SAS_ADDR(s2),
889                                             SAS_ADDR(sub_addr));
890
891                                 sas_ex_disable_port(child, s2);
892                         }
893                 }
894         }
895         return 0;
896 }
897 /**
898  * sas_ex_discover_devices -- discover devices attached to this expander
899  * dev: pointer to the expander domain device
900  * single: if you want to do a single phy, else set to -1;
901  *
902  * Configure this expander for use with its devices and register the
903  * devices of this expander.
904  */
905 static int sas_ex_discover_devices(struct domain_device *dev, int single)
906 {
907         struct expander_device *ex = &dev->ex_dev;
908         int i = 0, end = ex->num_phys;
909         int res = 0;
910
911         if (0 <= single && single < end) {
912                 i = single;
913                 end = i+1;
914         }
915
916         for ( ; i < end; i++) {
917                 struct ex_phy *ex_phy = &ex->ex_phy[i];
918
919                 if (ex_phy->phy_state == PHY_VACANT ||
920                     ex_phy->phy_state == PHY_NOT_PRESENT ||
921                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
922                         continue;
923
924                 switch (ex_phy->linkrate) {
925                 case PHY_DISABLED:
926                 case PHY_RESET_PROBLEM:
927                 case PHY_PORT_SELECTOR:
928                         continue;
929                 default:
930                         res = sas_ex_discover_dev(dev, i);
931                         if (res)
932                                 break;
933                         continue;
934                 }
935         }
936
937         if (!res)
938                 sas_check_level_subtractive_boundary(dev);
939
940         return res;
941 }
942
943 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
944 {
945         struct expander_device *ex = &dev->ex_dev;
946         int i;
947         u8  *sub_sas_addr = NULL;
948
949         if (dev->dev_type != EDGE_DEV)
950                 return 0;
951
952         for (i = 0; i < ex->num_phys; i++) {
953                 struct ex_phy *phy = &ex->ex_phy[i];
954
955                 if (phy->phy_state == PHY_VACANT ||
956                     phy->phy_state == PHY_NOT_PRESENT)
957                         continue;
958
959                 if ((phy->attached_dev_type == FANOUT_DEV ||
960                      phy->attached_dev_type == EDGE_DEV) &&
961                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
962
963                         if (!sub_sas_addr)
964                                 sub_sas_addr = &phy->attached_sas_addr[0];
965                         else if (SAS_ADDR(sub_sas_addr) !=
966                                  SAS_ADDR(phy->attached_sas_addr)) {
967
968                                 SAS_DPRINTK("ex %016llx phy 0x%x "
969                                             "diverges(%016llx) on subtractive "
970                                             "boundary(%016llx). Disabled\n",
971                                             SAS_ADDR(dev->sas_addr), i,
972                                             SAS_ADDR(phy->attached_sas_addr),
973                                             SAS_ADDR(sub_sas_addr));
974                                 sas_ex_disable_phy(dev, i);
975                         }
976                 }
977         }
978         return 0;
979 }
980
981 static void sas_print_parent_topology_bug(struct domain_device *child,
982                                                  struct ex_phy *parent_phy,
983                                                  struct ex_phy *child_phy)
984 {
985         static const char ra_char[] = {
986                 [DIRECT_ROUTING] = 'D',
987                 [SUBTRACTIVE_ROUTING] = 'S',
988                 [TABLE_ROUTING] = 'T',
989         };
990         static const char *ex_type[] = {
991                 [EDGE_DEV] = "edge",
992                 [FANOUT_DEV] = "fanout",
993         };
994         struct domain_device *parent = child->parent;
995
996         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
997                    "has %c:%c routing link!\n",
998
999                    ex_type[parent->dev_type],
1000                    SAS_ADDR(parent->sas_addr),
1001                    parent_phy->phy_id,
1002
1003                    ex_type[child->dev_type],
1004                    SAS_ADDR(child->sas_addr),
1005                    child_phy->phy_id,
1006
1007                    ra_char[parent_phy->routing_attr],
1008                    ra_char[child_phy->routing_attr]);
1009 }
1010
1011 static int sas_check_eeds(struct domain_device *child,
1012                                  struct ex_phy *parent_phy,
1013                                  struct ex_phy *child_phy)
1014 {
1015         int res = 0;
1016         struct domain_device *parent = child->parent;
1017
1018         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1019                 res = -ENODEV;
1020                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1021                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1022                             SAS_ADDR(parent->sas_addr),
1023                             parent_phy->phy_id,
1024                             SAS_ADDR(child->sas_addr),
1025                             child_phy->phy_id,
1026                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1027         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1028                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1029                        SAS_ADDR_SIZE);
1030                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1031                        SAS_ADDR_SIZE);
1032         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1033                     SAS_ADDR(parent->sas_addr)) ||
1034                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1035                     SAS_ADDR(child->sas_addr)))
1036                    &&
1037                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1038                      SAS_ADDR(parent->sas_addr)) ||
1039                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1040                      SAS_ADDR(child->sas_addr))))
1041                 ;
1042         else {
1043                 res = -ENODEV;
1044                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1045                             "phy 0x%x link forms a third EEDS!\n",
1046                             SAS_ADDR(parent->sas_addr),
1047                             parent_phy->phy_id,
1048                             SAS_ADDR(child->sas_addr),
1049                             child_phy->phy_id);
1050         }
1051
1052         return res;
1053 }
1054
1055 /* Here we spill over 80 columns.  It is intentional.
1056  */
1057 static int sas_check_parent_topology(struct domain_device *child)
1058 {
1059         struct expander_device *child_ex = &child->ex_dev;
1060         struct expander_device *parent_ex;
1061         int i;
1062         int res = 0;
1063
1064         if (!child->parent)
1065                 return 0;
1066
1067         if (child->parent->dev_type != EDGE_DEV &&
1068             child->parent->dev_type != FANOUT_DEV)
1069                 return 0;
1070
1071         parent_ex = &child->parent->ex_dev;
1072
1073         for (i = 0; i < parent_ex->num_phys; i++) {
1074                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1075                 struct ex_phy *child_phy;
1076
1077                 if (parent_phy->phy_state == PHY_VACANT ||
1078                     parent_phy->phy_state == PHY_NOT_PRESENT)
1079                         continue;
1080
1081                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1082                         continue;
1083
1084                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1085
1086                 switch (child->parent->dev_type) {
1087                 case EDGE_DEV:
1088                         if (child->dev_type == FANOUT_DEV) {
1089                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1090                                     child_phy->routing_attr != TABLE_ROUTING) {
1091                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1092                                         res = -ENODEV;
1093                                 }
1094                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1095                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1096                                         res = sas_check_eeds(child, parent_phy, child_phy);
1097                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1098                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1099                                         res = -ENODEV;
1100                                 }
1101                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1102                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1103                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1104                                 res = -ENODEV;
1105                         }
1106                         break;
1107                 case FANOUT_DEV:
1108                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1109                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1110                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1111                                 res = -ENODEV;
1112                         }
1113                         break;
1114                 default:
1115                         break;
1116                 }
1117         }
1118
1119         return res;
1120 }
1121
1122 #define RRI_REQ_SIZE  16
1123 #define RRI_RESP_SIZE 44
1124
1125 static int sas_configure_present(struct domain_device *dev, int phy_id,
1126                                  u8 *sas_addr, int *index, int *present)
1127 {
1128         int i, res = 0;
1129         struct expander_device *ex = &dev->ex_dev;
1130         struct ex_phy *phy = &ex->ex_phy[phy_id];
1131         u8 *rri_req;
1132         u8 *rri_resp;
1133
1134         *present = 0;
1135         *index = 0;
1136
1137         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1138         if (!rri_req)
1139                 return -ENOMEM;
1140
1141         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1142         if (!rri_resp) {
1143                 kfree(rri_req);
1144                 return -ENOMEM;
1145         }
1146
1147         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1148         rri_req[9] = phy_id;
1149
1150         for (i = 0; i < ex->max_route_indexes ; i++) {
1151                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1152                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1153                                        RRI_RESP_SIZE);
1154                 if (res)
1155                         goto out;
1156                 res = rri_resp[2];
1157                 if (res == SMP_RESP_NO_INDEX) {
1158                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1159                                     "phy 0x%x index 0x%x\n",
1160                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1161                         goto out;
1162                 } else if (res != SMP_RESP_FUNC_ACC) {
1163                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1164                                     "result 0x%x\n", __FUNCTION__,
1165                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1166                         goto out;
1167                 }
1168                 if (SAS_ADDR(sas_addr) != 0) {
1169                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1170                                 *index = i;
1171                                 if ((rri_resp[12] & 0x80) == 0x80)
1172                                         *present = 0;
1173                                 else
1174                                         *present = 1;
1175                                 goto out;
1176                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1177                                 *index = i;
1178                                 *present = 0;
1179                                 goto out;
1180                         }
1181                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1182                            phy->last_da_index < i) {
1183                         phy->last_da_index = i;
1184                         *index = i;
1185                         *present = 0;
1186                         goto out;
1187                 }
1188         }
1189         res = -1;
1190 out:
1191         kfree(rri_req);
1192         kfree(rri_resp);
1193         return res;
1194 }
1195
1196 #define CRI_REQ_SIZE  44
1197 #define CRI_RESP_SIZE  8
1198
1199 static int sas_configure_set(struct domain_device *dev, int phy_id,
1200                              u8 *sas_addr, int index, int include)
1201 {
1202         int res;
1203         u8 *cri_req;
1204         u8 *cri_resp;
1205
1206         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1207         if (!cri_req)
1208                 return -ENOMEM;
1209
1210         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1211         if (!cri_resp) {
1212                 kfree(cri_req);
1213                 return -ENOMEM;
1214         }
1215
1216         cri_req[1] = SMP_CONF_ROUTE_INFO;
1217         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1218         cri_req[9] = phy_id;
1219         if (SAS_ADDR(sas_addr) == 0 || !include)
1220                 cri_req[12] |= 0x80;
1221         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1222
1223         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1224                                CRI_RESP_SIZE);
1225         if (res)
1226                 goto out;
1227         res = cri_resp[2];
1228         if (res == SMP_RESP_NO_INDEX) {
1229                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1230                             "index 0x%x\n",
1231                             SAS_ADDR(dev->sas_addr), phy_id, index);
1232         }
1233 out:
1234         kfree(cri_req);
1235         kfree(cri_resp);
1236         return res;
1237 }
1238
1239 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1240                                     u8 *sas_addr, int include)
1241 {
1242         int index;
1243         int present;
1244         int res;
1245
1246         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1247         if (res)
1248                 return res;
1249         if (include ^ present)
1250                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1251
1252         return res;
1253 }
1254
1255 /**
1256  * sas_configure_parent -- configure routing table of parent
1257  * parent: parent expander
1258  * child: child expander
1259  * sas_addr: SAS port identifier of device directly attached to child
1260  */
1261 static int sas_configure_parent(struct domain_device *parent,
1262                                 struct domain_device *child,
1263                                 u8 *sas_addr, int include)
1264 {
1265         struct expander_device *ex_parent = &parent->ex_dev;
1266         int res = 0;
1267         int i;
1268
1269         if (parent->parent) {
1270                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1271                                            include);
1272                 if (res)
1273                         return res;
1274         }
1275
1276         if (ex_parent->conf_route_table == 0) {
1277                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1278                             SAS_ADDR(parent->sas_addr));
1279                 return 0;
1280         }
1281
1282         for (i = 0; i < ex_parent->num_phys; i++) {
1283                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1284
1285                 if ((phy->routing_attr == TABLE_ROUTING) &&
1286                     (SAS_ADDR(phy->attached_sas_addr) ==
1287                      SAS_ADDR(child->sas_addr))) {
1288                         res = sas_configure_phy(parent, i, sas_addr, include);
1289                         if (res)
1290                                 return res;
1291                 }
1292         }
1293
1294         return res;
1295 }
1296
1297 /**
1298  * sas_configure_routing -- configure routing
1299  * dev: expander device
1300  * sas_addr: port identifier of device directly attached to the expander device
1301  */
1302 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1303 {
1304         if (dev->parent)
1305                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1306         return 0;
1307 }
1308
1309 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1310 {
1311         if (dev->parent)
1312                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1313         return 0;
1314 }
1315
1316 #if 0
1317 #define SMP_BIN_ATTR_NAME "smp_portal"
1318
1319 static void sas_ex_smp_hook(struct domain_device *dev)
1320 {
1321         struct expander_device *ex_dev = &dev->ex_dev;
1322         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1323
1324         memset(bin_attr, 0, sizeof(*bin_attr));
1325
1326         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1327         bin_attr->attr.owner = THIS_MODULE;
1328         bin_attr->attr.mode = 0600;
1329
1330         bin_attr->size = 0;
1331         bin_attr->private = NULL;
1332         bin_attr->read = smp_portal_read;
1333         bin_attr->write= smp_portal_write;
1334         bin_attr->mmap = NULL;
1335
1336         ex_dev->smp_portal_pid = -1;
1337         init_MUTEX(&ex_dev->smp_sema);
1338 }
1339 #endif
1340
1341 /**
1342  * sas_discover_expander -- expander discovery
1343  * @ex: pointer to expander domain device
1344  *
1345  * See comment in sas_discover_sata().
1346  */
1347 static int sas_discover_expander(struct domain_device *dev)
1348 {
1349         int res;
1350
1351         res = sas_notify_lldd_dev_found(dev);
1352         if (res)
1353                 return res;
1354
1355         res = sas_ex_general(dev);
1356         if (res)
1357                 goto out_err;
1358         res = sas_ex_manuf_info(dev);
1359         if (res)
1360                 goto out_err;
1361
1362         res = sas_expander_discover(dev);
1363         if (res) {
1364                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1365                             SAS_ADDR(dev->sas_addr), res);
1366                 goto out_err;
1367         }
1368
1369         sas_check_ex_subtractive_boundary(dev);
1370         res = sas_check_parent_topology(dev);
1371         if (res)
1372                 goto out_err;
1373         return 0;
1374 out_err:
1375         sas_notify_lldd_dev_gone(dev);
1376         return res;
1377 }
1378
1379 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1380 {
1381         int res = 0;
1382         struct domain_device *dev;
1383
1384         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1385                 if (dev->dev_type == EDGE_DEV ||
1386                     dev->dev_type == FANOUT_DEV) {
1387                         struct sas_expander_device *ex =
1388                                 rphy_to_expander_device(dev->rphy);
1389
1390                         if (level == ex->level)
1391                                 res = sas_ex_discover_devices(dev, -1);
1392                         else if (level > 0)
1393                                 res = sas_ex_discover_devices(port->port_dev, -1);
1394
1395                 }
1396         }
1397
1398         return res;
1399 }
1400
1401 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1402 {
1403         int res;
1404         int level;
1405
1406         do {
1407                 level = port->disc.max_level;
1408                 res = sas_ex_level_discovery(port, level);
1409                 mb();
1410         } while (level < port->disc.max_level);
1411
1412         return res;
1413 }
1414
1415 int sas_discover_root_expander(struct domain_device *dev)
1416 {
1417         int res;
1418         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1419
1420         sas_rphy_add(dev->rphy);
1421
1422         ex->level = dev->port->disc.max_level; /* 0 */
1423         res = sas_discover_expander(dev);
1424         if (!res)
1425                 sas_ex_bfs_disc(dev->port);
1426
1427         return res;
1428 }
1429
1430 /* ---------- Domain revalidation ---------- */
1431
1432 static int sas_get_phy_discover(struct domain_device *dev,
1433                                 int phy_id, struct smp_resp *disc_resp)
1434 {
1435         int res;
1436         u8 *disc_req;
1437
1438         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1439         if (!disc_req)
1440                 return -ENOMEM;
1441
1442         disc_req[1] = SMP_DISCOVER;
1443         disc_req[9] = phy_id;
1444
1445         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1446                                disc_resp, DISCOVER_RESP_SIZE);
1447         if (res)
1448                 goto out;
1449         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1450                 res = disc_resp->result;
1451                 goto out;
1452         }
1453 out:
1454         kfree(disc_req);
1455         return res;
1456 }
1457
1458 static int sas_get_phy_change_count(struct domain_device *dev,
1459                                     int phy_id, int *pcc)
1460 {
1461         int res;
1462         struct smp_resp *disc_resp;
1463
1464         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1465         if (!disc_resp)
1466                 return -ENOMEM;
1467
1468         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1469         if (!res)
1470                 *pcc = disc_resp->disc.change_count;
1471
1472         kfree(disc_resp);
1473         return res;
1474 }
1475
1476 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1477                                          int phy_id, u8 *attached_sas_addr)
1478 {
1479         int res;
1480         struct smp_resp *disc_resp;
1481         struct discover_resp *dr;
1482
1483         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1484         if (!disc_resp)
1485                 return -ENOMEM;
1486         dr = &disc_resp->disc;
1487
1488         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1489         if (!res) {
1490                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1491                 if (dr->attached_dev_type == 0)
1492                         memset(attached_sas_addr, 0, 8);
1493         }
1494         kfree(disc_resp);
1495         return res;
1496 }
1497
1498 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1499                               int from_phy)
1500 {
1501         struct expander_device *ex = &dev->ex_dev;
1502         int res = 0;
1503         int i;
1504
1505         for (i = from_phy; i < ex->num_phys; i++) {
1506                 int phy_change_count = 0;
1507
1508                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1509                 if (res)
1510                         goto out;
1511                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1512                         ex->ex_phy[i].phy_change_count = phy_change_count;
1513                         *phy_id = i;
1514                         return 0;
1515                 }
1516         }
1517 out:
1518         return res;
1519 }
1520
1521 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1522 {
1523         int res;
1524         u8  *rg_req;
1525         struct smp_resp  *rg_resp;
1526
1527         rg_req = alloc_smp_req(RG_REQ_SIZE);
1528         if (!rg_req)
1529                 return -ENOMEM;
1530
1531         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1532         if (!rg_resp) {
1533                 kfree(rg_req);
1534                 return -ENOMEM;
1535         }
1536
1537         rg_req[1] = SMP_REPORT_GENERAL;
1538
1539         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1540                                RG_RESP_SIZE);
1541         if (res)
1542                 goto out;
1543         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1544                 res = rg_resp->result;
1545                 goto out;
1546         }
1547
1548         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1549 out:
1550         kfree(rg_resp);
1551         kfree(rg_req);
1552         return res;
1553 }
1554
1555 static int sas_find_bcast_dev(struct domain_device *dev,
1556                               struct domain_device **src_dev)
1557 {
1558         struct expander_device *ex = &dev->ex_dev;
1559         int ex_change_count = -1;
1560         int res;
1561
1562         res = sas_get_ex_change_count(dev, &ex_change_count);
1563         if (res)
1564                 goto out;
1565         if (ex_change_count != -1 &&
1566             ex_change_count != ex->ex_change_count) {
1567                 *src_dev = dev;
1568                 ex->ex_change_count = ex_change_count;
1569         } else {
1570                 struct domain_device *ch;
1571
1572                 list_for_each_entry(ch, &ex->children, siblings) {
1573                         if (ch->dev_type == EDGE_DEV ||
1574                             ch->dev_type == FANOUT_DEV) {
1575                                 res = sas_find_bcast_dev(ch, src_dev);
1576                                 if (src_dev)
1577                                         return res;
1578                         }
1579                 }
1580         }
1581 out:
1582         return res;
1583 }
1584
1585 static void sas_unregister_ex_tree(struct domain_device *dev)
1586 {
1587         struct expander_device *ex = &dev->ex_dev;
1588         struct domain_device *child, *n;
1589
1590         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1591                 if (child->dev_type == EDGE_DEV ||
1592                     child->dev_type == FANOUT_DEV)
1593                         sas_unregister_ex_tree(child);
1594                 else
1595                         sas_unregister_dev(child);
1596         }
1597         sas_unregister_dev(dev);
1598 }
1599
1600 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1601                                          int phy_id)
1602 {
1603         struct expander_device *ex_dev = &parent->ex_dev;
1604         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1605         struct domain_device *child, *n;
1606
1607         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1608                 if (SAS_ADDR(child->sas_addr) ==
1609                     SAS_ADDR(phy->attached_sas_addr)) {
1610                         if (child->dev_type == EDGE_DEV ||
1611                             child->dev_type == FANOUT_DEV)
1612                                 sas_unregister_ex_tree(child);
1613                         else
1614                                 sas_unregister_dev(child);
1615                         break;
1616                 }
1617         }
1618         sas_disable_routing(parent, phy->attached_sas_addr);
1619         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1620         sas_port_delete_phy(phy->port, phy->phy);
1621         if (phy->port->num_phys == 0)
1622                 sas_port_delete(phy->port);
1623         phy->port = NULL;
1624 }
1625
1626 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1627                                           const int level)
1628 {
1629         struct expander_device *ex_root = &root->ex_dev;
1630         struct domain_device *child;
1631         int res = 0;
1632
1633         list_for_each_entry(child, &ex_root->children, siblings) {
1634                 if (child->dev_type == EDGE_DEV ||
1635                     child->dev_type == FANOUT_DEV) {
1636                         struct sas_expander_device *ex =
1637                                 rphy_to_expander_device(child->rphy);
1638
1639                         if (level > ex->level)
1640                                 res = sas_discover_bfs_by_root_level(child,
1641                                                                      level);
1642                         else if (level == ex->level)
1643                                 res = sas_ex_discover_devices(child, -1);
1644                 }
1645         }
1646         return res;
1647 }
1648
1649 static int sas_discover_bfs_by_root(struct domain_device *dev)
1650 {
1651         int res;
1652         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653         int level = ex->level+1;
1654
1655         res = sas_ex_discover_devices(dev, -1);
1656         if (res)
1657                 goto out;
1658         do {
1659                 res = sas_discover_bfs_by_root_level(dev, level);
1660                 mb();
1661                 level += 1;
1662         } while (level <= dev->port->disc.max_level);
1663 out:
1664         return res;
1665 }
1666
1667 static int sas_discover_new(struct domain_device *dev, int phy_id)
1668 {
1669         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1670         struct domain_device *child;
1671         int res;
1672
1673         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1674                     SAS_ADDR(dev->sas_addr), phy_id);
1675         res = sas_ex_phy_discover(dev, phy_id);
1676         if (res)
1677                 goto out;
1678         res = sas_ex_discover_devices(dev, phy_id);
1679         if (res)
1680                 goto out;
1681         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1682                 if (SAS_ADDR(child->sas_addr) ==
1683                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1684                         if (child->dev_type == EDGE_DEV ||
1685                             child->dev_type == FANOUT_DEV)
1686                                 res = sas_discover_bfs_by_root(child);
1687                         break;
1688                 }
1689         }
1690 out:
1691         return res;
1692 }
1693
1694 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1695 {
1696         struct expander_device *ex = &dev->ex_dev;
1697         struct ex_phy *phy = &ex->ex_phy[phy_id];
1698         u8 attached_sas_addr[8];
1699         int res;
1700
1701         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1702         switch (res) {
1703         case SMP_RESP_NO_PHY:
1704                 phy->phy_state = PHY_NOT_PRESENT;
1705                 sas_unregister_devs_sas_addr(dev, phy_id);
1706                 goto out; break;
1707         case SMP_RESP_PHY_VACANT:
1708                 phy->phy_state = PHY_VACANT;
1709                 sas_unregister_devs_sas_addr(dev, phy_id);
1710                 goto out; break;
1711         case SMP_RESP_FUNC_ACC:
1712                 break;
1713         }
1714
1715         if (SAS_ADDR(attached_sas_addr) == 0) {
1716                 phy->phy_state = PHY_EMPTY;
1717                 sas_unregister_devs_sas_addr(dev, phy_id);
1718         } else if (SAS_ADDR(attached_sas_addr) ==
1719                    SAS_ADDR(phy->attached_sas_addr)) {
1720                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1721                             SAS_ADDR(dev->sas_addr), phy_id);
1722         } else
1723                 res = sas_discover_new(dev, phy_id);
1724 out:
1725         return res;
1726 }
1727
1728 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1729 {
1730         struct expander_device *ex = &dev->ex_dev;
1731         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1732         int res = 0;
1733         int i;
1734
1735         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1736                     SAS_ADDR(dev->sas_addr), phy_id);
1737
1738         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1739                 for (i = 0; i < ex->num_phys; i++) {
1740                         struct ex_phy *phy = &ex->ex_phy[i];
1741
1742                         if (i == phy_id)
1743                                 continue;
1744                         if (SAS_ADDR(phy->attached_sas_addr) ==
1745                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1746                                 SAS_DPRINTK("phy%d part of wide port with "
1747                                             "phy%d\n", phy_id, i);
1748                                 goto out;
1749                         }
1750                 }
1751                 res = sas_rediscover_dev(dev, phy_id);
1752         } else
1753                 res = sas_discover_new(dev, phy_id);
1754 out:
1755         return res;
1756 }
1757
1758 /**
1759  * sas_revalidate_domain -- revalidate the domain
1760  * @port: port to the domain of interest
1761  *
1762  * NOTE: this process _must_ quit (return) as soon as any connection
1763  * errors are encountered.  Connection recovery is done elsewhere.
1764  * Discover process only interrogates devices in order to discover the
1765  * domain.
1766  */
1767 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1768 {
1769         int res;
1770         struct domain_device *dev = NULL;
1771
1772         res = sas_find_bcast_dev(port_dev, &dev);
1773         if (res)
1774                 goto out;
1775         if (dev) {
1776                 struct expander_device *ex = &dev->ex_dev;
1777                 int i = 0, phy_id;
1778
1779                 do {
1780                         phy_id = -1;
1781                         res = sas_find_bcast_phy(dev, &phy_id, i);
1782                         if (phy_id == -1)
1783                                 break;
1784                         res = sas_rediscover(dev, phy_id);
1785                         i = phy_id + 1;
1786                 } while (i < ex->num_phys);
1787         }
1788 out:
1789         return res;
1790 }
1791
1792 #if 0
1793 /* ---------- SMP portal ---------- */
1794
1795 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1796                                 size_t size)
1797 {
1798         struct domain_device *dev = to_dom_device(kobj);
1799         struct expander_device *ex = &dev->ex_dev;
1800
1801         if (offs != 0)
1802                 return -EFBIG;
1803         else if (size == 0)
1804                 return 0;
1805
1806         down_interruptible(&ex->smp_sema);
1807         if (ex->smp_req)
1808                 kfree(ex->smp_req);
1809         ex->smp_req = kzalloc(size, GFP_USER);
1810         if (!ex->smp_req) {
1811                 up(&ex->smp_sema);
1812                 return -ENOMEM;
1813         }
1814         memcpy(ex->smp_req, buf, size);
1815         ex->smp_req_size = size;
1816         ex->smp_portal_pid = current->pid;
1817         up(&ex->smp_sema);
1818
1819         return size;
1820 }
1821
1822 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1823                                size_t size)
1824 {
1825         struct domain_device *dev = to_dom_device(kobj);
1826         struct expander_device *ex = &dev->ex_dev;
1827         u8 *smp_resp;
1828         int res = -EINVAL;
1829
1830         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1831          *  it should be 0.
1832          */
1833
1834         down_interruptible(&ex->smp_sema);
1835         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1836                 goto out;
1837
1838         res = 0;
1839         if (size == 0)
1840                 goto out;
1841
1842         res = -ENOMEM;
1843         smp_resp = alloc_smp_resp(size);
1844         if (!smp_resp)
1845                 goto out;
1846         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1847                                smp_resp, size);
1848         if (!res) {
1849                 memcpy(buf, smp_resp, size);
1850                 res = size;
1851         }
1852
1853         kfree(smp_resp);
1854 out:
1855         kfree(ex->smp_req);
1856         ex->smp_req = NULL;
1857         ex->smp_req_size = 0;
1858         ex->smp_portal_pid = -1;
1859         up(&ex->smp_sema);
1860         return res;
1861 }
1862 #endif