4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
6 * (This module is adapted from the ov51x-jpeg package)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #define MODULE_NAME "ov519"
27 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
28 MODULE_DESCRIPTION("OV519 USB Camera Driver");
29 MODULE_LICENSE("GPL");
31 /* global parameters */
32 static int frame_rate;
34 /* Number of times to retry a failed I2C transaction. Increase this if you
35 * are getting "Failed to read sensor ID..." */
36 static int i2c_detect_tries = 10;
38 /* ov519 device descriptor */
40 struct gspca_dev gspca_dev; /* !! must be the first item */
42 /* Determined by sensor type */
46 unsigned char primary_i2c_slave; /* I2C write id of sensor */
48 unsigned char brightness;
49 unsigned char contrast;
52 char compress; /* Should the next frame be compressed? */
53 char compress_inited; /* Are compression params uploaded? */
54 char stopped; /* Streaming is temporarily paused */
56 char frame_rate; /* current Framerate (OV519 only) */
57 char clockdiv; /* clockdiv override for OV519 only */
59 char sensor; /* Type of image sensor chip (SEN_*) */
73 /* V4L2 controls supported by the driver */
74 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
75 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
76 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
77 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
78 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
79 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
81 static struct ctrl sd_ctrls[] = {
82 #define SD_BRIGHTNESS 0
85 .id = V4L2_CID_BRIGHTNESS,
86 .type = V4L2_CTRL_TYPE_INTEGER,
93 .set = sd_setbrightness,
94 .get = sd_getbrightness,
99 .id = V4L2_CID_CONTRAST,
100 .type = V4L2_CTRL_TYPE_INTEGER,
105 .default_value = 127,
107 .set = sd_setcontrast,
108 .get = sd_getcontrast,
113 .id = V4L2_CID_SATURATION,
114 .type = V4L2_CTRL_TYPE_INTEGER,
115 .name = "Saturation",
119 .default_value = 127,
126 static struct v4l2_pix_format vga_mode[] = {
127 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
129 .sizeimage = 320 * 240 * 3 / 8 + 589,
130 .colorspace = V4L2_COLORSPACE_JPEG,
132 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
134 .sizeimage = 640 * 480 * 3 / 8 + 590,
135 .colorspace = V4L2_COLORSPACE_JPEG,
138 static struct v4l2_pix_format sif_mode[] = {
139 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
141 .sizeimage = 176 * 144 * 3 / 8 + 589,
142 .colorspace = V4L2_COLORSPACE_JPEG,
144 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
146 .sizeimage = 352 * 288 * 3 / 8 + 589,
147 .colorspace = V4L2_COLORSPACE_JPEG,
151 /* OV519 Camera interface register numbers */
152 #define OV519_CAM_H_SIZE 0x10
153 #define OV519_CAM_V_SIZE 0x11
154 #define OV519_CAM_X_OFFSETL 0x12
155 #define OV519_CAM_X_OFFSETH 0x13
156 #define OV519_CAM_Y_OFFSETL 0x14
157 #define OV519_CAM_Y_OFFSETH 0x15
158 #define OV519_CAM_DIVIDER 0x16
159 #define OV519_CAM_DFR 0x20
160 #define OV519_CAM_FORMAT 0x25
162 /* OV519 System Controller register numbers */
163 #define OV519_SYS_RESET1 0x51
164 #define OV519_SYS_EN_CLK1 0x54
166 #define OV519_GPIO_DATA_OUT0 0x71
167 #define OV519_GPIO_IO_CTRL0 0x72
169 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
172 #define R51x_I2C_W_SID 0x41
173 #define R51x_I2C_SADDR_3 0x42
174 #define R51x_I2C_SADDR_2 0x43
175 #define R51x_I2C_R_SID 0x44
176 #define R51x_I2C_DATA 0x45
177 #define R518_I2C_CTL 0x47 /* OV518(+) only */
180 #define OV7xx0_SID 0x42
181 #define OV8xx0_SID 0xa0
182 #define OV6xx0_SID 0xc0
184 /* OV7610 registers */
185 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
186 #define OV7610_REG_SAT 0x03 /* saturation */
187 #define OV8610_REG_HUE 0x04 /* 04 reserved */
188 #define OV7610_REG_CNT 0x05 /* Y contrast */
189 #define OV7610_REG_BRT 0x06 /* Y brightness */
190 #define OV7610_REG_COM_C 0x14 /* misc common regs */
191 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
192 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
193 #define OV7610_REG_COM_I 0x29 /* misc settings */
195 /* OV7670 registers */
196 #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
197 #define OV7670_REG_BLUE 0x01 /* blue gain */
198 #define OV7670_REG_RED 0x02 /* red gain */
199 #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
200 #define OV7670_REG_COM1 0x04 /* Control 1 */
201 #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
202 #define OV7670_REG_COM3 0x0c /* Control 3 */
203 #define OV7670_REG_COM4 0x0d /* Control 4 */
204 #define OV7670_REG_COM5 0x0e /* All "reserved" */
205 #define OV7670_REG_COM6 0x0f /* Control 6 */
206 #define OV7670_REG_AECH 0x10 /* More bits of AEC value */
207 #define OV7670_REG_CLKRC 0x11 /* Clock control */
208 #define OV7670_REG_COM7 0x12 /* Control 7 */
209 #define OV7670_COM7_FMT_VGA 0x00
210 #define OV7670_COM7_YUV 0x00 /* YUV */
211 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
212 #define OV7670_COM7_FMT_MASK 0x38
213 #define OV7670_COM7_RESET 0x80 /* Register reset */
214 #define OV7670_REG_COM8 0x13 /* Control 8 */
215 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
216 #define OV7670_COM8_AWB 0x02 /* White balance enable */
217 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
218 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
219 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
220 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
221 #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
222 #define OV7670_REG_COM10 0x15 /* Control 10 */
223 #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
224 #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
225 #define OV7670_REG_VSTART 0x19 /* Vert start high bits */
226 #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
227 #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
228 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
229 #define OV7670_REG_AEW 0x24 /* AGC upper limit */
230 #define OV7670_REG_AEB 0x25 /* AGC lower limit */
231 #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
232 #define OV7670_REG_HREF 0x32 /* HREF pieces */
233 #define OV7670_REG_TSLB 0x3a /* lots of stuff */
234 #define OV7670_REG_COM11 0x3b /* Control 11 */
235 #define OV7670_COM11_EXP 0x02
236 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
237 #define OV7670_REG_COM12 0x3c /* Control 12 */
238 #define OV7670_REG_COM13 0x3d /* Control 13 */
239 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
240 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
241 #define OV7670_REG_COM14 0x3e /* Control 14 */
242 #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
243 #define OV7670_REG_COM15 0x40 /* Control 15 */
244 #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
245 #define OV7670_REG_COM16 0x41 /* Control 16 */
246 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
247 #define OV7670_REG_BRIGHT 0x55 /* Brightness */
248 #define OV7670_REG_CONTRAS 0x56 /* Contrast control */
249 #define OV7670_REG_GFIX 0x69 /* Fix gain control */
250 #define OV7670_REG_RGB444 0x8c /* RGB 444 control */
251 #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
252 #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
253 #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
254 #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
255 #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
256 #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
257 #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
258 #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
259 #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
261 struct ovsensor_window {
267 short quarter; /* Scale width and height down 2x */
268 short clockdiv; /* Clock divisor setting */
271 static unsigned char ov7670_abs_to_sm(unsigned char v)
275 return (128 - v) | 0x80;
278 /* Write a OV519 register */
279 static int reg_w(struct sd *sd, __u16 index, __u8 value)
283 sd->gspca_dev.usb_buf[0] = value;
284 ret = usb_control_msg(sd->gspca_dev.dev,
285 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
286 1, /* REQ_IO (ov518/519) */
287 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
289 sd->gspca_dev.usb_buf, 1, 500);
291 PDEBUG(D_ERR, "Write reg [%02x] %02x failed", index, value);
295 /* Read from a OV519 register */
296 /* returns: negative is error, pos or zero is data */
297 static int reg_r(struct sd *sd, __u16 index)
301 ret = usb_control_msg(sd->gspca_dev.dev,
302 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
304 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
305 0, index, sd->gspca_dev.usb_buf, 1, 500);
308 ret = sd->gspca_dev.usb_buf[0];
310 PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
314 /* Read 8 values from a OV519 register */
315 static int reg_r8(struct sd *sd,
320 ret = usb_control_msg(sd->gspca_dev.dev,
321 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
323 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
324 0, index, sd->gspca_dev.usb_buf, 8, 500);
327 ret = sd->gspca_dev.usb_buf[0];
329 PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
334 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
335 * the same position as 1's in "mask" are cleared and set to "value". Bits
336 * that are in the same position as 0's in "mask" are preserved, regardless
337 * of their respective state in "value".
339 static int reg_w_mask(struct sd *sd,
348 value &= mask; /* Enforce mask on value */
349 ret = reg_r(sd, index);
353 oldval = ret & ~mask; /* Clear the masked bits */
354 value |= oldval; /* Set the desired bits */
356 return reg_w(sd, index, value);
360 * The OV518 I2C I/O procedure is different, hence, this function.
361 * This is normally only called from i2c_w(). Note that this function
362 * always succeeds regardless of whether the sensor is present and working.
364 static int i2c_w(struct sd *sd,
370 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
372 /* Select camera register */
373 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
377 /* Write "value" to I2C data port of OV511 */
378 rc = reg_w(sd, R51x_I2C_DATA, value);
382 /* Initiate 3-byte write cycle */
383 rc = reg_w(sd, R518_I2C_CTL, 0x01);
385 /* wait for write complete */
389 return reg_r8(sd, R518_I2C_CTL);
393 * returns: negative is error, pos or zero is data
395 * The OV518 I2C I/O procedure is different, hence, this function.
396 * This is normally only called from i2c_r(). Note that this function
397 * always succeeds regardless of whether the sensor is present and working.
399 static int i2c_r(struct sd *sd, __u8 reg)
403 /* Select camera register */
404 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
408 /* Initiate 2-byte write cycle */
409 rc = reg_w(sd, R518_I2C_CTL, 0x03);
413 /* Initiate 2-byte read cycle */
414 rc = reg_w(sd, R518_I2C_CTL, 0x05);
417 value = reg_r(sd, R51x_I2C_DATA);
418 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
422 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
423 * the same position as 1's in "mask" are cleared and set to "value". Bits
424 * that are in the same position as 0's in "mask" are preserved, regardless
425 * of their respective state in "value".
427 static int i2c_w_mask(struct sd *sd,
435 value &= mask; /* Enforce mask on value */
439 oldval = rc & ~mask; /* Clear the masked bits */
440 value |= oldval; /* Set the desired bits */
441 return i2c_w(sd, reg, value);
444 /* Temporarily stops OV511 from functioning. Must do this before changing
445 * registers while the camera is streaming */
446 static inline int ov51x_stop(struct sd *sd)
448 PDEBUG(D_STREAM, "stopping");
450 return reg_w(sd, OV519_SYS_RESET1, 0x0f);
453 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
454 * actually stopped (for performance). */
455 static inline int ov51x_restart(struct sd *sd)
457 PDEBUG(D_STREAM, "restarting");
462 /* Reinitialize the stream */
463 return reg_w(sd, OV519_SYS_RESET1, 0x00);
466 /* This does an initial reset of an OmniVision sensor and ensures that I2C
467 * is synchronized. Returns <0 on failure.
469 static int init_ov_sensor(struct sd *sd)
473 /* Reset the sensor */
474 if (i2c_w(sd, 0x12, 0x80) < 0)
477 /* Wait for it to initialize */
480 for (i = 0, success = 0; i < i2c_detect_tries && !success; i++) {
481 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
482 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
487 /* Reset the sensor */
488 if (i2c_w(sd, 0x12, 0x80) < 0)
490 /* Wait for it to initialize */
492 /* Dummy read to sync I2C */
493 if (i2c_r(sd, 0x00) < 0)
498 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
502 /* Switch on standard JPEG compression. Returns 0 for success. */
503 static int ov519_init_compression(struct sd *sd)
505 if (!sd->compress_inited) {
506 if (reg_w_mask(sd, OV519_SYS_EN_CLK1, 1 << 2, 1 << 2) < 0) {
507 PDEBUG(D_ERR, "Error switching to compressed mode");
510 sd->compress_inited = 1;
515 /* Set the read and write slave IDs. The "slave" argument is the write slave,
516 * and the read slave will be set to (slave + 1).
517 * This should not be called from outside the i2c I/O functions.
518 * Sets I2C read and write slave IDs. Returns <0 for error
520 static int ov51x_set_slave_ids(struct sd *sd,
525 rc = reg_w(sd, R51x_I2C_W_SID, slave);
528 return reg_w(sd, R51x_I2C_R_SID, slave + 1);
535 struct ov_i2c_regvals {
540 static int write_regvals(struct sd *sd,
541 const struct ov_regvals *regvals,
547 rc = reg_w(sd, regvals->reg, regvals->val);
555 static int write_i2c_regvals(struct sd *sd,
556 const struct ov_i2c_regvals *regvals,
562 rc = i2c_w(sd, regvals->reg, regvals->val);
570 /****************************************************************************
572 * OV511 and sensor configuration
574 ***************************************************************************/
576 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
577 * the same register settings as the OV8610, since they are very similar.
579 static int ov8xx0_configure(struct sd *sd)
582 static const struct ov_i2c_regvals norm_8610[] = {
589 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
590 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
599 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
601 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
602 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
603 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
606 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
607 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
608 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
609 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
615 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
617 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
619 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
621 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
622 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
623 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
624 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
626 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
627 * maybe thats wrong */
631 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
635 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
636 deleting bit7 colors the first images red */
637 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
638 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
644 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
646 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
651 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
653 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
654 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
661 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
667 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
670 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
672 if (init_ov_sensor(sd) < 0)
673 PDEBUG(D_ERR|D_PROBE, "Failed to read sensor ID");
675 PDEBUG(D_PROBE, "OV86x0 initialized");
677 /* Detect sensor (sub)type */
678 rc = i2c_r(sd, OV7610_REG_COM_I);
680 PDEBUG(D_ERR, "Error detecting sensor type");
684 PDEBUG(D_PROBE, "Sensor is an OV8610");
685 sd->sensor = SEN_OV8610;
687 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
690 PDEBUG(D_PROBE, "Writing 8610 registers");
691 if (write_i2c_regvals(sd,
693 sizeof norm_8610 / sizeof norm_8610[0]))
696 /* Set sensor-specific vars */
702 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
703 * the same register settings as the OV7610, since they are very similar.
705 static int ov7xx0_configure(struct sd *sd)
709 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
711 * Register 0x0f in the 7610 has the following effects:
713 * 0x85 (AEC method 1): Best overall, good contrast range
714 * 0x45 (AEC method 2): Very overexposed
715 * 0xa5 (spec sheet default): Ok, but the black level is
716 * shifted resulting in loss of contrast
717 * 0x05 (old driver setting): very overexposed, too much
720 static const struct ov_i2c_regvals norm_7610[] = {
727 { 0x28, 0x24 }, /* 0c */
728 { 0x0f, 0x85 }, /* lg's setting */
750 static const struct ov_i2c_regvals norm_7620[] = {
751 { 0x00, 0x00 }, /* gain */
752 { 0x01, 0x80 }, /* blue gain */
753 { 0x02, 0x80 }, /* red gain */
754 { 0x03, 0xc0 }, /* OV7670_REG_VREF */
816 /* 7640 and 7648. The defaults should be OK for most registers. */
817 static const struct ov_i2c_regvals norm_7640[] = {
822 /* 7670. Defaults taken from OmniVision provided data,
823 * as provided by Jonathan Corbet of OLPC */
824 static const struct ov_i2c_regvals norm_7670[] = {
825 { OV7670_REG_COM7, OV7670_COM7_RESET },
826 { OV7670_REG_TSLB, 0x04 }, /* OV */
827 { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
828 { OV7670_REG_CLKRC, 0x1 },
830 * Set the hardware window. These values from OV don't entirely
831 * make sense - hstop is less than hstart. But they work...
833 { OV7670_REG_HSTART, 0x13 }, { OV7670_REG_HSTOP, 0x01 },
834 { OV7670_REG_HREF, 0xb6 }, { OV7670_REG_VSTART, 0x02 },
835 { OV7670_REG_VSTOP, 0x7a }, { OV7670_REG_VREF, 0x0a },
837 { OV7670_REG_COM3, 0 }, { OV7670_REG_COM14, 0 },
838 /* Mystery scaling numbers */
839 { 0x70, 0x3a }, { 0x71, 0x35 },
840 { 0x72, 0x11 }, { 0x73, 0xf0 },
843 /* { OV7670_REG_COM10, 0x0 }, */
845 /* Gamma curve values */
853 { 0x7e, 0x5a }, { 0x7f, 0x69 },
854 { 0x80, 0x76 }, { 0x81, 0x80 },
855 { 0x82, 0x88 }, { 0x83, 0x8f },
856 { 0x84, 0x96 }, { 0x85, 0xa3 },
857 { 0x86, 0xaf }, { 0x87, 0xc4 },
858 { 0x88, 0xd7 }, { 0x89, 0xe8 },
860 /* AGC and AEC parameters. Note we start by disabling those features,
861 then turn them only after tweaking the values. */
862 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
863 | OV7670_COM8_AECSTEP
864 | OV7670_COM8_BFILT },
865 { OV7670_REG_GAIN, 0 }, { OV7670_REG_AECH, 0 },
866 { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
868 { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
869 { OV7670_REG_BD50MAX, 0x05 }, { OV7670_REG_BD60MAX, 0x07 },
870 { OV7670_REG_AEW, 0x95 }, { OV7670_REG_AEB, 0x33 },
871 { OV7670_REG_VPT, 0xe3 }, { OV7670_REG_HAECC1, 0x78 },
872 { OV7670_REG_HAECC2, 0x68 },
874 { 0xa1, 0x03 }, /* magic */
875 { OV7670_REG_HAECC3, 0xd8 }, { OV7670_REG_HAECC4, 0xd8 },
876 { OV7670_REG_HAECC5, 0xf0 }, { OV7670_REG_HAECC6, 0x90 },
877 { OV7670_REG_HAECC7, 0x94 },
878 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
879 | OV7670_COM8_AECSTEP
884 /* Almost all of these are magic "reserved" values. */
885 { OV7670_REG_COM5, 0x61 }, { OV7670_REG_COM6, 0x4b },
888 /* { OV7670_REG_MVFP, 0x07|OV7670_MVFP_MIRROR }, */
889 { OV7670_REG_MVFP, 0x07 },
890 { 0x21, 0x02 }, { 0x22, 0x91 },
891 { 0x29, 0x07 }, { 0x33, 0x0b },
892 { 0x35, 0x0b }, { 0x37, 0x1d },
893 { 0x38, 0x71 }, { 0x39, 0x2a },
894 { OV7670_REG_COM12, 0x78 }, { 0x4d, 0x40 },
895 { 0x4e, 0x20 }, { OV7670_REG_GFIX, 0 },
896 { 0x6b, 0x4a }, { 0x74, 0x10 },
897 { 0x8d, 0x4f }, { 0x8e, 0 },
898 { 0x8f, 0 }, { 0x90, 0 },
899 { 0x91, 0 }, { 0x96, 0 },
900 { 0x9a, 0 }, { 0xb0, 0x84 },
901 { 0xb1, 0x0c }, { 0xb2, 0x0e },
902 { 0xb3, 0x82 }, { 0xb8, 0x0a },
904 /* More reserved magic, some of which tweaks white balance */
905 { 0x43, 0x0a }, { 0x44, 0xf0 },
906 { 0x45, 0x34 }, { 0x46, 0x58 },
907 { 0x47, 0x28 }, { 0x48, 0x3a },
908 { 0x59, 0x88 }, { 0x5a, 0x88 },
909 { 0x5b, 0x44 }, { 0x5c, 0x67 },
910 { 0x5d, 0x49 }, { 0x5e, 0x0e },
911 { 0x6c, 0x0a }, { 0x6d, 0x55 },
912 { 0x6e, 0x11 }, { 0x6f, 0x9f },
913 /* "9e for advance AWB" */
914 { 0x6a, 0x40 }, { OV7670_REG_BLUE, 0x40 },
915 { OV7670_REG_RED, 0x60 },
916 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
917 | OV7670_COM8_AECSTEP
923 /* Matrix coefficients */
924 { 0x4f, 0x80 }, { 0x50, 0x80 },
925 { 0x51, 0 }, { 0x52, 0x22 },
926 { 0x53, 0x5e }, { 0x54, 0x80 },
929 { OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
930 { OV7670_REG_EDGE, 0 },
931 { 0x75, 0x05 }, { 0x76, 0xe1 },
932 { 0x4c, 0 }, { 0x77, 0x01 },
933 { OV7670_REG_COM13, 0xc3 }, { 0x4b, 0x09 },
934 { 0xc9, 0x60 }, { OV7670_REG_COM16, 0x38 },
938 { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
939 { 0xa4, 0x88 }, { 0x96, 0 },
940 { 0x97, 0x30 }, { 0x98, 0x20 },
941 { 0x99, 0x30 }, { 0x9a, 0x84 },
942 { 0x9b, 0x29 }, { 0x9c, 0x03 },
943 { 0x9d, 0x4c }, { 0x9e, 0x3f },
946 /* Extra-weird stuff. Some sort of multiplexor register */
947 { 0x79, 0x01 }, { 0xc8, 0xf0 },
948 { 0x79, 0x0f }, { 0xc8, 0x00 },
949 { 0x79, 0x10 }, { 0xc8, 0x7e },
950 { 0x79, 0x0a }, { 0xc8, 0x80 },
951 { 0x79, 0x0b }, { 0xc8, 0x01 },
952 { 0x79, 0x0c }, { 0xc8, 0x0f },
953 { 0x79, 0x0d }, { 0xc8, 0x20 },
954 { 0x79, 0x09 }, { 0xc8, 0x80 },
955 { 0x79, 0x02 }, { 0xc8, 0xc0 },
956 { 0x79, 0x03 }, { 0xc8, 0x40 },
957 { 0x79, 0x05 }, { 0xc8, 0x30 },
961 { OV7670_REG_COM7, OV7670_COM7_YUV }, /* Selects YUV mode */
962 { OV7670_REG_RGB444, 0 }, /* No RGB444 please */
963 { OV7670_REG_COM1, 0 },
964 { OV7670_REG_COM15, OV7670_COM15_R00FF },
965 { OV7670_REG_COM9, 0x18 },
966 /* 4x gain ceiling; 0x8 is reserved bit */
967 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
968 { 0x50, 0x80 }, /* "matrix coefficient 2" */
969 { 0x52, 0x22 }, /* "matrix coefficient 4" */
970 { 0x53, 0x5e }, /* "matrix coefficient 5" */
971 { 0x54, 0x80 }, /* "matrix coefficient 6" */
972 { OV7670_REG_COM13, OV7670_COM13_GAMMA|OV7670_COM13_UVSAT },
975 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
977 /* jfm:already done? */
978 if (init_ov_sensor(sd) < 0)
979 PDEBUG(D_ERR, "Failed to read sensor ID");
981 PDEBUG(D_PROBE, "OV7xx0 initialized");
983 /* Detect sensor (sub)type */
984 rc = i2c_r(sd, OV7610_REG_COM_I);
987 * it appears to be wrongly detected as a 7610 by default */
989 PDEBUG(D_ERR, "Error detecting sensor type");
993 /* quick hack to make OV7670s work */
994 high = i2c_r(sd, 0x0a);
995 low = i2c_r(sd, 0x0b);
996 /* info("%x, %x", high, low); */
997 if (high == 0x76 && low == 0x73) {
998 PDEBUG(D_PROBE, "Sensor is an OV7670");
999 sd->sensor = SEN_OV7670;
1001 PDEBUG(D_PROBE, "Sensor is an OV7610");
1002 sd->sensor = SEN_OV7610;
1004 } else if ((rc & 3) == 1) {
1005 /* I don't know what's different about the 76BE yet. */
1006 if (i2c_r(sd, 0x15) & 1)
1007 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
1009 PDEBUG(D_PROBE, "Sensor is an OV76BE");
1011 /* OV511+ will return all zero isoc data unless we
1012 * configure the sensor as a 7620. Someone needs to
1013 * find the exact reg. setting that causes this. */
1014 sd->sensor = SEN_OV76BE;
1015 } else if ((rc & 3) == 0) {
1016 /* try to read product id registers */
1017 high = i2c_r(sd, 0x0a);
1019 PDEBUG(D_ERR, "Error detecting camera chip PID");
1022 low = i2c_r(sd, 0x0b);
1024 PDEBUG(D_ERR, "Error detecting camera chip VER");
1029 PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
1030 sd->sensor = SEN_OV7630;
1031 } else if (low == 0x40) {
1032 PDEBUG(D_PROBE, "Sensor is an OV7645");
1033 sd->sensor = SEN_OV7640; /* FIXME */
1034 } else if (low == 0x45) {
1035 PDEBUG(D_PROBE, "Sensor is an OV7645B");
1036 sd->sensor = SEN_OV7640; /* FIXME */
1037 } else if (low == 0x48) {
1038 PDEBUG(D_PROBE, "Sensor is an OV7648");
1039 sd->sensor = SEN_OV7640; /* FIXME */
1041 PDEBUG(D_PROBE, "Unknown sensor: 0x76%X", low);
1045 PDEBUG(D_PROBE, "Sensor is an OV7620");
1046 sd->sensor = SEN_OV7620;
1049 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
1053 if (sd->sensor == SEN_OV7620) {
1054 PDEBUG(D_PROBE, "Writing 7620 registers");
1055 if (write_i2c_regvals(sd, norm_7620,
1056 sizeof norm_7620 / sizeof norm_7620[0]))
1058 } else if (sd->sensor == SEN_OV7630) {
1059 PDEBUG(D_ERR, "7630 is not supported by this driver version");
1061 } else if (sd->sensor == SEN_OV7640) {
1062 PDEBUG(D_PROBE, "Writing 7640 registers");
1063 if (write_i2c_regvals(sd, norm_7640,
1064 sizeof norm_7640 / sizeof norm_7640[0]))
1066 } else if (sd->sensor == SEN_OV7670) {
1067 PDEBUG(D_PROBE, "Writing 7670 registers");
1068 if (write_i2c_regvals(sd, norm_7670,
1069 sizeof norm_7670 / sizeof norm_7670[0]))
1072 PDEBUG(D_PROBE, "Writing 7610 registers");
1073 if (write_i2c_regvals(sd, norm_7610,
1074 sizeof norm_7610 / sizeof norm_7610[0]))
1078 /* Set sensor-specific vars */
1080 sd->maxheight = 480;
1084 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
1085 static int ov6xx0_configure(struct sd *sd)
1088 static const struct ov_i2c_regvals norm_6x20[] = {
1089 { 0x12, 0x80 }, /* reset */
1092 { 0x05, 0x7f }, /* For when autoadjust is off */
1094 /* The ratio of 0x0c and 0x0d controls the white point */
1097 { 0x0f, 0x15 }, /* COMS */
1098 { 0x10, 0x75 }, /* AEC Exposure time */
1099 { 0x12, 0x24 }, /* Enable AGC */
1101 /* 0x16: 0x06 helps frame stability with moving objects */
1103 /* { 0x20, 0x30 }, * Aperture correction enable */
1104 { 0x26, 0xb2 }, /* BLC enable */
1105 /* 0x28: 0x05 Selects RGB format if RGB on */
1107 { 0x2a, 0x04 }, /* Disable framerate adjust */
1108 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1110 { 0x33, 0xa0 }, /* Color Processing Parameter */
1111 { 0x34, 0xd2 }, /* Max A/D range */
1115 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1116 { 0x3c, 0x3c }, /* Change AEC mode */
1117 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1120 /* These next two registers (0x4a, 0x4b) are undocumented.
1121 * They control the color balance */
1124 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1127 /* Do 50-53 have any effect? */
1128 /* Toggle 0x12[2] off and on here? */
1131 static const struct ov_i2c_regvals norm_6x30[] = {
1132 { 0x12, 0x80 }, /* Reset */
1133 { 0x00, 0x1f }, /* Gain */
1134 { 0x01, 0x99 }, /* Blue gain */
1135 { 0x02, 0x7c }, /* Red gain */
1136 { 0x03, 0xc0 }, /* Saturation */
1137 { 0x05, 0x0a }, /* Contrast */
1138 { 0x06, 0x95 }, /* Brightness */
1139 { 0x07, 0x2d }, /* Sharpness */
1145 { 0x11, 0x00 }, /* Pixel clock = fastest */
1146 { 0x12, 0x24 }, /* Enable AGC and AWB */
1161 { 0x23, 0xc0 }, /* Crystal circuit power level */
1162 { 0x25, 0x9a }, /* Increase AEC black ratio */
1163 { 0x26, 0xb2 }, /* BLC enable */
1167 { 0x2a, 0x84 }, /* 60 Hz power */
1168 { 0x2b, 0xa8 }, /* 60 Hz power */
1170 { 0x2d, 0x95 }, /* Enable auto-brightness */
1184 { 0x40, 0x00 }, /* White bal */
1185 { 0x41, 0x00 }, /* White bal */
1187 { 0x43, 0x3f }, /* White bal */
1197 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1199 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1201 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1206 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1208 { 0x5b, 0x0f }, /* AWB chrominance levels */
1212 { 0x12, 0x20 }, /* Toggle AWB */
1216 PDEBUG(D_PROBE, "starting sensor configuration");
1218 if (init_ov_sensor(sd) < 0) {
1219 PDEBUG(D_ERR, "Failed to read sensor ID.");
1222 PDEBUG(D_PROBE, "OV6xx0 sensor detected");
1224 /* Detect sensor (sub)type */
1225 rc = i2c_r(sd, OV7610_REG_COM_I);
1227 PDEBUG(D_ERR, "Error detecting sensor type");
1231 /* Ugh. The first two bits are the version bits, but
1232 * the entire register value must be used. I guess OVT
1233 * underestimated how many variants they would make. */
1235 sd->sensor = SEN_OV6630;
1237 "WARNING: Sensor is an OV66308. Your camera may have");
1238 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
1239 } else if (rc == 0x01) {
1240 sd->sensor = SEN_OV6620;
1241 PDEBUG(D_PROBE, "Sensor is an OV6620");
1242 } else if (rc == 0x02) {
1243 sd->sensor = SEN_OV6630;
1244 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
1245 } else if (rc == 0x03) {
1246 sd->sensor = SEN_OV6630;
1247 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
1248 } else if (rc == 0x90) {
1249 sd->sensor = SEN_OV6630;
1251 "WARNING: Sensor is an OV66307. Your camera may have");
1252 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
1254 PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
1258 /* Set sensor-specific vars */
1260 sd->maxheight = 288;
1262 if (sd->sensor == SEN_OV6620) {
1263 PDEBUG(D_PROBE, "Writing 6x20 registers");
1264 if (write_i2c_regvals(sd, norm_6x20,
1265 sizeof norm_6x20 / sizeof norm_6x20[0]))
1268 PDEBUG(D_PROBE, "Writing 6x30 registers");
1269 if (write_i2c_regvals(sd, norm_6x30,
1270 sizeof norm_6x30 / sizeof norm_6x30[0]))
1276 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
1277 static void ov51x_led_control(struct sd *sd, int on)
1279 PDEBUG(D_STREAM, "LED (%s)", on ? "on" : "off");
1281 /* if (sd->bridge == BRG_OV511PLUS) */
1282 /* reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0); */
1283 /* else if (sd->bridge == BRG_OV519) */
1284 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
1285 /* else if (sd->bclass == BCL_OV518) */
1286 /* reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02); */
1289 /* this function is called at probe time */
1290 static int sd_config(struct gspca_dev *gspca_dev,
1291 const struct usb_device_id *id)
1293 struct sd *sd = (struct sd *) gspca_dev;
1296 /* (from ov519_configure) */
1297 static const struct ov_regvals init_519[] = {
1298 { 0x5a, 0x6d }, /* EnableSystem */
1299 /* jfm trace usbsnoop3-1.txt */
1302 { 0x54, 0xff }, /* set bit2 to enable jpeg */
1306 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
1307 * detection will fail. This deserves further investigation. */
1308 { OV519_GPIO_IO_CTRL0, 0xee },
1309 { 0x51, 0x0f }, /* SetUsbInit */
1312 /* windows reads 0x55 at this point*/
1315 if (write_regvals(sd, init_519, ARRAY_SIZE(init_519)))
1317 /* jfm: not seen in windows trace */
1318 if (ov519_init_compression(sd))
1320 ov51x_led_control(sd, 0); /* turn LED off */
1323 sd->primary_i2c_slave = OV7xx0_SID;
1324 if (ov51x_set_slave_ids(sd, OV7xx0_SID) < 0)
1327 /* The OV519 must be more aggressive about sensor detection since
1328 * I2C write will never fail if the sensor is not present. We have
1329 * to try to initialize the sensor to detect its presence */
1330 if (init_ov_sensor(sd) < 0) {
1332 sd->primary_i2c_slave = OV6xx0_SID;
1333 if (ov51x_set_slave_ids(sd, OV6xx0_SID) < 0)
1336 if (init_ov_sensor(sd) < 0) {
1338 sd->primary_i2c_slave = OV8xx0_SID;
1339 if (ov51x_set_slave_ids(sd, OV8xx0_SID) < 0)
1342 if (init_ov_sensor(sd) < 0) {
1344 "Can't determine sensor slave IDs");
1347 if (ov8xx0_configure(sd) < 0) {
1349 "Failed to configure OV8xx0 sensor");
1354 if (ov6xx0_configure(sd) < 0) {
1355 PDEBUG(D_ERR, "Failed to configure OV6xx0");
1360 if (ov7xx0_configure(sd) < 0) {
1361 PDEBUG(D_ERR, "Failed to configure OV7xx0");
1366 cam = &gspca_dev->cam;
1367 cam->epaddr = OV511_ENDPOINT_ADDRESS;
1368 if (sd->maxwidth == 640) {
1369 cam->cam_mode = vga_mode;
1370 cam->nmodes = sizeof vga_mode / sizeof vga_mode[0];
1372 cam->cam_mode = sif_mode;
1373 cam->nmodes = sizeof sif_mode / sizeof sif_mode[0];
1375 sd->brightness = sd_ctrls[SD_BRIGHTNESS].qctrl.default_value;
1376 sd->contrast = sd_ctrls[SD_CONTRAST].qctrl.default_value;
1377 sd->colors = sd_ctrls[SD_COLOR].qctrl.default_value;
1380 PDEBUG(D_ERR, "OV519 Config failed");
1384 /* this function is called at open time */
1385 static int sd_open(struct gspca_dev *gspca_dev)
1390 /* Sets up the OV519 with the given image parameters
1392 * OV519 needs a completely different approach, until we can figure out what
1393 * the individual registers do.
1395 * Do not put any sensor-specific code in here (including I2C I/O functions)
1397 static int ov519_mode_init_regs(struct sd *sd,
1398 int width, int height)
1400 static const struct ov_regvals mode_init_519_ov7670[] = {
1401 { 0x5d, 0x03 }, /* Turn off suspend mode */
1402 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
1403 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1404 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1408 { 0x37, 0x00 }, /* SetUsbInit */
1409 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1410 /* Enable both fields, YUV Input, disable defect comp (why?) */
1414 { 0x17, 0x50 }, /* undocumented */
1415 { 0x37, 0x00 }, /* undocumented */
1416 { 0x40, 0xff }, /* I2C timeout counter */
1417 { 0x46, 0x00 }, /* I2C clock prescaler */
1418 { 0x59, 0x04 }, /* new from windrv 090403 */
1419 { 0xff, 0x00 }, /* undocumented */
1420 /* windows reads 0x55 at this point, why? */
1423 static const struct ov_regvals mode_init_519[] = {
1424 { 0x5d, 0x03 }, /* Turn off suspend mode */
1425 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
1426 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1427 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1431 { 0x37, 0x00 }, /* SetUsbInit */
1432 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1433 /* Enable both fields, YUV Input, disable defect comp (why?) */
1435 { 0x17, 0x50 }, /* undocumented */
1436 { 0x37, 0x00 }, /* undocumented */
1437 { 0x40, 0xff }, /* I2C timeout counter */
1438 { 0x46, 0x00 }, /* I2C clock prescaler */
1439 { 0x59, 0x04 }, /* new from windrv 090403 */
1440 { 0xff, 0x00 }, /* undocumented */
1441 /* windows reads 0x55 at this point, why? */
1446 PDEBUG(D_CONF, "mode init %dx%d", width, height);
1448 /* if (width >= 800 && height >= 600)
1453 /* if (ov51x_stop(sd) < 0)
1456 /******** Set the mode ********/
1457 if (sd->sensor != SEN_OV7670) {
1458 if (write_regvals(sd, mode_init_519,
1459 ARRAY_SIZE(mode_init_519)))
1462 if (write_regvals(sd, mode_init_519_ov7670,
1463 ARRAY_SIZE(mode_init_519_ov7670)))
1467 if (sd->sensor == SEN_OV7640) {
1468 /* Select 8-bit input mode */
1469 reg_w_mask(sd, OV519_CAM_DFR, 0x10, 0x10);
1472 reg_w(sd, OV519_CAM_H_SIZE, width >> 4);
1473 reg_w(sd, OV519_CAM_V_SIZE, height >> 3);
1474 reg_w(sd, OV519_CAM_X_OFFSETL, 0x00);
1475 reg_w(sd, OV519_CAM_X_OFFSETH, 0x00);
1476 reg_w(sd, OV519_CAM_Y_OFFSETL, 0x00);
1477 reg_w(sd, OV519_CAM_Y_OFFSETH, 0x00);
1478 reg_w(sd, OV519_CAM_DIVIDER, 0x00);
1479 reg_w(sd, OV519_CAM_FORMAT, 0x03); /* YUV422 */
1480 reg_w(sd, 0x26, 0x00); /* Undocumented */
1482 /******** Set the framerate ********/
1484 sd->frame_rate = frame_rate;
1486 /* FIXME: These are only valid at the max resolution. */
1488 if (sd->sensor == SEN_OV7640) {
1489 switch (sd->frame_rate) {
1490 /*jfm: default was 30 fps */
1492 reg_w(sd, 0xa4, 0x0c);
1493 reg_w(sd, 0x23, 0xff);
1496 reg_w(sd, 0xa4, 0x0c);
1497 reg_w(sd, 0x23, 0x1f);
1500 reg_w(sd, 0xa4, 0x0c);
1501 reg_w(sd, 0x23, 0x1b);
1505 reg_w(sd, 0xa4, 0x04);
1506 reg_w(sd, 0x23, 0xff);
1510 reg_w(sd, 0xa4, 0x04);
1511 reg_w(sd, 0x23, 0x1f);
1515 reg_w(sd, 0xa4, 0x04);
1516 reg_w(sd, 0x23, 0x1b);
1520 } else if (sd->sensor == SEN_OV8610) {
1521 switch (sd->frame_rate) {
1522 default: /* 15 fps */
1524 reg_w(sd, 0xa4, 0x06);
1525 reg_w(sd, 0x23, 0xff);
1528 reg_w(sd, 0xa4, 0x06);
1529 reg_w(sd, 0x23, 0x1f);
1532 reg_w(sd, 0xa4, 0x06);
1533 reg_w(sd, 0x23, 0x1b);
1537 } else if (sd->sensor == SEN_OV7670) { /* guesses, based on 7640 */
1538 PDEBUG(D_STREAM, "Setting framerate to %d fps",
1539 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
1540 switch (sd->frame_rate) {
1542 reg_w(sd, 0xa4, 0x10);
1543 reg_w(sd, 0x23, 0xff);
1546 reg_w(sd, 0xa4, 0x10);
1547 reg_w(sd, 0x23, 0x1b);
1549 default: /* 15 fps */
1551 reg_w(sd, 0xa4, 0x10);
1552 reg_w(sd, 0x23, 0xff);
1558 /* if (ov51x_restart(sd) < 0)
1561 /* Reset it just for good measure */
1562 /* if (ov51x_reset(sd, OV511_RESET_NOREGS) < 0)
1567 static int mode_init_ov_sensor_regs(struct sd *sd,
1568 struct ovsensor_window *win)
1570 int qvga = win->quarter;
1572 /******** Mode (VGA/QVGA) and sensor specific regs ********/
1573 switch (sd->sensor) {
1575 /* For OV8610 qvga means qsvga */
1576 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
1579 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1582 /* i2c_w(sd, 0x2b, 0x00); */
1583 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1584 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
1585 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
1586 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
1587 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
1588 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
1589 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
1592 /* i2c_w(sd, 0x2b, 0x00); */
1593 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1596 /* i2c_w(sd, 0x2b, 0x00); */
1597 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1598 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
1599 /* i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); */
1600 /* i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); */
1601 /* i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); */
1602 /* i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); */
1603 /* i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); */
1606 /* set COM7_FMT_VGA or COM7_FMT_QVGA
1607 * do we need to set anything else?
1608 * HSTART etc are set in set_ov_sensor_window itself */
1609 i2c_w_mask(sd, OV7670_REG_COM7,
1610 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
1611 OV7670_COM7_FMT_MASK);
1614 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1617 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
1623 /******** Palette-specific regs ********/
1624 /* Need to do work here for the OV7670 */
1626 if (sd->sensor == SEN_OV7610 || sd->sensor == SEN_OV76BE) {
1627 /* not valid on the OV6620/OV7620/6630? */
1628 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
1631 /* The OV518 needs special treatment. Although both the OV518
1632 * and the OV6630 support a 16-bit video bus, only the 8 bit Y
1633 * bus is actually used. The UV bus is tied to ground.
1634 * Therefore, the OV6630 needs to be in 8-bit multiplexed
1637 /* OV7640 is 8-bit only */
1639 if (sd->sensor != SEN_OV6630 && sd->sensor != SEN_OV7640)
1640 i2c_w_mask(sd, 0x13, 0x00, 0x20);
1643 /******** Clock programming ********/
1644 /* The OV6620 needs special handling. This prevents the
1645 * severe banding that normally occurs */
1646 if (sd->sensor == SEN_OV6620) {
1649 i2c_w(sd, 0x2a, 0x04);
1650 i2c_w(sd, 0x11, win->clockdiv);
1651 i2c_w(sd, 0x2a, 0x84);
1652 /* This next setting is critical. It seems to improve
1653 * the gain or the contrast. The "reserved" bits seem
1654 * to have some effect in this case. */
1655 i2c_w(sd, 0x2d, 0x85);
1656 } else if (win->clockdiv >= 0) {
1657 i2c_w(sd, 0x11, win->clockdiv);
1660 /******** Special Features ********/
1661 /* no evidence this is possible with OV7670, either */
1663 if (sd->sensor != SEN_OV7640 && sd->sensor != SEN_OV7670)
1664 i2c_w_mask(sd, 0x12, 0x00, 0x02);
1666 /* Enable auto white balance */
1667 if (sd->sensor == SEN_OV7670)
1668 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
1671 i2c_w_mask(sd, 0x12, 0x04, 0x04);
1673 /* This will go away as soon as ov51x_mode_init_sensor_regs() */
1674 /* is fully tested. */
1675 /* 7620/6620/6630? don't have register 0x35, so play it safe */
1676 if (sd->sensor == SEN_OV7610 || sd->sensor == SEN_OV76BE) {
1677 if (win->width == 640 /*&& win->height == 480*/)
1678 i2c_w(sd, 0x35, 0x9e);
1680 i2c_w(sd, 0x35, 0x1e);
1685 static int set_ov_sensor_window(struct sd *sd,
1686 struct ovsensor_window *win)
1688 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
1689 int ret, hstart, hstop, vstop, vstart;
1692 /* The different sensor ICs handle setting up of window differently.
1693 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
1694 switch (sd->sensor) {
1705 vwsbase = vwebase = 0x05;
1715 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
1717 vwsbase = vwebase = 0x05;
1722 vwsbase = vwebase = 0x03;
1725 /*handling of OV7670 hardware sensor start and stop values
1726 * is very odd, compared to the other OV sensors */
1727 vwsbase = vwebase = hwebase = hwsbase = 0x00;
1733 switch (sd->sensor) {
1736 if (win->quarter) { /* QCIF */
1741 vwscale = 1; /* The datasheet says 0;
1746 if (win->quarter) { /* QSVGA */
1754 default: /* SEN_OV7xx0 */
1755 if (win->quarter) { /* QVGA */
1764 ret = mode_init_ov_sensor_regs(sd, win);
1768 if (sd->sensor == SEN_OV8610) {
1769 i2c_w_mask(sd, 0x2d, 0x05, 0x40);
1770 /* old 0x95, new 0x05 from windrv 090403 */
1771 /* bits 5-7: reserved */
1772 i2c_w_mask(sd, 0x28, 0x20, 0x20);
1773 /* bit 5: progressive mode on */
1776 /* The below is wrong for OV7670s because their window registers
1777 * only store the high bits in 0x17 to 0x1a */
1779 /* SRH Use sd->max values instead of requested win values */
1780 /* SCS Since we're sticking with only the max hardware widths
1781 * for a given mode */
1782 /* I can hard code this for OV7670s */
1783 /* Yes, these numbers do look odd, but they're tested and work! */
1784 if (sd->sensor == SEN_OV7670) {
1785 if (win->quarter) { /* QVGA from ov7670.c by
1786 * Jonathan Corbet */
1797 /* OV7670 hardware window registers are split across
1798 * multiple locations */
1799 i2c_w(sd, OV7670_REG_HSTART, (hstart >> 3) & 0xff);
1800 i2c_w(sd, OV7670_REG_HSTOP, (hstop >> 3) & 0xff);
1801 v = i2c_r(sd, OV7670_REG_HREF);
1802 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x07);
1803 msleep(10); /* need to sleep between read and write to
1805 i2c_w(sd, OV7670_REG_HREF, v);
1807 i2c_w(sd, OV7670_REG_VSTART, (vstart >> 2) & 0xff);
1808 i2c_w(sd, OV7670_REG_VSTOP, (vstop >> 2) & 0xff);
1809 v = i2c_r(sd, OV7670_REG_VREF);
1810 v = (v & 0xc0) | ((vstop & 0x3) << 2) | (vstart & 0x03);
1811 msleep(10); /* need to sleep between read and write to
1813 i2c_w(sd, OV7670_REG_VREF, v);
1816 i2c_w(sd, 0x17, hwsbase + (win->x >> hwscale));
1817 i2c_w(sd, 0x18, hwebase + ((win->x + win->width) >> hwscale));
1818 i2c_w(sd, 0x19, vwsbase + (win->y >> vwscale));
1819 i2c_w(sd, 0x1a, vwebase + ((win->y + win->height) >> vwscale));
1824 static int ov_sensor_mode_setup(struct sd *sd,
1825 int width, int height)
1827 struct ovsensor_window win;
1829 /* win.format = mode; */
1831 /* Unless subcapture is enabled,
1832 * center the image window and downsample
1833 * if possible to increase the field of view */
1834 /* NOTE: OV518(+) and OV519 does downsampling on its own */
1836 win.height = height;
1837 if (width == sd->maxwidth)
1843 win.x = (win.width - width) / 2;
1844 win.y = (win.height - height) / 2;
1846 /* Clock is determined by OV519 frame rate code */
1847 win.clockdiv = sd->clockdiv;
1849 PDEBUG(D_CONF, "Setting clock divider to %d", win.clockdiv);
1850 return set_ov_sensor_window(sd, &win);
1853 /* -- start the camera -- */
1854 static void sd_start(struct gspca_dev *gspca_dev)
1856 struct sd *sd = (struct sd *) gspca_dev;
1860 ret = ov519_mode_init_regs(sd, gspca_dev->width, gspca_dev->height);
1863 ret = ov_sensor_mode_setup(sd, gspca_dev->width, gspca_dev->height);
1867 ret = ov51x_restart((struct sd *) gspca_dev);
1870 PDEBUG(D_STREAM, "camera started alt: 0x%02x", gspca_dev->alt);
1871 ov51x_led_control(sd, 1);
1874 PDEBUG(D_ERR, "camera start error:%d", ret);
1877 static void sd_stopN(struct gspca_dev *gspca_dev)
1879 ov51x_stop((struct sd *) gspca_dev);
1880 ov51x_led_control((struct sd *) gspca_dev, 0);
1883 static void sd_stop0(struct gspca_dev *gspca_dev)
1887 static void sd_close(struct gspca_dev *gspca_dev)
1891 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1892 struct gspca_frame *frame, /* target */
1893 __u8 *data, /* isoc packet */
1894 int len) /* iso packet length */
1896 /* Header of ov519 is 16 bytes:
1897 * Byte Value Description
1901 * 3 0xXX 0x50 = SOF, 0x51 = EOF
1902 * 9 0xXX 0x01 initial frame without data,
1903 * 0x00 standard frame with image
1904 * 14 Lo in EOF: length of image data / 8
1908 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
1910 case 0x50: /* start of frame */
1915 if (data[0] == 0xff || data[1] == 0xd8)
1916 gspca_frame_add(gspca_dev, FIRST_PACKET, frame,
1919 gspca_dev->last_packet_type = DISCARD_PACKET;
1921 case 0x51: /* end of frame */
1923 gspca_dev->last_packet_type = DISCARD_PACKET;
1924 gspca_frame_add(gspca_dev, LAST_PACKET, frame,
1930 /* intermediate packet */
1931 gspca_frame_add(gspca_dev, INTER_PACKET, frame,
1935 /* -- management routines -- */
1937 static void setbrightness(struct gspca_dev *gspca_dev)
1939 struct sd *sd = (struct sd *) gspca_dev;
1941 /* int was_streaming; */
1943 val = sd->brightness;
1944 PDEBUG(D_CONF, "brightness:%d", val);
1945 /* was_streaming = gspca_dev->streaming;
1946 * if (was_streaming)
1947 * ov51x_stop(sd); */
1948 switch (sd->sensor) {
1955 i2c_w(sd, OV7610_REG_BRT, val);
1958 /* 7620 doesn't like manual changes when in auto mode */
1960 * if (!sd->auto_brt) */
1961 i2c_w(sd, OV7610_REG_BRT, val);
1964 /*jfm - from windblows
1965 * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
1966 i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
1969 /* if (was_streaming)
1970 * ov51x_restart(sd); */
1973 static void setcontrast(struct gspca_dev *gspca_dev)
1975 struct sd *sd = (struct sd *) gspca_dev;
1977 /* int was_streaming; */
1980 PDEBUG(D_CONF, "contrast:%d", val);
1981 /* was_streaming = gspca_dev->streaming;
1984 switch (sd->sensor) {
1987 i2c_w(sd, OV7610_REG_CNT, val);
1990 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
1992 static const __u8 ctab[] = {
1993 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
1996 /* Use Y gamma control instead. Bit 0 enables it. */
1997 i2c_w(sd, 0x64, ctab[val >> 5]);
2001 static const __u8 ctab[] = {
2002 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
2003 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
2006 /* Use Y gamma control instead. Bit 0 enables it. */
2007 i2c_w(sd, 0x64, ctab[val >> 4]);
2011 /* Use gain control instead. */
2012 i2c_w(sd, OV7610_REG_GAIN, val >> 2);
2015 /* check that this isn't just the same as ov7610 */
2016 i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
2019 /* if (was_streaming)
2020 ov51x_restart(sd); */
2023 static void setcolors(struct gspca_dev *gspca_dev)
2025 struct sd *sd = (struct sd *) gspca_dev;
2027 /* int was_streaming; */
2030 PDEBUG(D_CONF, "saturation:%d", val);
2031 /* was_streaming = gspca_dev->streaming;
2034 switch (sd->sensor) {
2040 i2c_w(sd, OV7610_REG_SAT, val);
2043 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
2044 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
2047 i2c_w(sd, OV7610_REG_SAT, val);
2050 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
2053 /* supported later once I work out how to do it
2054 * transparently fail now! */
2055 /* set REG_COM13 values for UV sat auto mode */
2058 /* if (was_streaming)
2059 ov51x_restart(sd); */
2062 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
2064 struct sd *sd = (struct sd *) gspca_dev;
2066 sd->brightness = val;
2067 setbrightness(gspca_dev);
2071 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
2073 struct sd *sd = (struct sd *) gspca_dev;
2075 *val = sd->brightness;
2079 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
2081 struct sd *sd = (struct sd *) gspca_dev;
2084 setcontrast(gspca_dev);
2088 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
2090 struct sd *sd = (struct sd *) gspca_dev;
2092 *val = sd->contrast;
2096 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
2098 struct sd *sd = (struct sd *) gspca_dev;
2101 setcolors(gspca_dev);
2105 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
2107 struct sd *sd = (struct sd *) gspca_dev;
2113 /* sub-driver description */
2114 static const struct sd_desc sd_desc = {
2115 .name = MODULE_NAME,
2117 .nctrls = ARRAY_SIZE(sd_ctrls),
2118 .config = sd_config,
2124 .pkt_scan = sd_pkt_scan,
2127 /* -- module initialisation -- */
2128 static const __devinitdata struct usb_device_id device_table[] = {
2129 {USB_DEVICE(0x041e, 0x4052)},
2130 {USB_DEVICE(0x041e, 0x405f)},
2131 {USB_DEVICE(0x041e, 0x4060)},
2132 {USB_DEVICE(0x041e, 0x4061)},
2133 {USB_DEVICE(0x041e, 0x4064)},
2134 {USB_DEVICE(0x041e, 0x4068)},
2135 {USB_DEVICE(0x045e, 0x028c)},
2136 {USB_DEVICE(0x054c, 0x0154)},
2137 {USB_DEVICE(0x054c, 0x0155)},
2138 {USB_DEVICE(0x05a9, 0x0519)},
2139 {USB_DEVICE(0x05a9, 0x0530)},
2140 {USB_DEVICE(0x05a9, 0x4519)},
2141 {USB_DEVICE(0x05a9, 0x8519)},
2145 MODULE_DEVICE_TABLE(usb, device_table);
2147 /* -- device connect -- */
2148 static int sd_probe(struct usb_interface *intf,
2149 const struct usb_device_id *id)
2151 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
2155 static struct usb_driver sd_driver = {
2156 .name = MODULE_NAME,
2157 .id_table = device_table,
2159 .disconnect = gspca_disconnect,
2162 /* -- module insert / remove -- */
2163 static int __init sd_mod_init(void)
2165 if (usb_register(&sd_driver) < 0)
2167 PDEBUG(D_PROBE, "registered");
2170 static void __exit sd_mod_exit(void)
2172 usb_deregister(&sd_driver);
2173 PDEBUG(D_PROBE, "deregistered");
2176 module_init(sd_mod_init);
2177 module_exit(sd_mod_exit);
2179 module_param(frame_rate, int, 0644);
2180 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");