4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
181 void __put_task_struct_cb(struct rcu_head *rhp)
183 __put_task_struct(container_of(rhp, struct task_struct, rcu));
186 EXPORT_SYMBOL_GPL(__put_task_struct_cb);
189 * These are the runqueue data structures:
192 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
194 typedef struct runqueue runqueue_t;
197 unsigned int nr_active;
198 unsigned long bitmap[BITMAP_SIZE];
199 struct list_head queue[MAX_PRIO];
203 * This is the main, per-CPU runqueue data structure.
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
216 unsigned long nr_running;
218 unsigned long prio_bias;
219 unsigned long cpu_load[3];
221 unsigned long long nr_switches;
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
229 unsigned long nr_uninterruptible;
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
240 struct sched_domain *sd;
242 /* For active balancing */
246 task_t *migration_thread;
247 struct list_head migration_queue;
250 #ifdef CONFIG_SCHEDSTATS
252 struct sched_info rq_sched_info;
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
271 static DEFINE_PER_CPU(struct runqueue, runqueues);
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
275 * See detach_destroy_domains: synchronize_sched for details.
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
280 #define for_each_domain(cpu, domain) \
281 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
283 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284 #define this_rq() (&__get_cpu_var(runqueues))
285 #define task_rq(p) cpu_rq(task_cpu(p))
286 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
288 #ifndef prepare_arch_switch
289 # define prepare_arch_switch(next) do { } while (0)
291 #ifndef finish_arch_switch
292 # define finish_arch_switch(prev) do { } while (0)
295 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
296 static inline int task_running(runqueue_t *rq, task_t *p)
298 return rq->curr == p;
301 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
305 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
307 #ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
311 spin_unlock_irq(&rq->lock);
314 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
315 static inline int task_running(runqueue_t *rq, task_t *p)
320 return rq->curr == p;
324 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
334 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq->lock);
337 spin_unlock(&rq->lock);
341 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
352 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
356 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
359 * task_rq_lock - lock the runqueue a given task resides on and disable
360 * interrupts. Note the ordering: we can safely lookup the task_rq without
361 * explicitly disabling preemption.
363 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
369 local_irq_save(*flags);
371 spin_lock(&rq->lock);
372 if (unlikely(rq != task_rq(p))) {
373 spin_unlock_irqrestore(&rq->lock, *flags);
374 goto repeat_lock_task;
379 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
382 spin_unlock_irqrestore(&rq->lock, *flags);
385 #ifdef CONFIG_SCHEDSTATS
387 * bump this up when changing the output format or the meaning of an existing
388 * format, so that tools can adapt (or abort)
390 #define SCHEDSTAT_VERSION 12
392 static int show_schedstat(struct seq_file *seq, void *v)
396 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
397 seq_printf(seq, "timestamp %lu\n", jiffies);
398 for_each_online_cpu(cpu) {
399 runqueue_t *rq = cpu_rq(cpu);
401 struct sched_domain *sd;
405 /* runqueue-specific stats */
407 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
408 cpu, rq->yld_both_empty,
409 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
410 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
411 rq->ttwu_cnt, rq->ttwu_local,
412 rq->rq_sched_info.cpu_time,
413 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
415 seq_printf(seq, "\n");
418 /* domain-specific stats */
420 for_each_domain(cpu, sd) {
421 enum idle_type itype;
422 char mask_str[NR_CPUS];
424 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
425 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
426 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
428 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
430 sd->lb_balanced[itype],
431 sd->lb_failed[itype],
432 sd->lb_imbalance[itype],
433 sd->lb_gained[itype],
434 sd->lb_hot_gained[itype],
435 sd->lb_nobusyq[itype],
436 sd->lb_nobusyg[itype]);
438 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
439 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
440 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
441 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
442 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
450 static int schedstat_open(struct inode *inode, struct file *file)
452 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
453 char *buf = kmalloc(size, GFP_KERNEL);
459 res = single_open(file, show_schedstat, NULL);
461 m = file->private_data;
469 struct file_operations proc_schedstat_operations = {
470 .open = schedstat_open,
473 .release = single_release,
476 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
477 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
478 #else /* !CONFIG_SCHEDSTATS */
479 # define schedstat_inc(rq, field) do { } while (0)
480 # define schedstat_add(rq, field, amt) do { } while (0)
484 * rq_lock - lock a given runqueue and disable interrupts.
486 static inline runqueue_t *this_rq_lock(void)
493 spin_lock(&rq->lock);
498 #ifdef CONFIG_SCHEDSTATS
500 * Called when a process is dequeued from the active array and given
501 * the cpu. We should note that with the exception of interactive
502 * tasks, the expired queue will become the active queue after the active
503 * queue is empty, without explicitly dequeuing and requeuing tasks in the
504 * expired queue. (Interactive tasks may be requeued directly to the
505 * active queue, thus delaying tasks in the expired queue from running;
506 * see scheduler_tick()).
508 * This function is only called from sched_info_arrive(), rather than
509 * dequeue_task(). Even though a task may be queued and dequeued multiple
510 * times as it is shuffled about, we're really interested in knowing how
511 * long it was from the *first* time it was queued to the time that it
514 static inline void sched_info_dequeued(task_t *t)
516 t->sched_info.last_queued = 0;
520 * Called when a task finally hits the cpu. We can now calculate how
521 * long it was waiting to run. We also note when it began so that we
522 * can keep stats on how long its timeslice is.
524 static void sched_info_arrive(task_t *t)
526 unsigned long now = jiffies, diff = 0;
527 struct runqueue *rq = task_rq(t);
529 if (t->sched_info.last_queued)
530 diff = now - t->sched_info.last_queued;
531 sched_info_dequeued(t);
532 t->sched_info.run_delay += diff;
533 t->sched_info.last_arrival = now;
534 t->sched_info.pcnt++;
539 rq->rq_sched_info.run_delay += diff;
540 rq->rq_sched_info.pcnt++;
544 * Called when a process is queued into either the active or expired
545 * array. The time is noted and later used to determine how long we
546 * had to wait for us to reach the cpu. Since the expired queue will
547 * become the active queue after active queue is empty, without dequeuing
548 * and requeuing any tasks, we are interested in queuing to either. It
549 * is unusual but not impossible for tasks to be dequeued and immediately
550 * requeued in the same or another array: this can happen in sched_yield(),
551 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
554 * This function is only called from enqueue_task(), but also only updates
555 * the timestamp if it is already not set. It's assumed that
556 * sched_info_dequeued() will clear that stamp when appropriate.
558 static inline void sched_info_queued(task_t *t)
560 if (!t->sched_info.last_queued)
561 t->sched_info.last_queued = jiffies;
565 * Called when a process ceases being the active-running process, either
566 * voluntarily or involuntarily. Now we can calculate how long we ran.
568 static inline void sched_info_depart(task_t *t)
570 struct runqueue *rq = task_rq(t);
571 unsigned long diff = jiffies - t->sched_info.last_arrival;
573 t->sched_info.cpu_time += diff;
576 rq->rq_sched_info.cpu_time += diff;
580 * Called when tasks are switched involuntarily due, typically, to expiring
581 * their time slice. (This may also be called when switching to or from
582 * the idle task.) We are only called when prev != next.
584 static inline void sched_info_switch(task_t *prev, task_t *next)
586 struct runqueue *rq = task_rq(prev);
589 * prev now departs the cpu. It's not interesting to record
590 * stats about how efficient we were at scheduling the idle
593 if (prev != rq->idle)
594 sched_info_depart(prev);
596 if (next != rq->idle)
597 sched_info_arrive(next);
600 #define sched_info_queued(t) do { } while (0)
601 #define sched_info_switch(t, next) do { } while (0)
602 #endif /* CONFIG_SCHEDSTATS */
605 * Adding/removing a task to/from a priority array:
607 static void dequeue_task(struct task_struct *p, prio_array_t *array)
610 list_del(&p->run_list);
611 if (list_empty(array->queue + p->prio))
612 __clear_bit(p->prio, array->bitmap);
615 static void enqueue_task(struct task_struct *p, prio_array_t *array)
617 sched_info_queued(p);
618 list_add_tail(&p->run_list, array->queue + p->prio);
619 __set_bit(p->prio, array->bitmap);
625 * Put task to the end of the run list without the overhead of dequeue
626 * followed by enqueue.
628 static void requeue_task(struct task_struct *p, prio_array_t *array)
630 list_move_tail(&p->run_list, array->queue + p->prio);
633 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
635 list_add(&p->run_list, array->queue + p->prio);
636 __set_bit(p->prio, array->bitmap);
642 * effective_prio - return the priority that is based on the static
643 * priority but is modified by bonuses/penalties.
645 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
646 * into the -5 ... 0 ... +5 bonus/penalty range.
648 * We use 25% of the full 0...39 priority range so that:
650 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
651 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
653 * Both properties are important to certain workloads.
655 static int effective_prio(task_t *p)
662 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
664 prio = p->static_prio - bonus;
665 if (prio < MAX_RT_PRIO)
667 if (prio > MAX_PRIO-1)
673 static inline void inc_prio_bias(runqueue_t *rq, int prio)
675 rq->prio_bias += MAX_PRIO - prio;
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
680 rq->prio_bias -= MAX_PRIO - prio;
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
687 if (p != rq->migration_thread)
689 * The migration thread does the actual balancing. Do
690 * not bias by its priority as the ultra high priority
691 * will skew balancing adversely.
693 inc_prio_bias(rq, p->prio);
695 inc_prio_bias(rq, p->static_prio);
698 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
702 if (p != rq->migration_thread)
703 dec_prio_bias(rq, p->prio);
705 dec_prio_bias(rq, p->static_prio);
708 static inline void inc_prio_bias(runqueue_t *rq, int prio)
712 static inline void dec_prio_bias(runqueue_t *rq, int prio)
716 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
721 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
728 * __activate_task - move a task to the runqueue.
730 static inline void __activate_task(task_t *p, runqueue_t *rq)
732 enqueue_task(p, rq->active);
733 inc_nr_running(p, rq);
737 * __activate_idle_task - move idle task to the _front_ of runqueue.
739 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
741 enqueue_task_head(p, rq->active);
742 inc_nr_running(p, rq);
745 static int recalc_task_prio(task_t *p, unsigned long long now)
747 /* Caller must always ensure 'now >= p->timestamp' */
748 unsigned long long __sleep_time = now - p->timestamp;
749 unsigned long sleep_time;
751 if (unlikely(p->policy == SCHED_BATCH))
754 if (__sleep_time > NS_MAX_SLEEP_AVG)
755 sleep_time = NS_MAX_SLEEP_AVG;
757 sleep_time = (unsigned long)__sleep_time;
760 if (likely(sleep_time > 0)) {
762 * User tasks that sleep a long time are categorised as
763 * idle and will get just interactive status to stay active &
764 * prevent them suddenly becoming cpu hogs and starving
767 if (p->mm && p->activated != -1 &&
768 sleep_time > INTERACTIVE_SLEEP(p)) {
769 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
773 * The lower the sleep avg a task has the more
774 * rapidly it will rise with sleep time.
776 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
779 * Tasks waking from uninterruptible sleep are
780 * limited in their sleep_avg rise as they
781 * are likely to be waiting on I/O
783 if (p->activated == -1 && p->mm) {
784 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
786 else if (p->sleep_avg + sleep_time >=
787 INTERACTIVE_SLEEP(p)) {
788 p->sleep_avg = INTERACTIVE_SLEEP(p);
794 * This code gives a bonus to interactive tasks.
796 * The boost works by updating the 'average sleep time'
797 * value here, based on ->timestamp. The more time a
798 * task spends sleeping, the higher the average gets -
799 * and the higher the priority boost gets as well.
801 p->sleep_avg += sleep_time;
803 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
804 p->sleep_avg = NS_MAX_SLEEP_AVG;
808 return effective_prio(p);
812 * activate_task - move a task to the runqueue and do priority recalculation
814 * Update all the scheduling statistics stuff. (sleep average
815 * calculation, priority modifiers, etc.)
817 static void activate_task(task_t *p, runqueue_t *rq, int local)
819 unsigned long long now;
824 /* Compensate for drifting sched_clock */
825 runqueue_t *this_rq = this_rq();
826 now = (now - this_rq->timestamp_last_tick)
827 + rq->timestamp_last_tick;
832 p->prio = recalc_task_prio(p, now);
835 * This checks to make sure it's not an uninterruptible task
836 * that is now waking up.
840 * Tasks which were woken up by interrupts (ie. hw events)
841 * are most likely of interactive nature. So we give them
842 * the credit of extending their sleep time to the period
843 * of time they spend on the runqueue, waiting for execution
844 * on a CPU, first time around:
850 * Normal first-time wakeups get a credit too for
851 * on-runqueue time, but it will be weighted down:
858 __activate_task(p, rq);
862 * deactivate_task - remove a task from the runqueue.
864 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
866 dec_nr_running(p, rq);
867 dequeue_task(p, p->array);
872 * resched_task - mark a task 'to be rescheduled now'.
874 * On UP this means the setting of the need_resched flag, on SMP it
875 * might also involve a cross-CPU call to trigger the scheduler on
879 static void resched_task(task_t *p)
883 assert_spin_locked(&task_rq(p)->lock);
885 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
888 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
891 if (cpu == smp_processor_id())
894 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
896 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
897 smp_send_reschedule(cpu);
900 static inline void resched_task(task_t *p)
902 assert_spin_locked(&task_rq(p)->lock);
903 set_tsk_need_resched(p);
908 * task_curr - is this task currently executing on a CPU?
909 * @p: the task in question.
911 inline int task_curr(const task_t *p)
913 return cpu_curr(task_cpu(p)) == p;
918 struct list_head list;
923 struct completion done;
927 * The task's runqueue lock must be held.
928 * Returns true if you have to wait for migration thread.
930 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
932 runqueue_t *rq = task_rq(p);
935 * If the task is not on a runqueue (and not running), then
936 * it is sufficient to simply update the task's cpu field.
938 if (!p->array && !task_running(rq, p)) {
939 set_task_cpu(p, dest_cpu);
943 init_completion(&req->done);
945 req->dest_cpu = dest_cpu;
946 list_add(&req->list, &rq->migration_queue);
951 * wait_task_inactive - wait for a thread to unschedule.
953 * The caller must ensure that the task *will* unschedule sometime soon,
954 * else this function might spin for a *long* time. This function can't
955 * be called with interrupts off, or it may introduce deadlock with
956 * smp_call_function() if an IPI is sent by the same process we are
957 * waiting to become inactive.
959 void wait_task_inactive(task_t *p)
966 rq = task_rq_lock(p, &flags);
967 /* Must be off runqueue entirely, not preempted. */
968 if (unlikely(p->array || task_running(rq, p))) {
969 /* If it's preempted, we yield. It could be a while. */
970 preempted = !task_running(rq, p);
971 task_rq_unlock(rq, &flags);
977 task_rq_unlock(rq, &flags);
981 * kick_process - kick a running thread to enter/exit the kernel
982 * @p: the to-be-kicked thread
984 * Cause a process which is running on another CPU to enter
985 * kernel-mode, without any delay. (to get signals handled.)
987 * NOTE: this function doesnt have to take the runqueue lock,
988 * because all it wants to ensure is that the remote task enters
989 * the kernel. If the IPI races and the task has been migrated
990 * to another CPU then no harm is done and the purpose has been
993 void kick_process(task_t *p)
999 if ((cpu != smp_processor_id()) && task_curr(p))
1000 smp_send_reschedule(cpu);
1005 * Return a low guess at the load of a migration-source cpu.
1007 * We want to under-estimate the load of migration sources, to
1008 * balance conservatively.
1010 static unsigned long __source_load(int cpu, int type, enum idle_type idle)
1012 runqueue_t *rq = cpu_rq(cpu);
1013 unsigned long running = rq->nr_running;
1014 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1015 load_now = running * SCHED_LOAD_SCALE;
1018 source_load = load_now;
1020 source_load = min(cpu_load, load_now);
1022 if (running > 1 || (idle == NOT_IDLE && running))
1024 * If we are busy rebalancing the load is biased by
1025 * priority to create 'nice' support across cpus. When
1026 * idle rebalancing we should only bias the source_load if
1027 * there is more than one task running on that queue to
1028 * prevent idle rebalance from trying to pull tasks from a
1029 * queue with only one running task.
1031 source_load = source_load * rq->prio_bias / running;
1036 static inline unsigned long source_load(int cpu, int type)
1038 return __source_load(cpu, type, NOT_IDLE);
1042 * Return a high guess at the load of a migration-target cpu
1044 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1046 runqueue_t *rq = cpu_rq(cpu);
1047 unsigned long running = rq->nr_running;
1048 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1049 load_now = running * SCHED_LOAD_SCALE;
1052 target_load = load_now;
1054 target_load = max(cpu_load, load_now);
1056 if (running > 1 || (idle == NOT_IDLE && running))
1057 target_load = target_load * rq->prio_bias / running;
1062 static inline unsigned long target_load(int cpu, int type)
1064 return __target_load(cpu, type, NOT_IDLE);
1068 * find_idlest_group finds and returns the least busy CPU group within the
1071 static struct sched_group *
1072 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1074 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1075 unsigned long min_load = ULONG_MAX, this_load = 0;
1076 int load_idx = sd->forkexec_idx;
1077 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1080 unsigned long load, avg_load;
1084 /* Skip over this group if it has no CPUs allowed */
1085 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1088 local_group = cpu_isset(this_cpu, group->cpumask);
1090 /* Tally up the load of all CPUs in the group */
1093 for_each_cpu_mask(i, group->cpumask) {
1094 /* Bias balancing toward cpus of our domain */
1096 load = source_load(i, load_idx);
1098 load = target_load(i, load_idx);
1103 /* Adjust by relative CPU power of the group */
1104 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1107 this_load = avg_load;
1109 } else if (avg_load < min_load) {
1110 min_load = avg_load;
1114 group = group->next;
1115 } while (group != sd->groups);
1117 if (!idlest || 100*this_load < imbalance*min_load)
1123 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1126 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1129 unsigned long load, min_load = ULONG_MAX;
1133 /* Traverse only the allowed CPUs */
1134 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1136 for_each_cpu_mask(i, tmp) {
1137 load = source_load(i, 0);
1139 if (load < min_load || (load == min_load && i == this_cpu)) {
1149 * sched_balance_self: balance the current task (running on cpu) in domains
1150 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1153 * Balance, ie. select the least loaded group.
1155 * Returns the target CPU number, or the same CPU if no balancing is needed.
1157 * preempt must be disabled.
1159 static int sched_balance_self(int cpu, int flag)
1161 struct task_struct *t = current;
1162 struct sched_domain *tmp, *sd = NULL;
1164 for_each_domain(cpu, tmp)
1165 if (tmp->flags & flag)
1170 struct sched_group *group;
1175 group = find_idlest_group(sd, t, cpu);
1179 new_cpu = find_idlest_cpu(group, t, cpu);
1180 if (new_cpu == -1 || new_cpu == cpu)
1183 /* Now try balancing at a lower domain level */
1187 weight = cpus_weight(span);
1188 for_each_domain(cpu, tmp) {
1189 if (weight <= cpus_weight(tmp->span))
1191 if (tmp->flags & flag)
1194 /* while loop will break here if sd == NULL */
1200 #endif /* CONFIG_SMP */
1203 * wake_idle() will wake a task on an idle cpu if task->cpu is
1204 * not idle and an idle cpu is available. The span of cpus to
1205 * search starts with cpus closest then further out as needed,
1206 * so we always favor a closer, idle cpu.
1208 * Returns the CPU we should wake onto.
1210 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1211 static int wake_idle(int cpu, task_t *p)
1214 struct sched_domain *sd;
1220 for_each_domain(cpu, sd) {
1221 if (sd->flags & SD_WAKE_IDLE) {
1222 cpus_and(tmp, sd->span, p->cpus_allowed);
1223 for_each_cpu_mask(i, tmp) {
1234 static inline int wake_idle(int cpu, task_t *p)
1241 * try_to_wake_up - wake up a thread
1242 * @p: the to-be-woken-up thread
1243 * @state: the mask of task states that can be woken
1244 * @sync: do a synchronous wakeup?
1246 * Put it on the run-queue if it's not already there. The "current"
1247 * thread is always on the run-queue (except when the actual
1248 * re-schedule is in progress), and as such you're allowed to do
1249 * the simpler "current->state = TASK_RUNNING" to mark yourself
1250 * runnable without the overhead of this.
1252 * returns failure only if the task is already active.
1254 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1256 int cpu, this_cpu, success = 0;
1257 unsigned long flags;
1261 unsigned long load, this_load;
1262 struct sched_domain *sd, *this_sd = NULL;
1266 rq = task_rq_lock(p, &flags);
1267 old_state = p->state;
1268 if (!(old_state & state))
1275 this_cpu = smp_processor_id();
1278 if (unlikely(task_running(rq, p)))
1283 schedstat_inc(rq, ttwu_cnt);
1284 if (cpu == this_cpu) {
1285 schedstat_inc(rq, ttwu_local);
1289 for_each_domain(this_cpu, sd) {
1290 if (cpu_isset(cpu, sd->span)) {
1291 schedstat_inc(sd, ttwu_wake_remote);
1297 if (p->last_waker_cpu != this_cpu)
1300 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1304 * Check for affine wakeup and passive balancing possibilities.
1307 int idx = this_sd->wake_idx;
1308 unsigned int imbalance;
1310 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1312 load = source_load(cpu, idx);
1313 this_load = target_load(this_cpu, idx);
1315 new_cpu = this_cpu; /* Wake to this CPU if we can */
1317 if (this_sd->flags & SD_WAKE_AFFINE) {
1318 unsigned long tl = this_load;
1320 * If sync wakeup then subtract the (maximum possible)
1321 * effect of the currently running task from the load
1322 * of the current CPU:
1325 tl -= SCHED_LOAD_SCALE;
1328 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1329 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1331 * This domain has SD_WAKE_AFFINE and
1332 * p is cache cold in this domain, and
1333 * there is no bad imbalance.
1335 schedstat_inc(this_sd, ttwu_move_affine);
1341 * Start passive balancing when half the imbalance_pct
1344 if (this_sd->flags & SD_WAKE_BALANCE) {
1345 if (imbalance*this_load <= 100*load) {
1346 schedstat_inc(this_sd, ttwu_move_balance);
1352 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1354 new_cpu = wake_idle(new_cpu, p);
1355 if (new_cpu != cpu) {
1356 set_task_cpu(p, new_cpu);
1357 task_rq_unlock(rq, &flags);
1358 /* might preempt at this point */
1359 rq = task_rq_lock(p, &flags);
1360 old_state = p->state;
1361 if (!(old_state & state))
1366 this_cpu = smp_processor_id();
1370 p->last_waker_cpu = this_cpu;
1373 #endif /* CONFIG_SMP */
1374 if (old_state == TASK_UNINTERRUPTIBLE) {
1375 rq->nr_uninterruptible--;
1377 * Tasks on involuntary sleep don't earn
1378 * sleep_avg beyond just interactive state.
1384 * Tasks that have marked their sleep as noninteractive get
1385 * woken up without updating their sleep average. (i.e. their
1386 * sleep is handled in a priority-neutral manner, no priority
1387 * boost and no penalty.)
1389 if (old_state & TASK_NONINTERACTIVE)
1390 __activate_task(p, rq);
1392 activate_task(p, rq, cpu == this_cpu);
1394 * Sync wakeups (i.e. those types of wakeups where the waker
1395 * has indicated that it will leave the CPU in short order)
1396 * don't trigger a preemption, if the woken up task will run on
1397 * this cpu. (in this case the 'I will reschedule' promise of
1398 * the waker guarantees that the freshly woken up task is going
1399 * to be considered on this CPU.)
1401 if (!sync || cpu != this_cpu) {
1402 if (TASK_PREEMPTS_CURR(p, rq))
1403 resched_task(rq->curr);
1408 p->state = TASK_RUNNING;
1410 task_rq_unlock(rq, &flags);
1415 int fastcall wake_up_process(task_t *p)
1417 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1418 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1421 EXPORT_SYMBOL(wake_up_process);
1423 int fastcall wake_up_state(task_t *p, unsigned int state)
1425 return try_to_wake_up(p, state, 0);
1429 * Perform scheduler related setup for a newly forked process p.
1430 * p is forked by current.
1432 void fastcall sched_fork(task_t *p, int clone_flags)
1434 int cpu = get_cpu();
1437 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1439 set_task_cpu(p, cpu);
1442 * We mark the process as running here, but have not actually
1443 * inserted it onto the runqueue yet. This guarantees that
1444 * nobody will actually run it, and a signal or other external
1445 * event cannot wake it up and insert it on the runqueue either.
1447 p->state = TASK_RUNNING;
1448 INIT_LIST_HEAD(&p->run_list);
1450 #ifdef CONFIG_SCHEDSTATS
1451 memset(&p->sched_info, 0, sizeof(p->sched_info));
1453 #if defined(CONFIG_SMP)
1454 p->last_waker_cpu = cpu;
1455 #if defined(__ARCH_WANT_UNLOCKED_CTXSW)
1459 #ifdef CONFIG_PREEMPT
1460 /* Want to start with kernel preemption disabled. */
1461 task_thread_info(p)->preempt_count = 1;
1464 * Share the timeslice between parent and child, thus the
1465 * total amount of pending timeslices in the system doesn't change,
1466 * resulting in more scheduling fairness.
1468 local_irq_disable();
1469 p->time_slice = (current->time_slice + 1) >> 1;
1471 * The remainder of the first timeslice might be recovered by
1472 * the parent if the child exits early enough.
1474 p->first_time_slice = 1;
1475 current->time_slice >>= 1;
1476 p->timestamp = sched_clock();
1477 if (unlikely(!current->time_slice)) {
1479 * This case is rare, it happens when the parent has only
1480 * a single jiffy left from its timeslice. Taking the
1481 * runqueue lock is not a problem.
1483 current->time_slice = 1;
1491 * wake_up_new_task - wake up a newly created task for the first time.
1493 * This function will do some initial scheduler statistics housekeeping
1494 * that must be done for every newly created context, then puts the task
1495 * on the runqueue and wakes it.
1497 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1499 unsigned long flags;
1501 runqueue_t *rq, *this_rq;
1503 rq = task_rq_lock(p, &flags);
1504 BUG_ON(p->state != TASK_RUNNING);
1505 this_cpu = smp_processor_id();
1509 * We decrease the sleep average of forking parents
1510 * and children as well, to keep max-interactive tasks
1511 * from forking tasks that are max-interactive. The parent
1512 * (current) is done further down, under its lock.
1514 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1515 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1517 p->prio = effective_prio(p);
1519 if (likely(cpu == this_cpu)) {
1520 if (!(clone_flags & CLONE_VM)) {
1522 * The VM isn't cloned, so we're in a good position to
1523 * do child-runs-first in anticipation of an exec. This
1524 * usually avoids a lot of COW overhead.
1526 if (unlikely(!current->array))
1527 __activate_task(p, rq);
1529 p->prio = current->prio;
1530 list_add_tail(&p->run_list, ¤t->run_list);
1531 p->array = current->array;
1532 p->array->nr_active++;
1533 inc_nr_running(p, rq);
1537 /* Run child last */
1538 __activate_task(p, rq);
1540 * We skip the following code due to cpu == this_cpu
1542 * task_rq_unlock(rq, &flags);
1543 * this_rq = task_rq_lock(current, &flags);
1547 this_rq = cpu_rq(this_cpu);
1550 * Not the local CPU - must adjust timestamp. This should
1551 * get optimised away in the !CONFIG_SMP case.
1553 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1554 + rq->timestamp_last_tick;
1555 __activate_task(p, rq);
1556 if (TASK_PREEMPTS_CURR(p, rq))
1557 resched_task(rq->curr);
1560 * Parent and child are on different CPUs, now get the
1561 * parent runqueue to update the parent's ->sleep_avg:
1563 task_rq_unlock(rq, &flags);
1564 this_rq = task_rq_lock(current, &flags);
1566 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1567 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1568 task_rq_unlock(this_rq, &flags);
1572 * Potentially available exiting-child timeslices are
1573 * retrieved here - this way the parent does not get
1574 * penalized for creating too many threads.
1576 * (this cannot be used to 'generate' timeslices
1577 * artificially, because any timeslice recovered here
1578 * was given away by the parent in the first place.)
1580 void fastcall sched_exit(task_t *p)
1582 unsigned long flags;
1586 * If the child was a (relative-) CPU hog then decrease
1587 * the sleep_avg of the parent as well.
1589 rq = task_rq_lock(p->parent, &flags);
1590 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1591 p->parent->time_slice += p->time_slice;
1592 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1593 p->parent->time_slice = task_timeslice(p);
1595 if (p->sleep_avg < p->parent->sleep_avg)
1596 p->parent->sleep_avg = p->parent->sleep_avg /
1597 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1599 task_rq_unlock(rq, &flags);
1603 * prepare_task_switch - prepare to switch tasks
1604 * @rq: the runqueue preparing to switch
1605 * @next: the task we are going to switch to.
1607 * This is called with the rq lock held and interrupts off. It must
1608 * be paired with a subsequent finish_task_switch after the context
1611 * prepare_task_switch sets up locking and calls architecture specific
1614 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1616 prepare_lock_switch(rq, next);
1617 prepare_arch_switch(next);
1621 * finish_task_switch - clean up after a task-switch
1622 * @rq: runqueue associated with task-switch
1623 * @prev: the thread we just switched away from.
1625 * finish_task_switch must be called after the context switch, paired
1626 * with a prepare_task_switch call before the context switch.
1627 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1628 * and do any other architecture-specific cleanup actions.
1630 * Note that we may have delayed dropping an mm in context_switch(). If
1631 * so, we finish that here outside of the runqueue lock. (Doing it
1632 * with the lock held can cause deadlocks; see schedule() for
1635 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1636 __releases(rq->lock)
1638 struct mm_struct *mm = rq->prev_mm;
1639 unsigned long prev_task_flags;
1644 * A task struct has one reference for the use as "current".
1645 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1646 * calls schedule one last time. The schedule call will never return,
1647 * and the scheduled task must drop that reference.
1648 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1649 * still held, otherwise prev could be scheduled on another cpu, die
1650 * there before we look at prev->state, and then the reference would
1652 * Manfred Spraul <manfred@colorfullife.com>
1654 prev_task_flags = prev->flags;
1655 finish_arch_switch(prev);
1656 finish_lock_switch(rq, prev);
1659 if (unlikely(prev_task_flags & PF_DEAD))
1660 put_task_struct(prev);
1664 * schedule_tail - first thing a freshly forked thread must call.
1665 * @prev: the thread we just switched away from.
1667 asmlinkage void schedule_tail(task_t *prev)
1668 __releases(rq->lock)
1670 runqueue_t *rq = this_rq();
1671 finish_task_switch(rq, prev);
1672 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1673 /* In this case, finish_task_switch does not reenable preemption */
1676 if (current->set_child_tid)
1677 put_user(current->pid, current->set_child_tid);
1681 * context_switch - switch to the new MM and the new
1682 * thread's register state.
1685 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1687 struct mm_struct *mm = next->mm;
1688 struct mm_struct *oldmm = prev->active_mm;
1690 if (unlikely(!mm)) {
1691 next->active_mm = oldmm;
1692 atomic_inc(&oldmm->mm_count);
1693 enter_lazy_tlb(oldmm, next);
1695 switch_mm(oldmm, mm, next);
1697 if (unlikely(!prev->mm)) {
1698 prev->active_mm = NULL;
1699 WARN_ON(rq->prev_mm);
1700 rq->prev_mm = oldmm;
1703 /* Here we just switch the register state and the stack. */
1704 switch_to(prev, next, prev);
1710 * nr_running, nr_uninterruptible and nr_context_switches:
1712 * externally visible scheduler statistics: current number of runnable
1713 * threads, current number of uninterruptible-sleeping threads, total
1714 * number of context switches performed since bootup.
1716 unsigned long nr_running(void)
1718 unsigned long i, sum = 0;
1720 for_each_online_cpu(i)
1721 sum += cpu_rq(i)->nr_running;
1726 unsigned long nr_uninterruptible(void)
1728 unsigned long i, sum = 0;
1731 sum += cpu_rq(i)->nr_uninterruptible;
1734 * Since we read the counters lockless, it might be slightly
1735 * inaccurate. Do not allow it to go below zero though:
1737 if (unlikely((long)sum < 0))
1743 unsigned long long nr_context_switches(void)
1745 unsigned long long i, sum = 0;
1748 sum += cpu_rq(i)->nr_switches;
1753 unsigned long nr_iowait(void)
1755 unsigned long i, sum = 0;
1758 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1776 spin_lock(&rq1->lock);
1777 __acquire(rq2->lock); /* Fake it out ;) */
1780 spin_lock(&rq1->lock);
1781 spin_lock(&rq2->lock);
1783 spin_lock(&rq2->lock);
1784 spin_lock(&rq1->lock);
1790 * double_rq_unlock - safely unlock two runqueues
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1795 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1796 __releases(rq1->lock)
1797 __releases(rq2->lock)
1799 spin_unlock(&rq1->lock);
1801 spin_unlock(&rq2->lock);
1803 __release(rq2->lock);
1807 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1809 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1810 __releases(this_rq->lock)
1811 __acquires(busiest->lock)
1812 __acquires(this_rq->lock)
1814 if (unlikely(!spin_trylock(&busiest->lock))) {
1815 if (busiest < this_rq) {
1816 spin_unlock(&this_rq->lock);
1817 spin_lock(&busiest->lock);
1818 spin_lock(&this_rq->lock);
1820 spin_lock(&busiest->lock);
1825 * If dest_cpu is allowed for this process, migrate the task to it.
1826 * This is accomplished by forcing the cpu_allowed mask to only
1827 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1828 * the cpu_allowed mask is restored.
1830 static void sched_migrate_task(task_t *p, int dest_cpu)
1832 migration_req_t req;
1834 unsigned long flags;
1836 rq = task_rq_lock(p, &flags);
1837 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1838 || unlikely(cpu_is_offline(dest_cpu)))
1841 /* force the process onto the specified CPU */
1842 if (migrate_task(p, dest_cpu, &req)) {
1843 /* Need to wait for migration thread (might exit: take ref). */
1844 struct task_struct *mt = rq->migration_thread;
1845 get_task_struct(mt);
1846 task_rq_unlock(rq, &flags);
1847 wake_up_process(mt);
1848 put_task_struct(mt);
1849 wait_for_completion(&req.done);
1853 task_rq_unlock(rq, &flags);
1857 * sched_exec - execve() is a valuable balancing opportunity, because at
1858 * this point the task has the smallest effective memory and cache footprint.
1860 void sched_exec(void)
1862 int new_cpu, this_cpu = get_cpu();
1863 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1865 if (new_cpu != this_cpu)
1866 sched_migrate_task(current, new_cpu);
1870 * pull_task - move a task from a remote runqueue to the local runqueue.
1871 * Both runqueues must be locked.
1874 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1875 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1877 dequeue_task(p, src_array);
1878 dec_nr_running(p, src_rq);
1879 set_task_cpu(p, this_cpu);
1880 inc_nr_running(p, this_rq);
1881 enqueue_task(p, this_array);
1882 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1883 + this_rq->timestamp_last_tick;
1885 * Note that idle threads have a prio of MAX_PRIO, for this test
1886 * to be always true for them.
1888 if (TASK_PREEMPTS_CURR(p, this_rq))
1889 resched_task(this_rq->curr);
1893 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1896 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1897 struct sched_domain *sd, enum idle_type idle,
1901 * We do not migrate tasks that are:
1902 * 1) running (obviously), or
1903 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1904 * 3) are cache-hot on their current CPU.
1906 if (!cpu_isset(this_cpu, p->cpus_allowed))
1910 if (task_running(rq, p))
1914 * Aggressive migration if:
1915 * 1) task is cache cold, or
1916 * 2) too many balance attempts have failed.
1919 if (sd->nr_balance_failed > sd->cache_nice_tries)
1922 if (task_hot(p, rq->timestamp_last_tick, sd))
1928 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1929 * as part of a balancing operation within "domain". Returns the number of
1932 * Called with both runqueues locked.
1934 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1935 unsigned long max_nr_move, struct sched_domain *sd,
1936 enum idle_type idle, int *all_pinned)
1938 prio_array_t *array, *dst_array;
1939 struct list_head *head, *curr;
1940 int idx, pulled = 0, pinned = 0;
1943 if (max_nr_move == 0)
1949 * We first consider expired tasks. Those will likely not be
1950 * executed in the near future, and they are most likely to
1951 * be cache-cold, thus switching CPUs has the least effect
1954 if (busiest->expired->nr_active) {
1955 array = busiest->expired;
1956 dst_array = this_rq->expired;
1958 array = busiest->active;
1959 dst_array = this_rq->active;
1963 /* Start searching at priority 0: */
1967 idx = sched_find_first_bit(array->bitmap);
1969 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1970 if (idx >= MAX_PRIO) {
1971 if (array == busiest->expired && busiest->active->nr_active) {
1972 array = busiest->active;
1973 dst_array = this_rq->active;
1979 head = array->queue + idx;
1982 tmp = list_entry(curr, task_t, run_list);
1986 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1993 #ifdef CONFIG_SCHEDSTATS
1994 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1995 schedstat_inc(sd, lb_hot_gained[idle]);
1998 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2001 /* We only want to steal up to the prescribed number of tasks. */
2002 if (pulled < max_nr_move) {
2010 * Right now, this is the only place pull_task() is called,
2011 * so we can safely collect pull_task() stats here rather than
2012 * inside pull_task().
2014 schedstat_add(sd, lb_gained[idle], pulled);
2017 *all_pinned = pinned;
2022 * find_busiest_group finds and returns the busiest CPU group within the
2023 * domain. It calculates and returns the number of tasks which should be
2024 * moved to restore balance via the imbalance parameter.
2026 static struct sched_group *
2027 find_busiest_group(struct sched_domain *sd, int this_cpu,
2028 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2030 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2031 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2032 unsigned long max_pull;
2035 max_load = this_load = total_load = total_pwr = 0;
2036 if (idle == NOT_IDLE)
2037 load_idx = sd->busy_idx;
2038 else if (idle == NEWLY_IDLE)
2039 load_idx = sd->newidle_idx;
2041 load_idx = sd->idle_idx;
2048 local_group = cpu_isset(this_cpu, group->cpumask);
2050 /* Tally up the load of all CPUs in the group */
2053 for_each_cpu_mask(i, group->cpumask) {
2054 if (*sd_idle && !idle_cpu(i))
2057 /* Bias balancing toward cpus of our domain */
2059 load = __target_load(i, load_idx, idle);
2061 load = __source_load(i, load_idx, idle);
2066 total_load += avg_load;
2067 total_pwr += group->cpu_power;
2069 /* Adjust by relative CPU power of the group */
2070 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2073 this_load = avg_load;
2075 } else if (avg_load > max_load) {
2076 max_load = avg_load;
2079 group = group->next;
2080 } while (group != sd->groups);
2082 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2085 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2087 if (this_load >= avg_load ||
2088 100*max_load <= sd->imbalance_pct*this_load)
2092 * We're trying to get all the cpus to the average_load, so we don't
2093 * want to push ourselves above the average load, nor do we wish to
2094 * reduce the max loaded cpu below the average load, as either of these
2095 * actions would just result in more rebalancing later, and ping-pong
2096 * tasks around. Thus we look for the minimum possible imbalance.
2097 * Negative imbalances (*we* are more loaded than anyone else) will
2098 * be counted as no imbalance for these purposes -- we can't fix that
2099 * by pulling tasks to us. Be careful of negative numbers as they'll
2100 * appear as very large values with unsigned longs.
2103 /* Don't want to pull so many tasks that a group would go idle */
2104 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2106 /* How much load to actually move to equalise the imbalance */
2107 *imbalance = min(max_pull * busiest->cpu_power,
2108 (avg_load - this_load) * this->cpu_power)
2111 if (*imbalance < SCHED_LOAD_SCALE) {
2112 unsigned long pwr_now = 0, pwr_move = 0;
2115 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2121 * OK, we don't have enough imbalance to justify moving tasks,
2122 * however we may be able to increase total CPU power used by
2126 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2127 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2128 pwr_now /= SCHED_LOAD_SCALE;
2130 /* Amount of load we'd subtract */
2131 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2133 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2136 /* Amount of load we'd add */
2137 if (max_load*busiest->cpu_power <
2138 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2139 tmp = max_load*busiest->cpu_power/this->cpu_power;
2141 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2142 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2143 pwr_move /= SCHED_LOAD_SCALE;
2145 /* Move if we gain throughput */
2146 if (pwr_move <= pwr_now)
2153 /* Get rid of the scaling factor, rounding down as we divide */
2154 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2164 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2166 static runqueue_t *find_busiest_queue(struct sched_group *group,
2167 enum idle_type idle)
2169 unsigned long load, max_load = 0;
2170 runqueue_t *busiest = NULL;
2173 for_each_cpu_mask(i, group->cpumask) {
2174 load = __source_load(i, 0, idle);
2176 if (load > max_load) {
2178 busiest = cpu_rq(i);
2186 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2187 * so long as it is large enough.
2189 #define MAX_PINNED_INTERVAL 512
2192 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2193 * tasks if there is an imbalance.
2195 * Called with this_rq unlocked.
2197 static int load_balance(int this_cpu, runqueue_t *this_rq,
2198 struct sched_domain *sd, enum idle_type idle)
2200 struct sched_group *group;
2201 runqueue_t *busiest;
2202 unsigned long imbalance;
2203 int nr_moved, all_pinned = 0;
2204 int active_balance = 0;
2207 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2210 schedstat_inc(sd, lb_cnt[idle]);
2212 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2214 schedstat_inc(sd, lb_nobusyg[idle]);
2218 busiest = find_busiest_queue(group, idle);
2220 schedstat_inc(sd, lb_nobusyq[idle]);
2224 BUG_ON(busiest == this_rq);
2226 schedstat_add(sd, lb_imbalance[idle], imbalance);
2229 if (busiest->nr_running > 1) {
2231 * Attempt to move tasks. If find_busiest_group has found
2232 * an imbalance but busiest->nr_running <= 1, the group is
2233 * still unbalanced. nr_moved simply stays zero, so it is
2234 * correctly treated as an imbalance.
2236 double_rq_lock(this_rq, busiest);
2237 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2238 imbalance, sd, idle, &all_pinned);
2239 double_rq_unlock(this_rq, busiest);
2241 /* All tasks on this runqueue were pinned by CPU affinity */
2242 if (unlikely(all_pinned))
2247 schedstat_inc(sd, lb_failed[idle]);
2248 sd->nr_balance_failed++;
2250 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2252 spin_lock(&busiest->lock);
2254 /* don't kick the migration_thread, if the curr
2255 * task on busiest cpu can't be moved to this_cpu
2257 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2258 spin_unlock(&busiest->lock);
2260 goto out_one_pinned;
2263 if (!busiest->active_balance) {
2264 busiest->active_balance = 1;
2265 busiest->push_cpu = this_cpu;
2268 spin_unlock(&busiest->lock);
2270 wake_up_process(busiest->migration_thread);
2273 * We've kicked active balancing, reset the failure
2276 sd->nr_balance_failed = sd->cache_nice_tries+1;
2279 sd->nr_balance_failed = 0;
2281 if (likely(!active_balance)) {
2282 /* We were unbalanced, so reset the balancing interval */
2283 sd->balance_interval = sd->min_interval;
2286 * If we've begun active balancing, start to back off. This
2287 * case may not be covered by the all_pinned logic if there
2288 * is only 1 task on the busy runqueue (because we don't call
2291 if (sd->balance_interval < sd->max_interval)
2292 sd->balance_interval *= 2;
2295 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2300 schedstat_inc(sd, lb_balanced[idle]);
2302 sd->nr_balance_failed = 0;
2305 /* tune up the balancing interval */
2306 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2307 (sd->balance_interval < sd->max_interval))
2308 sd->balance_interval *= 2;
2310 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2316 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2317 * tasks if there is an imbalance.
2319 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2320 * this_rq is locked.
2322 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2323 struct sched_domain *sd)
2325 struct sched_group *group;
2326 runqueue_t *busiest = NULL;
2327 unsigned long imbalance;
2331 if (sd->flags & SD_SHARE_CPUPOWER)
2334 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2335 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2337 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2341 busiest = find_busiest_queue(group, NEWLY_IDLE);
2343 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2347 BUG_ON(busiest == this_rq);
2349 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2352 if (busiest->nr_running > 1) {
2353 /* Attempt to move tasks */
2354 double_lock_balance(this_rq, busiest);
2355 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2356 imbalance, sd, NEWLY_IDLE, NULL);
2357 spin_unlock(&busiest->lock);
2361 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2362 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2365 sd->nr_balance_failed = 0;
2370 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2371 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2373 sd->nr_balance_failed = 0;
2378 * idle_balance is called by schedule() if this_cpu is about to become
2379 * idle. Attempts to pull tasks from other CPUs.
2381 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2383 struct sched_domain *sd;
2385 for_each_domain(this_cpu, sd) {
2386 if (sd->flags & SD_BALANCE_NEWIDLE) {
2387 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2388 /* We've pulled tasks over so stop searching */
2396 * active_load_balance is run by migration threads. It pushes running tasks
2397 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2398 * running on each physical CPU where possible, and avoids physical /
2399 * logical imbalances.
2401 * Called with busiest_rq locked.
2403 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2405 struct sched_domain *sd;
2406 runqueue_t *target_rq;
2407 int target_cpu = busiest_rq->push_cpu;
2409 if (busiest_rq->nr_running <= 1)
2410 /* no task to move */
2413 target_rq = cpu_rq(target_cpu);
2416 * This condition is "impossible", if it occurs
2417 * we need to fix it. Originally reported by
2418 * Bjorn Helgaas on a 128-cpu setup.
2420 BUG_ON(busiest_rq == target_rq);
2422 /* move a task from busiest_rq to target_rq */
2423 double_lock_balance(busiest_rq, target_rq);
2425 /* Search for an sd spanning us and the target CPU. */
2426 for_each_domain(target_cpu, sd)
2427 if ((sd->flags & SD_LOAD_BALANCE) &&
2428 cpu_isset(busiest_cpu, sd->span))
2431 if (unlikely(sd == NULL))
2434 schedstat_inc(sd, alb_cnt);
2436 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2437 schedstat_inc(sd, alb_pushed);
2439 schedstat_inc(sd, alb_failed);
2441 spin_unlock(&target_rq->lock);
2445 * rebalance_tick will get called every timer tick, on every CPU.
2447 * It checks each scheduling domain to see if it is due to be balanced,
2448 * and initiates a balancing operation if so.
2450 * Balancing parameters are set up in arch_init_sched_domains.
2453 /* Don't have all balancing operations going off at once */
2454 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2456 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2457 enum idle_type idle)
2459 unsigned long old_load, this_load;
2460 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2461 struct sched_domain *sd;
2464 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2465 /* Update our load */
2466 for (i = 0; i < 3; i++) {
2467 unsigned long new_load = this_load;
2469 old_load = this_rq->cpu_load[i];
2471 * Round up the averaging division if load is increasing. This
2472 * prevents us from getting stuck on 9 if the load is 10, for
2475 if (new_load > old_load)
2476 new_load += scale-1;
2477 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2480 for_each_domain(this_cpu, sd) {
2481 unsigned long interval;
2483 if (!(sd->flags & SD_LOAD_BALANCE))
2486 interval = sd->balance_interval;
2487 if (idle != SCHED_IDLE)
2488 interval *= sd->busy_factor;
2490 /* scale ms to jiffies */
2491 interval = msecs_to_jiffies(interval);
2492 if (unlikely(!interval))
2495 if (j - sd->last_balance >= interval) {
2496 if (load_balance(this_cpu, this_rq, sd, idle)) {
2498 * We've pulled tasks over so either we're no
2499 * longer idle, or one of our SMT siblings is
2504 sd->last_balance += interval;
2510 * on UP we do not need to balance between CPUs:
2512 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2515 static inline void idle_balance(int cpu, runqueue_t *rq)
2520 static inline int wake_priority_sleeper(runqueue_t *rq)
2523 #ifdef CONFIG_SCHED_SMT
2524 spin_lock(&rq->lock);
2526 * If an SMT sibling task has been put to sleep for priority
2527 * reasons reschedule the idle task to see if it can now run.
2529 if (rq->nr_running) {
2530 resched_task(rq->idle);
2533 spin_unlock(&rq->lock);
2538 DEFINE_PER_CPU(struct kernel_stat, kstat);
2540 EXPORT_PER_CPU_SYMBOL(kstat);
2543 * This is called on clock ticks and on context switches.
2544 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2546 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2547 unsigned long long now)
2549 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2550 p->sched_time += now - last;
2554 * Return current->sched_time plus any more ns on the sched_clock
2555 * that have not yet been banked.
2557 unsigned long long current_sched_time(const task_t *tsk)
2559 unsigned long long ns;
2560 unsigned long flags;
2561 local_irq_save(flags);
2562 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2563 ns = tsk->sched_time + (sched_clock() - ns);
2564 local_irq_restore(flags);
2569 * We place interactive tasks back into the active array, if possible.
2571 * To guarantee that this does not starve expired tasks we ignore the
2572 * interactivity of a task if the first expired task had to wait more
2573 * than a 'reasonable' amount of time. This deadline timeout is
2574 * load-dependent, as the frequency of array switched decreases with
2575 * increasing number of running tasks. We also ignore the interactivity
2576 * if a better static_prio task has expired:
2578 #define EXPIRED_STARVING(rq) \
2579 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2580 (jiffies - (rq)->expired_timestamp >= \
2581 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2582 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2585 * Account user cpu time to a process.
2586 * @p: the process that the cpu time gets accounted to
2587 * @hardirq_offset: the offset to subtract from hardirq_count()
2588 * @cputime: the cpu time spent in user space since the last update
2590 void account_user_time(struct task_struct *p, cputime_t cputime)
2592 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2595 p->utime = cputime_add(p->utime, cputime);
2597 /* Add user time to cpustat. */
2598 tmp = cputime_to_cputime64(cputime);
2599 if (TASK_NICE(p) > 0)
2600 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2602 cpustat->user = cputime64_add(cpustat->user, tmp);
2606 * Account system cpu time to a process.
2607 * @p: the process that the cpu time gets accounted to
2608 * @hardirq_offset: the offset to subtract from hardirq_count()
2609 * @cputime: the cpu time spent in kernel space since the last update
2611 void account_system_time(struct task_struct *p, int hardirq_offset,
2614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2615 runqueue_t *rq = this_rq();
2618 p->stime = cputime_add(p->stime, cputime);
2620 /* Add system time to cpustat. */
2621 tmp = cputime_to_cputime64(cputime);
2622 if (hardirq_count() - hardirq_offset)
2623 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2624 else if (softirq_count())
2625 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2626 else if (p != rq->idle)
2627 cpustat->system = cputime64_add(cpustat->system, tmp);
2628 else if (atomic_read(&rq->nr_iowait) > 0)
2629 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2631 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2632 /* Account for system time used */
2633 acct_update_integrals(p);
2637 * Account for involuntary wait time.
2638 * @p: the process from which the cpu time has been stolen
2639 * @steal: the cpu time spent in involuntary wait
2641 void account_steal_time(struct task_struct *p, cputime_t steal)
2643 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2644 cputime64_t tmp = cputime_to_cputime64(steal);
2645 runqueue_t *rq = this_rq();
2647 if (p == rq->idle) {
2648 p->stime = cputime_add(p->stime, steal);
2649 if (atomic_read(&rq->nr_iowait) > 0)
2650 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2652 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2654 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2658 * This function gets called by the timer code, with HZ frequency.
2659 * We call it with interrupts disabled.
2661 * It also gets called by the fork code, when changing the parent's
2664 void scheduler_tick(void)
2666 int cpu = smp_processor_id();
2667 runqueue_t *rq = this_rq();
2668 task_t *p = current;
2669 unsigned long long now = sched_clock();
2671 update_cpu_clock(p, rq, now);
2673 rq->timestamp_last_tick = now;
2675 if (p == rq->idle) {
2676 if (wake_priority_sleeper(rq))
2678 rebalance_tick(cpu, rq, SCHED_IDLE);
2682 /* Task might have expired already, but not scheduled off yet */
2683 if (p->array != rq->active) {
2684 set_tsk_need_resched(p);
2687 spin_lock(&rq->lock);
2689 * The task was running during this tick - update the
2690 * time slice counter. Note: we do not update a thread's
2691 * priority until it either goes to sleep or uses up its
2692 * timeslice. This makes it possible for interactive tasks
2693 * to use up their timeslices at their highest priority levels.
2697 * RR tasks need a special form of timeslice management.
2698 * FIFO tasks have no timeslices.
2700 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2701 p->time_slice = task_timeslice(p);
2702 p->first_time_slice = 0;
2703 set_tsk_need_resched(p);
2705 /* put it at the end of the queue: */
2706 requeue_task(p, rq->active);
2710 if (!--p->time_slice) {
2711 dequeue_task(p, rq->active);
2712 set_tsk_need_resched(p);
2713 p->prio = effective_prio(p);
2714 p->time_slice = task_timeslice(p);
2715 p->first_time_slice = 0;
2717 if (!rq->expired_timestamp)
2718 rq->expired_timestamp = jiffies;
2719 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2720 enqueue_task(p, rq->expired);
2721 if (p->static_prio < rq->best_expired_prio)
2722 rq->best_expired_prio = p->static_prio;
2724 enqueue_task(p, rq->active);
2727 * Prevent a too long timeslice allowing a task to monopolize
2728 * the CPU. We do this by splitting up the timeslice into
2731 * Note: this does not mean the task's timeslices expire or
2732 * get lost in any way, they just might be preempted by
2733 * another task of equal priority. (one with higher
2734 * priority would have preempted this task already.) We
2735 * requeue this task to the end of the list on this priority
2736 * level, which is in essence a round-robin of tasks with
2739 * This only applies to tasks in the interactive
2740 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2742 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2743 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2744 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2745 (p->array == rq->active)) {
2747 requeue_task(p, rq->active);
2748 set_tsk_need_resched(p);
2752 spin_unlock(&rq->lock);
2754 rebalance_tick(cpu, rq, NOT_IDLE);
2757 #ifdef CONFIG_SCHED_SMT
2758 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2760 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2761 if (rq->curr == rq->idle && rq->nr_running)
2762 resched_task(rq->idle);
2765 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2767 struct sched_domain *tmp, *sd = NULL;
2768 cpumask_t sibling_map;
2771 for_each_domain(this_cpu, tmp)
2772 if (tmp->flags & SD_SHARE_CPUPOWER)
2779 * Unlock the current runqueue because we have to lock in
2780 * CPU order to avoid deadlocks. Caller knows that we might
2781 * unlock. We keep IRQs disabled.
2783 spin_unlock(&this_rq->lock);
2785 sibling_map = sd->span;
2787 for_each_cpu_mask(i, sibling_map)
2788 spin_lock(&cpu_rq(i)->lock);
2790 * We clear this CPU from the mask. This both simplifies the
2791 * inner loop and keps this_rq locked when we exit:
2793 cpu_clear(this_cpu, sibling_map);
2795 for_each_cpu_mask(i, sibling_map) {
2796 runqueue_t *smt_rq = cpu_rq(i);
2798 wakeup_busy_runqueue(smt_rq);
2801 for_each_cpu_mask(i, sibling_map)
2802 spin_unlock(&cpu_rq(i)->lock);
2804 * We exit with this_cpu's rq still held and IRQs
2810 * number of 'lost' timeslices this task wont be able to fully
2811 * utilize, if another task runs on a sibling. This models the
2812 * slowdown effect of other tasks running on siblings:
2814 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2816 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2819 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2821 struct sched_domain *tmp, *sd = NULL;
2822 cpumask_t sibling_map;
2823 prio_array_t *array;
2827 for_each_domain(this_cpu, tmp)
2828 if (tmp->flags & SD_SHARE_CPUPOWER)
2835 * The same locking rules and details apply as for
2836 * wake_sleeping_dependent():
2838 spin_unlock(&this_rq->lock);
2839 sibling_map = sd->span;
2840 for_each_cpu_mask(i, sibling_map)
2841 spin_lock(&cpu_rq(i)->lock);
2842 cpu_clear(this_cpu, sibling_map);
2845 * Establish next task to be run - it might have gone away because
2846 * we released the runqueue lock above:
2848 if (!this_rq->nr_running)
2850 array = this_rq->active;
2851 if (!array->nr_active)
2852 array = this_rq->expired;
2853 BUG_ON(!array->nr_active);
2855 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2858 for_each_cpu_mask(i, sibling_map) {
2859 runqueue_t *smt_rq = cpu_rq(i);
2860 task_t *smt_curr = smt_rq->curr;
2862 /* Kernel threads do not participate in dependent sleeping */
2863 if (!p->mm || !smt_curr->mm || rt_task(p))
2864 goto check_smt_task;
2867 * If a user task with lower static priority than the
2868 * running task on the SMT sibling is trying to schedule,
2869 * delay it till there is proportionately less timeslice
2870 * left of the sibling task to prevent a lower priority
2871 * task from using an unfair proportion of the
2872 * physical cpu's resources. -ck
2874 if (rt_task(smt_curr)) {
2876 * With real time tasks we run non-rt tasks only
2877 * per_cpu_gain% of the time.
2879 if ((jiffies % DEF_TIMESLICE) >
2880 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2883 if (smt_curr->static_prio < p->static_prio &&
2884 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2885 smt_slice(smt_curr, sd) > task_timeslice(p))
2889 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2893 wakeup_busy_runqueue(smt_rq);
2898 * Reschedule a lower priority task on the SMT sibling for
2899 * it to be put to sleep, or wake it up if it has been put to
2900 * sleep for priority reasons to see if it should run now.
2903 if ((jiffies % DEF_TIMESLICE) >
2904 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2905 resched_task(smt_curr);
2907 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2908 smt_slice(p, sd) > task_timeslice(smt_curr))
2909 resched_task(smt_curr);
2911 wakeup_busy_runqueue(smt_rq);
2915 for_each_cpu_mask(i, sibling_map)
2916 spin_unlock(&cpu_rq(i)->lock);
2920 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2924 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2930 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2932 void fastcall add_preempt_count(int val)
2937 BUG_ON((preempt_count() < 0));
2938 preempt_count() += val;
2940 * Spinlock count overflowing soon?
2942 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2944 EXPORT_SYMBOL(add_preempt_count);
2946 void fastcall sub_preempt_count(int val)
2951 BUG_ON(val > preempt_count());
2953 * Is the spinlock portion underflowing?
2955 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2956 preempt_count() -= val;
2958 EXPORT_SYMBOL(sub_preempt_count);
2963 * schedule() is the main scheduler function.
2965 asmlinkage void __sched schedule(void)
2968 task_t *prev, *next;
2970 prio_array_t *array;
2971 struct list_head *queue;
2972 unsigned long long now;
2973 unsigned long run_time;
2974 int cpu, idx, new_prio;
2977 * Test if we are atomic. Since do_exit() needs to call into
2978 * schedule() atomically, we ignore that path for now.
2979 * Otherwise, whine if we are scheduling when we should not be.
2981 if (likely(!current->exit_state)) {
2982 if (unlikely(in_atomic())) {
2983 printk(KERN_ERR "scheduling while atomic: "
2985 current->comm, preempt_count(), current->pid);
2989 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2994 release_kernel_lock(prev);
2995 need_resched_nonpreemptible:
2999 * The idle thread is not allowed to schedule!
3000 * Remove this check after it has been exercised a bit.
3002 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3003 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3007 schedstat_inc(rq, sched_cnt);
3008 now = sched_clock();
3009 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3010 run_time = now - prev->timestamp;
3011 if (unlikely((long long)(now - prev->timestamp) < 0))
3014 run_time = NS_MAX_SLEEP_AVG;
3017 * Tasks charged proportionately less run_time at high sleep_avg to
3018 * delay them losing their interactive status
3020 run_time /= (CURRENT_BONUS(prev) ? : 1);
3022 spin_lock_irq(&rq->lock);
3024 if (unlikely(prev->flags & PF_DEAD))
3025 prev->state = EXIT_DEAD;
3027 switch_count = &prev->nivcsw;
3028 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3029 switch_count = &prev->nvcsw;
3030 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3031 unlikely(signal_pending(prev))))
3032 prev->state = TASK_RUNNING;
3034 if (prev->state == TASK_UNINTERRUPTIBLE)
3035 rq->nr_uninterruptible++;
3036 deactivate_task(prev, rq);
3040 cpu = smp_processor_id();
3041 if (unlikely(!rq->nr_running)) {
3043 idle_balance(cpu, rq);
3044 if (!rq->nr_running) {
3046 rq->expired_timestamp = 0;
3047 wake_sleeping_dependent(cpu, rq);
3049 * wake_sleeping_dependent() might have released
3050 * the runqueue, so break out if we got new
3053 if (!rq->nr_running)
3057 if (dependent_sleeper(cpu, rq)) {
3062 * dependent_sleeper() releases and reacquires the runqueue
3063 * lock, hence go into the idle loop if the rq went
3066 if (unlikely(!rq->nr_running))
3071 if (unlikely(!array->nr_active)) {
3073 * Switch the active and expired arrays.
3075 schedstat_inc(rq, sched_switch);
3076 rq->active = rq->expired;
3077 rq->expired = array;
3079 rq->expired_timestamp = 0;
3080 rq->best_expired_prio = MAX_PRIO;
3083 idx = sched_find_first_bit(array->bitmap);
3084 queue = array->queue + idx;
3085 next = list_entry(queue->next, task_t, run_list);
3087 if (!rt_task(next) && next->activated > 0) {
3088 unsigned long long delta = now - next->timestamp;
3089 if (unlikely((long long)(now - next->timestamp) < 0))
3092 if (next->activated == 1)
3093 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3095 array = next->array;
3096 new_prio = recalc_task_prio(next, next->timestamp + delta);
3098 if (unlikely(next->prio != new_prio)) {
3099 dequeue_task(next, array);
3100 next->prio = new_prio;
3101 enqueue_task(next, array);
3103 requeue_task(next, array);
3105 next->activated = 0;
3107 if (next == rq->idle)
3108 schedstat_inc(rq, sched_goidle);
3110 prefetch_stack(next);
3111 clear_tsk_need_resched(prev);
3112 rcu_qsctr_inc(task_cpu(prev));
3114 update_cpu_clock(prev, rq, now);
3116 prev->sleep_avg -= run_time;
3117 if ((long)prev->sleep_avg <= 0)
3118 prev->sleep_avg = 0;
3119 prev->timestamp = prev->last_ran = now;
3121 sched_info_switch(prev, next);
3122 if (likely(prev != next)) {
3123 next->timestamp = now;
3128 prepare_task_switch(rq, next);
3129 prev = context_switch(rq, prev, next);
3132 * this_rq must be evaluated again because prev may have moved
3133 * CPUs since it called schedule(), thus the 'rq' on its stack
3134 * frame will be invalid.
3136 finish_task_switch(this_rq(), prev);
3138 spin_unlock_irq(&rq->lock);
3141 if (unlikely(reacquire_kernel_lock(prev) < 0))
3142 goto need_resched_nonpreemptible;
3143 preempt_enable_no_resched();
3144 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3148 EXPORT_SYMBOL(schedule);
3150 #ifdef CONFIG_PREEMPT
3152 * this is is the entry point to schedule() from in-kernel preemption
3153 * off of preempt_enable. Kernel preemptions off return from interrupt
3154 * occur there and call schedule directly.
3156 asmlinkage void __sched preempt_schedule(void)
3158 struct thread_info *ti = current_thread_info();
3159 #ifdef CONFIG_PREEMPT_BKL
3160 struct task_struct *task = current;
3161 int saved_lock_depth;
3164 * If there is a non-zero preempt_count or interrupts are disabled,
3165 * we do not want to preempt the current task. Just return..
3167 if (unlikely(ti->preempt_count || irqs_disabled()))
3171 add_preempt_count(PREEMPT_ACTIVE);
3173 * We keep the big kernel semaphore locked, but we
3174 * clear ->lock_depth so that schedule() doesnt
3175 * auto-release the semaphore:
3177 #ifdef CONFIG_PREEMPT_BKL
3178 saved_lock_depth = task->lock_depth;
3179 task->lock_depth = -1;
3182 #ifdef CONFIG_PREEMPT_BKL
3183 task->lock_depth = saved_lock_depth;
3185 sub_preempt_count(PREEMPT_ACTIVE);
3187 /* we could miss a preemption opportunity between schedule and now */
3189 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3193 EXPORT_SYMBOL(preempt_schedule);
3196 * this is is the entry point to schedule() from kernel preemption
3197 * off of irq context.
3198 * Note, that this is called and return with irqs disabled. This will
3199 * protect us against recursive calling from irq.
3201 asmlinkage void __sched preempt_schedule_irq(void)
3203 struct thread_info *ti = current_thread_info();
3204 #ifdef CONFIG_PREEMPT_BKL
3205 struct task_struct *task = current;
3206 int saved_lock_depth;
3208 /* Catch callers which need to be fixed*/
3209 BUG_ON(ti->preempt_count || !irqs_disabled());
3212 add_preempt_count(PREEMPT_ACTIVE);
3214 * We keep the big kernel semaphore locked, but we
3215 * clear ->lock_depth so that schedule() doesnt
3216 * auto-release the semaphore:
3218 #ifdef CONFIG_PREEMPT_BKL
3219 saved_lock_depth = task->lock_depth;
3220 task->lock_depth = -1;
3224 local_irq_disable();
3225 #ifdef CONFIG_PREEMPT_BKL
3226 task->lock_depth = saved_lock_depth;
3228 sub_preempt_count(PREEMPT_ACTIVE);
3230 /* we could miss a preemption opportunity between schedule and now */
3232 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3236 #endif /* CONFIG_PREEMPT */
3238 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3241 task_t *p = curr->private;
3242 return try_to_wake_up(p, mode, sync);
3245 EXPORT_SYMBOL(default_wake_function);
3248 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3249 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3250 * number) then we wake all the non-exclusive tasks and one exclusive task.
3252 * There are circumstances in which we can try to wake a task which has already
3253 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3254 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3256 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3257 int nr_exclusive, int sync, void *key)
3259 struct list_head *tmp, *next;
3261 list_for_each_safe(tmp, next, &q->task_list) {
3264 curr = list_entry(tmp, wait_queue_t, task_list);
3265 flags = curr->flags;
3266 if (curr->func(curr, mode, sync, key) &&
3267 (flags & WQ_FLAG_EXCLUSIVE) &&
3274 * __wake_up - wake up threads blocked on a waitqueue.
3276 * @mode: which threads
3277 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3278 * @key: is directly passed to the wakeup function
3280 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3281 int nr_exclusive, void *key)
3283 unsigned long flags;
3285 spin_lock_irqsave(&q->lock, flags);
3286 __wake_up_common(q, mode, nr_exclusive, 0, key);
3287 spin_unlock_irqrestore(&q->lock, flags);
3290 EXPORT_SYMBOL(__wake_up);
3293 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3295 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3297 __wake_up_common(q, mode, 1, 0, NULL);
3301 * __wake_up_sync - wake up threads blocked on a waitqueue.
3303 * @mode: which threads
3304 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3306 * The sync wakeup differs that the waker knows that it will schedule
3307 * away soon, so while the target thread will be woken up, it will not
3308 * be migrated to another CPU - ie. the two threads are 'synchronized'
3309 * with each other. This can prevent needless bouncing between CPUs.
3311 * On UP it can prevent extra preemption.
3314 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3316 unsigned long flags;
3322 if (unlikely(!nr_exclusive))
3325 spin_lock_irqsave(&q->lock, flags);
3326 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3327 spin_unlock_irqrestore(&q->lock, flags);
3329 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3331 void fastcall complete(struct completion *x)
3333 unsigned long flags;
3335 spin_lock_irqsave(&x->wait.lock, flags);
3337 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3339 spin_unlock_irqrestore(&x->wait.lock, flags);
3341 EXPORT_SYMBOL(complete);
3343 void fastcall complete_all(struct completion *x)
3345 unsigned long flags;
3347 spin_lock_irqsave(&x->wait.lock, flags);
3348 x->done += UINT_MAX/2;
3349 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3351 spin_unlock_irqrestore(&x->wait.lock, flags);
3353 EXPORT_SYMBOL(complete_all);
3355 void fastcall __sched wait_for_completion(struct completion *x)
3358 spin_lock_irq(&x->wait.lock);
3360 DECLARE_WAITQUEUE(wait, current);
3362 wait.flags |= WQ_FLAG_EXCLUSIVE;
3363 __add_wait_queue_tail(&x->wait, &wait);
3365 __set_current_state(TASK_UNINTERRUPTIBLE);
3366 spin_unlock_irq(&x->wait.lock);
3368 spin_lock_irq(&x->wait.lock);
3370 __remove_wait_queue(&x->wait, &wait);
3373 spin_unlock_irq(&x->wait.lock);
3375 EXPORT_SYMBOL(wait_for_completion);
3377 unsigned long fastcall __sched
3378 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3382 spin_lock_irq(&x->wait.lock);
3384 DECLARE_WAITQUEUE(wait, current);
3386 wait.flags |= WQ_FLAG_EXCLUSIVE;
3387 __add_wait_queue_tail(&x->wait, &wait);
3389 __set_current_state(TASK_UNINTERRUPTIBLE);
3390 spin_unlock_irq(&x->wait.lock);
3391 timeout = schedule_timeout(timeout);
3392 spin_lock_irq(&x->wait.lock);
3394 __remove_wait_queue(&x->wait, &wait);
3398 __remove_wait_queue(&x->wait, &wait);
3402 spin_unlock_irq(&x->wait.lock);
3405 EXPORT_SYMBOL(wait_for_completion_timeout);
3407 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3413 spin_lock_irq(&x->wait.lock);
3415 DECLARE_WAITQUEUE(wait, current);
3417 wait.flags |= WQ_FLAG_EXCLUSIVE;
3418 __add_wait_queue_tail(&x->wait, &wait);
3420 if (signal_pending(current)) {
3422 __remove_wait_queue(&x->wait, &wait);
3425 __set_current_state(TASK_INTERRUPTIBLE);
3426 spin_unlock_irq(&x->wait.lock);
3428 spin_lock_irq(&x->wait.lock);
3430 __remove_wait_queue(&x->wait, &wait);
3434 spin_unlock_irq(&x->wait.lock);
3438 EXPORT_SYMBOL(wait_for_completion_interruptible);
3440 unsigned long fastcall __sched
3441 wait_for_completion_interruptible_timeout(struct completion *x,
3442 unsigned long timeout)
3446 spin_lock_irq(&x->wait.lock);
3448 DECLARE_WAITQUEUE(wait, current);
3450 wait.flags |= WQ_FLAG_EXCLUSIVE;
3451 __add_wait_queue_tail(&x->wait, &wait);
3453 if (signal_pending(current)) {
3454 timeout = -ERESTARTSYS;
3455 __remove_wait_queue(&x->wait, &wait);
3458 __set_current_state(TASK_INTERRUPTIBLE);
3459 spin_unlock_irq(&x->wait.lock);
3460 timeout = schedule_timeout(timeout);
3461 spin_lock_irq(&x->wait.lock);
3463 __remove_wait_queue(&x->wait, &wait);
3467 __remove_wait_queue(&x->wait, &wait);
3471 spin_unlock_irq(&x->wait.lock);
3474 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3477 #define SLEEP_ON_VAR \
3478 unsigned long flags; \
3479 wait_queue_t wait; \
3480 init_waitqueue_entry(&wait, current);
3482 #define SLEEP_ON_HEAD \
3483 spin_lock_irqsave(&q->lock,flags); \
3484 __add_wait_queue(q, &wait); \
3485 spin_unlock(&q->lock);
3487 #define SLEEP_ON_TAIL \
3488 spin_lock_irq(&q->lock); \
3489 __remove_wait_queue(q, &wait); \
3490 spin_unlock_irqrestore(&q->lock, flags);
3492 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3496 current->state = TASK_INTERRUPTIBLE;
3503 EXPORT_SYMBOL(interruptible_sleep_on);
3505 long fastcall __sched
3506 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3510 current->state = TASK_INTERRUPTIBLE;
3513 timeout = schedule_timeout(timeout);
3519 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3521 void fastcall __sched sleep_on(wait_queue_head_t *q)
3525 current->state = TASK_UNINTERRUPTIBLE;
3532 EXPORT_SYMBOL(sleep_on);
3534 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3538 current->state = TASK_UNINTERRUPTIBLE;
3541 timeout = schedule_timeout(timeout);
3547 EXPORT_SYMBOL(sleep_on_timeout);
3549 void set_user_nice(task_t *p, long nice)
3551 unsigned long flags;
3552 prio_array_t *array;
3554 int old_prio, new_prio, delta;
3556 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3559 * We have to be careful, if called from sys_setpriority(),
3560 * the task might be in the middle of scheduling on another CPU.
3562 rq = task_rq_lock(p, &flags);
3564 * The RT priorities are set via sched_setscheduler(), but we still
3565 * allow the 'normal' nice value to be set - but as expected
3566 * it wont have any effect on scheduling until the task is
3567 * not SCHED_NORMAL/SCHED_BATCH:
3570 p->static_prio = NICE_TO_PRIO(nice);
3575 dequeue_task(p, array);
3576 dec_prio_bias(rq, p->static_prio);
3580 new_prio = NICE_TO_PRIO(nice);
3581 delta = new_prio - old_prio;
3582 p->static_prio = NICE_TO_PRIO(nice);
3586 enqueue_task(p, array);
3587 inc_prio_bias(rq, p->static_prio);
3589 * If the task increased its priority or is running and
3590 * lowered its priority, then reschedule its CPU:
3592 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3593 resched_task(rq->curr);
3596 task_rq_unlock(rq, &flags);
3599 EXPORT_SYMBOL(set_user_nice);
3602 * can_nice - check if a task can reduce its nice value
3606 int can_nice(const task_t *p, const int nice)
3608 /* convert nice value [19,-20] to rlimit style value [1,40] */
3609 int nice_rlim = 20 - nice;
3610 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3611 capable(CAP_SYS_NICE));
3614 #ifdef __ARCH_WANT_SYS_NICE
3617 * sys_nice - change the priority of the current process.
3618 * @increment: priority increment
3620 * sys_setpriority is a more generic, but much slower function that
3621 * does similar things.
3623 asmlinkage long sys_nice(int increment)
3629 * Setpriority might change our priority at the same moment.
3630 * We don't have to worry. Conceptually one call occurs first
3631 * and we have a single winner.
3633 if (increment < -40)
3638 nice = PRIO_TO_NICE(current->static_prio) + increment;
3644 if (increment < 0 && !can_nice(current, nice))
3647 retval = security_task_setnice(current, nice);
3651 set_user_nice(current, nice);
3658 * task_prio - return the priority value of a given task.
3659 * @p: the task in question.
3661 * This is the priority value as seen by users in /proc.
3662 * RT tasks are offset by -200. Normal tasks are centered
3663 * around 0, value goes from -16 to +15.
3665 int task_prio(const task_t *p)
3667 return p->prio - MAX_RT_PRIO;
3671 * task_nice - return the nice value of a given task.
3672 * @p: the task in question.
3674 int task_nice(const task_t *p)
3676 return TASK_NICE(p);
3678 EXPORT_SYMBOL_GPL(task_nice);
3681 * idle_cpu - is a given cpu idle currently?
3682 * @cpu: the processor in question.
3684 int idle_cpu(int cpu)
3686 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3690 * idle_task - return the idle task for a given cpu.
3691 * @cpu: the processor in question.
3693 task_t *idle_task(int cpu)
3695 return cpu_rq(cpu)->idle;
3699 * find_process_by_pid - find a process with a matching PID value.
3700 * @pid: the pid in question.
3702 static inline task_t *find_process_by_pid(pid_t pid)
3704 return pid ? find_task_by_pid(pid) : current;
3707 /* Actually do priority change: must hold rq lock. */
3708 static void __setscheduler(struct task_struct *p, int policy, int prio)
3712 p->rt_priority = prio;
3713 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3714 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3716 p->prio = p->static_prio;
3718 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3720 if (policy == SCHED_BATCH)
3726 * sched_setscheduler - change the scheduling policy and/or RT priority of
3728 * @p: the task in question.
3729 * @policy: new policy.
3730 * @param: structure containing the new RT priority.
3732 int sched_setscheduler(struct task_struct *p, int policy,
3733 struct sched_param *param)
3736 int oldprio, oldpolicy = -1;
3737 prio_array_t *array;
3738 unsigned long flags;
3742 /* double check policy once rq lock held */
3744 policy = oldpolicy = p->policy;
3745 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3746 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3749 * Valid priorities for SCHED_FIFO and SCHED_RR are
3750 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3753 if (param->sched_priority < 0 ||
3754 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3755 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3757 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3758 != (param->sched_priority == 0))
3762 * Allow unprivileged RT tasks to decrease priority:
3764 if (!capable(CAP_SYS_NICE)) {
3766 * can't change policy, except between SCHED_NORMAL
3769 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3770 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3771 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3773 /* can't increase priority */
3774 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3775 param->sched_priority > p->rt_priority &&
3776 param->sched_priority >
3777 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3779 /* can't change other user's priorities */
3780 if ((current->euid != p->euid) &&
3781 (current->euid != p->uid))
3785 retval = security_task_setscheduler(p, policy, param);
3789 * To be able to change p->policy safely, the apropriate
3790 * runqueue lock must be held.
3792 rq = task_rq_lock(p, &flags);
3793 /* recheck policy now with rq lock held */
3794 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3795 policy = oldpolicy = -1;
3796 task_rq_unlock(rq, &flags);
3801 deactivate_task(p, rq);
3803 __setscheduler(p, policy, param->sched_priority);
3805 __activate_task(p, rq);
3807 * Reschedule if we are currently running on this runqueue and
3808 * our priority decreased, or if we are not currently running on
3809 * this runqueue and our priority is higher than the current's
3811 if (task_running(rq, p)) {
3812 if (p->prio > oldprio)
3813 resched_task(rq->curr);
3814 } else if (TASK_PREEMPTS_CURR(p, rq))
3815 resched_task(rq->curr);
3817 task_rq_unlock(rq, &flags);
3820 EXPORT_SYMBOL_GPL(sched_setscheduler);
3823 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3826 struct sched_param lparam;
3827 struct task_struct *p;
3829 if (!param || pid < 0)
3831 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3833 read_lock_irq(&tasklist_lock);
3834 p = find_process_by_pid(pid);
3836 read_unlock_irq(&tasklist_lock);
3839 retval = sched_setscheduler(p, policy, &lparam);
3840 read_unlock_irq(&tasklist_lock);
3845 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3846 * @pid: the pid in question.
3847 * @policy: new policy.
3848 * @param: structure containing the new RT priority.
3850 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3851 struct sched_param __user *param)
3853 /* negative values for policy are not valid */
3857 return do_sched_setscheduler(pid, policy, param);
3861 * sys_sched_setparam - set/change the RT priority of a thread
3862 * @pid: the pid in question.
3863 * @param: structure containing the new RT priority.
3865 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3867 return do_sched_setscheduler(pid, -1, param);
3871 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3872 * @pid: the pid in question.
3874 asmlinkage long sys_sched_getscheduler(pid_t pid)
3876 int retval = -EINVAL;
3883 read_lock(&tasklist_lock);
3884 p = find_process_by_pid(pid);
3886 retval = security_task_getscheduler(p);
3890 read_unlock(&tasklist_lock);
3897 * sys_sched_getscheduler - get the RT priority of a thread
3898 * @pid: the pid in question.
3899 * @param: structure containing the RT priority.
3901 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3903 struct sched_param lp;
3904 int retval = -EINVAL;
3907 if (!param || pid < 0)
3910 read_lock(&tasklist_lock);
3911 p = find_process_by_pid(pid);
3916 retval = security_task_getscheduler(p);
3920 lp.sched_priority = p->rt_priority;
3921 read_unlock(&tasklist_lock);
3924 * This one might sleep, we cannot do it with a spinlock held ...
3926 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3932 read_unlock(&tasklist_lock);
3936 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3940 cpumask_t cpus_allowed;
3943 read_lock(&tasklist_lock);
3945 p = find_process_by_pid(pid);
3947 read_unlock(&tasklist_lock);
3948 unlock_cpu_hotplug();
3953 * It is not safe to call set_cpus_allowed with the
3954 * tasklist_lock held. We will bump the task_struct's
3955 * usage count and then drop tasklist_lock.
3958 read_unlock(&tasklist_lock);
3961 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3962 !capable(CAP_SYS_NICE))
3965 cpus_allowed = cpuset_cpus_allowed(p);
3966 cpus_and(new_mask, new_mask, cpus_allowed);
3967 retval = set_cpus_allowed(p, new_mask);
3971 unlock_cpu_hotplug();
3975 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3976 cpumask_t *new_mask)
3978 if (len < sizeof(cpumask_t)) {
3979 memset(new_mask, 0, sizeof(cpumask_t));
3980 } else if (len > sizeof(cpumask_t)) {
3981 len = sizeof(cpumask_t);
3983 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3987 * sys_sched_setaffinity - set the cpu affinity of a process
3988 * @pid: pid of the process
3989 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3990 * @user_mask_ptr: user-space pointer to the new cpu mask
3992 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3993 unsigned long __user *user_mask_ptr)
3998 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4002 return sched_setaffinity(pid, new_mask);
4006 * Represents all cpu's present in the system
4007 * In systems capable of hotplug, this map could dynamically grow
4008 * as new cpu's are detected in the system via any platform specific
4009 * method, such as ACPI for e.g.
4012 cpumask_t cpu_present_map __read_mostly;
4013 EXPORT_SYMBOL(cpu_present_map);
4016 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4017 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4020 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4026 read_lock(&tasklist_lock);
4029 p = find_process_by_pid(pid);
4034 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
4037 read_unlock(&tasklist_lock);
4038 unlock_cpu_hotplug();
4046 * sys_sched_getaffinity - get the cpu affinity of a process
4047 * @pid: pid of the process
4048 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4049 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4051 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4052 unsigned long __user *user_mask_ptr)
4057 if (len < sizeof(cpumask_t))
4060 ret = sched_getaffinity(pid, &mask);
4064 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4067 return sizeof(cpumask_t);
4071 * sys_sched_yield - yield the current processor to other threads.
4073 * this function yields the current CPU by moving the calling thread
4074 * to the expired array. If there are no other threads running on this
4075 * CPU then this function will return.
4077 asmlinkage long sys_sched_yield(void)
4079 runqueue_t *rq = this_rq_lock();
4080 prio_array_t *array = current->array;
4081 prio_array_t *target = rq->expired;
4083 schedstat_inc(rq, yld_cnt);
4085 * We implement yielding by moving the task into the expired
4088 * (special rule: RT tasks will just roundrobin in the active
4091 if (rt_task(current))
4092 target = rq->active;
4094 if (array->nr_active == 1) {
4095 schedstat_inc(rq, yld_act_empty);
4096 if (!rq->expired->nr_active)
4097 schedstat_inc(rq, yld_both_empty);
4098 } else if (!rq->expired->nr_active)
4099 schedstat_inc(rq, yld_exp_empty);
4101 if (array != target) {
4102 dequeue_task(current, array);
4103 enqueue_task(current, target);
4106 * requeue_task is cheaper so perform that if possible.
4108 requeue_task(current, array);
4111 * Since we are going to call schedule() anyway, there's
4112 * no need to preempt or enable interrupts:
4114 __release(rq->lock);
4115 _raw_spin_unlock(&rq->lock);
4116 preempt_enable_no_resched();
4123 static inline void __cond_resched(void)
4126 * The BKS might be reacquired before we have dropped
4127 * PREEMPT_ACTIVE, which could trigger a second
4128 * cond_resched() call.
4130 if (unlikely(preempt_count()))
4133 add_preempt_count(PREEMPT_ACTIVE);
4135 sub_preempt_count(PREEMPT_ACTIVE);
4136 } while (need_resched());
4139 int __sched cond_resched(void)
4141 if (need_resched()) {
4148 EXPORT_SYMBOL(cond_resched);
4151 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4152 * call schedule, and on return reacquire the lock.
4154 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4155 * operations here to prevent schedule() from being called twice (once via
4156 * spin_unlock(), once by hand).
4158 int cond_resched_lock(spinlock_t *lock)
4162 if (need_lockbreak(lock)) {
4168 if (need_resched()) {
4169 _raw_spin_unlock(lock);
4170 preempt_enable_no_resched();
4178 EXPORT_SYMBOL(cond_resched_lock);
4180 int __sched cond_resched_softirq(void)
4182 BUG_ON(!in_softirq());
4184 if (need_resched()) {
4185 __local_bh_enable();
4193 EXPORT_SYMBOL(cond_resched_softirq);
4197 * yield - yield the current processor to other threads.
4199 * this is a shortcut for kernel-space yielding - it marks the
4200 * thread runnable and calls sys_sched_yield().
4202 void __sched yield(void)
4204 set_current_state(TASK_RUNNING);
4208 EXPORT_SYMBOL(yield);
4211 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4212 * that process accounting knows that this is a task in IO wait state.
4214 * But don't do that if it is a deliberate, throttling IO wait (this task
4215 * has set its backing_dev_info: the queue against which it should throttle)
4217 void __sched io_schedule(void)
4219 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4221 atomic_inc(&rq->nr_iowait);
4223 atomic_dec(&rq->nr_iowait);
4226 EXPORT_SYMBOL(io_schedule);
4228 long __sched io_schedule_timeout(long timeout)
4230 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4233 atomic_inc(&rq->nr_iowait);
4234 ret = schedule_timeout(timeout);
4235 atomic_dec(&rq->nr_iowait);
4240 * sys_sched_get_priority_max - return maximum RT priority.
4241 * @policy: scheduling class.
4243 * this syscall returns the maximum rt_priority that can be used
4244 * by a given scheduling class.
4246 asmlinkage long sys_sched_get_priority_max(int policy)
4253 ret = MAX_USER_RT_PRIO-1;
4264 * sys_sched_get_priority_min - return minimum RT priority.
4265 * @policy: scheduling class.
4267 * this syscall returns the minimum rt_priority that can be used
4268 * by a given scheduling class.
4270 asmlinkage long sys_sched_get_priority_min(int policy)
4287 * sys_sched_rr_get_interval - return the default timeslice of a process.
4288 * @pid: pid of the process.
4289 * @interval: userspace pointer to the timeslice value.
4291 * this syscall writes the default timeslice value of a given process
4292 * into the user-space timespec buffer. A value of '0' means infinity.
4295 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4297 int retval = -EINVAL;
4305 read_lock(&tasklist_lock);
4306 p = find_process_by_pid(pid);
4310 retval = security_task_getscheduler(p);
4314 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4315 0 : task_timeslice(p), &t);
4316 read_unlock(&tasklist_lock);
4317 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4321 read_unlock(&tasklist_lock);
4325 static inline struct task_struct *eldest_child(struct task_struct *p)
4327 if (list_empty(&p->children)) return NULL;
4328 return list_entry(p->children.next,struct task_struct,sibling);
4331 static inline struct task_struct *older_sibling(struct task_struct *p)
4333 if (p->sibling.prev==&p->parent->children) return NULL;
4334 return list_entry(p->sibling.prev,struct task_struct,sibling);
4337 static inline struct task_struct *younger_sibling(struct task_struct *p)
4339 if (p->sibling.next==&p->parent->children) return NULL;
4340 return list_entry(p->sibling.next,struct task_struct,sibling);
4343 static void show_task(task_t *p)
4347 unsigned long free = 0;
4348 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4350 printk("%-13.13s ", p->comm);
4351 state = p->state ? __ffs(p->state) + 1 : 0;
4352 if (state < ARRAY_SIZE(stat_nam))
4353 printk(stat_nam[state]);
4356 #if (BITS_PER_LONG == 32)
4357 if (state == TASK_RUNNING)
4358 printk(" running ");
4360 printk(" %08lX ", thread_saved_pc(p));
4362 if (state == TASK_RUNNING)
4363 printk(" running task ");
4365 printk(" %016lx ", thread_saved_pc(p));
4367 #ifdef CONFIG_DEBUG_STACK_USAGE
4369 unsigned long *n = end_of_stack(p);
4372 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4375 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4376 if ((relative = eldest_child(p)))
4377 printk("%5d ", relative->pid);
4380 if ((relative = younger_sibling(p)))
4381 printk("%7d", relative->pid);
4384 if ((relative = older_sibling(p)))
4385 printk(" %5d", relative->pid);
4389 printk(" (L-TLB)\n");
4391 printk(" (NOTLB)\n");
4393 if (state != TASK_RUNNING)
4394 show_stack(p, NULL);
4397 void show_state(void)
4401 #if (BITS_PER_LONG == 32)
4404 printk(" task PC pid father child younger older\n");
4408 printk(" task PC pid father child younger older\n");
4410 read_lock(&tasklist_lock);
4411 do_each_thread(g, p) {
4413 * reset the NMI-timeout, listing all files on a slow
4414 * console might take alot of time:
4416 touch_nmi_watchdog();
4418 } while_each_thread(g, p);
4420 read_unlock(&tasklist_lock);
4421 mutex_debug_show_all_locks();
4425 * init_idle - set up an idle thread for a given CPU
4426 * @idle: task in question
4427 * @cpu: cpu the idle task belongs to
4429 * NOTE: this function does not set the idle thread's NEED_RESCHED
4430 * flag, to make booting more robust.
4432 void __devinit init_idle(task_t *idle, int cpu)
4434 runqueue_t *rq = cpu_rq(cpu);
4435 unsigned long flags;
4437 idle->sleep_avg = 0;
4439 idle->prio = MAX_PRIO;
4440 idle->state = TASK_RUNNING;
4441 idle->cpus_allowed = cpumask_of_cpu(cpu);
4442 set_task_cpu(idle, cpu);
4444 spin_lock_irqsave(&rq->lock, flags);
4445 rq->curr = rq->idle = idle;
4446 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4449 spin_unlock_irqrestore(&rq->lock, flags);
4451 /* Set the preempt count _outside_ the spinlocks! */
4452 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4453 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4455 task_thread_info(idle)->preempt_count = 0;
4460 * In a system that switches off the HZ timer nohz_cpu_mask
4461 * indicates which cpus entered this state. This is used
4462 * in the rcu update to wait only for active cpus. For system
4463 * which do not switch off the HZ timer nohz_cpu_mask should
4464 * always be CPU_MASK_NONE.
4466 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4470 * This is how migration works:
4472 * 1) we queue a migration_req_t structure in the source CPU's
4473 * runqueue and wake up that CPU's migration thread.
4474 * 2) we down() the locked semaphore => thread blocks.
4475 * 3) migration thread wakes up (implicitly it forces the migrated
4476 * thread off the CPU)
4477 * 4) it gets the migration request and checks whether the migrated
4478 * task is still in the wrong runqueue.
4479 * 5) if it's in the wrong runqueue then the migration thread removes
4480 * it and puts it into the right queue.
4481 * 6) migration thread up()s the semaphore.
4482 * 7) we wake up and the migration is done.
4486 * Change a given task's CPU affinity. Migrate the thread to a
4487 * proper CPU and schedule it away if the CPU it's executing on
4488 * is removed from the allowed bitmask.
4490 * NOTE: the caller must have a valid reference to the task, the
4491 * task must not exit() & deallocate itself prematurely. The
4492 * call is not atomic; no spinlocks may be held.
4494 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4496 unsigned long flags;
4498 migration_req_t req;
4501 rq = task_rq_lock(p, &flags);
4502 if (!cpus_intersects(new_mask, cpu_online_map)) {
4507 p->cpus_allowed = new_mask;
4508 /* Can the task run on the task's current CPU? If so, we're done */
4509 if (cpu_isset(task_cpu(p), new_mask))
4512 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4513 /* Need help from migration thread: drop lock and wait. */
4514 task_rq_unlock(rq, &flags);
4515 wake_up_process(rq->migration_thread);
4516 wait_for_completion(&req.done);
4517 tlb_migrate_finish(p->mm);
4521 task_rq_unlock(rq, &flags);
4525 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4528 * Move (not current) task off this cpu, onto dest cpu. We're doing
4529 * this because either it can't run here any more (set_cpus_allowed()
4530 * away from this CPU, or CPU going down), or because we're
4531 * attempting to rebalance this task on exec (sched_exec).
4533 * So we race with normal scheduler movements, but that's OK, as long
4534 * as the task is no longer on this CPU.
4536 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4538 runqueue_t *rq_dest, *rq_src;
4540 if (unlikely(cpu_is_offline(dest_cpu)))
4543 rq_src = cpu_rq(src_cpu);
4544 rq_dest = cpu_rq(dest_cpu);
4546 double_rq_lock(rq_src, rq_dest);
4547 /* Already moved. */
4548 if (task_cpu(p) != src_cpu)
4550 /* Affinity changed (again). */
4551 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4554 set_task_cpu(p, dest_cpu);
4557 * Sync timestamp with rq_dest's before activating.
4558 * The same thing could be achieved by doing this step
4559 * afterwards, and pretending it was a local activate.
4560 * This way is cleaner and logically correct.
4562 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4563 + rq_dest->timestamp_last_tick;
4564 deactivate_task(p, rq_src);
4565 activate_task(p, rq_dest, 0);
4566 if (TASK_PREEMPTS_CURR(p, rq_dest))
4567 resched_task(rq_dest->curr);
4571 double_rq_unlock(rq_src, rq_dest);
4575 * migration_thread - this is a highprio system thread that performs
4576 * thread migration by bumping thread off CPU then 'pushing' onto
4579 static int migration_thread(void *data)
4582 int cpu = (long)data;
4585 BUG_ON(rq->migration_thread != current);
4587 set_current_state(TASK_INTERRUPTIBLE);
4588 while (!kthread_should_stop()) {
4589 struct list_head *head;
4590 migration_req_t *req;
4594 spin_lock_irq(&rq->lock);
4596 if (cpu_is_offline(cpu)) {
4597 spin_unlock_irq(&rq->lock);
4601 if (rq->active_balance) {
4602 active_load_balance(rq, cpu);
4603 rq->active_balance = 0;
4606 head = &rq->migration_queue;
4608 if (list_empty(head)) {
4609 spin_unlock_irq(&rq->lock);
4611 set_current_state(TASK_INTERRUPTIBLE);
4614 req = list_entry(head->next, migration_req_t, list);
4615 list_del_init(head->next);
4617 spin_unlock(&rq->lock);
4618 __migrate_task(req->task, cpu, req->dest_cpu);
4621 complete(&req->done);
4623 __set_current_state(TASK_RUNNING);
4627 /* Wait for kthread_stop */
4628 set_current_state(TASK_INTERRUPTIBLE);
4629 while (!kthread_should_stop()) {
4631 set_current_state(TASK_INTERRUPTIBLE);
4633 __set_current_state(TASK_RUNNING);
4637 #ifdef CONFIG_HOTPLUG_CPU
4638 /* Figure out where task on dead CPU should go, use force if neccessary. */
4639 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4645 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4646 cpus_and(mask, mask, tsk->cpus_allowed);
4647 dest_cpu = any_online_cpu(mask);
4649 /* On any allowed CPU? */
4650 if (dest_cpu == NR_CPUS)
4651 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4653 /* No more Mr. Nice Guy. */
4654 if (dest_cpu == NR_CPUS) {
4655 cpus_setall(tsk->cpus_allowed);
4656 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4659 * Don't tell them about moving exiting tasks or
4660 * kernel threads (both mm NULL), since they never
4663 if (tsk->mm && printk_ratelimit())
4664 printk(KERN_INFO "process %d (%s) no "
4665 "longer affine to cpu%d\n",
4666 tsk->pid, tsk->comm, dead_cpu);
4668 __migrate_task(tsk, dead_cpu, dest_cpu);
4672 * While a dead CPU has no uninterruptible tasks queued at this point,
4673 * it might still have a nonzero ->nr_uninterruptible counter, because
4674 * for performance reasons the counter is not stricly tracking tasks to
4675 * their home CPUs. So we just add the counter to another CPU's counter,
4676 * to keep the global sum constant after CPU-down:
4678 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4680 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4681 unsigned long flags;
4683 local_irq_save(flags);
4684 double_rq_lock(rq_src, rq_dest);
4685 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4686 rq_src->nr_uninterruptible = 0;
4687 double_rq_unlock(rq_src, rq_dest);
4688 local_irq_restore(flags);
4691 /* Run through task list and migrate tasks from the dead cpu. */
4692 static void migrate_live_tasks(int src_cpu)
4694 struct task_struct *tsk, *t;
4696 write_lock_irq(&tasklist_lock);
4698 do_each_thread(t, tsk) {
4702 if (task_cpu(tsk) == src_cpu)
4703 move_task_off_dead_cpu(src_cpu, tsk);
4704 } while_each_thread(t, tsk);
4706 write_unlock_irq(&tasklist_lock);
4709 /* Schedules idle task to be the next runnable task on current CPU.
4710 * It does so by boosting its priority to highest possible and adding it to
4711 * the _front_ of runqueue. Used by CPU offline code.
4713 void sched_idle_next(void)
4715 int cpu = smp_processor_id();
4716 runqueue_t *rq = this_rq();
4717 struct task_struct *p = rq->idle;
4718 unsigned long flags;
4720 /* cpu has to be offline */
4721 BUG_ON(cpu_online(cpu));
4723 /* Strictly not necessary since rest of the CPUs are stopped by now
4724 * and interrupts disabled on current cpu.
4726 spin_lock_irqsave(&rq->lock, flags);
4728 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4729 /* Add idle task to _front_ of it's priority queue */
4730 __activate_idle_task(p, rq);
4732 spin_unlock_irqrestore(&rq->lock, flags);
4735 /* Ensures that the idle task is using init_mm right before its cpu goes
4738 void idle_task_exit(void)
4740 struct mm_struct *mm = current->active_mm;
4742 BUG_ON(cpu_online(smp_processor_id()));
4745 switch_mm(mm, &init_mm, current);
4749 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4751 struct runqueue *rq = cpu_rq(dead_cpu);
4753 /* Must be exiting, otherwise would be on tasklist. */
4754 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4756 /* Cannot have done final schedule yet: would have vanished. */
4757 BUG_ON(tsk->flags & PF_DEAD);
4759 get_task_struct(tsk);
4762 * Drop lock around migration; if someone else moves it,
4763 * that's OK. No task can be added to this CPU, so iteration is
4766 spin_unlock_irq(&rq->lock);
4767 move_task_off_dead_cpu(dead_cpu, tsk);
4768 spin_lock_irq(&rq->lock);
4770 put_task_struct(tsk);
4773 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4774 static void migrate_dead_tasks(unsigned int dead_cpu)
4777 struct runqueue *rq = cpu_rq(dead_cpu);
4779 for (arr = 0; arr < 2; arr++) {
4780 for (i = 0; i < MAX_PRIO; i++) {
4781 struct list_head *list = &rq->arrays[arr].queue[i];
4782 while (!list_empty(list))
4783 migrate_dead(dead_cpu,
4784 list_entry(list->next, task_t,
4789 #endif /* CONFIG_HOTPLUG_CPU */
4792 * migration_call - callback that gets triggered when a CPU is added.
4793 * Here we can start up the necessary migration thread for the new CPU.
4795 static int migration_call(struct notifier_block *nfb, unsigned long action,
4798 int cpu = (long)hcpu;
4799 struct task_struct *p;
4800 struct runqueue *rq;
4801 unsigned long flags;
4804 case CPU_UP_PREPARE:
4805 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4808 p->flags |= PF_NOFREEZE;
4809 kthread_bind(p, cpu);
4810 /* Must be high prio: stop_machine expects to yield to it. */
4811 rq = task_rq_lock(p, &flags);
4812 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4813 task_rq_unlock(rq, &flags);
4814 cpu_rq(cpu)->migration_thread = p;
4817 /* Strictly unneccessary, as first user will wake it. */
4818 wake_up_process(cpu_rq(cpu)->migration_thread);
4820 #ifdef CONFIG_HOTPLUG_CPU
4821 case CPU_UP_CANCELED:
4822 /* Unbind it from offline cpu so it can run. Fall thru. */
4823 kthread_bind(cpu_rq(cpu)->migration_thread,
4824 any_online_cpu(cpu_online_map));
4825 kthread_stop(cpu_rq(cpu)->migration_thread);
4826 cpu_rq(cpu)->migration_thread = NULL;
4829 migrate_live_tasks(cpu);
4831 kthread_stop(rq->migration_thread);
4832 rq->migration_thread = NULL;
4833 /* Idle task back to normal (off runqueue, low prio) */
4834 rq = task_rq_lock(rq->idle, &flags);
4835 deactivate_task(rq->idle, rq);
4836 rq->idle->static_prio = MAX_PRIO;
4837 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4838 migrate_dead_tasks(cpu);
4839 task_rq_unlock(rq, &flags);
4840 migrate_nr_uninterruptible(rq);
4841 BUG_ON(rq->nr_running != 0);
4843 /* No need to migrate the tasks: it was best-effort if
4844 * they didn't do lock_cpu_hotplug(). Just wake up
4845 * the requestors. */
4846 spin_lock_irq(&rq->lock);
4847 while (!list_empty(&rq->migration_queue)) {
4848 migration_req_t *req;
4849 req = list_entry(rq->migration_queue.next,
4850 migration_req_t, list);
4851 list_del_init(&req->list);
4852 complete(&req->done);
4854 spin_unlock_irq(&rq->lock);
4861 /* Register at highest priority so that task migration (migrate_all_tasks)
4862 * happens before everything else.
4864 static struct notifier_block __devinitdata migration_notifier = {
4865 .notifier_call = migration_call,
4869 int __init migration_init(void)
4871 void *cpu = (void *)(long)smp_processor_id();
4872 /* Start one for boot CPU. */
4873 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4874 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4875 register_cpu_notifier(&migration_notifier);
4881 #undef SCHED_DOMAIN_DEBUG
4882 #ifdef SCHED_DOMAIN_DEBUG
4883 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4888 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4892 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4897 struct sched_group *group = sd->groups;
4898 cpumask_t groupmask;
4900 cpumask_scnprintf(str, NR_CPUS, sd->span);
4901 cpus_clear(groupmask);
4904 for (i = 0; i < level + 1; i++)
4906 printk("domain %d: ", level);
4908 if (!(sd->flags & SD_LOAD_BALANCE)) {
4909 printk("does not load-balance\n");
4911 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4915 printk("span %s\n", str);
4917 if (!cpu_isset(cpu, sd->span))
4918 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4919 if (!cpu_isset(cpu, group->cpumask))
4920 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4923 for (i = 0; i < level + 2; i++)
4929 printk(KERN_ERR "ERROR: group is NULL\n");
4933 if (!group->cpu_power) {
4935 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4938 if (!cpus_weight(group->cpumask)) {
4940 printk(KERN_ERR "ERROR: empty group\n");
4943 if (cpus_intersects(groupmask, group->cpumask)) {
4945 printk(KERN_ERR "ERROR: repeated CPUs\n");
4948 cpus_or(groupmask, groupmask, group->cpumask);
4950 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4953 group = group->next;
4954 } while (group != sd->groups);
4957 if (!cpus_equal(sd->span, groupmask))
4958 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4964 if (!cpus_subset(groupmask, sd->span))
4965 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4971 #define sched_domain_debug(sd, cpu) {}
4974 static int sd_degenerate(struct sched_domain *sd)
4976 if (cpus_weight(sd->span) == 1)
4979 /* Following flags need at least 2 groups */
4980 if (sd->flags & (SD_LOAD_BALANCE |
4981 SD_BALANCE_NEWIDLE |
4984 if (sd->groups != sd->groups->next)
4988 /* Following flags don't use groups */
4989 if (sd->flags & (SD_WAKE_IDLE |
4997 static int sd_parent_degenerate(struct sched_domain *sd,
4998 struct sched_domain *parent)
5000 unsigned long cflags = sd->flags, pflags = parent->flags;
5002 if (sd_degenerate(parent))
5005 if (!cpus_equal(sd->span, parent->span))
5008 /* Does parent contain flags not in child? */
5009 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5010 if (cflags & SD_WAKE_AFFINE)
5011 pflags &= ~SD_WAKE_BALANCE;
5012 /* Flags needing groups don't count if only 1 group in parent */
5013 if (parent->groups == parent->groups->next) {
5014 pflags &= ~(SD_LOAD_BALANCE |
5015 SD_BALANCE_NEWIDLE |
5019 if (~cflags & pflags)
5026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5027 * hold the hotplug lock.
5029 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5031 runqueue_t *rq = cpu_rq(cpu);
5032 struct sched_domain *tmp;
5034 /* Remove the sched domains which do not contribute to scheduling. */
5035 for (tmp = sd; tmp; tmp = tmp->parent) {
5036 struct sched_domain *parent = tmp->parent;
5039 if (sd_parent_degenerate(tmp, parent))
5040 tmp->parent = parent->parent;
5043 if (sd && sd_degenerate(sd))
5046 sched_domain_debug(sd, cpu);
5048 rcu_assign_pointer(rq->sd, sd);
5051 /* cpus with isolated domains */
5052 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5054 /* Setup the mask of cpus configured for isolated domains */
5055 static int __init isolated_cpu_setup(char *str)
5057 int ints[NR_CPUS], i;
5059 str = get_options(str, ARRAY_SIZE(ints), ints);
5060 cpus_clear(cpu_isolated_map);
5061 for (i = 1; i <= ints[0]; i++)
5062 if (ints[i] < NR_CPUS)
5063 cpu_set(ints[i], cpu_isolated_map);
5067 __setup ("isolcpus=", isolated_cpu_setup);
5070 * init_sched_build_groups takes an array of groups, the cpumask we wish
5071 * to span, and a pointer to a function which identifies what group a CPU
5072 * belongs to. The return value of group_fn must be a valid index into the
5073 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5074 * keep track of groups covered with a cpumask_t).
5076 * init_sched_build_groups will build a circular linked list of the groups
5077 * covered by the given span, and will set each group's ->cpumask correctly,
5078 * and ->cpu_power to 0.
5080 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5081 int (*group_fn)(int cpu))
5083 struct sched_group *first = NULL, *last = NULL;
5084 cpumask_t covered = CPU_MASK_NONE;
5087 for_each_cpu_mask(i, span) {
5088 int group = group_fn(i);
5089 struct sched_group *sg = &groups[group];
5092 if (cpu_isset(i, covered))
5095 sg->cpumask = CPU_MASK_NONE;
5098 for_each_cpu_mask(j, span) {
5099 if (group_fn(j) != group)
5102 cpu_set(j, covered);
5103 cpu_set(j, sg->cpumask);
5114 #define SD_NODES_PER_DOMAIN 16
5117 * Self-tuning task migration cost measurement between source and target CPUs.
5119 * This is done by measuring the cost of manipulating buffers of varying
5120 * sizes. For a given buffer-size here are the steps that are taken:
5122 * 1) the source CPU reads+dirties a shared buffer
5123 * 2) the target CPU reads+dirties the same shared buffer
5125 * We measure how long they take, in the following 4 scenarios:
5127 * - source: CPU1, target: CPU2 | cost1
5128 * - source: CPU2, target: CPU1 | cost2
5129 * - source: CPU1, target: CPU1 | cost3
5130 * - source: CPU2, target: CPU2 | cost4
5132 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5133 * the cost of migration.
5135 * We then start off from a small buffer-size and iterate up to larger
5136 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5137 * doing a maximum search for the cost. (The maximum cost for a migration
5138 * normally occurs when the working set size is around the effective cache
5141 #define SEARCH_SCOPE 2
5142 #define MIN_CACHE_SIZE (64*1024U)
5143 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5144 #define ITERATIONS 2
5145 #define SIZE_THRESH 130
5146 #define COST_THRESH 130
5149 * The migration cost is a function of 'domain distance'. Domain
5150 * distance is the number of steps a CPU has to iterate down its
5151 * domain tree to share a domain with the other CPU. The farther
5152 * two CPUs are from each other, the larger the distance gets.
5154 * Note that we use the distance only to cache measurement results,
5155 * the distance value is not used numerically otherwise. When two
5156 * CPUs have the same distance it is assumed that the migration
5157 * cost is the same. (this is a simplification but quite practical)
5159 #define MAX_DOMAIN_DISTANCE 32
5161 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5162 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL };
5165 * Allow override of migration cost - in units of microseconds.
5166 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5167 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5169 static int __init migration_cost_setup(char *str)
5171 int ints[MAX_DOMAIN_DISTANCE+1], i;
5173 str = get_options(str, ARRAY_SIZE(ints), ints);
5175 printk("#ints: %d\n", ints[0]);
5176 for (i = 1; i <= ints[0]; i++) {
5177 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5178 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5183 __setup ("migration_cost=", migration_cost_setup);
5186 * Global multiplier (divisor) for migration-cutoff values,
5187 * in percentiles. E.g. use a value of 150 to get 1.5 times
5188 * longer cache-hot cutoff times.
5190 * (We scale it from 100 to 128 to long long handling easier.)
5193 #define MIGRATION_FACTOR_SCALE 128
5195 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5197 static int __init setup_migration_factor(char *str)
5199 get_option(&str, &migration_factor);
5200 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5204 __setup("migration_factor=", setup_migration_factor);
5207 * Estimated distance of two CPUs, measured via the number of domains
5208 * we have to pass for the two CPUs to be in the same span:
5210 static unsigned long domain_distance(int cpu1, int cpu2)
5212 unsigned long distance = 0;
5213 struct sched_domain *sd;
5215 for_each_domain(cpu1, sd) {
5216 WARN_ON(!cpu_isset(cpu1, sd->span));
5217 if (cpu_isset(cpu2, sd->span))
5221 if (distance >= MAX_DOMAIN_DISTANCE) {
5223 distance = MAX_DOMAIN_DISTANCE-1;
5229 static unsigned int migration_debug;
5231 static int __init setup_migration_debug(char *str)
5233 get_option(&str, &migration_debug);
5237 __setup("migration_debug=", setup_migration_debug);
5240 * Maximum cache-size that the scheduler should try to measure.
5241 * Architectures with larger caches should tune this up during
5242 * bootup. Gets used in the domain-setup code (i.e. during SMP
5245 unsigned int max_cache_size;
5247 static int __init setup_max_cache_size(char *str)
5249 get_option(&str, &max_cache_size);
5253 __setup("max_cache_size=", setup_max_cache_size);
5256 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5257 * is the operation that is timed, so we try to generate unpredictable
5258 * cachemisses that still end up filling the L2 cache:
5260 static void touch_cache(void *__cache, unsigned long __size)
5262 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5264 unsigned long *cache = __cache;
5267 for (i = 0; i < size/6; i += 8) {
5270 case 1: cache[size-1-i]++;
5271 case 2: cache[chunk1-i]++;
5272 case 3: cache[chunk1+i]++;
5273 case 4: cache[chunk2-i]++;
5274 case 5: cache[chunk2+i]++;
5280 * Measure the cache-cost of one task migration. Returns in units of nsec.
5282 static unsigned long long measure_one(void *cache, unsigned long size,
5283 int source, int target)
5285 cpumask_t mask, saved_mask;
5286 unsigned long long t0, t1, t2, t3, cost;
5288 saved_mask = current->cpus_allowed;
5291 * Flush source caches to RAM and invalidate them:
5296 * Migrate to the source CPU:
5298 mask = cpumask_of_cpu(source);
5299 set_cpus_allowed(current, mask);
5300 WARN_ON(smp_processor_id() != source);
5303 * Dirty the working set:
5306 touch_cache(cache, size);
5310 * Migrate to the target CPU, dirty the L2 cache and access
5311 * the shared buffer. (which represents the working set
5312 * of a migrated task.)
5314 mask = cpumask_of_cpu(target);
5315 set_cpus_allowed(current, mask);
5316 WARN_ON(smp_processor_id() != target);
5319 touch_cache(cache, size);
5322 cost = t1-t0 + t3-t2;
5324 if (migration_debug >= 2)
5325 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5326 source, target, t1-t0, t1-t0, t3-t2, cost);
5328 * Flush target caches to RAM and invalidate them:
5332 set_cpus_allowed(current, saved_mask);
5338 * Measure a series of task migrations and return the average
5339 * result. Since this code runs early during bootup the system
5340 * is 'undisturbed' and the average latency makes sense.
5342 * The algorithm in essence auto-detects the relevant cache-size,
5343 * so it will properly detect different cachesizes for different
5344 * cache-hierarchies, depending on how the CPUs are connected.
5346 * Architectures can prime the upper limit of the search range via
5347 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5349 static unsigned long long
5350 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5352 unsigned long long cost1, cost2;
5356 * Measure the migration cost of 'size' bytes, over an
5357 * average of 10 runs:
5359 * (We perturb the cache size by a small (0..4k)
5360 * value to compensate size/alignment related artifacts.
5361 * We also subtract the cost of the operation done on
5367 * dry run, to make sure we start off cache-cold on cpu1,
5368 * and to get any vmalloc pagefaults in advance:
5370 measure_one(cache, size, cpu1, cpu2);
5371 for (i = 0; i < ITERATIONS; i++)
5372 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5374 measure_one(cache, size, cpu2, cpu1);
5375 for (i = 0; i < ITERATIONS; i++)
5376 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5379 * (We measure the non-migrating [cached] cost on both
5380 * cpu1 and cpu2, to handle CPUs with different speeds)
5384 measure_one(cache, size, cpu1, cpu1);
5385 for (i = 0; i < ITERATIONS; i++)
5386 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5388 measure_one(cache, size, cpu2, cpu2);
5389 for (i = 0; i < ITERATIONS; i++)
5390 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5393 * Get the per-iteration migration cost:
5395 do_div(cost1, 2*ITERATIONS);
5396 do_div(cost2, 2*ITERATIONS);
5398 return cost1 - cost2;
5401 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5403 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5404 unsigned int max_size, size, size_found = 0;
5405 long long cost = 0, prev_cost;
5409 * Search from max_cache_size*5 down to 64K - the real relevant
5410 * cachesize has to lie somewhere inbetween.
5412 if (max_cache_size) {
5413 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5414 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5417 * Since we have no estimation about the relevant
5420 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5421 size = MIN_CACHE_SIZE;
5424 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5425 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5430 * Allocate the working set:
5432 cache = vmalloc(max_size);
5434 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5435 return 1000000; // return 1 msec on very small boxen
5438 while (size <= max_size) {
5440 cost = measure_cost(cpu1, cpu2, cache, size);
5446 if (max_cost < cost) {
5452 * Calculate average fluctuation, we use this to prevent
5453 * noise from triggering an early break out of the loop:
5455 fluct = abs(cost - prev_cost);
5456 avg_fluct = (avg_fluct + fluct)/2;
5458 if (migration_debug)
5459 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5461 (long)cost / 1000000,
5462 ((long)cost / 100000) % 10,
5463 (long)max_cost / 1000000,
5464 ((long)max_cost / 100000) % 10,
5465 domain_distance(cpu1, cpu2),
5469 * If we iterated at least 20% past the previous maximum,
5470 * and the cost has dropped by more than 20% already,
5471 * (taking fluctuations into account) then we assume to
5472 * have found the maximum and break out of the loop early:
5474 if (size_found && (size*100 > size_found*SIZE_THRESH))
5475 if (cost+avg_fluct <= 0 ||
5476 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5478 if (migration_debug)
5479 printk("-> found max.\n");
5483 * Increase the cachesize in 5% steps:
5485 size = size * 20 / 19;
5488 if (migration_debug)
5489 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5490 cpu1, cpu2, size_found, max_cost);
5495 * A task is considered 'cache cold' if at least 2 times
5496 * the worst-case cost of migration has passed.
5498 * (this limit is only listened to if the load-balancing
5499 * situation is 'nice' - if there is a large imbalance we
5500 * ignore it for the sake of CPU utilization and
5501 * processing fairness.)
5503 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5506 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5508 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5509 unsigned long j0, j1, distance, max_distance = 0;
5510 struct sched_domain *sd;
5515 * First pass - calculate the cacheflush times:
5517 for_each_cpu_mask(cpu1, *cpu_map) {
5518 for_each_cpu_mask(cpu2, *cpu_map) {
5521 distance = domain_distance(cpu1, cpu2);
5522 max_distance = max(max_distance, distance);
5524 * No result cached yet?
5526 if (migration_cost[distance] == -1LL)
5527 migration_cost[distance] =
5528 measure_migration_cost(cpu1, cpu2);
5532 * Second pass - update the sched domain hierarchy with
5533 * the new cache-hot-time estimations:
5535 for_each_cpu_mask(cpu, *cpu_map) {
5537 for_each_domain(cpu, sd) {
5538 sd->cache_hot_time = migration_cost[distance];
5545 if (migration_debug)
5546 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5554 printk("migration_cost=");
5555 for (distance = 0; distance <= max_distance; distance++) {
5558 printk("%ld", (long)migration_cost[distance] / 1000);
5562 if (migration_debug)
5563 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5566 * Move back to the original CPU. NUMA-Q gets confused
5567 * if we migrate to another quad during bootup.
5569 if (raw_smp_processor_id() != orig_cpu) {
5570 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5571 saved_mask = current->cpus_allowed;
5573 set_cpus_allowed(current, mask);
5574 set_cpus_allowed(current, saved_mask);
5581 * find_next_best_node - find the next node to include in a sched_domain
5582 * @node: node whose sched_domain we're building
5583 * @used_nodes: nodes already in the sched_domain
5585 * Find the next node to include in a given scheduling domain. Simply
5586 * finds the closest node not already in the @used_nodes map.
5588 * Should use nodemask_t.
5590 static int find_next_best_node(int node, unsigned long *used_nodes)
5592 int i, n, val, min_val, best_node = 0;
5596 for (i = 0; i < MAX_NUMNODES; i++) {
5597 /* Start at @node */
5598 n = (node + i) % MAX_NUMNODES;
5600 if (!nr_cpus_node(n))
5603 /* Skip already used nodes */
5604 if (test_bit(n, used_nodes))
5607 /* Simple min distance search */
5608 val = node_distance(node, n);
5610 if (val < min_val) {
5616 set_bit(best_node, used_nodes);
5621 * sched_domain_node_span - get a cpumask for a node's sched_domain
5622 * @node: node whose cpumask we're constructing
5623 * @size: number of nodes to include in this span
5625 * Given a node, construct a good cpumask for its sched_domain to span. It
5626 * should be one that prevents unnecessary balancing, but also spreads tasks
5629 static cpumask_t sched_domain_node_span(int node)
5632 cpumask_t span, nodemask;
5633 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5636 bitmap_zero(used_nodes, MAX_NUMNODES);
5638 nodemask = node_to_cpumask(node);
5639 cpus_or(span, span, nodemask);
5640 set_bit(node, used_nodes);
5642 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5643 int next_node = find_next_best_node(node, used_nodes);
5644 nodemask = node_to_cpumask(next_node);
5645 cpus_or(span, span, nodemask);
5653 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5654 * can switch it on easily if needed.
5656 #ifdef CONFIG_SCHED_SMT
5657 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5658 static struct sched_group sched_group_cpus[NR_CPUS];
5659 static int cpu_to_cpu_group(int cpu)
5665 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5666 static struct sched_group sched_group_phys[NR_CPUS];
5667 static int cpu_to_phys_group(int cpu)
5669 #ifdef CONFIG_SCHED_SMT
5670 return first_cpu(cpu_sibling_map[cpu]);
5678 * The init_sched_build_groups can't handle what we want to do with node
5679 * groups, so roll our own. Now each node has its own list of groups which
5680 * gets dynamically allocated.
5682 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5683 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5685 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5686 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5688 static int cpu_to_allnodes_group(int cpu)
5690 return cpu_to_node(cpu);
5695 * Build sched domains for a given set of cpus and attach the sched domains
5696 * to the individual cpus
5698 void build_sched_domains(const cpumask_t *cpu_map)
5702 struct sched_group **sched_group_nodes = NULL;
5703 struct sched_group *sched_group_allnodes = NULL;
5706 * Allocate the per-node list of sched groups
5708 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5710 if (!sched_group_nodes) {
5711 printk(KERN_WARNING "Can not alloc sched group node list\n");
5714 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5718 * Set up domains for cpus specified by the cpu_map.
5720 for_each_cpu_mask(i, *cpu_map) {
5722 struct sched_domain *sd = NULL, *p;
5723 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5725 cpus_and(nodemask, nodemask, *cpu_map);
5728 if (cpus_weight(*cpu_map)
5729 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5730 if (!sched_group_allnodes) {
5731 sched_group_allnodes
5732 = kmalloc(sizeof(struct sched_group)
5735 if (!sched_group_allnodes) {
5737 "Can not alloc allnodes sched group\n");
5740 sched_group_allnodes_bycpu[i]
5741 = sched_group_allnodes;
5743 sd = &per_cpu(allnodes_domains, i);
5744 *sd = SD_ALLNODES_INIT;
5745 sd->span = *cpu_map;
5746 group = cpu_to_allnodes_group(i);
5747 sd->groups = &sched_group_allnodes[group];
5752 sd = &per_cpu(node_domains, i);
5754 sd->span = sched_domain_node_span(cpu_to_node(i));
5756 cpus_and(sd->span, sd->span, *cpu_map);
5760 sd = &per_cpu(phys_domains, i);
5761 group = cpu_to_phys_group(i);
5763 sd->span = nodemask;
5765 sd->groups = &sched_group_phys[group];
5767 #ifdef CONFIG_SCHED_SMT
5769 sd = &per_cpu(cpu_domains, i);
5770 group = cpu_to_cpu_group(i);
5771 *sd = SD_SIBLING_INIT;
5772 sd->span = cpu_sibling_map[i];
5773 cpus_and(sd->span, sd->span, *cpu_map);
5775 sd->groups = &sched_group_cpus[group];
5779 #ifdef CONFIG_SCHED_SMT
5780 /* Set up CPU (sibling) groups */
5781 for_each_cpu_mask(i, *cpu_map) {
5782 cpumask_t this_sibling_map = cpu_sibling_map[i];
5783 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5784 if (i != first_cpu(this_sibling_map))
5787 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5792 /* Set up physical groups */
5793 for (i = 0; i < MAX_NUMNODES; i++) {
5794 cpumask_t nodemask = node_to_cpumask(i);
5796 cpus_and(nodemask, nodemask, *cpu_map);
5797 if (cpus_empty(nodemask))
5800 init_sched_build_groups(sched_group_phys, nodemask,
5801 &cpu_to_phys_group);
5805 /* Set up node groups */
5806 if (sched_group_allnodes)
5807 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5808 &cpu_to_allnodes_group);
5810 for (i = 0; i < MAX_NUMNODES; i++) {
5811 /* Set up node groups */
5812 struct sched_group *sg, *prev;
5813 cpumask_t nodemask = node_to_cpumask(i);
5814 cpumask_t domainspan;
5815 cpumask_t covered = CPU_MASK_NONE;
5818 cpus_and(nodemask, nodemask, *cpu_map);
5819 if (cpus_empty(nodemask)) {
5820 sched_group_nodes[i] = NULL;
5824 domainspan = sched_domain_node_span(i);
5825 cpus_and(domainspan, domainspan, *cpu_map);
5827 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5828 sched_group_nodes[i] = sg;
5829 for_each_cpu_mask(j, nodemask) {
5830 struct sched_domain *sd;
5831 sd = &per_cpu(node_domains, j);
5833 if (sd->groups == NULL) {
5834 /* Turn off balancing if we have no groups */
5840 "Can not alloc domain group for node %d\n", i);
5844 sg->cpumask = nodemask;
5845 cpus_or(covered, covered, nodemask);
5848 for (j = 0; j < MAX_NUMNODES; j++) {
5849 cpumask_t tmp, notcovered;
5850 int n = (i + j) % MAX_NUMNODES;
5852 cpus_complement(notcovered, covered);
5853 cpus_and(tmp, notcovered, *cpu_map);
5854 cpus_and(tmp, tmp, domainspan);
5855 if (cpus_empty(tmp))
5858 nodemask = node_to_cpumask(n);
5859 cpus_and(tmp, tmp, nodemask);
5860 if (cpus_empty(tmp))
5863 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5866 "Can not alloc domain group for node %d\n", j);
5871 cpus_or(covered, covered, tmp);
5875 prev->next = sched_group_nodes[i];
5879 /* Calculate CPU power for physical packages and nodes */
5880 for_each_cpu_mask(i, *cpu_map) {
5882 struct sched_domain *sd;
5883 #ifdef CONFIG_SCHED_SMT
5884 sd = &per_cpu(cpu_domains, i);
5885 power = SCHED_LOAD_SCALE;
5886 sd->groups->cpu_power = power;
5889 sd = &per_cpu(phys_domains, i);
5890 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5891 (cpus_weight(sd->groups->cpumask)-1) / 10;
5892 sd->groups->cpu_power = power;
5895 sd = &per_cpu(allnodes_domains, i);
5897 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5898 (cpus_weight(sd->groups->cpumask)-1) / 10;
5899 sd->groups->cpu_power = power;
5905 for (i = 0; i < MAX_NUMNODES; i++) {
5906 struct sched_group *sg = sched_group_nodes[i];
5912 for_each_cpu_mask(j, sg->cpumask) {
5913 struct sched_domain *sd;
5916 sd = &per_cpu(phys_domains, j);
5917 if (j != first_cpu(sd->groups->cpumask)) {
5919 * Only add "power" once for each
5924 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5925 (cpus_weight(sd->groups->cpumask)-1) / 10;
5927 sg->cpu_power += power;
5930 if (sg != sched_group_nodes[i])
5935 /* Attach the domains */
5936 for_each_cpu_mask(i, *cpu_map) {
5937 struct sched_domain *sd;
5938 #ifdef CONFIG_SCHED_SMT
5939 sd = &per_cpu(cpu_domains, i);
5941 sd = &per_cpu(phys_domains, i);
5943 cpu_attach_domain(sd, i);
5946 * Tune cache-hot values:
5948 calibrate_migration_costs(cpu_map);
5951 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5953 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5955 cpumask_t cpu_default_map;
5958 * Setup mask for cpus without special case scheduling requirements.
5959 * For now this just excludes isolated cpus, but could be used to
5960 * exclude other special cases in the future.
5962 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5964 build_sched_domains(&cpu_default_map);
5967 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5973 for_each_cpu_mask(cpu, *cpu_map) {
5974 struct sched_group *sched_group_allnodes
5975 = sched_group_allnodes_bycpu[cpu];
5976 struct sched_group **sched_group_nodes
5977 = sched_group_nodes_bycpu[cpu];
5979 if (sched_group_allnodes) {
5980 kfree(sched_group_allnodes);
5981 sched_group_allnodes_bycpu[cpu] = NULL;
5984 if (!sched_group_nodes)
5987 for (i = 0; i < MAX_NUMNODES; i++) {
5988 cpumask_t nodemask = node_to_cpumask(i);
5989 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5991 cpus_and(nodemask, nodemask, *cpu_map);
5992 if (cpus_empty(nodemask))
6002 if (oldsg != sched_group_nodes[i])
6005 kfree(sched_group_nodes);
6006 sched_group_nodes_bycpu[cpu] = NULL;
6012 * Detach sched domains from a group of cpus specified in cpu_map
6013 * These cpus will now be attached to the NULL domain
6015 static void detach_destroy_domains(const cpumask_t *cpu_map)
6019 for_each_cpu_mask(i, *cpu_map)
6020 cpu_attach_domain(NULL, i);
6021 synchronize_sched();
6022 arch_destroy_sched_domains(cpu_map);
6026 * Partition sched domains as specified by the cpumasks below.
6027 * This attaches all cpus from the cpumasks to the NULL domain,
6028 * waits for a RCU quiescent period, recalculates sched
6029 * domain information and then attaches them back to the
6030 * correct sched domains
6031 * Call with hotplug lock held
6033 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6035 cpumask_t change_map;
6037 cpus_and(*partition1, *partition1, cpu_online_map);
6038 cpus_and(*partition2, *partition2, cpu_online_map);
6039 cpus_or(change_map, *partition1, *partition2);
6041 /* Detach sched domains from all of the affected cpus */
6042 detach_destroy_domains(&change_map);
6043 if (!cpus_empty(*partition1))
6044 build_sched_domains(partition1);
6045 if (!cpus_empty(*partition2))
6046 build_sched_domains(partition2);
6049 #ifdef CONFIG_HOTPLUG_CPU
6051 * Force a reinitialization of the sched domains hierarchy. The domains
6052 * and groups cannot be updated in place without racing with the balancing
6053 * code, so we temporarily attach all running cpus to the NULL domain
6054 * which will prevent rebalancing while the sched domains are recalculated.
6056 static int update_sched_domains(struct notifier_block *nfb,
6057 unsigned long action, void *hcpu)
6060 case CPU_UP_PREPARE:
6061 case CPU_DOWN_PREPARE:
6062 detach_destroy_domains(&cpu_online_map);
6065 case CPU_UP_CANCELED:
6066 case CPU_DOWN_FAILED:
6070 * Fall through and re-initialise the domains.
6077 /* The hotplug lock is already held by cpu_up/cpu_down */
6078 arch_init_sched_domains(&cpu_online_map);
6084 void __init sched_init_smp(void)
6087 arch_init_sched_domains(&cpu_online_map);
6088 unlock_cpu_hotplug();
6089 /* XXX: Theoretical race here - CPU may be hotplugged now */
6090 hotcpu_notifier(update_sched_domains, 0);
6093 void __init sched_init_smp(void)
6096 #endif /* CONFIG_SMP */
6098 int in_sched_functions(unsigned long addr)
6100 /* Linker adds these: start and end of __sched functions */
6101 extern char __sched_text_start[], __sched_text_end[];
6102 return in_lock_functions(addr) ||
6103 (addr >= (unsigned long)__sched_text_start
6104 && addr < (unsigned long)__sched_text_end);
6107 void __init sched_init(void)
6112 for (i = 0; i < NR_CPUS; i++) {
6113 prio_array_t *array;
6116 spin_lock_init(&rq->lock);
6118 rq->active = rq->arrays;
6119 rq->expired = rq->arrays + 1;
6120 rq->best_expired_prio = MAX_PRIO;
6124 for (j = 1; j < 3; j++)
6125 rq->cpu_load[j] = 0;
6126 rq->active_balance = 0;
6128 rq->migration_thread = NULL;
6129 INIT_LIST_HEAD(&rq->migration_queue);
6131 atomic_set(&rq->nr_iowait, 0);
6133 for (j = 0; j < 2; j++) {
6134 array = rq->arrays + j;
6135 for (k = 0; k < MAX_PRIO; k++) {
6136 INIT_LIST_HEAD(array->queue + k);
6137 __clear_bit(k, array->bitmap);
6139 // delimiter for bitsearch
6140 __set_bit(MAX_PRIO, array->bitmap);
6145 * The boot idle thread does lazy MMU switching as well:
6147 atomic_inc(&init_mm.mm_count);
6148 enter_lazy_tlb(&init_mm, current);
6151 * Make us the idle thread. Technically, schedule() should not be
6152 * called from this thread, however somewhere below it might be,
6153 * but because we are the idle thread, we just pick up running again
6154 * when this runqueue becomes "idle".
6156 init_idle(current, smp_processor_id());
6159 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6160 void __might_sleep(char *file, int line)
6162 #if defined(in_atomic)
6163 static unsigned long prev_jiffy; /* ratelimiting */
6165 if ((in_atomic() || irqs_disabled()) &&
6166 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6167 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6169 prev_jiffy = jiffies;
6170 printk(KERN_ERR "Debug: sleeping function called from invalid"
6171 " context at %s:%d\n", file, line);
6172 printk("in_atomic():%d, irqs_disabled():%d\n",
6173 in_atomic(), irqs_disabled());
6178 EXPORT_SYMBOL(__might_sleep);
6181 #ifdef CONFIG_MAGIC_SYSRQ
6182 void normalize_rt_tasks(void)
6184 struct task_struct *p;
6185 prio_array_t *array;
6186 unsigned long flags;
6189 read_lock_irq(&tasklist_lock);
6190 for_each_process (p) {
6194 rq = task_rq_lock(p, &flags);
6198 deactivate_task(p, task_rq(p));
6199 __setscheduler(p, SCHED_NORMAL, 0);
6201 __activate_task(p, task_rq(p));
6202 resched_task(rq->curr);
6205 task_rq_unlock(rq, &flags);
6207 read_unlock_irq(&tasklist_lock);
6210 #endif /* CONFIG_MAGIC_SYSRQ */
6214 * These functions are only useful for the IA64 MCA handling.
6216 * They can only be called when the whole system has been
6217 * stopped - every CPU needs to be quiescent, and no scheduling
6218 * activity can take place. Using them for anything else would
6219 * be a serious bug, and as a result, they aren't even visible
6220 * under any other configuration.
6224 * curr_task - return the current task for a given cpu.
6225 * @cpu: the processor in question.
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6229 task_t *curr_task(int cpu)
6231 return cpu_curr(cpu);
6235 * set_curr_task - set the current task for a given cpu.
6236 * @cpu: the processor in question.
6237 * @p: the task pointer to set.
6239 * Description: This function must only be used when non-maskable interrupts
6240 * are serviced on a separate stack. It allows the architecture to switch the
6241 * notion of the current task on a cpu in a non-blocking manner. This function
6242 * must be called with all CPU's synchronized, and interrupts disabled, the
6243 * and caller must save the original value of the current task (see
6244 * curr_task() above) and restore that value before reenabling interrupts and
6245 * re-starting the system.
6247 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6249 void set_curr_task(int cpu, task_t *p)