2 * Here is where the ball gets rolling as far as the kernel is concerned.
3 * When control is transferred to _start, the bootload has already
4 * loaded us to the correct address. All that's left to do here is
5 * to set up the kernel's global pointer and jump to the kernel
8 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 * Copyright (C) 1999 Intel Corp.
14 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
15 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
16 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
17 * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
18 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
19 * Support for CPU Hotplug
23 #include <asm/asmmacro.h>
25 #include <asm/kregs.h>
26 #include <asm/mmu_context.h>
27 #include <asm/asm-offsets.h>
29 #include <asm/pgtable.h>
30 #include <asm/processor.h>
31 #include <asm/ptrace.h>
32 #include <asm/system.h>
33 #include <asm/mca_asm.h>
35 #ifdef CONFIG_HOTPLUG_CPU
36 #define SAL_PSR_BITS_TO_SET \
37 (IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
39 #define SAVE_FROM_REG(src, ptr, dest) \
43 #define RESTORE_REG(reg, ptr, _tmp) \
44 ld8 _tmp=[ptr],0x08;; \
47 #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
48 mov ar.lc=IA64_NUM_DBG_REGS-1;; \
51 SAVE_FROM_REG(_breg[_idx], ptr, _dest);; \
55 #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
56 mov ar.lc=IA64_NUM_DBG_REGS-1;; \
58 _lbl: RESTORE_REG(_breg[_idx], ptr, _tmp);; \
60 br.cloop.sptk.many _lbl
62 #define SAVE_ONE_RR(num, _reg, _tmp) \
63 movl _tmp=(num<<61);; \
66 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
67 SAVE_ONE_RR(0,_r0, _tmp);; \
68 SAVE_ONE_RR(1,_r1, _tmp);; \
69 SAVE_ONE_RR(2,_r2, _tmp);; \
70 SAVE_ONE_RR(3,_r3, _tmp);; \
71 SAVE_ONE_RR(4,_r4, _tmp);; \
72 SAVE_ONE_RR(5,_r5, _tmp);; \
73 SAVE_ONE_RR(6,_r6, _tmp);; \
74 SAVE_ONE_RR(7,_r7, _tmp);;
76 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
86 #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
90 dep.z _idx2=_idx1,61,3;; \
92 mov rr[_idx2]=_tmp;; \
95 br.cloop.sptk.few RestRR
97 #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
98 movl reg1=sal_state_for_booting_cpu;; \
102 * Adjust region registers saved before starting to save
103 * break regs and rest of the states that need to be preserved.
105 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred) \
106 SAVE_FROM_REG(b0,_reg1,_reg2);; \
107 SAVE_FROM_REG(b1,_reg1,_reg2);; \
108 SAVE_FROM_REG(b2,_reg1,_reg2);; \
109 SAVE_FROM_REG(b3,_reg1,_reg2);; \
110 SAVE_FROM_REG(b4,_reg1,_reg2);; \
111 SAVE_FROM_REG(b5,_reg1,_reg2);; \
112 st8 [_reg1]=r1,0x08;; \
113 st8 [_reg1]=r12,0x08;; \
114 st8 [_reg1]=r13,0x08;; \
115 SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);; \
116 SAVE_FROM_REG(ar.pfs,_reg1,_reg2);; \
117 SAVE_FROM_REG(ar.rnat,_reg1,_reg2);; \
118 SAVE_FROM_REG(ar.unat,_reg1,_reg2);; \
119 SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);; \
120 SAVE_FROM_REG(cr.dcr,_reg1,_reg2);; \
121 SAVE_FROM_REG(cr.iva,_reg1,_reg2);; \
122 SAVE_FROM_REG(cr.pta,_reg1,_reg2);; \
123 SAVE_FROM_REG(cr.itv,_reg1,_reg2);; \
124 SAVE_FROM_REG(cr.pmv,_reg1,_reg2);; \
125 SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);; \
126 SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);; \
127 SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);; \
128 st8 [_reg1]=r4,0x08;; \
129 st8 [_reg1]=r5,0x08;; \
130 st8 [_reg1]=r6,0x08;; \
131 st8 [_reg1]=r7,0x08;; \
132 st8 [_reg1]=_pred,0x08;; \
133 SAVE_FROM_REG(ar.lc, _reg1, _reg2);; \
134 stf.spill.nta [_reg1]=f2,16;; \
135 stf.spill.nta [_reg1]=f3,16;; \
136 stf.spill.nta [_reg1]=f4,16;; \
137 stf.spill.nta [_reg1]=f5,16;; \
138 stf.spill.nta [_reg1]=f16,16;; \
139 stf.spill.nta [_reg1]=f17,16;; \
140 stf.spill.nta [_reg1]=f18,16;; \
141 stf.spill.nta [_reg1]=f19,16;; \
142 stf.spill.nta [_reg1]=f20,16;; \
143 stf.spill.nta [_reg1]=f21,16;; \
144 stf.spill.nta [_reg1]=f22,16;; \
145 stf.spill.nta [_reg1]=f23,16;; \
146 stf.spill.nta [_reg1]=f24,16;; \
147 stf.spill.nta [_reg1]=f25,16;; \
148 stf.spill.nta [_reg1]=f26,16;; \
149 stf.spill.nta [_reg1]=f27,16;; \
150 stf.spill.nta [_reg1]=f28,16;; \
151 stf.spill.nta [_reg1]=f29,16;; \
152 stf.spill.nta [_reg1]=f30,16;; \
153 stf.spill.nta [_reg1]=f31,16;;
156 #define SET_AREA_FOR_BOOTING_CPU(a1, a2)
157 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
158 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
159 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
162 #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
163 movl _tmp1=(num << 61);; \
164 mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
167 .section __special_page_section,"ax"
169 .global empty_zero_page
173 .global swapper_pg_dir
179 stringz "Halting kernel\n"
186 * Start the kernel. When the bootloader passes control to _start(), r28
187 * points to the address of the boot parameter area. Execution reaches
188 * here in physical mode.
193 .save rp, r0 // terminate unwind chain with a NULL rp
201 flushrs // must be first insn in group
206 * Save the region registers, predicate before they get clobbered
208 SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
212 * Initialize kernel region registers:
213 * rr[0]: VHPT enabled, page size = PAGE_SHIFT
214 * rr[1]: VHPT enabled, page size = PAGE_SHIFT
215 * rr[2]: VHPT enabled, page size = PAGE_SHIFT
216 * rr[3]: VHPT enabled, page size = PAGE_SHIFT
217 * rr[4]: VHPT enabled, page size = PAGE_SHIFT
218 * rr[5]: VHPT enabled, page size = PAGE_SHIFT
219 * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
220 * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
221 * We initialize all of them to prevent inadvertently assuming
222 * something about the state of address translation early in boot.
224 SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
225 SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
226 SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
227 SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
228 SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
229 SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
230 SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
231 SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
233 * Now pin mappings into the TLB for kernel text and data
235 mov r18=KERNEL_TR_PAGE_SHIFT<<2
236 movl r17=KERNEL_START
240 mov r16=IA64_TR_KERNEL
244 dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
257 * Switch into virtual mode:
259 movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
270 1: // now we are in virtual mode
272 SET_AREA_FOR_BOOTING_CPU(r2, r16);
274 STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
275 SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
278 // set IVT entry point---can't access I/O ports without it
290 #define isAP p2 // are we an Application Processor?
291 #define isBP p3 // are we the Bootstrap Processor?
295 * Find the init_task for the currently booting CPU. At poweron, and in
296 * UP mode, task_for_booting_cpu is NULL.
298 movl r3=task_for_booting_cpu
303 cmp.eq isBP,isAP=r3,r0
308 cmp.eq isBP,isAP=r0,r0
311 tpa r3=r2 // r3 == phys addr of task struct
313 (isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
315 // load mapping for stack (virtaddr in r2, physaddr in r3)
323 dep r2=-1,r3,61,3 // IMVA of task
326 shr.u r16=r3,IA64_GRANULE_SHIFT
333 mov r19=IA64_TR_CURRENT_STACK
342 // load the "current" pointer (r13) and ar.k6 with the current task
343 mov IA64_KR(CURRENT)=r2 // virtual address
344 mov IA64_KR(CURRENT_STACK)=r16
347 * Reserve space at the top of the stack for "struct pt_regs". Kernel
348 * threads don't store interesting values in that structure, but the space
349 * still needs to be there because time-critical stuff such as the context
350 * switching can be implemented more efficiently (for example, __switch_to()
351 * always sets the psr.dfh bit of the task it is switching to).
354 addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
355 addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE
356 mov ar.rsc=0 // place RSE in enforced lazy mode
358 loadrs // clear the dirty partition
359 mov IA64_KR(PER_CPU_DATA)=r0 // clear physical per-CPU base
361 mov ar.bspstore=r2 // establish the new RSE stack
363 mov ar.rsc=0x3 // place RSE in eager mode
365 (isBP) dep r28=-1,r28,61,3 // make address virtual
366 (isBP) movl r2=ia64_boot_param
368 (isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader
371 (isAP) br.call.sptk.many rp=start_secondary
373 (isAP) br.cond.sptk self
376 // This is executed by the bootstrap processor (bsp) only:
378 #ifdef CONFIG_IA64_FW_EMU
379 // initialize PAL & SAL emulator:
380 br.call.sptk.many rp=sys_fw_init
383 br.call.sptk.many rp=start_kernel
384 .ret2: addl r3=@ltoff(halt_msg),gp
386 alloc r2=ar.pfs,8,0,2,0
389 br.call.sptk.many b0=console_print
392 br.sptk.many self // endless loop
395 GLOBAL_ENTRY(ia64_save_debug_regs)
396 alloc r16=ar.pfs,1,0,0,0
397 mov r20=ar.lc // preserve ar.lc
398 mov ar.lc=IA64_NUM_DBG_REGS-1
400 add r19=IA64_NUM_DBG_REGS*8,in0
403 #ifdef CONFIG_ITANIUM
412 br.cloop.sptk.many 1b
414 mov ar.lc=r20 // restore ar.lc
416 END(ia64_save_debug_regs)
418 GLOBAL_ENTRY(ia64_load_debug_regs)
419 alloc r16=ar.pfs,1,0,0,0
421 mov r20=ar.lc // preserve ar.lc
422 add r19=IA64_NUM_DBG_REGS*8,in0
423 mov ar.lc=IA64_NUM_DBG_REGS-1
426 1: ld8.nta r16=[in0],8
431 #ifdef CONFIG_ITANIUM
433 srlz.d // Errata 132 (NoFix status)
436 br.cloop.sptk.many 1b
438 mov ar.lc=r20 // restore ar.lc
440 END(ia64_load_debug_regs)
442 GLOBAL_ENTRY(__ia64_save_fpu)
443 alloc r2=ar.pfs,1,4,0,0
444 adds loc0=96*16-16,in0
445 adds loc1=96*16-16-128,in0
447 stf.spill.nta [loc0]=f127,-256
448 stf.spill.nta [loc1]=f119,-256
450 stf.spill.nta [loc0]=f111,-256
451 stf.spill.nta [loc1]=f103,-256
453 stf.spill.nta [loc0]=f95,-256
454 stf.spill.nta [loc1]=f87,-256
456 stf.spill.nta [loc0]=f79,-256
457 stf.spill.nta [loc1]=f71,-256
459 stf.spill.nta [loc0]=f63,-256
460 stf.spill.nta [loc1]=f55,-256
461 adds loc2=96*16-32,in0
463 stf.spill.nta [loc0]=f47,-256
464 stf.spill.nta [loc1]=f39,-256
465 adds loc3=96*16-32-128,in0
467 stf.spill.nta [loc2]=f126,-256
468 stf.spill.nta [loc3]=f118,-256
470 stf.spill.nta [loc2]=f110,-256
471 stf.spill.nta [loc3]=f102,-256
473 stf.spill.nta [loc2]=f94,-256
474 stf.spill.nta [loc3]=f86,-256
476 stf.spill.nta [loc2]=f78,-256
477 stf.spill.nta [loc3]=f70,-256
479 stf.spill.nta [loc2]=f62,-256
480 stf.spill.nta [loc3]=f54,-256
481 adds loc0=96*16-48,in0
483 stf.spill.nta [loc2]=f46,-256
484 stf.spill.nta [loc3]=f38,-256
485 adds loc1=96*16-48-128,in0
487 stf.spill.nta [loc0]=f125,-256
488 stf.spill.nta [loc1]=f117,-256
490 stf.spill.nta [loc0]=f109,-256
491 stf.spill.nta [loc1]=f101,-256
493 stf.spill.nta [loc0]=f93,-256
494 stf.spill.nta [loc1]=f85,-256
496 stf.spill.nta [loc0]=f77,-256
497 stf.spill.nta [loc1]=f69,-256
499 stf.spill.nta [loc0]=f61,-256
500 stf.spill.nta [loc1]=f53,-256
501 adds loc2=96*16-64,in0
503 stf.spill.nta [loc0]=f45,-256
504 stf.spill.nta [loc1]=f37,-256
505 adds loc3=96*16-64-128,in0
507 stf.spill.nta [loc2]=f124,-256
508 stf.spill.nta [loc3]=f116,-256
510 stf.spill.nta [loc2]=f108,-256
511 stf.spill.nta [loc3]=f100,-256
513 stf.spill.nta [loc2]=f92,-256
514 stf.spill.nta [loc3]=f84,-256
516 stf.spill.nta [loc2]=f76,-256
517 stf.spill.nta [loc3]=f68,-256
519 stf.spill.nta [loc2]=f60,-256
520 stf.spill.nta [loc3]=f52,-256
521 adds loc0=96*16-80,in0
523 stf.spill.nta [loc2]=f44,-256
524 stf.spill.nta [loc3]=f36,-256
525 adds loc1=96*16-80-128,in0
527 stf.spill.nta [loc0]=f123,-256
528 stf.spill.nta [loc1]=f115,-256
530 stf.spill.nta [loc0]=f107,-256
531 stf.spill.nta [loc1]=f99,-256
533 stf.spill.nta [loc0]=f91,-256
534 stf.spill.nta [loc1]=f83,-256
536 stf.spill.nta [loc0]=f75,-256
537 stf.spill.nta [loc1]=f67,-256
539 stf.spill.nta [loc0]=f59,-256
540 stf.spill.nta [loc1]=f51,-256
541 adds loc2=96*16-96,in0
543 stf.spill.nta [loc0]=f43,-256
544 stf.spill.nta [loc1]=f35,-256
545 adds loc3=96*16-96-128,in0
547 stf.spill.nta [loc2]=f122,-256
548 stf.spill.nta [loc3]=f114,-256
550 stf.spill.nta [loc2]=f106,-256
551 stf.spill.nta [loc3]=f98,-256
553 stf.spill.nta [loc2]=f90,-256
554 stf.spill.nta [loc3]=f82,-256
556 stf.spill.nta [loc2]=f74,-256
557 stf.spill.nta [loc3]=f66,-256
559 stf.spill.nta [loc2]=f58,-256
560 stf.spill.nta [loc3]=f50,-256
561 adds loc0=96*16-112,in0
563 stf.spill.nta [loc2]=f42,-256
564 stf.spill.nta [loc3]=f34,-256
565 adds loc1=96*16-112-128,in0
567 stf.spill.nta [loc0]=f121,-256
568 stf.spill.nta [loc1]=f113,-256
570 stf.spill.nta [loc0]=f105,-256
571 stf.spill.nta [loc1]=f97,-256
573 stf.spill.nta [loc0]=f89,-256
574 stf.spill.nta [loc1]=f81,-256
576 stf.spill.nta [loc0]=f73,-256
577 stf.spill.nta [loc1]=f65,-256
579 stf.spill.nta [loc0]=f57,-256
580 stf.spill.nta [loc1]=f49,-256
581 adds loc2=96*16-128,in0
583 stf.spill.nta [loc0]=f41,-256
584 stf.spill.nta [loc1]=f33,-256
585 adds loc3=96*16-128-128,in0
587 stf.spill.nta [loc2]=f120,-256
588 stf.spill.nta [loc3]=f112,-256
590 stf.spill.nta [loc2]=f104,-256
591 stf.spill.nta [loc3]=f96,-256
593 stf.spill.nta [loc2]=f88,-256
594 stf.spill.nta [loc3]=f80,-256
596 stf.spill.nta [loc2]=f72,-256
597 stf.spill.nta [loc3]=f64,-256
599 stf.spill.nta [loc2]=f56,-256
600 stf.spill.nta [loc3]=f48,-256
602 stf.spill.nta [loc2]=f40
603 stf.spill.nta [loc3]=f32
607 GLOBAL_ENTRY(__ia64_load_fpu)
608 alloc r2=ar.pfs,1,2,0,0
615 ldf.fill.nta f32=[in0],loc0
616 ldf.fill.nta f40=[ r3],loc0
617 ldf.fill.nta f48=[r14],loc0
618 ldf.fill.nta f56=[r15],loc0
620 ldf.fill.nta f64=[in0],loc0
621 ldf.fill.nta f72=[ r3],loc0
622 ldf.fill.nta f80=[r14],loc0
623 ldf.fill.nta f88=[r15],loc0
625 ldf.fill.nta f96=[in0],loc1
626 ldf.fill.nta f104=[ r3],loc1
627 ldf.fill.nta f112=[r14],loc1
628 ldf.fill.nta f120=[r15],loc1
630 ldf.fill.nta f33=[in0],loc0
631 ldf.fill.nta f41=[ r3],loc0
632 ldf.fill.nta f49=[r14],loc0
633 ldf.fill.nta f57=[r15],loc0
635 ldf.fill.nta f65=[in0],loc0
636 ldf.fill.nta f73=[ r3],loc0
637 ldf.fill.nta f81=[r14],loc0
638 ldf.fill.nta f89=[r15],loc0
640 ldf.fill.nta f97=[in0],loc1
641 ldf.fill.nta f105=[ r3],loc1
642 ldf.fill.nta f113=[r14],loc1
643 ldf.fill.nta f121=[r15],loc1
645 ldf.fill.nta f34=[in0],loc0
646 ldf.fill.nta f42=[ r3],loc0
647 ldf.fill.nta f50=[r14],loc0
648 ldf.fill.nta f58=[r15],loc0
650 ldf.fill.nta f66=[in0],loc0
651 ldf.fill.nta f74=[ r3],loc0
652 ldf.fill.nta f82=[r14],loc0
653 ldf.fill.nta f90=[r15],loc0
655 ldf.fill.nta f98=[in0],loc1
656 ldf.fill.nta f106=[ r3],loc1
657 ldf.fill.nta f114=[r14],loc1
658 ldf.fill.nta f122=[r15],loc1
660 ldf.fill.nta f35=[in0],loc0
661 ldf.fill.nta f43=[ r3],loc0
662 ldf.fill.nta f51=[r14],loc0
663 ldf.fill.nta f59=[r15],loc0
665 ldf.fill.nta f67=[in0],loc0
666 ldf.fill.nta f75=[ r3],loc0
667 ldf.fill.nta f83=[r14],loc0
668 ldf.fill.nta f91=[r15],loc0
670 ldf.fill.nta f99=[in0],loc1
671 ldf.fill.nta f107=[ r3],loc1
672 ldf.fill.nta f115=[r14],loc1
673 ldf.fill.nta f123=[r15],loc1
675 ldf.fill.nta f36=[in0],loc0
676 ldf.fill.nta f44=[ r3],loc0
677 ldf.fill.nta f52=[r14],loc0
678 ldf.fill.nta f60=[r15],loc0
680 ldf.fill.nta f68=[in0],loc0
681 ldf.fill.nta f76=[ r3],loc0
682 ldf.fill.nta f84=[r14],loc0
683 ldf.fill.nta f92=[r15],loc0
685 ldf.fill.nta f100=[in0],loc1
686 ldf.fill.nta f108=[ r3],loc1
687 ldf.fill.nta f116=[r14],loc1
688 ldf.fill.nta f124=[r15],loc1
690 ldf.fill.nta f37=[in0],loc0
691 ldf.fill.nta f45=[ r3],loc0
692 ldf.fill.nta f53=[r14],loc0
693 ldf.fill.nta f61=[r15],loc0
695 ldf.fill.nta f69=[in0],loc0
696 ldf.fill.nta f77=[ r3],loc0
697 ldf.fill.nta f85=[r14],loc0
698 ldf.fill.nta f93=[r15],loc0
700 ldf.fill.nta f101=[in0],loc1
701 ldf.fill.nta f109=[ r3],loc1
702 ldf.fill.nta f117=[r14],loc1
703 ldf.fill.nta f125=[r15],loc1
705 ldf.fill.nta f38 =[in0],loc0
706 ldf.fill.nta f46 =[ r3],loc0
707 ldf.fill.nta f54 =[r14],loc0
708 ldf.fill.nta f62 =[r15],loc0
710 ldf.fill.nta f70 =[in0],loc0
711 ldf.fill.nta f78 =[ r3],loc0
712 ldf.fill.nta f86 =[r14],loc0
713 ldf.fill.nta f94 =[r15],loc0
715 ldf.fill.nta f102=[in0],loc1
716 ldf.fill.nta f110=[ r3],loc1
717 ldf.fill.nta f118=[r14],loc1
718 ldf.fill.nta f126=[r15],loc1
720 ldf.fill.nta f39 =[in0],loc0
721 ldf.fill.nta f47 =[ r3],loc0
722 ldf.fill.nta f55 =[r14],loc0
723 ldf.fill.nta f63 =[r15],loc0
725 ldf.fill.nta f71 =[in0],loc0
726 ldf.fill.nta f79 =[ r3],loc0
727 ldf.fill.nta f87 =[r14],loc0
728 ldf.fill.nta f95 =[r15],loc0
730 ldf.fill.nta f103=[in0]
731 ldf.fill.nta f111=[ r3]
732 ldf.fill.nta f119=[r14]
733 ldf.fill.nta f127=[r15]
737 GLOBAL_ENTRY(__ia64_init_fpu)
738 stf.spill [sp]=f0 // M3
742 ldfps f33,f34=[sp] // M0
743 ldfps f35,f36=[sp] // M1
751 ldfps f41,f42=[sp] // M0
752 ldfps f43,f44=[sp] // M1
759 ldfps f49,f50=[sp] // M0
760 ldfps f51,f52=[sp] // M1
767 ldfps f57,f58=[sp] // M0
768 ldfps f59,f60=[sp] // M1
775 ldfps f65,f66=[sp] // M0
776 ldfps f67,f68=[sp] // M1
783 ldfps f73,f74=[sp] // M0
784 ldfps f75,f76=[sp] // M1
791 ldfps f81,f82=[sp] // M0
792 ldfps f83,f84=[sp] // M1
800 * When the instructions are cached, it would be faster to initialize
801 * the remaining registers with simply mov instructions (F-unit).
802 * This gets the time down to ~29 cycles. However, this would use up
803 * 33 bundles, whereas continuing with the above pattern yields
804 * 10 bundles and ~30 cycles.
807 ldfps f89,f90=[sp] // M0
808 ldfps f91,f92=[sp] // M1
815 ldfps f97,f98=[sp] // M0
816 ldfps f99,f100=[sp] // M1
823 ldfps f105,f106=[sp] // M0
824 ldfps f107,f108=[sp] // M1
831 ldfps f113,f114=[sp] // M0
832 ldfps f115,f116=[sp] // M1
839 ldfps f121,f122=[sp] // M0
840 ldfps f123,f124=[sp] // M1
845 br.ret.sptk.many rp // F
849 * Switch execution mode from virtual to physical
852 * r16 = new psr to establish
854 * r19 = old virtual address of ar.bsp
855 * r20 = old virtual address of sp
857 * Note: RSE must already be in enforced lazy mode
859 GLOBAL_ENTRY(ia64_switch_mode_phys)
861 rsm psr.i | psr.ic // disable interrupts and interrupt collection
866 flushrs // must be first insn in group
870 mov cr.ipsr=r16 // set new PSR
871 add r3=1f-ia64_switch_mode_phys,r15
875 mov r14=rp // get return address into a general register
878 // going to physical mode, use tpa to translate virt->phys
885 mov r18=ar.rnat // save ar.rnat
886 mov ar.bspstore=r17 // this steps on ar.rnat
890 mov ar.rnat=r18 // restore ar.rnat
891 rfi // must be last insn in group
895 END(ia64_switch_mode_phys)
898 * Switch execution mode from physical to virtual
901 * r16 = new psr to establish
902 * r19 = new bspstore to establish
903 * r20 = new sp to establish
905 * Note: RSE must already be in enforced lazy mode
907 GLOBAL_ENTRY(ia64_switch_mode_virt)
909 rsm psr.i | psr.ic // disable interrupts and interrupt collection
914 flushrs // must be first insn in group
918 mov cr.ipsr=r16 // set new PSR
919 add r3=1f-ia64_switch_mode_virt,r15
921 mov r14=rp // get return address into a general register
925 // - for code addresses, set upper bits of addr to KERNEL_START
926 // - for stack addresses, copy from input argument
927 movl r18=KERNEL_START
928 dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
929 dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
936 mov r18=ar.rnat // save ar.rnat
937 mov ar.bspstore=r19 // this steps on ar.rnat
941 mov ar.rnat=r18 // restore ar.rnat
942 rfi // must be last insn in group
946 END(ia64_switch_mode_virt)
948 GLOBAL_ENTRY(ia64_delay_loop)
950 { nop 0 // work around GAS unwind info generation bug...
958 // force loop to be 32-byte aligned (GAS bug means we cannot use .align
959 // inside function body without corrupting unwind info).
961 1: br.cloop.sptk.few 1b
968 * Return a CPU-local timestamp in nano-seconds. This timestamp is
969 * NOT synchronized across CPUs its return value must never be
970 * compared against the values returned on another CPU. The usage in
971 * kernel/sched.c ensures that.
973 * The return-value of sched_clock() is NOT supposed to wrap-around.
974 * If it did, it would cause some scheduling hiccups (at the worst).
975 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
976 * that would happen only once every 5+ years.
978 * The code below basically calculates:
980 * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
982 * except that the multiplication and the shift are done with 128-bit
983 * intermediate precision so that we can produce a full 64-bit result.
985 GLOBAL_ENTRY(sched_clock)
986 addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
987 mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
991 setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8...
993 xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
994 xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
996 getf.sig r8=f10 // (5 cyc)
999 shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1003 GLOBAL_ENTRY(start_kernel_thread)
1005 .save rp, r0 // this is the end of the call-chain
1007 alloc r2 = ar.pfs, 0, 0, 2, 0
1010 br.call.sptk.many rp = kernel_thread_helper;;
1012 br.call.sptk.many rp = sys_exit;;
1013 1: br.sptk.few 1b // not reached
1014 END(start_kernel_thread)
1016 #ifdef CONFIG_IA64_BRL_EMU
1019 * Assembly routines used by brl_emu.c to set preserved register state.
1022 #define SET_REG(reg) \
1023 GLOBAL_ENTRY(ia64_set_##reg); \
1024 alloc r16=ar.pfs,1,0,0,0; \
1027 br.ret.sptk.many rp; \
1036 #endif /* CONFIG_IA64_BRL_EMU */
1040 * This routine handles spinlock contention. It uses a non-standard calling
1041 * convention to avoid converting leaf routines into interior routines. Because
1042 * of this special convention, there are several restrictions:
1044 * - do not use gp relative variables, this code is called from the kernel
1045 * and from modules, r1 is undefined.
1046 * - do not use stacked registers, the caller owns them.
1047 * - do not use the scratch stack space, the caller owns it.
1048 * - do not use any registers other than the ones listed below
1051 * ar.pfs - saved CFM of caller
1052 * ar.ccv - 0 (and available for use)
1053 * r27 - flags from spin_lock_irqsave or 0. Must be preserved.
1054 * r28 - available for use.
1055 * r29 - available for use.
1056 * r30 - available for use.
1057 * r31 - address of lock, available for use.
1058 * b6 - return address
1059 * p14 - available for use.
1060 * p15 - used to track flag status.
1062 * If you patch this code to use more registers, do not forget to update
1063 * the clobber lists for spin_lock() in include/asm-ia64/spinlock.h.
1066 #if (__GNUC__ == 3 && __GNUC_MINOR__ < 3)
1068 GLOBAL_ENTRY(ia64_spinlock_contention_pre3_4)
1070 .save ar.pfs, r0 // this code effectively has a zero frame size
1074 tbit.nz p15,p0=r27,IA64_PSR_I_BIT
1075 .restore sp // pop existing prologue after next insn
1082 (p15) ssm psr.i // reenable interrupts if they were on
1083 // DavidM says that srlz.d is slow and is not required in this case
1085 // exponential backoff, kdb, lockmeter etc. go in here
1087 ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
1090 cmp4.ne p14,p0=r30,r0
1091 (p14) br.cond.sptk.few .wait
1092 (p15) rsm psr.i // disable interrupts if we reenabled them
1093 br.cond.sptk.few b6 // lock is now free, try to acquire
1094 .global ia64_spinlock_contention_pre3_4_end // for kernprof
1095 ia64_spinlock_contention_pre3_4_end:
1096 END(ia64_spinlock_contention_pre3_4)
1100 GLOBAL_ENTRY(ia64_spinlock_contention)
1104 tbit.nz p15,p0=r27,IA64_PSR_I_BIT
1107 (p15) ssm psr.i // reenable interrupts if they were on
1108 // DavidM says that srlz.d is slow and is not required in this case
1110 // exponential backoff, kdb, lockmeter etc. go in here
1112 ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
1114 cmp4.ne p14,p0=r30,r0
1116 (p14) br.cond.sptk.few .wait2
1117 (p15) rsm psr.i // disable interrupts if we reenabled them
1119 cmpxchg4.acq r30=[r31], r30, ar.ccv
1121 cmp4.ne p14,p0=r0,r30
1122 (p14) br.cond.sptk.few .wait
1124 br.ret.sptk.many b6 // lock is now taken
1125 END(ia64_spinlock_contention)
1129 #ifdef CONFIG_HOTPLUG_CPU
1130 GLOBAL_ENTRY(ia64_jump_to_sal)
1131 alloc r16=ar.pfs,1,0,0,0;;
1138 movl r18=tlb_purge_done;;
1139 DATA_VA_TO_PA(r18);;
1140 mov b1=r18 // Return location
1141 movl r18=ia64_do_tlb_purge;;
1142 DATA_VA_TO_PA(r18);;
1143 mov b2=r18 // doing tlb_flush work
1144 mov ar.rsc=0 // Put RSE in enforced lazy, LE mode
1146 DATA_VA_TO_PA(r17);;
1148 movl r16=SAL_PSR_BITS_TO_SET;;
1154 * Invalidate all TLB data/inst
1156 br.sptk.many b2;; // jump to tlb purge code
1159 RESTORE_REGION_REGS(r25, r17,r18,r19);;
1160 RESTORE_REG(b0, r25, r17);;
1161 RESTORE_REG(b1, r25, r17);;
1162 RESTORE_REG(b2, r25, r17);;
1163 RESTORE_REG(b3, r25, r17);;
1164 RESTORE_REG(b4, r25, r17);;
1165 RESTORE_REG(b5, r25, r17);;
1167 ld8 r12=[r25],0x08;;
1168 ld8 r13=[r25],0x08;;
1169 RESTORE_REG(ar.fpsr, r25, r17);;
1170 RESTORE_REG(ar.pfs, r25, r17);;
1171 RESTORE_REG(ar.rnat, r25, r17);;
1172 RESTORE_REG(ar.unat, r25, r17);;
1173 RESTORE_REG(ar.bspstore, r25, r17);;
1174 RESTORE_REG(cr.dcr, r25, r17);;
1175 RESTORE_REG(cr.iva, r25, r17);;
1176 RESTORE_REG(cr.pta, r25, r17);;
1177 RESTORE_REG(cr.itv, r25, r17);;
1178 RESTORE_REG(cr.pmv, r25, r17);;
1179 RESTORE_REG(cr.cmcv, r25, r17);;
1180 RESTORE_REG(cr.lrr0, r25, r17);;
1181 RESTORE_REG(cr.lrr1, r25, r17);;
1186 ld8 r17=[r25],0x08;;
1188 RESTORE_REG(ar.lc, r25, r17);;
1190 * Now Restore floating point regs
1192 ldf.fill.nta f2=[r25],16;;
1193 ldf.fill.nta f3=[r25],16;;
1194 ldf.fill.nta f4=[r25],16;;
1195 ldf.fill.nta f5=[r25],16;;
1196 ldf.fill.nta f16=[r25],16;;
1197 ldf.fill.nta f17=[r25],16;;
1198 ldf.fill.nta f18=[r25],16;;
1199 ldf.fill.nta f19=[r25],16;;
1200 ldf.fill.nta f20=[r25],16;;
1201 ldf.fill.nta f21=[r25],16;;
1202 ldf.fill.nta f22=[r25],16;;
1203 ldf.fill.nta f23=[r25],16;;
1204 ldf.fill.nta f24=[r25],16;;
1205 ldf.fill.nta f25=[r25],16;;
1206 ldf.fill.nta f26=[r25],16;;
1207 ldf.fill.nta f27=[r25],16;;
1208 ldf.fill.nta f28=[r25],16;;
1209 ldf.fill.nta f29=[r25],16;;
1210 ldf.fill.nta f30=[r25],16;;
1211 ldf.fill.nta f31=[r25],16;;
1214 * Now that we have done all the register restores
1215 * we are now ready for the big DIVE to SAL Land
1219 br.ret.sptk.many b0;;
1220 END(ia64_jump_to_sal)
1221 #endif /* CONFIG_HOTPLUG_CPU */
1223 #endif /* CONFIG_SMP */