4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
44 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
45 static void invalidate_bh_lrus(void);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
65 blk_run_address_space(bd->bd_inode->i_mapping);
70 void fastcall __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void fastcall unlock_buffer(struct buffer_head *bh)
79 clear_buffer_locked(bh);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
99 page_cache_release(page);
102 static void buffer_io_error(struct buffer_head *bh)
104 char b[BDEVNAME_SIZE];
106 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
107 bdevname(bh->b_bdev, b),
108 (unsigned long long)bh->b_blocknr);
112 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
113 * unlock the buffer. This is what ll_rw_block uses too.
115 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 set_buffer_uptodate(bh);
120 /* This happens, due to failed READA attempts. */
121 clear_buffer_uptodate(bh);
127 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 char b[BDEVNAME_SIZE];
132 set_buffer_uptodate(bh);
134 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 printk(KERN_WARNING "lost page write due to "
138 bdevname(bh->b_bdev, b));
140 set_buffer_write_io_error(bh);
141 clear_buffer_uptodate(bh);
148 * Write out and wait upon all the dirty data associated with a block
149 * device via its mapping. Does not take the superblock lock.
151 int sync_blockdev(struct block_device *bdev)
158 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
159 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
165 EXPORT_SYMBOL(sync_blockdev);
168 * Write out and wait upon all dirty data associated with this
169 * superblock. Filesystem data as well as the underlying block
170 * device. Takes the superblock lock.
172 int fsync_super(struct super_block *sb)
174 sync_inodes_sb(sb, 0);
177 if (sb->s_dirt && sb->s_op->write_super)
178 sb->s_op->write_super(sb);
180 if (sb->s_op->sync_fs)
181 sb->s_op->sync_fs(sb, 1);
182 sync_blockdev(sb->s_bdev);
183 sync_inodes_sb(sb, 1);
185 return sync_blockdev(sb->s_bdev);
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
193 int fsync_bdev(struct block_device *bdev)
195 struct super_block *sb = get_super(bdev);
197 int res = fsync_super(sb);
201 return sync_blockdev(bdev);
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
208 * This takes the block device bd_mount_sem to make sure no new mounts
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
213 struct super_block *freeze_bdev(struct block_device *bdev)
215 struct super_block *sb;
217 down(&bdev->bd_mount_sem);
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
223 sync_inodes_sb(sb, 0);
227 if (sb->s_dirt && sb->s_op->write_super)
228 sb->s_op->write_super(sb);
231 if (sb->s_op->sync_fs)
232 sb->s_op->sync_fs(sb, 1);
234 sync_blockdev(sb->s_bdev);
235 sync_inodes_sb(sb, 1);
237 sb->s_frozen = SB_FREEZE_TRANS;
240 sync_blockdev(sb->s_bdev);
242 if (sb->s_op->write_super_lockfs)
243 sb->s_op->write_super_lockfs(sb);
247 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
249 EXPORT_SYMBOL(freeze_bdev);
252 * thaw_bdev -- unlock filesystem
253 * @bdev: blockdevice to unlock
254 * @sb: associated superblock
256 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
258 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
261 BUG_ON(sb->s_bdev != bdev);
263 if (sb->s_op->unlockfs)
264 sb->s_op->unlockfs(sb);
265 sb->s_frozen = SB_UNFROZEN;
267 wake_up(&sb->s_wait_unfrozen);
271 up(&bdev->bd_mount_sem);
273 EXPORT_SYMBOL(thaw_bdev);
276 * sync everything. Start out by waking pdflush, because that writes back
277 * all queues in parallel.
279 static void do_sync(unsigned long wait)
282 sync_inodes(0); /* All mappings, inodes and their blockdevs */
284 sync_supers(); /* Write the superblocks */
285 sync_filesystems(0); /* Start syncing the filesystems */
286 sync_filesystems(wait); /* Waitingly sync the filesystems */
287 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
289 printk("Emergency Sync complete\n");
290 if (unlikely(laptop_mode))
291 laptop_sync_completion();
294 asmlinkage long sys_sync(void)
300 void emergency_sync(void)
302 pdflush_operation(do_sync, 0);
306 * Generic function to fsync a file.
308 * filp may be NULL if called via the msync of a vma.
311 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
313 struct inode * inode = dentry->d_inode;
314 struct super_block * sb;
317 /* sync the inode to buffers */
318 ret = write_inode_now(inode, 0);
320 /* sync the superblock to buffers */
323 if (sb->s_op->write_super)
324 sb->s_op->write_super(sb);
327 /* .. finally sync the buffers to disk */
328 err = sync_blockdev(sb->s_bdev);
334 asmlinkage long sys_fsync(unsigned int fd)
337 struct address_space *mapping;
345 mapping = file->f_mapping;
348 if (!file->f_op || !file->f_op->fsync) {
349 /* Why? We can still call filemap_fdatawrite */
353 current->flags |= PF_SYNCWRITE;
354 ret = filemap_fdatawrite(mapping);
357 * We need to protect against concurrent writers,
358 * which could cause livelocks in fsync_buffers_list
360 down(&mapping->host->i_sem);
361 err = file->f_op->fsync(file, file->f_dentry, 0);
364 up(&mapping->host->i_sem);
365 err = filemap_fdatawait(mapping);
368 current->flags &= ~PF_SYNCWRITE;
376 asmlinkage long sys_fdatasync(unsigned int fd)
379 struct address_space *mapping;
388 if (!file->f_op || !file->f_op->fsync)
391 mapping = file->f_mapping;
393 current->flags |= PF_SYNCWRITE;
394 ret = filemap_fdatawrite(mapping);
395 down(&mapping->host->i_sem);
396 err = file->f_op->fsync(file, file->f_dentry, 1);
399 up(&mapping->host->i_sem);
400 err = filemap_fdatawait(mapping);
403 current->flags &= ~PF_SYNCWRITE;
412 * Various filesystems appear to want __find_get_block to be non-blocking.
413 * But it's the page lock which protects the buffers. To get around this,
414 * we get exclusion from try_to_free_buffers with the blockdev mapping's
417 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
418 * may be quite high. This code could TryLock the page, and if that
419 * succeeds, there is no need to take private_lock. (But if
420 * private_lock is contended then so is mapping->tree_lock).
422 static struct buffer_head *
423 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
425 struct inode *bd_inode = bdev->bd_inode;
426 struct address_space *bd_mapping = bd_inode->i_mapping;
427 struct buffer_head *ret = NULL;
429 struct buffer_head *bh;
430 struct buffer_head *head;
434 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
435 page = find_get_page(bd_mapping, index);
439 spin_lock(&bd_mapping->private_lock);
440 if (!page_has_buffers(page))
442 head = page_buffers(page);
445 if (bh->b_blocknr == block) {
450 if (!buffer_mapped(bh))
452 bh = bh->b_this_page;
453 } while (bh != head);
455 /* we might be here because some of the buffers on this page are
456 * not mapped. This is due to various races between
457 * file io on the block device and getblk. It gets dealt with
458 * elsewhere, don't buffer_error if we had some unmapped buffers
461 printk("__find_get_block_slow() failed. "
462 "block=%llu, b_blocknr=%llu\n",
463 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
464 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
465 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
468 spin_unlock(&bd_mapping->private_lock);
469 page_cache_release(page);
474 /* If invalidate_buffers() will trash dirty buffers, it means some kind
475 of fs corruption is going on. Trashing dirty data always imply losing
476 information that was supposed to be just stored on the physical layer
479 Thus invalidate_buffers in general usage is not allwowed to trash
480 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
481 be preserved. These buffers are simply skipped.
483 We also skip buffers which are still in use. For example this can
484 happen if a userspace program is reading the block device.
486 NOTE: In the case where the user removed a removable-media-disk even if
487 there's still dirty data not synced on disk (due a bug in the device driver
488 or due an error of the user), by not destroying the dirty buffers we could
489 generate corruption also on the next media inserted, thus a parameter is
490 necessary to handle this case in the most safe way possible (trying
491 to not corrupt also the new disk inserted with the data belonging to
492 the old now corrupted disk). Also for the ramdisk the natural thing
493 to do in order to release the ramdisk memory is to destroy dirty buffers.
495 These are two special cases. Normal usage imply the device driver
496 to issue a sync on the device (without waiting I/O completion) and
497 then an invalidate_buffers call that doesn't trash dirty buffers.
499 For handling cache coherency with the blkdev pagecache the 'update' case
500 is been introduced. It is needed to re-read from disk any pinned
501 buffer. NOTE: re-reading from disk is destructive so we can do it only
502 when we assume nobody is changing the buffercache under our I/O and when
503 we think the disk contains more recent information than the buffercache.
504 The update == 1 pass marks the buffers we need to update, the update == 2
505 pass does the actual I/O. */
506 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
508 invalidate_bh_lrus();
510 * FIXME: what about destroy_dirty_buffers?
511 * We really want to use invalidate_inode_pages2() for
512 * that, but not until that's cleaned up.
514 invalidate_inode_pages(bdev->bd_inode->i_mapping);
518 * Kick pdflush then try to free up some ZONE_NORMAL memory.
520 static void free_more_memory(void)
525 wakeup_bdflush(1024);
528 for_each_pgdat(pgdat) {
529 zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
531 try_to_free_pages(zones, GFP_NOFS, 0);
536 * I/O completion handler for block_read_full_page() - pages
537 * which come unlocked at the end of I/O.
539 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
541 static DEFINE_SPINLOCK(page_uptodate_lock);
543 struct buffer_head *tmp;
545 int page_uptodate = 1;
547 BUG_ON(!buffer_async_read(bh));
551 set_buffer_uptodate(bh);
553 clear_buffer_uptodate(bh);
554 if (printk_ratelimit())
560 * Be _very_ careful from here on. Bad things can happen if
561 * two buffer heads end IO at almost the same time and both
562 * decide that the page is now completely done.
564 spin_lock_irqsave(&page_uptodate_lock, flags);
565 clear_buffer_async_read(bh);
569 if (!buffer_uptodate(tmp))
571 if (buffer_async_read(tmp)) {
572 BUG_ON(!buffer_locked(tmp));
575 tmp = tmp->b_this_page;
577 spin_unlock_irqrestore(&page_uptodate_lock, flags);
580 * If none of the buffers had errors and they are all
581 * uptodate then we can set the page uptodate.
583 if (page_uptodate && !PageError(page))
584 SetPageUptodate(page);
589 spin_unlock_irqrestore(&page_uptodate_lock, flags);
594 * Completion handler for block_write_full_page() - pages which are unlocked
595 * during I/O, and which have PageWriteback cleared upon I/O completion.
597 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
599 char b[BDEVNAME_SIZE];
600 static DEFINE_SPINLOCK(page_uptodate_lock);
602 struct buffer_head *tmp;
605 BUG_ON(!buffer_async_write(bh));
609 set_buffer_uptodate(bh);
611 if (printk_ratelimit()) {
613 printk(KERN_WARNING "lost page write due to "
615 bdevname(bh->b_bdev, b));
617 set_bit(AS_EIO, &page->mapping->flags);
618 clear_buffer_uptodate(bh);
622 spin_lock_irqsave(&page_uptodate_lock, flags);
623 clear_buffer_async_write(bh);
625 tmp = bh->b_this_page;
627 if (buffer_async_write(tmp)) {
628 BUG_ON(!buffer_locked(tmp));
631 tmp = tmp->b_this_page;
633 spin_unlock_irqrestore(&page_uptodate_lock, flags);
634 end_page_writeback(page);
638 spin_unlock_irqrestore(&page_uptodate_lock, flags);
643 * If a page's buffers are under async readin (end_buffer_async_read
644 * completion) then there is a possibility that another thread of
645 * control could lock one of the buffers after it has completed
646 * but while some of the other buffers have not completed. This
647 * locked buffer would confuse end_buffer_async_read() into not unlocking
648 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
649 * that this buffer is not under async I/O.
651 * The page comes unlocked when it has no locked buffer_async buffers
654 * PageLocked prevents anyone starting new async I/O reads any of
657 * PageWriteback is used to prevent simultaneous writeout of the same
660 * PageLocked prevents anyone from starting writeback of a page which is
661 * under read I/O (PageWriteback is only ever set against a locked page).
663 static void mark_buffer_async_read(struct buffer_head *bh)
665 bh->b_end_io = end_buffer_async_read;
666 set_buffer_async_read(bh);
669 void mark_buffer_async_write(struct buffer_head *bh)
671 bh->b_end_io = end_buffer_async_write;
672 set_buffer_async_write(bh);
674 EXPORT_SYMBOL(mark_buffer_async_write);
678 * fs/buffer.c contains helper functions for buffer-backed address space's
679 * fsync functions. A common requirement for buffer-based filesystems is
680 * that certain data from the backing blockdev needs to be written out for
681 * a successful fsync(). For example, ext2 indirect blocks need to be
682 * written back and waited upon before fsync() returns.
684 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
685 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
686 * management of a list of dependent buffers at ->i_mapping->private_list.
688 * Locking is a little subtle: try_to_free_buffers() will remove buffers
689 * from their controlling inode's queue when they are being freed. But
690 * try_to_free_buffers() will be operating against the *blockdev* mapping
691 * at the time, not against the S_ISREG file which depends on those buffers.
692 * So the locking for private_list is via the private_lock in the address_space
693 * which backs the buffers. Which is different from the address_space
694 * against which the buffers are listed. So for a particular address_space,
695 * mapping->private_lock does *not* protect mapping->private_list! In fact,
696 * mapping->private_list will always be protected by the backing blockdev's
699 * Which introduces a requirement: all buffers on an address_space's
700 * ->private_list must be from the same address_space: the blockdev's.
702 * address_spaces which do not place buffers at ->private_list via these
703 * utility functions are free to use private_lock and private_list for
704 * whatever they want. The only requirement is that list_empty(private_list)
705 * be true at clear_inode() time.
707 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
708 * filesystems should do that. invalidate_inode_buffers() should just go
709 * BUG_ON(!list_empty).
711 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
712 * take an address_space, not an inode. And it should be called
713 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
716 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
717 * list if it is already on a list. Because if the buffer is on a list,
718 * it *must* already be on the right one. If not, the filesystem is being
719 * silly. This will save a ton of locking. But first we have to ensure
720 * that buffers are taken *off* the old inode's list when they are freed
721 * (presumably in truncate). That requires careful auditing of all
722 * filesystems (do it inside bforget()). It could also be done by bringing
727 * The buffer's backing address_space's private_lock must be held
729 static inline void __remove_assoc_queue(struct buffer_head *bh)
731 list_del_init(&bh->b_assoc_buffers);
734 int inode_has_buffers(struct inode *inode)
736 return !list_empty(&inode->i_data.private_list);
740 * osync is designed to support O_SYNC io. It waits synchronously for
741 * all already-submitted IO to complete, but does not queue any new
742 * writes to the disk.
744 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
745 * you dirty the buffers, and then use osync_inode_buffers to wait for
746 * completion. Any other dirty buffers which are not yet queued for
747 * write will not be flushed to disk by the osync.
749 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
751 struct buffer_head *bh;
757 list_for_each_prev(p, list) {
759 if (buffer_locked(bh)) {
763 if (!buffer_uptodate(bh))
775 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
777 * @buffer_mapping - the mapping which backs the buffers' data
778 * @mapping - the mapping which wants those buffers written
780 * Starts I/O against the buffers at mapping->private_list, and waits upon
783 * Basically, this is a convenience function for fsync(). @buffer_mapping is
784 * the blockdev which "owns" the buffers and @mapping is a file or directory
785 * which needs those buffers to be written for a successful fsync().
787 int sync_mapping_buffers(struct address_space *mapping)
789 struct address_space *buffer_mapping = mapping->assoc_mapping;
791 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
794 return fsync_buffers_list(&buffer_mapping->private_lock,
795 &mapping->private_list);
797 EXPORT_SYMBOL(sync_mapping_buffers);
800 * Called when we've recently written block `bblock', and it is known that
801 * `bblock' was for a buffer_boundary() buffer. This means that the block at
802 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
803 * dirty, schedule it for IO. So that indirects merge nicely with their data.
805 void write_boundary_block(struct block_device *bdev,
806 sector_t bblock, unsigned blocksize)
808 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
810 if (buffer_dirty(bh))
811 ll_rw_block(WRITE, 1, &bh);
816 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
818 struct address_space *mapping = inode->i_mapping;
819 struct address_space *buffer_mapping = bh->b_page->mapping;
821 mark_buffer_dirty(bh);
822 if (!mapping->assoc_mapping) {
823 mapping->assoc_mapping = buffer_mapping;
825 if (mapping->assoc_mapping != buffer_mapping)
828 if (list_empty(&bh->b_assoc_buffers)) {
829 spin_lock(&buffer_mapping->private_lock);
830 list_move_tail(&bh->b_assoc_buffers,
831 &mapping->private_list);
832 spin_unlock(&buffer_mapping->private_lock);
835 EXPORT_SYMBOL(mark_buffer_dirty_inode);
838 * Add a page to the dirty page list.
840 * It is a sad fact of life that this function is called from several places
841 * deeply under spinlocking. It may not sleep.
843 * If the page has buffers, the uptodate buffers are set dirty, to preserve
844 * dirty-state coherency between the page and the buffers. It the page does
845 * not have buffers then when they are later attached they will all be set
848 * The buffers are dirtied before the page is dirtied. There's a small race
849 * window in which a writepage caller may see the page cleanness but not the
850 * buffer dirtiness. That's fine. If this code were to set the page dirty
851 * before the buffers, a concurrent writepage caller could clear the page dirty
852 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
853 * page on the dirty page list.
855 * We use private_lock to lock against try_to_free_buffers while using the
856 * page's buffer list. Also use this to protect against clean buffers being
857 * added to the page after it was set dirty.
859 * FIXME: may need to call ->reservepage here as well. That's rather up to the
860 * address_space though.
862 int __set_page_dirty_buffers(struct page *page)
864 struct address_space * const mapping = page->mapping;
866 spin_lock(&mapping->private_lock);
867 if (page_has_buffers(page)) {
868 struct buffer_head *head = page_buffers(page);
869 struct buffer_head *bh = head;
872 set_buffer_dirty(bh);
873 bh = bh->b_this_page;
874 } while (bh != head);
876 spin_unlock(&mapping->private_lock);
878 if (!TestSetPageDirty(page)) {
879 write_lock_irq(&mapping->tree_lock);
880 if (page->mapping) { /* Race with truncate? */
881 if (mapping_cap_account_dirty(mapping))
882 inc_page_state(nr_dirty);
883 radix_tree_tag_set(&mapping->page_tree,
885 PAGECACHE_TAG_DIRTY);
887 write_unlock_irq(&mapping->tree_lock);
888 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
893 EXPORT_SYMBOL(__set_page_dirty_buffers);
896 * Write out and wait upon a list of buffers.
898 * We have conflicting pressures: we want to make sure that all
899 * initially dirty buffers get waited on, but that any subsequently
900 * dirtied buffers don't. After all, we don't want fsync to last
901 * forever if somebody is actively writing to the file.
903 * Do this in two main stages: first we copy dirty buffers to a
904 * temporary inode list, queueing the writes as we go. Then we clean
905 * up, waiting for those writes to complete.
907 * During this second stage, any subsequent updates to the file may end
908 * up refiling the buffer on the original inode's dirty list again, so
909 * there is a chance we will end up with a buffer queued for write but
910 * not yet completed on that list. So, as a final cleanup we go through
911 * the osync code to catch these locked, dirty buffers without requeuing
912 * any newly dirty buffers for write.
914 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
916 struct buffer_head *bh;
917 struct list_head tmp;
920 INIT_LIST_HEAD(&tmp);
923 while (!list_empty(list)) {
924 bh = BH_ENTRY(list->next);
925 list_del_init(&bh->b_assoc_buffers);
926 if (buffer_dirty(bh) || buffer_locked(bh)) {
927 list_add(&bh->b_assoc_buffers, &tmp);
928 if (buffer_dirty(bh)) {
932 * Ensure any pending I/O completes so that
933 * ll_rw_block() actually writes the current
934 * contents - it is a noop if I/O is still in
935 * flight on potentially older contents.
938 ll_rw_block(WRITE, 1, &bh);
945 while (!list_empty(&tmp)) {
946 bh = BH_ENTRY(tmp.prev);
947 __remove_assoc_queue(bh);
951 if (!buffer_uptodate(bh))
958 err2 = osync_buffers_list(lock, list);
966 * Invalidate any and all dirty buffers on a given inode. We are
967 * probably unmounting the fs, but that doesn't mean we have already
968 * done a sync(). Just drop the buffers from the inode list.
970 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
971 * assumes that all the buffers are against the blockdev. Not true
974 void invalidate_inode_buffers(struct inode *inode)
976 if (inode_has_buffers(inode)) {
977 struct address_space *mapping = &inode->i_data;
978 struct list_head *list = &mapping->private_list;
979 struct address_space *buffer_mapping = mapping->assoc_mapping;
981 spin_lock(&buffer_mapping->private_lock);
982 while (!list_empty(list))
983 __remove_assoc_queue(BH_ENTRY(list->next));
984 spin_unlock(&buffer_mapping->private_lock);
989 * Remove any clean buffers from the inode's buffer list. This is called
990 * when we're trying to free the inode itself. Those buffers can pin it.
992 * Returns true if all buffers were removed.
994 int remove_inode_buffers(struct inode *inode)
998 if (inode_has_buffers(inode)) {
999 struct address_space *mapping = &inode->i_data;
1000 struct list_head *list = &mapping->private_list;
1001 struct address_space *buffer_mapping = mapping->assoc_mapping;
1003 spin_lock(&buffer_mapping->private_lock);
1004 while (!list_empty(list)) {
1005 struct buffer_head *bh = BH_ENTRY(list->next);
1006 if (buffer_dirty(bh)) {
1010 __remove_assoc_queue(bh);
1012 spin_unlock(&buffer_mapping->private_lock);
1018 * Create the appropriate buffers when given a page for data area and
1019 * the size of each buffer.. Use the bh->b_this_page linked list to
1020 * follow the buffers created. Return NULL if unable to create more
1023 * The retry flag is used to differentiate async IO (paging, swapping)
1024 * which may not fail from ordinary buffer allocations.
1026 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1029 struct buffer_head *bh, *head;
1035 while ((offset -= size) >= 0) {
1036 bh = alloc_buffer_head(GFP_NOFS);
1041 bh->b_this_page = head;
1046 atomic_set(&bh->b_count, 0);
1049 /* Link the buffer to its page */
1050 set_bh_page(bh, page, offset);
1052 bh->b_end_io = NULL;
1056 * In case anything failed, we just free everything we got.
1062 head = head->b_this_page;
1063 free_buffer_head(bh);
1068 * Return failure for non-async IO requests. Async IO requests
1069 * are not allowed to fail, so we have to wait until buffer heads
1070 * become available. But we don't want tasks sleeping with
1071 * partially complete buffers, so all were released above.
1076 /* We're _really_ low on memory. Now we just
1077 * wait for old buffer heads to become free due to
1078 * finishing IO. Since this is an async request and
1079 * the reserve list is empty, we're sure there are
1080 * async buffer heads in use.
1085 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1088 link_dev_buffers(struct page *page, struct buffer_head *head)
1090 struct buffer_head *bh, *tail;
1095 bh = bh->b_this_page;
1097 tail->b_this_page = head;
1098 attach_page_buffers(page, head);
1102 * Initialise the state of a blockdev page's buffers.
1105 init_page_buffers(struct page *page, struct block_device *bdev,
1106 sector_t block, int size)
1108 struct buffer_head *head = page_buffers(page);
1109 struct buffer_head *bh = head;
1110 int uptodate = PageUptodate(page);
1113 if (!buffer_mapped(bh)) {
1114 init_buffer(bh, NULL, NULL);
1116 bh->b_blocknr = block;
1118 set_buffer_uptodate(bh);
1119 set_buffer_mapped(bh);
1122 bh = bh->b_this_page;
1123 } while (bh != head);
1127 * Create the page-cache page that contains the requested block.
1129 * This is user purely for blockdev mappings.
1131 static struct page *
1132 grow_dev_page(struct block_device *bdev, sector_t block,
1133 pgoff_t index, int size)
1135 struct inode *inode = bdev->bd_inode;
1137 struct buffer_head *bh;
1139 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1143 if (!PageLocked(page))
1146 if (page_has_buffers(page)) {
1147 bh = page_buffers(page);
1148 if (bh->b_size == size) {
1149 init_page_buffers(page, bdev, block, size);
1152 if (!try_to_free_buffers(page))
1157 * Allocate some buffers for this page
1159 bh = alloc_page_buffers(page, size, 0);
1164 * Link the page to the buffers and initialise them. Take the
1165 * lock to be atomic wrt __find_get_block(), which does not
1166 * run under the page lock.
1168 spin_lock(&inode->i_mapping->private_lock);
1169 link_dev_buffers(page, bh);
1170 init_page_buffers(page, bdev, block, size);
1171 spin_unlock(&inode->i_mapping->private_lock);
1177 page_cache_release(page);
1182 * Create buffers for the specified block device block's page. If
1183 * that page was dirty, the buffers are set dirty also.
1185 * Except that's a bug. Attaching dirty buffers to a dirty
1186 * blockdev's page can result in filesystem corruption, because
1187 * some of those buffers may be aliases of filesystem data.
1188 * grow_dev_page() will go BUG() if this happens.
1191 grow_buffers(struct block_device *bdev, sector_t block, int size)
1200 } while ((size << sizebits) < PAGE_SIZE);
1202 index = block >> sizebits;
1203 block = index << sizebits;
1205 /* Create a page with the proper size buffers.. */
1206 page = grow_dev_page(bdev, block, index, size);
1210 page_cache_release(page);
1214 struct buffer_head *
1215 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1217 /* Size must be multiple of hard sectorsize */
1218 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1219 (size < 512 || size > PAGE_SIZE))) {
1220 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1222 printk(KERN_ERR "hardsect size: %d\n",
1223 bdev_hardsect_size(bdev));
1230 struct buffer_head * bh;
1232 bh = __find_get_block(bdev, block, size);
1236 if (!grow_buffers(bdev, block, size))
1242 * The relationship between dirty buffers and dirty pages:
1244 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1245 * the page is tagged dirty in its radix tree.
1247 * At all times, the dirtiness of the buffers represents the dirtiness of
1248 * subsections of the page. If the page has buffers, the page dirty bit is
1249 * merely a hint about the true dirty state.
1251 * When a page is set dirty in its entirety, all its buffers are marked dirty
1252 * (if the page has buffers).
1254 * When a buffer is marked dirty, its page is dirtied, but the page's other
1257 * Also. When blockdev buffers are explicitly read with bread(), they
1258 * individually become uptodate. But their backing page remains not
1259 * uptodate - even if all of its buffers are uptodate. A subsequent
1260 * block_read_full_page() against that page will discover all the uptodate
1261 * buffers, will set the page uptodate and will perform no I/O.
1265 * mark_buffer_dirty - mark a buffer_head as needing writeout
1267 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1268 * backing page dirty, then tag the page as dirty in its address_space's radix
1269 * tree and then attach the address_space's inode to its superblock's dirty
1272 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1273 * mapping->tree_lock and the global inode_lock.
1275 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1277 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1278 __set_page_dirty_nobuffers(bh->b_page);
1282 * Decrement a buffer_head's reference count. If all buffers against a page
1283 * have zero reference count, are clean and unlocked, and if the page is clean
1284 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1285 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1286 * a page but it ends up not being freed, and buffers may later be reattached).
1288 void __brelse(struct buffer_head * buf)
1290 if (atomic_read(&buf->b_count)) {
1294 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1299 * bforget() is like brelse(), except it discards any
1300 * potentially dirty data.
1302 void __bforget(struct buffer_head *bh)
1304 clear_buffer_dirty(bh);
1305 if (!list_empty(&bh->b_assoc_buffers)) {
1306 struct address_space *buffer_mapping = bh->b_page->mapping;
1308 spin_lock(&buffer_mapping->private_lock);
1309 list_del_init(&bh->b_assoc_buffers);
1310 spin_unlock(&buffer_mapping->private_lock);
1315 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1318 if (buffer_uptodate(bh)) {
1323 bh->b_end_io = end_buffer_read_sync;
1324 submit_bh(READ, bh);
1326 if (buffer_uptodate(bh))
1334 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1335 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1336 * refcount elevated by one when they're in an LRU. A buffer can only appear
1337 * once in a particular CPU's LRU. A single buffer can be present in multiple
1338 * CPU's LRUs at the same time.
1340 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1341 * sb_find_get_block().
1343 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1344 * a local interrupt disable for that.
1347 #define BH_LRU_SIZE 8
1350 struct buffer_head *bhs[BH_LRU_SIZE];
1353 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1356 #define bh_lru_lock() local_irq_disable()
1357 #define bh_lru_unlock() local_irq_enable()
1359 #define bh_lru_lock() preempt_disable()
1360 #define bh_lru_unlock() preempt_enable()
1363 static inline void check_irqs_on(void)
1365 #ifdef irqs_disabled
1366 BUG_ON(irqs_disabled());
1371 * The LRU management algorithm is dopey-but-simple. Sorry.
1373 static void bh_lru_install(struct buffer_head *bh)
1375 struct buffer_head *evictee = NULL;
1380 lru = &__get_cpu_var(bh_lrus);
1381 if (lru->bhs[0] != bh) {
1382 struct buffer_head *bhs[BH_LRU_SIZE];
1388 for (in = 0; in < BH_LRU_SIZE; in++) {
1389 struct buffer_head *bh2 = lru->bhs[in];
1394 if (out >= BH_LRU_SIZE) {
1395 BUG_ON(evictee != NULL);
1402 while (out < BH_LRU_SIZE)
1404 memcpy(lru->bhs, bhs, sizeof(bhs));
1413 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1415 static inline struct buffer_head *
1416 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1418 struct buffer_head *ret = NULL;
1424 lru = &__get_cpu_var(bh_lrus);
1425 for (i = 0; i < BH_LRU_SIZE; i++) {
1426 struct buffer_head *bh = lru->bhs[i];
1428 if (bh && bh->b_bdev == bdev &&
1429 bh->b_blocknr == block && bh->b_size == size) {
1432 lru->bhs[i] = lru->bhs[i - 1];
1447 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1448 * it in the LRU and mark it as accessed. If it is not present then return
1451 struct buffer_head *
1452 __find_get_block(struct block_device *bdev, sector_t block, int size)
1454 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1457 bh = __find_get_block_slow(bdev, block, size);
1465 EXPORT_SYMBOL(__find_get_block);
1468 * __getblk will locate (and, if necessary, create) the buffer_head
1469 * which corresponds to the passed block_device, block and size. The
1470 * returned buffer has its reference count incremented.
1472 * __getblk() cannot fail - it just keeps trying. If you pass it an
1473 * illegal block number, __getblk() will happily return a buffer_head
1474 * which represents the non-existent block. Very weird.
1476 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1477 * attempt is failing. FIXME, perhaps?
1479 struct buffer_head *
1480 __getblk(struct block_device *bdev, sector_t block, int size)
1482 struct buffer_head *bh = __find_get_block(bdev, block, size);
1486 bh = __getblk_slow(bdev, block, size);
1489 EXPORT_SYMBOL(__getblk);
1492 * Do async read-ahead on a buffer..
1494 void __breadahead(struct block_device *bdev, sector_t block, int size)
1496 struct buffer_head *bh = __getblk(bdev, block, size);
1497 ll_rw_block(READA, 1, &bh);
1500 EXPORT_SYMBOL(__breadahead);
1503 * __bread() - reads a specified block and returns the bh
1504 * @block: number of block
1505 * @size: size (in bytes) to read
1507 * Reads a specified block, and returns buffer head that contains it.
1508 * It returns NULL if the block was unreadable.
1510 struct buffer_head *
1511 __bread(struct block_device *bdev, sector_t block, int size)
1513 struct buffer_head *bh = __getblk(bdev, block, size);
1515 if (!buffer_uptodate(bh))
1516 bh = __bread_slow(bh);
1519 EXPORT_SYMBOL(__bread);
1522 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1523 * This doesn't race because it runs in each cpu either in irq
1524 * or with preempt disabled.
1526 static void invalidate_bh_lru(void *arg)
1528 struct bh_lru *b = &get_cpu_var(bh_lrus);
1531 for (i = 0; i < BH_LRU_SIZE; i++) {
1535 put_cpu_var(bh_lrus);
1538 static void invalidate_bh_lrus(void)
1540 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1543 void set_bh_page(struct buffer_head *bh,
1544 struct page *page, unsigned long offset)
1547 if (offset >= PAGE_SIZE)
1549 if (PageHighMem(page))
1551 * This catches illegal uses and preserves the offset:
1553 bh->b_data = (char *)(0 + offset);
1555 bh->b_data = page_address(page) + offset;
1557 EXPORT_SYMBOL(set_bh_page);
1560 * Called when truncating a buffer on a page completely.
1562 static inline void discard_buffer(struct buffer_head * bh)
1565 clear_buffer_dirty(bh);
1567 clear_buffer_mapped(bh);
1568 clear_buffer_req(bh);
1569 clear_buffer_new(bh);
1570 clear_buffer_delay(bh);
1575 * try_to_release_page() - release old fs-specific metadata on a page
1577 * @page: the page which the kernel is trying to free
1578 * @gfp_mask: memory allocation flags (and I/O mode)
1580 * The address_space is to try to release any data against the page
1581 * (presumably at page->private). If the release was successful, return `1'.
1582 * Otherwise return zero.
1584 * The @gfp_mask argument specifies whether I/O may be performed to release
1585 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1587 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1589 int try_to_release_page(struct page *page, int gfp_mask)
1591 struct address_space * const mapping = page->mapping;
1593 BUG_ON(!PageLocked(page));
1594 if (PageWriteback(page))
1597 if (mapping && mapping->a_ops->releasepage)
1598 return mapping->a_ops->releasepage(page, gfp_mask);
1599 return try_to_free_buffers(page);
1601 EXPORT_SYMBOL(try_to_release_page);
1604 * block_invalidatepage - invalidate part of all of a buffer-backed page
1606 * @page: the page which is affected
1607 * @offset: the index of the truncation point
1609 * block_invalidatepage() is called when all or part of the page has become
1610 * invalidatedby a truncate operation.
1612 * block_invalidatepage() does not have to release all buffers, but it must
1613 * ensure that no dirty buffer is left outside @offset and that no I/O
1614 * is underway against any of the blocks which are outside the truncation
1615 * point. Because the caller is about to free (and possibly reuse) those
1618 int block_invalidatepage(struct page *page, unsigned long offset)
1620 struct buffer_head *head, *bh, *next;
1621 unsigned int curr_off = 0;
1624 BUG_ON(!PageLocked(page));
1625 if (!page_has_buffers(page))
1628 head = page_buffers(page);
1631 unsigned int next_off = curr_off + bh->b_size;
1632 next = bh->b_this_page;
1635 * is this block fully invalidated?
1637 if (offset <= curr_off)
1639 curr_off = next_off;
1641 } while (bh != head);
1644 * We release buffers only if the entire page is being invalidated.
1645 * The get_block cached value has been unconditionally invalidated,
1646 * so real IO is not possible anymore.
1649 ret = try_to_release_page(page, 0);
1653 EXPORT_SYMBOL(block_invalidatepage);
1656 * We attach and possibly dirty the buffers atomically wrt
1657 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1658 * is already excluded via the page lock.
1660 void create_empty_buffers(struct page *page,
1661 unsigned long blocksize, unsigned long b_state)
1663 struct buffer_head *bh, *head, *tail;
1665 head = alloc_page_buffers(page, blocksize, 1);
1668 bh->b_state |= b_state;
1670 bh = bh->b_this_page;
1672 tail->b_this_page = head;
1674 spin_lock(&page->mapping->private_lock);
1675 if (PageUptodate(page) || PageDirty(page)) {
1678 if (PageDirty(page))
1679 set_buffer_dirty(bh);
1680 if (PageUptodate(page))
1681 set_buffer_uptodate(bh);
1682 bh = bh->b_this_page;
1683 } while (bh != head);
1685 attach_page_buffers(page, head);
1686 spin_unlock(&page->mapping->private_lock);
1688 EXPORT_SYMBOL(create_empty_buffers);
1691 * We are taking a block for data and we don't want any output from any
1692 * buffer-cache aliases starting from return from that function and
1693 * until the moment when something will explicitly mark the buffer
1694 * dirty (hopefully that will not happen until we will free that block ;-)
1695 * We don't even need to mark it not-uptodate - nobody can expect
1696 * anything from a newly allocated buffer anyway. We used to used
1697 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1698 * don't want to mark the alias unmapped, for example - it would confuse
1699 * anyone who might pick it with bread() afterwards...
1701 * Also.. Note that bforget() doesn't lock the buffer. So there can
1702 * be writeout I/O going on against recently-freed buffers. We don't
1703 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1704 * only if we really need to. That happens here.
1706 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1708 struct buffer_head *old_bh;
1712 old_bh = __find_get_block_slow(bdev, block, 0);
1714 clear_buffer_dirty(old_bh);
1715 wait_on_buffer(old_bh);
1716 clear_buffer_req(old_bh);
1720 EXPORT_SYMBOL(unmap_underlying_metadata);
1723 * NOTE! All mapped/uptodate combinations are valid:
1725 * Mapped Uptodate Meaning
1727 * No No "unknown" - must do get_block()
1728 * No Yes "hole" - zero-filled
1729 * Yes No "allocated" - allocated on disk, not read in
1730 * Yes Yes "valid" - allocated and up-to-date in memory.
1732 * "Dirty" is valid only with the last case (mapped+uptodate).
1736 * While block_write_full_page is writing back the dirty buffers under
1737 * the page lock, whoever dirtied the buffers may decide to clean them
1738 * again at any time. We handle that by only looking at the buffer
1739 * state inside lock_buffer().
1741 * If block_write_full_page() is called for regular writeback
1742 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1743 * locked buffer. This only can happen if someone has written the buffer
1744 * directly, with submit_bh(). At the address_space level PageWriteback
1745 * prevents this contention from occurring.
1747 static int __block_write_full_page(struct inode *inode, struct page *page,
1748 get_block_t *get_block, struct writeback_control *wbc)
1752 sector_t last_block;
1753 struct buffer_head *bh, *head;
1754 int nr_underway = 0;
1756 BUG_ON(!PageLocked(page));
1758 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1760 if (!page_has_buffers(page)) {
1761 create_empty_buffers(page, 1 << inode->i_blkbits,
1762 (1 << BH_Dirty)|(1 << BH_Uptodate));
1766 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1767 * here, and the (potentially unmapped) buffers may become dirty at
1768 * any time. If a buffer becomes dirty here after we've inspected it
1769 * then we just miss that fact, and the page stays dirty.
1771 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1772 * handle that here by just cleaning them.
1775 block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1776 head = page_buffers(page);
1780 * Get all the dirty buffers mapped to disk addresses and
1781 * handle any aliases from the underlying blockdev's mapping.
1784 if (block > last_block) {
1786 * mapped buffers outside i_size will occur, because
1787 * this page can be outside i_size when there is a
1788 * truncate in progress.
1791 * The buffer was zeroed by block_write_full_page()
1793 clear_buffer_dirty(bh);
1794 set_buffer_uptodate(bh);
1795 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1796 err = get_block(inode, block, bh, 1);
1799 if (buffer_new(bh)) {
1800 /* blockdev mappings never come here */
1801 clear_buffer_new(bh);
1802 unmap_underlying_metadata(bh->b_bdev,
1806 bh = bh->b_this_page;
1808 } while (bh != head);
1812 if (!buffer_mapped(bh))
1815 * If it's a fully non-blocking write attempt and we cannot
1816 * lock the buffer then redirty the page. Note that this can
1817 * potentially cause a busy-wait loop from pdflush and kswapd
1818 * activity, but those code paths have their own higher-level
1821 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1823 } else if (test_set_buffer_locked(bh)) {
1824 redirty_page_for_writepage(wbc, page);
1827 if (test_clear_buffer_dirty(bh)) {
1828 mark_buffer_async_write(bh);
1832 } while ((bh = bh->b_this_page) != head);
1835 * The page and its buffers are protected by PageWriteback(), so we can
1836 * drop the bh refcounts early.
1838 BUG_ON(PageWriteback(page));
1839 set_page_writeback(page);
1843 struct buffer_head *next = bh->b_this_page;
1844 if (buffer_async_write(bh)) {
1845 submit_bh(WRITE, bh);
1850 } while (bh != head);
1854 if (nr_underway == 0) {
1856 * The page was marked dirty, but the buffers were
1857 * clean. Someone wrote them back by hand with
1858 * ll_rw_block/submit_bh. A rare case.
1862 if (!buffer_uptodate(bh)) {
1866 bh = bh->b_this_page;
1867 } while (bh != head);
1869 SetPageUptodate(page);
1870 end_page_writeback(page);
1872 * The page and buffer_heads can be released at any time from
1875 wbc->pages_skipped++; /* We didn't write this page */
1881 * ENOSPC, or some other error. We may already have added some
1882 * blocks to the file, so we need to write these out to avoid
1883 * exposing stale data.
1884 * The page is currently locked and not marked for writeback
1887 /* Recovery: lock and submit the mapped buffers */
1890 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1892 mark_buffer_async_write(bh);
1895 * The buffer may have been set dirty during
1896 * attachment to a dirty page.
1898 clear_buffer_dirty(bh);
1900 } while ((bh = bh->b_this_page) != head);
1902 BUG_ON(PageWriteback(page));
1903 set_page_writeback(page);
1906 struct buffer_head *next = bh->b_this_page;
1907 if (buffer_async_write(bh)) {
1908 clear_buffer_dirty(bh);
1909 submit_bh(WRITE, bh);
1914 } while (bh != head);
1918 static int __block_prepare_write(struct inode *inode, struct page *page,
1919 unsigned from, unsigned to, get_block_t *get_block)
1921 unsigned block_start, block_end;
1924 unsigned blocksize, bbits;
1925 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1927 BUG_ON(!PageLocked(page));
1928 BUG_ON(from > PAGE_CACHE_SIZE);
1929 BUG_ON(to > PAGE_CACHE_SIZE);
1932 blocksize = 1 << inode->i_blkbits;
1933 if (!page_has_buffers(page))
1934 create_empty_buffers(page, blocksize, 0);
1935 head = page_buffers(page);
1937 bbits = inode->i_blkbits;
1938 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1940 for(bh = head, block_start = 0; bh != head || !block_start;
1941 block++, block_start=block_end, bh = bh->b_this_page) {
1942 block_end = block_start + blocksize;
1943 if (block_end <= from || block_start >= to) {
1944 if (PageUptodate(page)) {
1945 if (!buffer_uptodate(bh))
1946 set_buffer_uptodate(bh);
1951 clear_buffer_new(bh);
1952 if (!buffer_mapped(bh)) {
1953 err = get_block(inode, block, bh, 1);
1956 if (buffer_new(bh)) {
1957 clear_buffer_new(bh);
1958 unmap_underlying_metadata(bh->b_bdev,
1960 if (PageUptodate(page)) {
1961 set_buffer_uptodate(bh);
1964 if (block_end > to || block_start < from) {
1967 kaddr = kmap_atomic(page, KM_USER0);
1971 if (block_start < from)
1972 memset(kaddr+block_start,
1973 0, from-block_start);
1974 flush_dcache_page(page);
1975 kunmap_atomic(kaddr, KM_USER0);
1980 if (PageUptodate(page)) {
1981 if (!buffer_uptodate(bh))
1982 set_buffer_uptodate(bh);
1985 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1986 (block_start < from || block_end > to)) {
1987 ll_rw_block(READ, 1, &bh);
1992 * If we issued read requests - let them complete.
1994 while(wait_bh > wait) {
1995 wait_on_buffer(*--wait_bh);
1996 if (!buffer_uptodate(*wait_bh))
2002 * Zero out any newly allocated blocks to avoid exposing stale
2003 * data. If BH_New is set, we know that the block was newly
2004 * allocated in the above loop.
2009 block_end = block_start+blocksize;
2010 if (block_end <= from)
2012 if (block_start >= to)
2014 if (buffer_new(bh)) {
2017 clear_buffer_new(bh);
2018 kaddr = kmap_atomic(page, KM_USER0);
2019 memset(kaddr+block_start, 0, bh->b_size);
2020 kunmap_atomic(kaddr, KM_USER0);
2021 set_buffer_uptodate(bh);
2022 mark_buffer_dirty(bh);
2025 block_start = block_end;
2026 bh = bh->b_this_page;
2027 } while (bh != head);
2031 static int __block_commit_write(struct inode *inode, struct page *page,
2032 unsigned from, unsigned to)
2034 unsigned block_start, block_end;
2037 struct buffer_head *bh, *head;
2039 blocksize = 1 << inode->i_blkbits;
2041 for(bh = head = page_buffers(page), block_start = 0;
2042 bh != head || !block_start;
2043 block_start=block_end, bh = bh->b_this_page) {
2044 block_end = block_start + blocksize;
2045 if (block_end <= from || block_start >= to) {
2046 if (!buffer_uptodate(bh))
2049 set_buffer_uptodate(bh);
2050 mark_buffer_dirty(bh);
2055 * If this is a partial write which happened to make all buffers
2056 * uptodate then we can optimize away a bogus readpage() for
2057 * the next read(). Here we 'discover' whether the page went
2058 * uptodate as a result of this (potentially partial) write.
2061 SetPageUptodate(page);
2066 * Generic "read page" function for block devices that have the normal
2067 * get_block functionality. This is most of the block device filesystems.
2068 * Reads the page asynchronously --- the unlock_buffer() and
2069 * set/clear_buffer_uptodate() functions propagate buffer state into the
2070 * page struct once IO has completed.
2072 int block_read_full_page(struct page *page, get_block_t *get_block)
2074 struct inode *inode = page->mapping->host;
2075 sector_t iblock, lblock;
2076 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2077 unsigned int blocksize;
2079 int fully_mapped = 1;
2081 if (!PageLocked(page))
2083 blocksize = 1 << inode->i_blkbits;
2084 if (!page_has_buffers(page))
2085 create_empty_buffers(page, blocksize, 0);
2086 head = page_buffers(page);
2088 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2089 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2095 if (buffer_uptodate(bh))
2098 if (!buffer_mapped(bh)) {
2100 if (iblock < lblock) {
2101 if (get_block(inode, iblock, bh, 0))
2104 if (!buffer_mapped(bh)) {
2105 void *kaddr = kmap_atomic(page, KM_USER0);
2106 memset(kaddr + i * blocksize, 0, blocksize);
2107 flush_dcache_page(page);
2108 kunmap_atomic(kaddr, KM_USER0);
2109 set_buffer_uptodate(bh);
2113 * get_block() might have updated the buffer
2116 if (buffer_uptodate(bh))
2120 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2123 SetPageMappedToDisk(page);
2127 * All buffers are uptodate - we can set the page uptodate
2128 * as well. But not if get_block() returned an error.
2130 if (!PageError(page))
2131 SetPageUptodate(page);
2136 /* Stage two: lock the buffers */
2137 for (i = 0; i < nr; i++) {
2140 mark_buffer_async_read(bh);
2144 * Stage 3: start the IO. Check for uptodateness
2145 * inside the buffer lock in case another process reading
2146 * the underlying blockdev brought it uptodate (the sct fix).
2148 for (i = 0; i < nr; i++) {
2150 if (buffer_uptodate(bh))
2151 end_buffer_async_read(bh, 1);
2153 submit_bh(READ, bh);
2158 /* utility function for filesystems that need to do work on expanding
2159 * truncates. Uses prepare/commit_write to allow the filesystem to
2160 * deal with the hole.
2162 int generic_cont_expand(struct inode *inode, loff_t size)
2164 struct address_space *mapping = inode->i_mapping;
2166 unsigned long index, offset, limit;
2170 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2171 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2172 send_sig(SIGXFSZ, current, 0);
2175 if (size > inode->i_sb->s_maxbytes)
2178 offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2180 /* ugh. in prepare/commit_write, if from==to==start of block, we
2181 ** skip the prepare. make sure we never send an offset for the start
2184 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2187 index = size >> PAGE_CACHE_SHIFT;
2189 page = grab_cache_page(mapping, index);
2192 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2194 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2197 page_cache_release(page);
2205 * For moronic filesystems that do not allow holes in file.
2206 * We may have to extend the file.
2209 int cont_prepare_write(struct page *page, unsigned offset,
2210 unsigned to, get_block_t *get_block, loff_t *bytes)
2212 struct address_space *mapping = page->mapping;
2213 struct inode *inode = mapping->host;
2214 struct page *new_page;
2218 unsigned blocksize = 1 << inode->i_blkbits;
2221 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2223 new_page = grab_cache_page(mapping, pgpos);
2226 /* we might sleep */
2227 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2228 unlock_page(new_page);
2229 page_cache_release(new_page);
2232 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2233 if (zerofrom & (blocksize-1)) {
2234 *bytes |= (blocksize-1);
2237 status = __block_prepare_write(inode, new_page, zerofrom,
2238 PAGE_CACHE_SIZE, get_block);
2241 kaddr = kmap_atomic(new_page, KM_USER0);
2242 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2243 flush_dcache_page(new_page);
2244 kunmap_atomic(kaddr, KM_USER0);
2245 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2246 unlock_page(new_page);
2247 page_cache_release(new_page);
2250 if (page->index < pgpos) {
2251 /* completely inside the area */
2254 /* page covers the boundary, find the boundary offset */
2255 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2257 /* if we will expand the thing last block will be filled */
2258 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2259 *bytes |= (blocksize-1);
2263 /* starting below the boundary? Nothing to zero out */
2264 if (offset <= zerofrom)
2267 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2270 if (zerofrom < offset) {
2271 kaddr = kmap_atomic(page, KM_USER0);
2272 memset(kaddr+zerofrom, 0, offset-zerofrom);
2273 flush_dcache_page(page);
2274 kunmap_atomic(kaddr, KM_USER0);
2275 __block_commit_write(inode, page, zerofrom, offset);
2279 ClearPageUptodate(page);
2283 ClearPageUptodate(new_page);
2284 unlock_page(new_page);
2285 page_cache_release(new_page);
2290 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2291 get_block_t *get_block)
2293 struct inode *inode = page->mapping->host;
2294 int err = __block_prepare_write(inode, page, from, to, get_block);
2296 ClearPageUptodate(page);
2300 int block_commit_write(struct page *page, unsigned from, unsigned to)
2302 struct inode *inode = page->mapping->host;
2303 __block_commit_write(inode,page,from,to);
2307 int generic_commit_write(struct file *file, struct page *page,
2308 unsigned from, unsigned to)
2310 struct inode *inode = page->mapping->host;
2311 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2312 __block_commit_write(inode,page,from,to);
2314 * No need to use i_size_read() here, the i_size
2315 * cannot change under us because we hold i_sem.
2317 if (pos > inode->i_size) {
2318 i_size_write(inode, pos);
2319 mark_inode_dirty(inode);
2326 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2327 * immediately, while under the page lock. So it needs a special end_io
2328 * handler which does not touch the bh after unlocking it.
2330 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2331 * a race there is benign: unlock_buffer() only use the bh's address for
2332 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2335 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2338 set_buffer_uptodate(bh);
2340 /* This happens, due to failed READA attempts. */
2341 clear_buffer_uptodate(bh);
2347 * On entry, the page is fully not uptodate.
2348 * On exit the page is fully uptodate in the areas outside (from,to)
2350 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2351 get_block_t *get_block)
2353 struct inode *inode = page->mapping->host;
2354 const unsigned blkbits = inode->i_blkbits;
2355 const unsigned blocksize = 1 << blkbits;
2356 struct buffer_head map_bh;
2357 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2358 unsigned block_in_page;
2359 unsigned block_start;
2360 sector_t block_in_file;
2365 int is_mapped_to_disk = 1;
2368 if (PageMappedToDisk(page))
2371 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2372 map_bh.b_page = page;
2375 * We loop across all blocks in the page, whether or not they are
2376 * part of the affected region. This is so we can discover if the
2377 * page is fully mapped-to-disk.
2379 for (block_start = 0, block_in_page = 0;
2380 block_start < PAGE_CACHE_SIZE;
2381 block_in_page++, block_start += blocksize) {
2382 unsigned block_end = block_start + blocksize;
2387 if (block_start >= to)
2389 ret = get_block(inode, block_in_file + block_in_page,
2393 if (!buffer_mapped(&map_bh))
2394 is_mapped_to_disk = 0;
2395 if (buffer_new(&map_bh))
2396 unmap_underlying_metadata(map_bh.b_bdev,
2398 if (PageUptodate(page))
2400 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2401 kaddr = kmap_atomic(page, KM_USER0);
2402 if (block_start < from) {
2403 memset(kaddr+block_start, 0, from-block_start);
2406 if (block_end > to) {
2407 memset(kaddr + to, 0, block_end - to);
2410 flush_dcache_page(page);
2411 kunmap_atomic(kaddr, KM_USER0);
2414 if (buffer_uptodate(&map_bh))
2415 continue; /* reiserfs does this */
2416 if (block_start < from || block_end > to) {
2417 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2423 bh->b_state = map_bh.b_state;
2424 atomic_set(&bh->b_count, 0);
2425 bh->b_this_page = NULL;
2427 bh->b_blocknr = map_bh.b_blocknr;
2428 bh->b_size = blocksize;
2429 bh->b_data = (char *)(long)block_start;
2430 bh->b_bdev = map_bh.b_bdev;
2431 bh->b_private = NULL;
2432 read_bh[nr_reads++] = bh;
2437 struct buffer_head *bh;
2440 * The page is locked, so these buffers are protected from
2441 * any VM or truncate activity. Hence we don't need to care
2442 * for the buffer_head refcounts.
2444 for (i = 0; i < nr_reads; i++) {
2447 bh->b_end_io = end_buffer_read_nobh;
2448 submit_bh(READ, bh);
2450 for (i = 0; i < nr_reads; i++) {
2453 if (!buffer_uptodate(bh))
2455 free_buffer_head(bh);
2462 if (is_mapped_to_disk)
2463 SetPageMappedToDisk(page);
2464 SetPageUptodate(page);
2467 * Setting the page dirty here isn't necessary for the prepare_write
2468 * function - commit_write will do that. But if/when this function is
2469 * used within the pagefault handler to ensure that all mmapped pages
2470 * have backing space in the filesystem, we will need to dirty the page
2471 * if its contents were altered.
2474 set_page_dirty(page);
2479 for (i = 0; i < nr_reads; i++) {
2481 free_buffer_head(read_bh[i]);
2485 * Error recovery is pretty slack. Clear the page and mark it dirty
2486 * so we'll later zero out any blocks which _were_ allocated.
2488 kaddr = kmap_atomic(page, KM_USER0);
2489 memset(kaddr, 0, PAGE_CACHE_SIZE);
2490 kunmap_atomic(kaddr, KM_USER0);
2491 SetPageUptodate(page);
2492 set_page_dirty(page);
2495 EXPORT_SYMBOL(nobh_prepare_write);
2497 int nobh_commit_write(struct file *file, struct page *page,
2498 unsigned from, unsigned to)
2500 struct inode *inode = page->mapping->host;
2501 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2503 set_page_dirty(page);
2504 if (pos > inode->i_size) {
2505 i_size_write(inode, pos);
2506 mark_inode_dirty(inode);
2510 EXPORT_SYMBOL(nobh_commit_write);
2513 * nobh_writepage() - based on block_full_write_page() except
2514 * that it tries to operate without attaching bufferheads to
2517 int nobh_writepage(struct page *page, get_block_t *get_block,
2518 struct writeback_control *wbc)
2520 struct inode * const inode = page->mapping->host;
2521 loff_t i_size = i_size_read(inode);
2522 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2527 /* Is the page fully inside i_size? */
2528 if (page->index < end_index)
2531 /* Is the page fully outside i_size? (truncate in progress) */
2532 offset = i_size & (PAGE_CACHE_SIZE-1);
2533 if (page->index >= end_index+1 || !offset) {
2535 * The page may have dirty, unmapped buffers. For example,
2536 * they may have been added in ext3_writepage(). Make them
2537 * freeable here, so the page does not leak.
2540 /* Not really sure about this - do we need this ? */
2541 if (page->mapping->a_ops->invalidatepage)
2542 page->mapping->a_ops->invalidatepage(page, offset);
2545 return 0; /* don't care */
2549 * The page straddles i_size. It must be zeroed out on each and every
2550 * writepage invocation because it may be mmapped. "A file is mapped
2551 * in multiples of the page size. For a file that is not a multiple of
2552 * the page size, the remaining memory is zeroed when mapped, and
2553 * writes to that region are not written out to the file."
2555 kaddr = kmap_atomic(page, KM_USER0);
2556 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2557 flush_dcache_page(page);
2558 kunmap_atomic(kaddr, KM_USER0);
2560 ret = mpage_writepage(page, get_block, wbc);
2562 ret = __block_write_full_page(inode, page, get_block, wbc);
2565 EXPORT_SYMBOL(nobh_writepage);
2568 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2570 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2572 struct inode *inode = mapping->host;
2573 unsigned blocksize = 1 << inode->i_blkbits;
2574 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2575 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2578 struct address_space_operations *a_ops = mapping->a_ops;
2582 if ((offset & (blocksize - 1)) == 0)
2586 page = grab_cache_page(mapping, index);
2590 to = (offset + blocksize) & ~(blocksize - 1);
2591 ret = a_ops->prepare_write(NULL, page, offset, to);
2593 kaddr = kmap_atomic(page, KM_USER0);
2594 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2595 flush_dcache_page(page);
2596 kunmap_atomic(kaddr, KM_USER0);
2597 set_page_dirty(page);
2600 page_cache_release(page);
2604 EXPORT_SYMBOL(nobh_truncate_page);
2606 int block_truncate_page(struct address_space *mapping,
2607 loff_t from, get_block_t *get_block)
2609 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2610 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2613 unsigned length, pos;
2614 struct inode *inode = mapping->host;
2616 struct buffer_head *bh;
2620 blocksize = 1 << inode->i_blkbits;
2621 length = offset & (blocksize - 1);
2623 /* Block boundary? Nothing to do */
2627 length = blocksize - length;
2628 iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2630 page = grab_cache_page(mapping, index);
2635 if (!page_has_buffers(page))
2636 create_empty_buffers(page, blocksize, 0);
2638 /* Find the buffer that contains "offset" */
2639 bh = page_buffers(page);
2641 while (offset >= pos) {
2642 bh = bh->b_this_page;
2648 if (!buffer_mapped(bh)) {
2649 err = get_block(inode, iblock, bh, 0);
2652 /* unmapped? It's a hole - nothing to do */
2653 if (!buffer_mapped(bh))
2657 /* Ok, it's mapped. Make sure it's up-to-date */
2658 if (PageUptodate(page))
2659 set_buffer_uptodate(bh);
2661 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2663 ll_rw_block(READ, 1, &bh);
2665 /* Uhhuh. Read error. Complain and punt. */
2666 if (!buffer_uptodate(bh))
2670 kaddr = kmap_atomic(page, KM_USER0);
2671 memset(kaddr + offset, 0, length);
2672 flush_dcache_page(page);
2673 kunmap_atomic(kaddr, KM_USER0);
2675 mark_buffer_dirty(bh);
2680 page_cache_release(page);
2686 * The generic ->writepage function for buffer-backed address_spaces
2688 int block_write_full_page(struct page *page, get_block_t *get_block,
2689 struct writeback_control *wbc)
2691 struct inode * const inode = page->mapping->host;
2692 loff_t i_size = i_size_read(inode);
2693 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697 /* Is the page fully inside i_size? */
2698 if (page->index < end_index)
2699 return __block_write_full_page(inode, page, get_block, wbc);
2701 /* Is the page fully outside i_size? (truncate in progress) */
2702 offset = i_size & (PAGE_CACHE_SIZE-1);
2703 if (page->index >= end_index+1 || !offset) {
2705 * The page may have dirty, unmapped buffers. For example,
2706 * they may have been added in ext3_writepage(). Make them
2707 * freeable here, so the page does not leak.
2709 block_invalidatepage(page, 0);
2711 return 0; /* don't care */
2715 * The page straddles i_size. It must be zeroed out on each and every
2716 * writepage invokation because it may be mmapped. "A file is mapped
2717 * in multiples of the page size. For a file that is not a multiple of
2718 * the page size, the remaining memory is zeroed when mapped, and
2719 * writes to that region are not written out to the file."
2721 kaddr = kmap_atomic(page, KM_USER0);
2722 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2723 flush_dcache_page(page);
2724 kunmap_atomic(kaddr, KM_USER0);
2725 return __block_write_full_page(inode, page, get_block, wbc);
2728 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2729 get_block_t *get_block)
2731 struct buffer_head tmp;
2732 struct inode *inode = mapping->host;
2735 get_block(inode, block, &tmp, 0);
2736 return tmp.b_blocknr;
2739 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2741 struct buffer_head *bh = bio->bi_private;
2746 if (err == -EOPNOTSUPP) {
2747 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2748 set_bit(BH_Eopnotsupp, &bh->b_state);
2751 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2756 int submit_bh(int rw, struct buffer_head * bh)
2761 BUG_ON(!buffer_locked(bh));
2762 BUG_ON(!buffer_mapped(bh));
2763 BUG_ON(!bh->b_end_io);
2765 if (buffer_ordered(bh) && (rw == WRITE))
2769 * Only clear out a write error when rewriting, should this
2770 * include WRITE_SYNC as well?
2772 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2773 clear_buffer_write_io_error(bh);
2776 * from here on down, it's all bio -- do the initial mapping,
2777 * submit_bio -> generic_make_request may further map this bio around
2779 bio = bio_alloc(GFP_NOIO, 1);
2781 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2782 bio->bi_bdev = bh->b_bdev;
2783 bio->bi_io_vec[0].bv_page = bh->b_page;
2784 bio->bi_io_vec[0].bv_len = bh->b_size;
2785 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2789 bio->bi_size = bh->b_size;
2791 bio->bi_end_io = end_bio_bh_io_sync;
2792 bio->bi_private = bh;
2795 submit_bio(rw, bio);
2797 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2805 * ll_rw_block: low-level access to block devices (DEPRECATED)
2806 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2807 * @nr: number of &struct buffer_heads in the array
2808 * @bhs: array of pointers to &struct buffer_head
2810 * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2811 * and requests an I/O operation on them, either a %READ or a %WRITE.
2812 * The third %READA option is described in the documentation for
2813 * generic_make_request() which ll_rw_block() calls.
2815 * This function drops any buffer that it cannot get a lock on (with the
2816 * BH_Lock state bit), any buffer that appears to be clean when doing a
2817 * write request, and any buffer that appears to be up-to-date when doing
2818 * read request. Further it marks as clean buffers that are processed for
2819 * writing (the buffer cache won't assume that they are actually clean until
2820 * the buffer gets unlocked).
2822 * ll_rw_block sets b_end_io to simple completion handler that marks
2823 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2826 * All of the buffers must be for the same device, and must also be a
2827 * multiple of the current approved size for the device.
2829 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2833 for (i = 0; i < nr; i++) {
2834 struct buffer_head *bh = bhs[i];
2836 if (test_set_buffer_locked(bh))
2841 if (test_clear_buffer_dirty(bh)) {
2842 bh->b_end_io = end_buffer_write_sync;
2843 submit_bh(WRITE, bh);
2847 if (!buffer_uptodate(bh)) {
2848 bh->b_end_io = end_buffer_read_sync;
2859 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2860 * and then start new I/O and then wait upon it. The caller must have a ref on
2863 int sync_dirty_buffer(struct buffer_head *bh)
2867 WARN_ON(atomic_read(&bh->b_count) < 1);
2869 if (test_clear_buffer_dirty(bh)) {
2871 bh->b_end_io = end_buffer_write_sync;
2872 ret = submit_bh(WRITE, bh);
2874 if (buffer_eopnotsupp(bh)) {
2875 clear_buffer_eopnotsupp(bh);
2878 if (!ret && !buffer_uptodate(bh))
2887 * try_to_free_buffers() checks if all the buffers on this particular page
2888 * are unused, and releases them if so.
2890 * Exclusion against try_to_free_buffers may be obtained by either
2891 * locking the page or by holding its mapping's private_lock.
2893 * If the page is dirty but all the buffers are clean then we need to
2894 * be sure to mark the page clean as well. This is because the page
2895 * may be against a block device, and a later reattachment of buffers
2896 * to a dirty page will set *all* buffers dirty. Which would corrupt
2897 * filesystem data on the same device.
2899 * The same applies to regular filesystem pages: if all the buffers are
2900 * clean then we set the page clean and proceed. To do that, we require
2901 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2904 * try_to_free_buffers() is non-blocking.
2906 static inline int buffer_busy(struct buffer_head *bh)
2908 return atomic_read(&bh->b_count) |
2909 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2913 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2915 struct buffer_head *head = page_buffers(page);
2916 struct buffer_head *bh;
2920 if (buffer_write_io_error(bh))
2921 set_bit(AS_EIO, &page->mapping->flags);
2922 if (buffer_busy(bh))
2924 bh = bh->b_this_page;
2925 } while (bh != head);
2928 struct buffer_head *next = bh->b_this_page;
2930 if (!list_empty(&bh->b_assoc_buffers))
2931 __remove_assoc_queue(bh);
2933 } while (bh != head);
2934 *buffers_to_free = head;
2935 __clear_page_buffers(page);
2941 int try_to_free_buffers(struct page *page)
2943 struct address_space * const mapping = page->mapping;
2944 struct buffer_head *buffers_to_free = NULL;
2947 BUG_ON(!PageLocked(page));
2948 if (PageWriteback(page))
2951 if (mapping == NULL) { /* can this still happen? */
2952 ret = drop_buffers(page, &buffers_to_free);
2956 spin_lock(&mapping->private_lock);
2957 ret = drop_buffers(page, &buffers_to_free);
2960 * If the filesystem writes its buffers by hand (eg ext3)
2961 * then we can have clean buffers against a dirty page. We
2962 * clean the page here; otherwise later reattachment of buffers
2963 * could encounter a non-uptodate page, which is unresolvable.
2964 * This only applies in the rare case where try_to_free_buffers
2965 * succeeds but the page is not freed.
2967 clear_page_dirty(page);
2969 spin_unlock(&mapping->private_lock);
2971 if (buffers_to_free) {
2972 struct buffer_head *bh = buffers_to_free;
2975 struct buffer_head *next = bh->b_this_page;
2976 free_buffer_head(bh);
2978 } while (bh != buffers_to_free);
2982 EXPORT_SYMBOL(try_to_free_buffers);
2984 int block_sync_page(struct page *page)
2986 struct address_space *mapping;
2989 mapping = page_mapping(page);
2991 blk_run_backing_dev(mapping->backing_dev_info, page);
2996 * There are no bdflush tunables left. But distributions are
2997 * still running obsolete flush daemons, so we terminate them here.
2999 * Use of bdflush() is deprecated and will be removed in a future kernel.
3000 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3002 asmlinkage long sys_bdflush(int func, long data)
3004 static int msg_count;
3006 if (!capable(CAP_SYS_ADMIN))
3009 if (msg_count < 5) {
3012 "warning: process `%s' used the obsolete bdflush"
3013 " system call\n", current->comm);
3014 printk(KERN_INFO "Fix your initscripts?\n");
3023 * Buffer-head allocation
3025 static kmem_cache_t *bh_cachep;
3028 * Once the number of bh's in the machine exceeds this level, we start
3029 * stripping them in writeback.
3031 static int max_buffer_heads;
3033 int buffer_heads_over_limit;
3035 struct bh_accounting {
3036 int nr; /* Number of live bh's */
3037 int ratelimit; /* Limit cacheline bouncing */
3040 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3042 static void recalc_bh_state(void)
3047 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3049 __get_cpu_var(bh_accounting).ratelimit = 0;
3051 tot += per_cpu(bh_accounting, i).nr;
3052 buffer_heads_over_limit = (tot > max_buffer_heads);
3055 struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags)
3057 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3060 __get_cpu_var(bh_accounting).nr++;
3066 EXPORT_SYMBOL(alloc_buffer_head);
3068 void free_buffer_head(struct buffer_head *bh)
3070 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3071 kmem_cache_free(bh_cachep, bh);
3073 __get_cpu_var(bh_accounting).nr--;
3077 EXPORT_SYMBOL(free_buffer_head);
3080 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3082 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3083 SLAB_CTOR_CONSTRUCTOR) {
3084 struct buffer_head * bh = (struct buffer_head *)data;
3086 memset(bh, 0, sizeof(*bh));
3087 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3091 #ifdef CONFIG_HOTPLUG_CPU
3092 static void buffer_exit_cpu(int cpu)
3095 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3097 for (i = 0; i < BH_LRU_SIZE; i++) {
3103 static int buffer_cpu_notify(struct notifier_block *self,
3104 unsigned long action, void *hcpu)
3106 if (action == CPU_DEAD)
3107 buffer_exit_cpu((unsigned long)hcpu);
3110 #endif /* CONFIG_HOTPLUG_CPU */
3112 void __init buffer_init(void)
3116 bh_cachep = kmem_cache_create("buffer_head",
3117 sizeof(struct buffer_head), 0,
3118 SLAB_PANIC, init_buffer_head, NULL);
3121 * Limit the bh occupancy to 10% of ZONE_NORMAL
3123 nrpages = (nr_free_buffer_pages() * 10) / 100;
3124 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3125 hotcpu_notifier(buffer_cpu_notify, 0);
3128 EXPORT_SYMBOL(__bforget);
3129 EXPORT_SYMBOL(__brelse);
3130 EXPORT_SYMBOL(__wait_on_buffer);
3131 EXPORT_SYMBOL(block_commit_write);
3132 EXPORT_SYMBOL(block_prepare_write);
3133 EXPORT_SYMBOL(block_read_full_page);
3134 EXPORT_SYMBOL(block_sync_page);
3135 EXPORT_SYMBOL(block_truncate_page);
3136 EXPORT_SYMBOL(block_write_full_page);
3137 EXPORT_SYMBOL(cont_prepare_write);
3138 EXPORT_SYMBOL(end_buffer_async_write);
3139 EXPORT_SYMBOL(end_buffer_read_sync);
3140 EXPORT_SYMBOL(end_buffer_write_sync);
3141 EXPORT_SYMBOL(file_fsync);
3142 EXPORT_SYMBOL(fsync_bdev);
3143 EXPORT_SYMBOL(generic_block_bmap);
3144 EXPORT_SYMBOL(generic_commit_write);
3145 EXPORT_SYMBOL(generic_cont_expand);
3146 EXPORT_SYMBOL(init_buffer);
3147 EXPORT_SYMBOL(invalidate_bdev);
3148 EXPORT_SYMBOL(ll_rw_block);
3149 EXPORT_SYMBOL(mark_buffer_dirty);
3150 EXPORT_SYMBOL(submit_bh);
3151 EXPORT_SYMBOL(sync_dirty_buffer);
3152 EXPORT_SYMBOL(unlock_buffer);