Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi_host.h>
44 #include <scsi/scsi_device.h>
45 #include <asm/semaphore.h>
46
47 #include "aacraid.h"
48
49 /**
50  *      fib_map_alloc           -       allocate the fib objects
51  *      @dev: Adapter to allocate for
52  *
53  *      Allocate and map the shared PCI space for the FIB blocks used to
54  *      talk to the Adaptec firmware.
55  */
56  
57 static int fib_map_alloc(struct aac_dev *dev)
58 {
59         dprintk((KERN_INFO
60           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65           &dev->hw_fib_pa))==NULL)
66                 return -ENOMEM;
67         return 0;
68 }
69
70 /**
71  *      aac_fib_map_free                -       free the fib objects
72  *      @dev: Adapter to free
73  *
74  *      Free the PCI mappings and the memory allocated for FIB blocks
75  *      on this adapter.
76  */
77
78 void aac_fib_map_free(struct aac_dev *dev)
79 {
80         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81 }
82
83 /**
84  *      aac_fib_setup   -       setup the fibs
85  *      @dev: Adapter to set up
86  *
87  *      Allocate the PCI space for the fibs, map it and then intialise the
88  *      fib area, the unmapped fib data and also the free list
89  */
90
91 int aac_fib_setup(struct aac_dev * dev)
92 {
93         struct fib *fibptr;
94         struct hw_fib *hw_fib_va;
95         dma_addr_t hw_fib_pa;
96         int i;
97
98         while (((i = fib_map_alloc(dev)) == -ENOMEM)
99          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102         }
103         if (i<0)
104                 return -ENOMEM;
105                 
106         hw_fib_va = dev->hw_fib_va;
107         hw_fib_pa = dev->hw_fib_pa;
108         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109         /*
110          *      Initialise the fibs
111          */
112         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
113         {
114                 fibptr->dev = dev;
115                 fibptr->hw_fib = hw_fib_va;
116                 fibptr->data = (void *) fibptr->hw_fib->data;
117                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
118                 init_MUTEX_LOCKED(&fibptr->event_wait);
119                 spin_lock_init(&fibptr->event_lock);
120                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122                 fibptr->hw_fib_pa = hw_fib_pa;
123                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
125         }
126         /*
127          *      Add the fib chain to the free list
128          */
129         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130         /*
131          *      Enable this to debug out of queue space
132          */
133         dev->free_fib = &dev->fibs[0];
134         return 0;
135 }
136
137 /**
138  *      aac_fib_alloc   -       allocate a fib
139  *      @dev: Adapter to allocate the fib for
140  *
141  *      Allocate a fib from the adapter fib pool. If the pool is empty we
142  *      return NULL.
143  */
144  
145 struct fib *aac_fib_alloc(struct aac_dev *dev)
146 {
147         struct fib * fibptr;
148         unsigned long flags;
149         spin_lock_irqsave(&dev->fib_lock, flags);
150         fibptr = dev->free_fib; 
151         if(!fibptr){
152                 spin_unlock_irqrestore(&dev->fib_lock, flags);
153                 return fibptr;
154         }
155         dev->free_fib = fibptr->next;
156         spin_unlock_irqrestore(&dev->fib_lock, flags);
157         /*
158          *      Set the proper node type code and node byte size
159          */
160         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161         fibptr->size = sizeof(struct fib);
162         /*
163          *      Null out fields that depend on being zero at the start of
164          *      each I/O
165          */
166         fibptr->hw_fib->header.XferState = 0;
167         fibptr->callback = NULL;
168         fibptr->callback_data = NULL;
169
170         return fibptr;
171 }
172
173 /**
174  *      aac_fib_free    -       free a fib
175  *      @fibptr: fib to free up
176  *
177  *      Frees up a fib and places it on the appropriate queue
178  *      (either free or timed out)
179  */
180  
181 void aac_fib_free(struct fib *fibptr)
182 {
183         unsigned long flags;
184
185         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187                 aac_config.fib_timeouts++;
188                 fibptr->next = fibptr->dev->timeout_fib;
189                 fibptr->dev->timeout_fib = fibptr;
190         } else {
191                 if (fibptr->hw_fib->header.XferState != 0) {
192                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193                                  (void*)fibptr, 
194                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
195                 }
196                 fibptr->next = fibptr->dev->free_fib;
197                 fibptr->dev->free_fib = fibptr;
198         }       
199         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200 }
201
202 /**
203  *      aac_fib_init    -       initialise a fib
204  *      @fibptr: The fib to initialize
205  *      
206  *      Set up the generic fib fields ready for use
207  */
208  
209 void aac_fib_init(struct fib *fibptr)
210 {
211         struct hw_fib *hw_fib = fibptr->hw_fib;
212
213         hw_fib->header.StructType = FIB_MAGIC;
214         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219 }
220
221 /**
222  *      fib_deallocate          -       deallocate a fib
223  *      @fibptr: fib to deallocate
224  *
225  *      Will deallocate and return to the free pool the FIB pointed to by the
226  *      caller.
227  */
228  
229 static void fib_dealloc(struct fib * fibptr)
230 {
231         struct hw_fib *hw_fib = fibptr->hw_fib;
232         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
233         hw_fib->header.XferState = 0;        
234 }
235
236 /*
237  *      Commuication primitives define and support the queuing method we use to
238  *      support host to adapter commuication. All queue accesses happen through
239  *      these routines and are the only routines which have a knowledge of the
240  *       how these queues are implemented.
241  */
242  
243 /**
244  *      aac_get_entry           -       get a queue entry
245  *      @dev: Adapter
246  *      @qid: Queue Number
247  *      @entry: Entry return
248  *      @index: Index return
249  *      @nonotify: notification control
250  *
251  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *      returned.
254  */
255  
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258         struct aac_queue * q;
259         unsigned long idx;
260
261         /*
262          *      All of the queues wrap when they reach the end, so we check
263          *      to see if they have reached the end and if they have we just
264          *      set the index back to zero. This is a wrap. You could or off
265          *      the high bits in all updates but this is a bit faster I think.
266          */
267
268         q = &dev->queues->queue[qid];
269
270         idx = *index = le32_to_cpu(*(q->headers.producer));
271         /* Interrupt Moderation, only interrupt for first two entries */
272         if (idx != le32_to_cpu(*(q->headers.consumer))) {
273                 if (--idx == 0) {
274                         if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else
277                                 idx = ADAP_NORM_RESP_ENTRIES;
278                 }
279                 if (idx != le32_to_cpu(*(q->headers.consumer)))
280                         *nonotify = 1; 
281         }
282
283         if (qid == AdapNormCmdQueue) {
284                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
285                         *index = 0; /* Wrap to front of the Producer Queue. */
286         } else {
287                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         }
290
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293                                 qid, q->numpending);
294                 return 0;
295         } else {
296                 *entry = q->base + *index;
297                 return 1;
298         }
299 }   
300
301 /**
302  *      aac_queue_get           -       get the next free QE
303  *      @dev: Adapter
304  *      @index: Returned index
305  *      @priority: Priority of fib
306  *      @fib: Fib to associate with the queue entry
307  *      @wait: Wait if queue full
308  *      @fibptr: Driver fib object to go with fib
309  *      @nonotify: Don't notify the adapter
310  *
311  *      Gets the next free QE off the requested priorty adapter command
312  *      queue and associates the Fib with the QE. The QE represented by
313  *      index is ready to insert on the queue when this routine returns
314  *      success.
315  */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319         struct aac_entry * entry = NULL;
320         int map = 0;
321             
322         if (qid == AdapNormCmdQueue) {
323                 /*  if no entries wait for some if caller wants to */
324                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
325                 {
326                         printk(KERN_ERR "GetEntries failed\n");
327                 }
328                 /*
329                  *      Setup queue entry with a command, status and fib mapped
330                  */
331                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332                 map = 1;
333         } else {
334                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
335                 {
336                         /* if no entries wait for some if caller wants to */
337                 }
338                 /*
339                  *      Setup queue entry with command, status and fib mapped
340                  */
341                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342                 entry->addr = hw_fib->header.SenderFibAddress;
343                         /* Restore adapters pointer to the FIB */
344                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
345                 map = 0;
346         }
347         /*
348          *      If MapFib is true than we need to map the Fib and put pointers
349          *      in the queue entry.
350          */
351         if (map)
352                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353         return 0;
354 }
355
356 /*
357  *      Define the highest level of host to adapter communication routines. 
358  *      These routines will support host to adapter FS commuication. These 
359  *      routines have no knowledge of the commuication method used. This level
360  *      sends and receives FIBs. This level has no knowledge of how these FIBs
361  *      get passed back and forth.
362  */
363
364 /**
365  *      aac_fib_send    -       send a fib to the adapter
366  *      @command: Command to send
367  *      @fibptr: The fib
368  *      @size: Size of fib data area
369  *      @priority: Priority of Fib
370  *      @wait: Async/sync select
371  *      @reply: True if a reply is wanted
372  *      @callback: Called with reply
373  *      @callback_data: Passed to callback
374  *
375  *      Sends the requested FIB to the adapter and optionally will wait for a
376  *      response FIB. If the caller does not wish to wait for a response than
377  *      an event to wait on must be supplied. This event will be set when a
378  *      response FIB is received from the adapter.
379  */
380  
381 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
382                 int priority, int wait, int reply, fib_callback callback,
383                 void *callback_data)
384 {
385         struct aac_dev * dev = fibptr->dev;
386         struct hw_fib * hw_fib = fibptr->hw_fib;
387         struct aac_queue * q;
388         unsigned long flags = 0;
389         unsigned long qflags;
390
391         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392                 return -EBUSY;
393         /*
394          *      There are 5 cases with the wait and reponse requested flags. 
395          *      The only invalid cases are if the caller requests to wait and
396          *      does not request a response and if the caller does not want a
397          *      response and the Fib is not allocated from pool. If a response
398          *      is not requesed the Fib will just be deallocaed by the DPC
399          *      routine when the response comes back from the adapter. No
400          *      further processing will be done besides deleting the Fib. We 
401          *      will have a debug mode where the adapter can notify the host
402          *      it had a problem and the host can log that fact.
403          */
404         if (wait && !reply) {
405                 return -EINVAL;
406         } else if (!wait && reply) {
407                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409         } else if (!wait && !reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412         } else if (wait && reply) {
413                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415         } 
416         /*
417          *      Map the fib into 32bits by using the fib number
418          */
419
420         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
421         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422         /*
423          *      Set FIB state to indicate where it came from and if we want a
424          *      response from the adapter. Also load the command from the
425          *      caller.
426          *
427          *      Map the hw fib pointer as a 32bit value
428          */
429         hw_fib->header.Command = cpu_to_le16(command);
430         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
432         /*
433          *      Set the size of the Fib we want to send to the adapter
434          */
435         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437                 return -EMSGSIZE;
438         }                
439         /*
440          *      Get a queue entry connect the FIB to it and send an notify
441          *      the adapter a command is ready.
442          */
443         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445         /*
446          *      Fill in the Callback and CallbackContext if we are not
447          *      going to wait.
448          */
449         if (!wait) {
450                 fibptr->callback = callback;
451                 fibptr->callback_data = callback_data;
452         }
453
454         fibptr->done = 0;
455         fibptr->flags = 0;
456
457         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459         dprintk((KERN_DEBUG "Fib contents:.\n"));
460         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
461         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
462         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
463         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466
467         q = &dev->queues->queue[AdapNormCmdQueue];
468
469         if(wait)
470                 spin_lock_irqsave(&fibptr->event_lock, flags);
471         spin_lock_irqsave(q->lock, qflags);
472         if (dev->new_comm_interface) {
473                 unsigned long count = 10000000L; /* 50 seconds */
474                 q->numpending++;
475                 spin_unlock_irqrestore(q->lock, qflags);
476                 while (aac_adapter_send(fibptr) != 0) {
477                         if (--count == 0) {
478                                 if (wait)
479                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
480                                 spin_lock_irqsave(q->lock, qflags);
481                                 q->numpending--;
482                                 spin_unlock_irqrestore(q->lock, qflags);
483                                 return -ETIMEDOUT;
484                         }
485                         udelay(5);
486                 }
487         } else {
488                 u32 index;
489                 unsigned long nointr = 0;
490                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
491
492                 q->numpending++;
493                 *(q->headers.producer) = cpu_to_le32(index + 1);
494                 spin_unlock_irqrestore(q->lock, qflags);
495                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
496                 if (!(nointr & aac_config.irq_mod))
497                         aac_adapter_notify(dev, AdapNormCmdQueue);
498         }
499
500         /*
501          *      If the caller wanted us to wait for response wait now. 
502          */
503     
504         if (wait) {
505                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
506                 /* Only set for first known interruptable command */
507                 if (wait < 0) {
508                         /*
509                          * *VERY* Dangerous to time out a command, the
510                          * assumption is made that we have no hope of
511                          * functioning because an interrupt routing or other
512                          * hardware failure has occurred.
513                          */
514                         unsigned long count = 36000000L; /* 3 minutes */
515                         while (down_trylock(&fibptr->event_wait)) {
516                                 if (--count == 0) {
517                                         spin_lock_irqsave(q->lock, qflags);
518                                         q->numpending--;
519                                         spin_unlock_irqrestore(q->lock, qflags);
520                                         if (wait == -1) {
521                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
522                                                   "Usually a result of a PCI interrupt routing problem;\n"
523                                                   "update mother board BIOS or consider utilizing one of\n"
524                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
525                                         }
526                                         return -ETIMEDOUT;
527                                 }
528                                 udelay(5);
529                         }
530                 } else
531                         down(&fibptr->event_wait);
532                 BUG_ON(fibptr->done == 0);
533                         
534                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
535                         return -ETIMEDOUT;
536                 } else {
537                         return 0;
538                 }
539         }
540         /*
541          *      If the user does not want a response than return success otherwise
542          *      return pending
543          */
544         if (reply)
545                 return -EINPROGRESS;
546         else
547                 return 0;
548 }
549
550 /** 
551  *      aac_consumer_get        -       get the top of the queue
552  *      @dev: Adapter
553  *      @q: Queue
554  *      @entry: Return entry
555  *
556  *      Will return a pointer to the entry on the top of the queue requested that
557  *      we are a consumer of, and return the address of the queue entry. It does
558  *      not change the state of the queue. 
559  */
560
561 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
562 {
563         u32 index;
564         int status;
565         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
566                 status = 0;
567         } else {
568                 /*
569                  *      The consumer index must be wrapped if we have reached
570                  *      the end of the queue, else we just use the entry
571                  *      pointed to by the header index
572                  */
573                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
574                         index = 0;              
575                 else
576                         index = le32_to_cpu(*q->headers.consumer);
577                 *entry = q->base + index;
578                 status = 1;
579         }
580         return(status);
581 }
582
583 /**
584  *      aac_consumer_free       -       free consumer entry
585  *      @dev: Adapter
586  *      @q: Queue
587  *      @qid: Queue ident
588  *
589  *      Frees up the current top of the queue we are a consumer of. If the
590  *      queue was full notify the producer that the queue is no longer full.
591  */
592
593 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
594 {
595         int wasfull = 0;
596         u32 notify;
597
598         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
599                 wasfull = 1;
600         
601         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
602                 *q->headers.consumer = cpu_to_le32(1);
603         else
604                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
605         
606         if (wasfull) {
607                 switch (qid) {
608
609                 case HostNormCmdQueue:
610                         notify = HostNormCmdNotFull;
611                         break;
612                 case HostNormRespQueue:
613                         notify = HostNormRespNotFull;
614                         break;
615                 default:
616                         BUG();
617                         return;
618                 }
619                 aac_adapter_notify(dev, notify);
620         }
621 }        
622
623 /**
624  *      aac_fib_adapter_complete        -       complete adapter issued fib
625  *      @fibptr: fib to complete
626  *      @size: size of fib
627  *
628  *      Will do all necessary work to complete a FIB that was sent from
629  *      the adapter.
630  */
631
632 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
633 {
634         struct hw_fib * hw_fib = fibptr->hw_fib;
635         struct aac_dev * dev = fibptr->dev;
636         struct aac_queue * q;
637         unsigned long nointr = 0;
638         unsigned long qflags;
639
640         if (hw_fib->header.XferState == 0) {
641                 if (dev->new_comm_interface)
642                         kfree (hw_fib);
643                 return 0;
644         }
645         /*
646          *      If we plan to do anything check the structure type first.
647          */ 
648         if ( hw_fib->header.StructType != FIB_MAGIC ) {
649                 if (dev->new_comm_interface)
650                         kfree (hw_fib);
651                 return -EINVAL;
652         }
653         /*
654          *      This block handles the case where the adapter had sent us a
655          *      command and we have finished processing the command. We
656          *      call completeFib when we are done processing the command 
657          *      and want to send a response back to the adapter. This will 
658          *      send the completed cdb to the adapter.
659          */
660         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
661                 if (dev->new_comm_interface) {
662                         kfree (hw_fib);
663                 } else {
664                         u32 index;
665                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
666                         if (size) {
667                                 size += sizeof(struct aac_fibhdr);
668                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
669                                         return -EMSGSIZE;
670                                 hw_fib->header.Size = cpu_to_le16(size);
671                         }
672                         q = &dev->queues->queue[AdapNormRespQueue];
673                         spin_lock_irqsave(q->lock, qflags);
674                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
675                         *(q->headers.producer) = cpu_to_le32(index + 1);
676                         spin_unlock_irqrestore(q->lock, qflags);
677                         if (!(nointr & (int)aac_config.irq_mod))
678                                 aac_adapter_notify(dev, AdapNormRespQueue);
679                 }
680         }
681         else 
682         {
683                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
684                 BUG();
685         }   
686         return 0;
687 }
688
689 /**
690  *      aac_fib_complete        -       fib completion handler
691  *      @fib: FIB to complete
692  *
693  *      Will do all necessary work to complete a FIB.
694  */
695  
696 int aac_fib_complete(struct fib *fibptr)
697 {
698         struct hw_fib * hw_fib = fibptr->hw_fib;
699
700         /*
701          *      Check for a fib which has already been completed
702          */
703
704         if (hw_fib->header.XferState == 0)
705                 return 0;
706         /*
707          *      If we plan to do anything check the structure type first.
708          */ 
709
710         if (hw_fib->header.StructType != FIB_MAGIC)
711                 return -EINVAL;
712         /*
713          *      This block completes a cdb which orginated on the host and we 
714          *      just need to deallocate the cdb or reinit it. At this point the
715          *      command is complete that we had sent to the adapter and this
716          *      cdb could be reused.
717          */
718         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
719                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
720         {
721                 fib_dealloc(fibptr);
722         }
723         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
724         {
725                 /*
726                  *      This handles the case when the host has aborted the I/O
727                  *      to the adapter because the adapter is not responding
728                  */
729                 fib_dealloc(fibptr);
730         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
731                 fib_dealloc(fibptr);
732         } else {
733                 BUG();
734         }   
735         return 0;
736 }
737
738 /**
739  *      aac_printf      -       handle printf from firmware
740  *      @dev: Adapter
741  *      @val: Message info
742  *
743  *      Print a message passed to us by the controller firmware on the
744  *      Adaptec board
745  */
746
747 void aac_printf(struct aac_dev *dev, u32 val)
748 {
749         char *cp = dev->printfbuf;
750         if (dev->printf_enabled)
751         {
752                 int length = val & 0xffff;
753                 int level = (val >> 16) & 0xffff;
754                 
755                 /*
756                  *      The size of the printfbuf is set in port.c
757                  *      There is no variable or define for it
758                  */
759                 if (length > 255)
760                         length = 255;
761                 if (cp[length] != 0)
762                         cp[length] = 0;
763                 if (level == LOG_AAC_HIGH_ERROR)
764                         printk(KERN_WARNING "%s:%s", dev->name, cp);
765                 else
766                         printk(KERN_INFO "%s:%s", dev->name, cp);
767         }
768         memset(cp, 0,  256);
769 }
770
771
772 /**
773  *      aac_handle_aif          -       Handle a message from the firmware
774  *      @dev: Which adapter this fib is from
775  *      @fibptr: Pointer to fibptr from adapter
776  *
777  *      This routine handles a driver notify fib from the adapter and
778  *      dispatches it to the appropriate routine for handling.
779  */
780
781 #define AIF_SNIFF_TIMEOUT       (30*HZ)
782 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
783 {
784         struct hw_fib * hw_fib = fibptr->hw_fib;
785         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
786         int busy;
787         u32 container;
788         struct scsi_device *device;
789         enum {
790                 NOTHING,
791                 DELETE,
792                 ADD,
793                 CHANGE
794         } device_config_needed;
795
796         /* Sniff for container changes */
797
798         if (!dev)
799                 return;
800         container = (u32)-1;
801
802         /*
803          *      We have set this up to try and minimize the number of
804          * re-configures that take place. As a result of this when
805          * certain AIF's come in we will set a flag waiting for another
806          * type of AIF before setting the re-config flag.
807          */
808         switch (le32_to_cpu(aifcmd->command)) {
809         case AifCmdDriverNotify:
810                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
811                 /*
812                  *      Morph or Expand complete
813                  */
814                 case AifDenMorphComplete:
815                 case AifDenVolumeExtendComplete:
816                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
817                         if (container >= dev->maximum_num_containers)
818                                 break;
819
820                         /*
821                          *      Find the scsi_device associated with the SCSI
822                          * address. Make sure we have the right array, and if
823                          * so set the flag to initiate a new re-config once we
824                          * see an AifEnConfigChange AIF come through.
825                          */
826
827                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
828                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
829                                         CONTAINER_TO_CHANNEL(container), 
830                                         CONTAINER_TO_ID(container), 
831                                         CONTAINER_TO_LUN(container));
832                                 if (device) {
833                                         dev->fsa_dev[container].config_needed = CHANGE;
834                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
835                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
836                                         scsi_device_put(device);
837                                 }
838                         }
839                 }
840
841                 /*
842                  *      If we are waiting on something and this happens to be
843                  * that thing then set the re-configure flag.
844                  */
845                 if (container != (u32)-1) {
846                         if (container >= dev->maximum_num_containers)
847                                 break;
848                         if ((dev->fsa_dev[container].config_waiting_on ==
849                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
850                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
851                                 dev->fsa_dev[container].config_waiting_on = 0;
852                 } else for (container = 0;
853                     container < dev->maximum_num_containers; ++container) {
854                         if ((dev->fsa_dev[container].config_waiting_on ==
855                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
856                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
857                                 dev->fsa_dev[container].config_waiting_on = 0;
858                 }
859                 break;
860
861         case AifCmdEventNotify:
862                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
863                 /*
864                  *      Add an Array.
865                  */
866                 case AifEnAddContainer:
867                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
868                         if (container >= dev->maximum_num_containers)
869                                 break;
870                         dev->fsa_dev[container].config_needed = ADD;
871                         dev->fsa_dev[container].config_waiting_on =
872                                 AifEnConfigChange;
873                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
874                         break;
875
876                 /*
877                  *      Delete an Array.
878                  */
879                 case AifEnDeleteContainer:
880                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
881                         if (container >= dev->maximum_num_containers)
882                                 break;
883                         dev->fsa_dev[container].config_needed = DELETE;
884                         dev->fsa_dev[container].config_waiting_on =
885                                 AifEnConfigChange;
886                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
887                         break;
888
889                 /*
890                  *      Container change detected. If we currently are not
891                  * waiting on something else, setup to wait on a Config Change.
892                  */
893                 case AifEnContainerChange:
894                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
895                         if (container >= dev->maximum_num_containers)
896                                 break;
897                         if (dev->fsa_dev[container].config_waiting_on &&
898                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
899                                 break;
900                         dev->fsa_dev[container].config_needed = CHANGE;
901                         dev->fsa_dev[container].config_waiting_on =
902                                 AifEnConfigChange;
903                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
904                         break;
905
906                 case AifEnConfigChange:
907                         break;
908
909                 }
910
911                 /*
912                  *      If we are waiting on something and this happens to be
913                  * that thing then set the re-configure flag.
914                  */
915                 if (container != (u32)-1) {
916                         if (container >= dev->maximum_num_containers)
917                                 break;
918                         if ((dev->fsa_dev[container].config_waiting_on ==
919                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
920                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
921                                 dev->fsa_dev[container].config_waiting_on = 0;
922                 } else for (container = 0;
923                     container < dev->maximum_num_containers; ++container) {
924                         if ((dev->fsa_dev[container].config_waiting_on ==
925                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
926                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
927                                 dev->fsa_dev[container].config_waiting_on = 0;
928                 }
929                 break;
930
931         case AifCmdJobProgress:
932                 /*
933                  *      These are job progress AIF's. When a Clear is being
934                  * done on a container it is initially created then hidden from
935                  * the OS. When the clear completes we don't get a config
936                  * change so we monitor the job status complete on a clear then
937                  * wait for a container change.
938                  */
939
940                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
941                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
942                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
943                         for (container = 0;
944                             container < dev->maximum_num_containers;
945                             ++container) {
946                                 /*
947                                  * Stomp on all config sequencing for all
948                                  * containers?
949                                  */
950                                 dev->fsa_dev[container].config_waiting_on =
951                                         AifEnContainerChange;
952                                 dev->fsa_dev[container].config_needed = ADD;
953                                 dev->fsa_dev[container].config_waiting_stamp =
954                                         jiffies;
955                         }
956                 }
957                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
958                  && (((u32 *)aifcmd->data)[6] == 0)
959                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
960                         for (container = 0;
961                             container < dev->maximum_num_containers;
962                             ++container) {
963                                 /*
964                                  * Stomp on all config sequencing for all
965                                  * containers?
966                                  */
967                                 dev->fsa_dev[container].config_waiting_on =
968                                         AifEnContainerChange;
969                                 dev->fsa_dev[container].config_needed = DELETE;
970                                 dev->fsa_dev[container].config_waiting_stamp =
971                                         jiffies;
972                         }
973                 }
974                 break;
975         }
976
977         device_config_needed = NOTHING;
978         for (container = 0; container < dev->maximum_num_containers;
979             ++container) {
980                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
981                         (dev->fsa_dev[container].config_needed != NOTHING) &&
982                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
983                         device_config_needed =
984                                 dev->fsa_dev[container].config_needed;
985                         dev->fsa_dev[container].config_needed = NOTHING;
986                         break;
987                 }
988         }
989         if (device_config_needed == NOTHING)
990                 return;
991
992         /*
993          *      If we decided that a re-configuration needs to be done,
994          * schedule it here on the way out the door, please close the door
995          * behind you.
996          */
997
998         busy = 0;
999
1000
1001         /*
1002          *      Find the scsi_device associated with the SCSI address,
1003          * and mark it as changed, invalidating the cache. This deals
1004          * with changes to existing device IDs.
1005          */
1006
1007         if (!dev || !dev->scsi_host_ptr)
1008                 return;
1009         /*
1010          * force reload of disk info via aac_probe_container
1011          */
1012         if ((device_config_needed == CHANGE)
1013          && (dev->fsa_dev[container].valid == 1))
1014                 dev->fsa_dev[container].valid = 2;
1015         if ((device_config_needed == CHANGE) ||
1016                         (device_config_needed == ADD))
1017                 aac_probe_container(dev, container);
1018         device = scsi_device_lookup(dev->scsi_host_ptr, 
1019                 CONTAINER_TO_CHANNEL(container), 
1020                 CONTAINER_TO_ID(container), 
1021                 CONTAINER_TO_LUN(container));
1022         if (device) {
1023                 switch (device_config_needed) {
1024                 case DELETE:
1025                         scsi_remove_device(device);
1026                         break;
1027                 case CHANGE:
1028                         if (!dev->fsa_dev[container].valid) {
1029                                 scsi_remove_device(device);
1030                                 break;
1031                         }
1032                         scsi_rescan_device(&device->sdev_gendev);
1033
1034                 default:
1035                         break;
1036                 }
1037                 scsi_device_put(device);
1038         }
1039         if (device_config_needed == ADD) {
1040                 scsi_add_device(dev->scsi_host_ptr,
1041                   CONTAINER_TO_CHANNEL(container),
1042                   CONTAINER_TO_ID(container),
1043                   CONTAINER_TO_LUN(container));
1044         }
1045
1046 }
1047
1048 /**
1049  *      aac_command_thread      -       command processing thread
1050  *      @dev: Adapter to monitor
1051  *
1052  *      Waits on the commandready event in it's queue. When the event gets set
1053  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1054  *      until the queue is empty. When the queue is empty it will wait for
1055  *      more FIBs.
1056  */
1057  
1058 int aac_command_thread(void *data)
1059 {
1060         struct aac_dev *dev = data;
1061         struct hw_fib *hw_fib, *hw_newfib;
1062         struct fib *fib, *newfib;
1063         struct aac_fib_context *fibctx;
1064         unsigned long flags;
1065         DECLARE_WAITQUEUE(wait, current);
1066
1067         /*
1068          *      We can only have one thread per adapter for AIF's.
1069          */
1070         if (dev->aif_thread)
1071                 return -EINVAL;
1072
1073         /*
1074          *      Let the DPC know it has a place to send the AIF's to.
1075          */
1076         dev->aif_thread = 1;
1077         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1078         set_current_state(TASK_INTERRUPTIBLE);
1079         dprintk ((KERN_INFO "aac_command_thread start\n"));
1080         while(1) 
1081         {
1082                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1083                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1084                         struct list_head *entry;
1085                         struct aac_aifcmd * aifcmd;
1086
1087                         set_current_state(TASK_RUNNING);
1088         
1089                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1090                         list_del(entry);
1091                 
1092                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1093                         fib = list_entry(entry, struct fib, fiblink);
1094                         /*
1095                          *      We will process the FIB here or pass it to a 
1096                          *      worker thread that is TBD. We Really can't 
1097                          *      do anything at this point since we don't have
1098                          *      anything defined for this thread to do.
1099                          */
1100                         hw_fib = fib->hw_fib;
1101                         memset(fib, 0, sizeof(struct fib));
1102                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1103                         fib->size = sizeof( struct fib );
1104                         fib->hw_fib = hw_fib;
1105                         fib->data = hw_fib->data;
1106                         fib->dev = dev;
1107                         /*
1108                          *      We only handle AifRequest fibs from the adapter.
1109                          */
1110                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1111                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1112                                 /* Handle Driver Notify Events */
1113                                 aac_handle_aif(dev, fib);
1114                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1115                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1116                         } else {
1117                                 struct list_head *entry;
1118                                 /* The u32 here is important and intended. We are using
1119                                    32bit wrapping time to fit the adapter field */
1120                                    
1121                                 u32 time_now, time_last;
1122                                 unsigned long flagv;
1123                                 unsigned num;
1124                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1125                                 struct fib ** fib_pool, ** fib_p;
1126                         
1127                                 /* Sniff events */
1128                                 if ((aifcmd->command == 
1129                                      cpu_to_le32(AifCmdEventNotify)) ||
1130                                     (aifcmd->command == 
1131                                      cpu_to_le32(AifCmdJobProgress))) {
1132                                         aac_handle_aif(dev, fib);
1133                                 }
1134                                 
1135                                 time_now = jiffies/HZ;
1136
1137                                 /*
1138                                  * Warning: no sleep allowed while
1139                                  * holding spinlock. We take the estimate
1140                                  * and pre-allocate a set of fibs outside the
1141                                  * lock.
1142                                  */
1143                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1144                                     / sizeof(struct hw_fib); /* some extra */
1145                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1146                                 entry = dev->fib_list.next;
1147                                 while (entry != &dev->fib_list) {
1148                                         entry = entry->next;
1149                                         ++num;
1150                                 }
1151                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1152                                 hw_fib_pool = NULL;
1153                                 fib_pool = NULL;
1154                                 if (num
1155                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1156                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1157                                         hw_fib_p = hw_fib_pool;
1158                                         fib_p = fib_pool;
1159                                         while (hw_fib_p < &hw_fib_pool[num]) {
1160                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1161                                                         --hw_fib_p;
1162                                                         break;
1163                                                 }
1164                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1165                                                         kfree(*(--hw_fib_p));
1166                                                         break;
1167                                                 }
1168                                         }
1169                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1170                                                 kfree(fib_pool);
1171                                                 fib_pool = NULL;
1172                                                 kfree(hw_fib_pool);
1173                                                 hw_fib_pool = NULL;
1174                                         }
1175                                 } else {
1176                                         kfree(hw_fib_pool);
1177                                         hw_fib_pool = NULL;
1178                                 }
1179                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1180                                 entry = dev->fib_list.next;
1181                                 /*
1182                                  * For each Context that is on the 
1183                                  * fibctxList, make a copy of the
1184                                  * fib, and then set the event to wake up the
1185                                  * thread that is waiting for it.
1186                                  */
1187                                 hw_fib_p = hw_fib_pool;
1188                                 fib_p = fib_pool;
1189                                 while (entry != &dev->fib_list) {
1190                                         /*
1191                                          * Extract the fibctx
1192                                          */
1193                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1194                                         /*
1195                                          * Check if the queue is getting
1196                                          * backlogged
1197                                          */
1198                                         if (fibctx->count > 20)
1199                                         {
1200                                                 /*
1201                                                  * It's *not* jiffies folks,
1202                                                  * but jiffies / HZ so do not
1203                                                  * panic ...
1204                                                  */
1205                                                 time_last = fibctx->jiffies;
1206                                                 /*
1207                                                  * Has it been > 2 minutes 
1208                                                  * since the last read off
1209                                                  * the queue?
1210                                                  */
1211                                                 if ((time_now - time_last) > aif_timeout) {
1212                                                         entry = entry->next;
1213                                                         aac_close_fib_context(dev, fibctx);
1214                                                         continue;
1215                                                 }
1216                                         }
1217                                         /*
1218                                          * Warning: no sleep allowed while
1219                                          * holding spinlock
1220                                          */
1221                                         if (hw_fib_p < &hw_fib_pool[num]) {
1222                                                 hw_newfib = *hw_fib_p;
1223                                                 *(hw_fib_p++) = NULL;
1224                                                 newfib = *fib_p;
1225                                                 *(fib_p++) = NULL;
1226                                                 /*
1227                                                  * Make the copy of the FIB
1228                                                  */
1229                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1230                                                 memcpy(newfib, fib, sizeof(struct fib));
1231                                                 newfib->hw_fib = hw_newfib;
1232                                                 /*
1233                                                  * Put the FIB onto the
1234                                                  * fibctx's fibs
1235                                                  */
1236                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1237                                                 fibctx->count++;
1238                                                 /* 
1239                                                  * Set the event to wake up the
1240                                                  * thread that is waiting.
1241                                                  */
1242                                                 up(&fibctx->wait_sem);
1243                                         } else {
1244                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1245                                         }
1246                                         entry = entry->next;
1247                                 }
1248                                 /*
1249                                  *      Set the status of this FIB
1250                                  */
1251                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1252                                 aac_fib_adapter_complete(fib, sizeof(u32));
1253                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1254                                 /* Free up the remaining resources */
1255                                 hw_fib_p = hw_fib_pool;
1256                                 fib_p = fib_pool;
1257                                 while (hw_fib_p < &hw_fib_pool[num]) {
1258                                         kfree(*hw_fib_p);
1259                                         kfree(*fib_p);
1260                                         ++fib_p;
1261                                         ++hw_fib_p;
1262                                 }
1263                                 kfree(hw_fib_pool);
1264                                 kfree(fib_pool);
1265                         }
1266                         kfree(fib);
1267                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1268                 }
1269                 /*
1270                  *      There are no more AIF's
1271                  */
1272                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1273                 schedule();
1274
1275                 if (kthread_should_stop())
1276                         break;
1277                 set_current_state(TASK_INTERRUPTIBLE);
1278         }
1279         if (dev->queues)
1280                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1281         dev->aif_thread = 0;
1282         return 0;
1283 }