USB: driver for mcs7830 (aka DeLOCK) USB ethernet adapter
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 /*
163  * Write out and wait upon all dirty data associated with this
164  * device.   Filesystem data as well as the underlying block
165  * device.  Takes the superblock lock.
166  */
167 int fsync_bdev(struct block_device *bdev)
168 {
169         struct super_block *sb = get_super(bdev);
170         if (sb) {
171                 int res = fsync_super(sb);
172                 drop_super(sb);
173                 return res;
174         }
175         return sync_blockdev(bdev);
176 }
177
178 /**
179  * freeze_bdev  --  lock a filesystem and force it into a consistent state
180  * @bdev:       blockdevice to lock
181  *
182  * This takes the block device bd_mount_mutex to make sure no new mounts
183  * happen on bdev until thaw_bdev() is called.
184  * If a superblock is found on this device, we take the s_umount semaphore
185  * on it to make sure nobody unmounts until the snapshot creation is done.
186  */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb;
190
191         mutex_lock(&bdev->bd_mount_mutex);
192         sb = get_super(bdev);
193         if (sb && !(sb->s_flags & MS_RDONLY)) {
194                 sb->s_frozen = SB_FREEZE_WRITE;
195                 smp_wmb();
196
197                 __fsync_super(sb);
198
199                 sb->s_frozen = SB_FREEZE_TRANS;
200                 smp_wmb();
201
202                 sync_blockdev(sb->s_bdev);
203
204                 if (sb->s_op->write_super_lockfs)
205                         sb->s_op->write_super_lockfs(sb);
206         }
207
208         sync_blockdev(bdev);
209         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212
213 /**
214  * thaw_bdev  -- unlock filesystem
215  * @bdev:       blockdevice to unlock
216  * @sb:         associated superblock
217  *
218  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219  */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222         if (sb) {
223                 BUG_ON(sb->s_bdev != bdev);
224
225                 if (sb->s_op->unlockfs)
226                         sb->s_op->unlockfs(sb);
227                 sb->s_frozen = SB_UNFROZEN;
228                 smp_wmb();
229                 wake_up(&sb->s_wait_unfrozen);
230                 drop_super(sb);
231         }
232
233         mutex_unlock(&bdev->bd_mount_mutex);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236
237 /*
238  * Various filesystems appear to want __find_get_block to be non-blocking.
239  * But it's the page lock which protects the buffers.  To get around this,
240  * we get exclusion from try_to_free_buffers with the blockdev mapping's
241  * private_lock.
242  *
243  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244  * may be quite high.  This code could TryLock the page, and if that
245  * succeeds, there is no need to take private_lock. (But if
246  * private_lock is contended then so is mapping->tree_lock).
247  */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251         struct inode *bd_inode = bdev->bd_inode;
252         struct address_space *bd_mapping = bd_inode->i_mapping;
253         struct buffer_head *ret = NULL;
254         pgoff_t index;
255         struct buffer_head *bh;
256         struct buffer_head *head;
257         struct page *page;
258         int all_mapped = 1;
259
260         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261         page = find_get_page(bd_mapping, index);
262         if (!page)
263                 goto out;
264
265         spin_lock(&bd_mapping->private_lock);
266         if (!page_has_buffers(page))
267                 goto out_unlock;
268         head = page_buffers(page);
269         bh = head;
270         do {
271                 if (bh->b_blocknr == block) {
272                         ret = bh;
273                         get_bh(bh);
274                         goto out_unlock;
275                 }
276                 if (!buffer_mapped(bh))
277                         all_mapped = 0;
278                 bh = bh->b_this_page;
279         } while (bh != head);
280
281         /* we might be here because some of the buffers on this page are
282          * not mapped.  This is due to various races between
283          * file io on the block device and getblk.  It gets dealt with
284          * elsewhere, don't buffer_error if we had some unmapped buffers
285          */
286         if (all_mapped) {
287                 printk("__find_get_block_slow() failed. "
288                         "block=%llu, b_blocknr=%llu\n",
289                         (unsigned long long)block,
290                         (unsigned long long)bh->b_blocknr);
291                 printk("b_state=0x%08lx, b_size=%zu\n",
292                         bh->b_state, bh->b_size);
293                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294         }
295 out_unlock:
296         spin_unlock(&bd_mapping->private_lock);
297         page_cache_release(page);
298 out:
299         return ret;
300 }
301
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303    of fs corruption is going on. Trashing dirty data always imply losing
304    information that was supposed to be just stored on the physical layer
305    by the user.
306
307    Thus invalidate_buffers in general usage is not allwowed to trash
308    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309    be preserved.  These buffers are simply skipped.
310   
311    We also skip buffers which are still in use.  For example this can
312    happen if a userspace program is reading the block device.
313
314    NOTE: In the case where the user removed a removable-media-disk even if
315    there's still dirty data not synced on disk (due a bug in the device driver
316    or due an error of the user), by not destroying the dirty buffers we could
317    generate corruption also on the next media inserted, thus a parameter is
318    necessary to handle this case in the most safe way possible (trying
319    to not corrupt also the new disk inserted with the data belonging to
320    the old now corrupted disk). Also for the ramdisk the natural thing
321    to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323    These are two special cases. Normal usage imply the device driver
324    to issue a sync on the device (without waiting I/O completion) and
325    then an invalidate_buffers call that doesn't trash dirty buffers.
326
327    For handling cache coherency with the blkdev pagecache the 'update' case
328    is been introduced. It is needed to re-read from disk any pinned
329    buffer. NOTE: re-reading from disk is destructive so we can do it only
330    when we assume nobody is changing the buffercache under our I/O and when
331    we think the disk contains more recent information than the buffercache.
332    The update == 1 pass marks the buffers we need to update, the update == 2
333    pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335 {
336         struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338         if (mapping->nrpages == 0)
339                 return;
340
341         invalidate_bh_lrus();
342         /*
343          * FIXME: what about destroy_dirty_buffers?
344          * We really want to use invalidate_inode_pages2() for
345          * that, but not until that's cleaned up.
346          */
347         invalidate_inode_pages(mapping);
348 }
349
350 /*
351  * Kick pdflush then try to free up some ZONE_NORMAL memory.
352  */
353 static void free_more_memory(void)
354 {
355         struct zone **zones;
356         pg_data_t *pgdat;
357
358         wakeup_pdflush(1024);
359         yield();
360
361         for_each_online_pgdat(pgdat) {
362                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
363                 if (*zones)
364                         try_to_free_pages(zones, GFP_NOFS);
365         }
366 }
367
368 /*
369  * I/O completion handler for block_read_full_page() - pages
370  * which come unlocked at the end of I/O.
371  */
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373 {
374         unsigned long flags;
375         struct buffer_head *first;
376         struct buffer_head *tmp;
377         struct page *page;
378         int page_uptodate = 1;
379
380         BUG_ON(!buffer_async_read(bh));
381
382         page = bh->b_page;
383         if (uptodate) {
384                 set_buffer_uptodate(bh);
385         } else {
386                 clear_buffer_uptodate(bh);
387                 if (printk_ratelimit())
388                         buffer_io_error(bh);
389                 SetPageError(page);
390         }
391
392         /*
393          * Be _very_ careful from here on. Bad things can happen if
394          * two buffer heads end IO at almost the same time and both
395          * decide that the page is now completely done.
396          */
397         first = page_buffers(page);
398         local_irq_save(flags);
399         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400         clear_buffer_async_read(bh);
401         unlock_buffer(bh);
402         tmp = bh;
403         do {
404                 if (!buffer_uptodate(tmp))
405                         page_uptodate = 0;
406                 if (buffer_async_read(tmp)) {
407                         BUG_ON(!buffer_locked(tmp));
408                         goto still_busy;
409                 }
410                 tmp = tmp->b_this_page;
411         } while (tmp != bh);
412         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413         local_irq_restore(flags);
414
415         /*
416          * If none of the buffers had errors and they are all
417          * uptodate then we can set the page uptodate.
418          */
419         if (page_uptodate && !PageError(page))
420                 SetPageUptodate(page);
421         unlock_page(page);
422         return;
423
424 still_busy:
425         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426         local_irq_restore(flags);
427         return;
428 }
429
430 /*
431  * Completion handler for block_write_full_page() - pages which are unlocked
432  * during I/O, and which have PageWriteback cleared upon I/O completion.
433  */
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
435 {
436         char b[BDEVNAME_SIZE];
437         unsigned long flags;
438         struct buffer_head *first;
439         struct buffer_head *tmp;
440         struct page *page;
441
442         BUG_ON(!buffer_async_write(bh));
443
444         page = bh->b_page;
445         if (uptodate) {
446                 set_buffer_uptodate(bh);
447         } else {
448                 if (printk_ratelimit()) {
449                         buffer_io_error(bh);
450                         printk(KERN_WARNING "lost page write due to "
451                                         "I/O error on %s\n",
452                                bdevname(bh->b_bdev, b));
453                 }
454                 set_bit(AS_EIO, &page->mapping->flags);
455                 set_buffer_write_io_error(bh);
456                 clear_buffer_uptodate(bh);
457                 SetPageError(page);
458         }
459
460         first = page_buffers(page);
461         local_irq_save(flags);
462         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
463
464         clear_buffer_async_write(bh);
465         unlock_buffer(bh);
466         tmp = bh->b_this_page;
467         while (tmp != bh) {
468                 if (buffer_async_write(tmp)) {
469                         BUG_ON(!buffer_locked(tmp));
470                         goto still_busy;
471                 }
472                 tmp = tmp->b_this_page;
473         }
474         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
475         local_irq_restore(flags);
476         end_page_writeback(page);
477         return;
478
479 still_busy:
480         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
481         local_irq_restore(flags);
482         return;
483 }
484
485 /*
486  * If a page's buffers are under async readin (end_buffer_async_read
487  * completion) then there is a possibility that another thread of
488  * control could lock one of the buffers after it has completed
489  * but while some of the other buffers have not completed.  This
490  * locked buffer would confuse end_buffer_async_read() into not unlocking
491  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
492  * that this buffer is not under async I/O.
493  *
494  * The page comes unlocked when it has no locked buffer_async buffers
495  * left.
496  *
497  * PageLocked prevents anyone starting new async I/O reads any of
498  * the buffers.
499  *
500  * PageWriteback is used to prevent simultaneous writeout of the same
501  * page.
502  *
503  * PageLocked prevents anyone from starting writeback of a page which is
504  * under read I/O (PageWriteback is only ever set against a locked page).
505  */
506 static void mark_buffer_async_read(struct buffer_head *bh)
507 {
508         bh->b_end_io = end_buffer_async_read;
509         set_buffer_async_read(bh);
510 }
511
512 void mark_buffer_async_write(struct buffer_head *bh)
513 {
514         bh->b_end_io = end_buffer_async_write;
515         set_buffer_async_write(bh);
516 }
517 EXPORT_SYMBOL(mark_buffer_async_write);
518
519
520 /*
521  * fs/buffer.c contains helper functions for buffer-backed address space's
522  * fsync functions.  A common requirement for buffer-based filesystems is
523  * that certain data from the backing blockdev needs to be written out for
524  * a successful fsync().  For example, ext2 indirect blocks need to be
525  * written back and waited upon before fsync() returns.
526  *
527  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
528  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
529  * management of a list of dependent buffers at ->i_mapping->private_list.
530  *
531  * Locking is a little subtle: try_to_free_buffers() will remove buffers
532  * from their controlling inode's queue when they are being freed.  But
533  * try_to_free_buffers() will be operating against the *blockdev* mapping
534  * at the time, not against the S_ISREG file which depends on those buffers.
535  * So the locking for private_list is via the private_lock in the address_space
536  * which backs the buffers.  Which is different from the address_space 
537  * against which the buffers are listed.  So for a particular address_space,
538  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
539  * mapping->private_list will always be protected by the backing blockdev's
540  * ->private_lock.
541  *
542  * Which introduces a requirement: all buffers on an address_space's
543  * ->private_list must be from the same address_space: the blockdev's.
544  *
545  * address_spaces which do not place buffers at ->private_list via these
546  * utility functions are free to use private_lock and private_list for
547  * whatever they want.  The only requirement is that list_empty(private_list)
548  * be true at clear_inode() time.
549  *
550  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
551  * filesystems should do that.  invalidate_inode_buffers() should just go
552  * BUG_ON(!list_empty).
553  *
554  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
555  * take an address_space, not an inode.  And it should be called
556  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
557  * queued up.
558  *
559  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
560  * list if it is already on a list.  Because if the buffer is on a list,
561  * it *must* already be on the right one.  If not, the filesystem is being
562  * silly.  This will save a ton of locking.  But first we have to ensure
563  * that buffers are taken *off* the old inode's list when they are freed
564  * (presumably in truncate).  That requires careful auditing of all
565  * filesystems (do it inside bforget()).  It could also be done by bringing
566  * b_inode back.
567  */
568
569 /*
570  * The buffer's backing address_space's private_lock must be held
571  */
572 static inline void __remove_assoc_queue(struct buffer_head *bh)
573 {
574         list_del_init(&bh->b_assoc_buffers);
575         WARN_ON(!bh->b_assoc_map);
576         if (buffer_write_io_error(bh))
577                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
578         bh->b_assoc_map = NULL;
579 }
580
581 int inode_has_buffers(struct inode *inode)
582 {
583         return !list_empty(&inode->i_data.private_list);
584 }
585
586 /*
587  * osync is designed to support O_SYNC io.  It waits synchronously for
588  * all already-submitted IO to complete, but does not queue any new
589  * writes to the disk.
590  *
591  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
592  * you dirty the buffers, and then use osync_inode_buffers to wait for
593  * completion.  Any other dirty buffers which are not yet queued for
594  * write will not be flushed to disk by the osync.
595  */
596 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
597 {
598         struct buffer_head *bh;
599         struct list_head *p;
600         int err = 0;
601
602         spin_lock(lock);
603 repeat:
604         list_for_each_prev(p, list) {
605                 bh = BH_ENTRY(p);
606                 if (buffer_locked(bh)) {
607                         get_bh(bh);
608                         spin_unlock(lock);
609                         wait_on_buffer(bh);
610                         if (!buffer_uptodate(bh))
611                                 err = -EIO;
612                         brelse(bh);
613                         spin_lock(lock);
614                         goto repeat;
615                 }
616         }
617         spin_unlock(lock);
618         return err;
619 }
620
621 /**
622  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
623  *                        buffers
624  * @mapping: the mapping which wants those buffers written
625  *
626  * Starts I/O against the buffers at mapping->private_list, and waits upon
627  * that I/O.
628  *
629  * Basically, this is a convenience function for fsync().
630  * @mapping is a file or directory which needs those buffers to be written for
631  * a successful fsync().
632  */
633 int sync_mapping_buffers(struct address_space *mapping)
634 {
635         struct address_space *buffer_mapping = mapping->assoc_mapping;
636
637         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
638                 return 0;
639
640         return fsync_buffers_list(&buffer_mapping->private_lock,
641                                         &mapping->private_list);
642 }
643 EXPORT_SYMBOL(sync_mapping_buffers);
644
645 /*
646  * Called when we've recently written block `bblock', and it is known that
647  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
648  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
649  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
650  */
651 void write_boundary_block(struct block_device *bdev,
652                         sector_t bblock, unsigned blocksize)
653 {
654         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
655         if (bh) {
656                 if (buffer_dirty(bh))
657                         ll_rw_block(WRITE, 1, &bh);
658                 put_bh(bh);
659         }
660 }
661
662 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
663 {
664         struct address_space *mapping = inode->i_mapping;
665         struct address_space *buffer_mapping = bh->b_page->mapping;
666
667         mark_buffer_dirty(bh);
668         if (!mapping->assoc_mapping) {
669                 mapping->assoc_mapping = buffer_mapping;
670         } else {
671                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
672         }
673         if (list_empty(&bh->b_assoc_buffers)) {
674                 spin_lock(&buffer_mapping->private_lock);
675                 list_move_tail(&bh->b_assoc_buffers,
676                                 &mapping->private_list);
677                 bh->b_assoc_map = mapping;
678                 spin_unlock(&buffer_mapping->private_lock);
679         }
680 }
681 EXPORT_SYMBOL(mark_buffer_dirty_inode);
682
683 /*
684  * Add a page to the dirty page list.
685  *
686  * It is a sad fact of life that this function is called from several places
687  * deeply under spinlocking.  It may not sleep.
688  *
689  * If the page has buffers, the uptodate buffers are set dirty, to preserve
690  * dirty-state coherency between the page and the buffers.  It the page does
691  * not have buffers then when they are later attached they will all be set
692  * dirty.
693  *
694  * The buffers are dirtied before the page is dirtied.  There's a small race
695  * window in which a writepage caller may see the page cleanness but not the
696  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
697  * before the buffers, a concurrent writepage caller could clear the page dirty
698  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
699  * page on the dirty page list.
700  *
701  * We use private_lock to lock against try_to_free_buffers while using the
702  * page's buffer list.  Also use this to protect against clean buffers being
703  * added to the page after it was set dirty.
704  *
705  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
706  * address_space though.
707  */
708 int __set_page_dirty_buffers(struct page *page)
709 {
710         struct address_space * const mapping = page_mapping(page);
711
712         if (unlikely(!mapping))
713                 return !TestSetPageDirty(page);
714
715         spin_lock(&mapping->private_lock);
716         if (page_has_buffers(page)) {
717                 struct buffer_head *head = page_buffers(page);
718                 struct buffer_head *bh = head;
719
720                 do {
721                         set_buffer_dirty(bh);
722                         bh = bh->b_this_page;
723                 } while (bh != head);
724         }
725         spin_unlock(&mapping->private_lock);
726
727         if (!TestSetPageDirty(page)) {
728                 write_lock_irq(&mapping->tree_lock);
729                 if (page->mapping) {    /* Race with truncate? */
730                         if (mapping_cap_account_dirty(mapping))
731                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
732                         radix_tree_tag_set(&mapping->page_tree,
733                                                 page_index(page),
734                                                 PAGECACHE_TAG_DIRTY);
735                 }
736                 write_unlock_irq(&mapping->tree_lock);
737                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
738                 return 1;
739         }
740         return 0;
741 }
742 EXPORT_SYMBOL(__set_page_dirty_buffers);
743
744 /*
745  * Write out and wait upon a list of buffers.
746  *
747  * We have conflicting pressures: we want to make sure that all
748  * initially dirty buffers get waited on, but that any subsequently
749  * dirtied buffers don't.  After all, we don't want fsync to last
750  * forever if somebody is actively writing to the file.
751  *
752  * Do this in two main stages: first we copy dirty buffers to a
753  * temporary inode list, queueing the writes as we go.  Then we clean
754  * up, waiting for those writes to complete.
755  * 
756  * During this second stage, any subsequent updates to the file may end
757  * up refiling the buffer on the original inode's dirty list again, so
758  * there is a chance we will end up with a buffer queued for write but
759  * not yet completed on that list.  So, as a final cleanup we go through
760  * the osync code to catch these locked, dirty buffers without requeuing
761  * any newly dirty buffers for write.
762  */
763 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
764 {
765         struct buffer_head *bh;
766         struct list_head tmp;
767         int err = 0, err2;
768
769         INIT_LIST_HEAD(&tmp);
770
771         spin_lock(lock);
772         while (!list_empty(list)) {
773                 bh = BH_ENTRY(list->next);
774                 __remove_assoc_queue(bh);
775                 if (buffer_dirty(bh) || buffer_locked(bh)) {
776                         list_add(&bh->b_assoc_buffers, &tmp);
777                         if (buffer_dirty(bh)) {
778                                 get_bh(bh);
779                                 spin_unlock(lock);
780                                 /*
781                                  * Ensure any pending I/O completes so that
782                                  * ll_rw_block() actually writes the current
783                                  * contents - it is a noop if I/O is still in
784                                  * flight on potentially older contents.
785                                  */
786                                 ll_rw_block(SWRITE, 1, &bh);
787                                 brelse(bh);
788                                 spin_lock(lock);
789                         }
790                 }
791         }
792
793         while (!list_empty(&tmp)) {
794                 bh = BH_ENTRY(tmp.prev);
795                 list_del_init(&bh->b_assoc_buffers);
796                 get_bh(bh);
797                 spin_unlock(lock);
798                 wait_on_buffer(bh);
799                 if (!buffer_uptodate(bh))
800                         err = -EIO;
801                 brelse(bh);
802                 spin_lock(lock);
803         }
804         
805         spin_unlock(lock);
806         err2 = osync_buffers_list(lock, list);
807         if (err)
808                 return err;
809         else
810                 return err2;
811 }
812
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->assoc_mapping;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list))
831                         __remove_assoc_queue(BH_ENTRY(list->next));
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834 }
835
836 /*
837  * Remove any clean buffers from the inode's buffer list.  This is called
838  * when we're trying to free the inode itself.  Those buffers can pin it.
839  *
840  * Returns true if all buffers were removed.
841  */
842 int remove_inode_buffers(struct inode *inode)
843 {
844         int ret = 1;
845
846         if (inode_has_buffers(inode)) {
847                 struct address_space *mapping = &inode->i_data;
848                 struct list_head *list = &mapping->private_list;
849                 struct address_space *buffer_mapping = mapping->assoc_mapping;
850
851                 spin_lock(&buffer_mapping->private_lock);
852                 while (!list_empty(list)) {
853                         struct buffer_head *bh = BH_ENTRY(list->next);
854                         if (buffer_dirty(bh)) {
855                                 ret = 0;
856                                 break;
857                         }
858                         __remove_assoc_queue(bh);
859                 }
860                 spin_unlock(&buffer_mapping->private_lock);
861         }
862         return ret;
863 }
864
865 /*
866  * Create the appropriate buffers when given a page for data area and
867  * the size of each buffer.. Use the bh->b_this_page linked list to
868  * follow the buffers created.  Return NULL if unable to create more
869  * buffers.
870  *
871  * The retry flag is used to differentiate async IO (paging, swapping)
872  * which may not fail from ordinary buffer allocations.
873  */
874 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
875                 int retry)
876 {
877         struct buffer_head *bh, *head;
878         long offset;
879
880 try_again:
881         head = NULL;
882         offset = PAGE_SIZE;
883         while ((offset -= size) >= 0) {
884                 bh = alloc_buffer_head(GFP_NOFS);
885                 if (!bh)
886                         goto no_grow;
887
888                 bh->b_bdev = NULL;
889                 bh->b_this_page = head;
890                 bh->b_blocknr = -1;
891                 head = bh;
892
893                 bh->b_state = 0;
894                 atomic_set(&bh->b_count, 0);
895                 bh->b_private = NULL;
896                 bh->b_size = size;
897
898                 /* Link the buffer to its page */
899                 set_bh_page(bh, page, offset);
900
901                 init_buffer(bh, NULL, NULL);
902         }
903         return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908         if (head) {
909                 do {
910                         bh = head;
911                         head = head->b_this_page;
912                         free_buffer_head(bh);
913                 } while (head);
914         }
915
916         /*
917          * Return failure for non-async IO requests.  Async IO requests
918          * are not allowed to fail, so we have to wait until buffer heads
919          * become available.  But we don't want tasks sleeping with 
920          * partially complete buffers, so all were released above.
921          */
922         if (!retry)
923                 return NULL;
924
925         /* We're _really_ low on memory. Now we just
926          * wait for old buffer heads to become free due to
927          * finishing IO.  Since this is an async request and
928          * the reserve list is empty, we're sure there are 
929          * async buffer heads in use.
930          */
931         free_more_memory();
932         goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939         struct buffer_head *bh, *tail;
940
941         bh = head;
942         do {
943                 tail = bh;
944                 bh = bh->b_this_page;
945         } while (bh);
946         tail->b_this_page = head;
947         attach_page_buffers(page, head);
948 }
949
950 /*
951  * Initialise the state of a blockdev page's buffers.
952  */ 
953 static void
954 init_page_buffers(struct page *page, struct block_device *bdev,
955                         sector_t block, int size)
956 {
957         struct buffer_head *head = page_buffers(page);
958         struct buffer_head *bh = head;
959         int uptodate = PageUptodate(page);
960
961         do {
962                 if (!buffer_mapped(bh)) {
963                         init_buffer(bh, NULL, NULL);
964                         bh->b_bdev = bdev;
965                         bh->b_blocknr = block;
966                         if (uptodate)
967                                 set_buffer_uptodate(bh);
968                         set_buffer_mapped(bh);
969                 }
970                 block++;
971                 bh = bh->b_this_page;
972         } while (bh != head);
973 }
974
975 /*
976  * Create the page-cache page that contains the requested block.
977  *
978  * This is user purely for blockdev mappings.
979  */
980 static struct page *
981 grow_dev_page(struct block_device *bdev, sector_t block,
982                 pgoff_t index, int size)
983 {
984         struct inode *inode = bdev->bd_inode;
985         struct page *page;
986         struct buffer_head *bh;
987
988         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
989         if (!page)
990                 return NULL;
991
992         BUG_ON(!PageLocked(page));
993
994         if (page_has_buffers(page)) {
995                 bh = page_buffers(page);
996                 if (bh->b_size == size) {
997                         init_page_buffers(page, bdev, block, size);
998                         return page;
999                 }
1000                 if (!try_to_free_buffers(page))
1001                         goto failed;
1002         }
1003
1004         /*
1005          * Allocate some buffers for this page
1006          */
1007         bh = alloc_page_buffers(page, size, 0);
1008         if (!bh)
1009                 goto failed;
1010
1011         /*
1012          * Link the page to the buffers and initialise them.  Take the
1013          * lock to be atomic wrt __find_get_block(), which does not
1014          * run under the page lock.
1015          */
1016         spin_lock(&inode->i_mapping->private_lock);
1017         link_dev_buffers(page, bh);
1018         init_page_buffers(page, bdev, block, size);
1019         spin_unlock(&inode->i_mapping->private_lock);
1020         return page;
1021
1022 failed:
1023         BUG();
1024         unlock_page(page);
1025         page_cache_release(page);
1026         return NULL;
1027 }
1028
1029 /*
1030  * Create buffers for the specified block device block's page.  If
1031  * that page was dirty, the buffers are set dirty also.
1032  *
1033  * Except that's a bug.  Attaching dirty buffers to a dirty
1034  * blockdev's page can result in filesystem corruption, because
1035  * some of those buffers may be aliases of filesystem data.
1036  * grow_dev_page() will go BUG() if this happens.
1037  */
1038 static int
1039 grow_buffers(struct block_device *bdev, sector_t block, int size)
1040 {
1041         struct page *page;
1042         pgoff_t index;
1043         int sizebits;
1044
1045         sizebits = -1;
1046         do {
1047                 sizebits++;
1048         } while ((size << sizebits) < PAGE_SIZE);
1049
1050         index = block >> sizebits;
1051
1052         /*
1053          * Check for a block which wants to lie outside our maximum possible
1054          * pagecache index.  (this comparison is done using sector_t types).
1055          */
1056         if (unlikely(index != block >> sizebits)) {
1057                 char b[BDEVNAME_SIZE];
1058
1059                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1060                         "device %s\n",
1061                         __FUNCTION__, (unsigned long long)block,
1062                         bdevname(bdev, b));
1063                 return -EIO;
1064         }
1065         block = index << sizebits;
1066         /* Create a page with the proper size buffers.. */
1067         page = grow_dev_page(bdev, block, index, size);
1068         if (!page)
1069                 return 0;
1070         unlock_page(page);
1071         page_cache_release(page);
1072         return 1;
1073 }
1074
1075 static struct buffer_head *
1076 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1077 {
1078         /* Size must be multiple of hard sectorsize */
1079         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1080                         (size < 512 || size > PAGE_SIZE))) {
1081                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1082                                         size);
1083                 printk(KERN_ERR "hardsect size: %d\n",
1084                                         bdev_hardsect_size(bdev));
1085
1086                 dump_stack();
1087                 return NULL;
1088         }
1089
1090         for (;;) {
1091                 struct buffer_head * bh;
1092                 int ret;
1093
1094                 bh = __find_get_block(bdev, block, size);
1095                 if (bh)
1096                         return bh;
1097
1098                 ret = grow_buffers(bdev, block, size);
1099                 if (ret < 0)
1100                         return NULL;
1101                 if (ret == 0)
1102                         free_more_memory();
1103         }
1104 }
1105
1106 /*
1107  * The relationship between dirty buffers and dirty pages:
1108  *
1109  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1110  * the page is tagged dirty in its radix tree.
1111  *
1112  * At all times, the dirtiness of the buffers represents the dirtiness of
1113  * subsections of the page.  If the page has buffers, the page dirty bit is
1114  * merely a hint about the true dirty state.
1115  *
1116  * When a page is set dirty in its entirety, all its buffers are marked dirty
1117  * (if the page has buffers).
1118  *
1119  * When a buffer is marked dirty, its page is dirtied, but the page's other
1120  * buffers are not.
1121  *
1122  * Also.  When blockdev buffers are explicitly read with bread(), they
1123  * individually become uptodate.  But their backing page remains not
1124  * uptodate - even if all of its buffers are uptodate.  A subsequent
1125  * block_read_full_page() against that page will discover all the uptodate
1126  * buffers, will set the page uptodate and will perform no I/O.
1127  */
1128
1129 /**
1130  * mark_buffer_dirty - mark a buffer_head as needing writeout
1131  * @bh: the buffer_head to mark dirty
1132  *
1133  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1134  * backing page dirty, then tag the page as dirty in its address_space's radix
1135  * tree and then attach the address_space's inode to its superblock's dirty
1136  * inode list.
1137  *
1138  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1139  * mapping->tree_lock and the global inode_lock.
1140  */
1141 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1142 {
1143         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1144                 __set_page_dirty_nobuffers(bh->b_page);
1145 }
1146
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156         if (atomic_read(&buf->b_count)) {
1157                 put_bh(buf);
1158                 return;
1159         }
1160         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161         WARN_ON(1);
1162 }
1163
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170         clear_buffer_dirty(bh);
1171         if (!list_empty(&bh->b_assoc_buffers)) {
1172                 struct address_space *buffer_mapping = bh->b_page->mapping;
1173
1174                 spin_lock(&buffer_mapping->private_lock);
1175                 list_del_init(&bh->b_assoc_buffers);
1176                 bh->b_assoc_map = NULL;
1177                 spin_unlock(&buffer_mapping->private_lock);
1178         }
1179         __brelse(bh);
1180 }
1181
1182 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1183 {
1184         lock_buffer(bh);
1185         if (buffer_uptodate(bh)) {
1186                 unlock_buffer(bh);
1187                 return bh;
1188         } else {
1189                 get_bh(bh);
1190                 bh->b_end_io = end_buffer_read_sync;
1191                 submit_bh(READ, bh);
1192                 wait_on_buffer(bh);
1193                 if (buffer_uptodate(bh))
1194                         return bh;
1195         }
1196         brelse(bh);
1197         return NULL;
1198 }
1199
1200 /*
1201  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1202  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1203  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1204  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1205  * CPU's LRUs at the same time.
1206  *
1207  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208  * sb_find_get_block().
1209  *
1210  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1211  * a local interrupt disable for that.
1212  */
1213
1214 #define BH_LRU_SIZE     8
1215
1216 struct bh_lru {
1217         struct buffer_head *bhs[BH_LRU_SIZE];
1218 };
1219
1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1221
1222 #ifdef CONFIG_SMP
1223 #define bh_lru_lock()   local_irq_disable()
1224 #define bh_lru_unlock() local_irq_enable()
1225 #else
1226 #define bh_lru_lock()   preempt_disable()
1227 #define bh_lru_unlock() preempt_enable()
1228 #endif
1229
1230 static inline void check_irqs_on(void)
1231 {
1232 #ifdef irqs_disabled
1233         BUG_ON(irqs_disabled());
1234 #endif
1235 }
1236
1237 /*
1238  * The LRU management algorithm is dopey-but-simple.  Sorry.
1239  */
1240 static void bh_lru_install(struct buffer_head *bh)
1241 {
1242         struct buffer_head *evictee = NULL;
1243         struct bh_lru *lru;
1244
1245         check_irqs_on();
1246         bh_lru_lock();
1247         lru = &__get_cpu_var(bh_lrus);
1248         if (lru->bhs[0] != bh) {
1249                 struct buffer_head *bhs[BH_LRU_SIZE];
1250                 int in;
1251                 int out = 0;
1252
1253                 get_bh(bh);
1254                 bhs[out++] = bh;
1255                 for (in = 0; in < BH_LRU_SIZE; in++) {
1256                         struct buffer_head *bh2 = lru->bhs[in];
1257
1258                         if (bh2 == bh) {
1259                                 __brelse(bh2);
1260                         } else {
1261                                 if (out >= BH_LRU_SIZE) {
1262                                         BUG_ON(evictee != NULL);
1263                                         evictee = bh2;
1264                                 } else {
1265                                         bhs[out++] = bh2;
1266                                 }
1267                         }
1268                 }
1269                 while (out < BH_LRU_SIZE)
1270                         bhs[out++] = NULL;
1271                 memcpy(lru->bhs, bhs, sizeof(bhs));
1272         }
1273         bh_lru_unlock();
1274
1275         if (evictee)
1276                 __brelse(evictee);
1277 }
1278
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1284 {
1285         struct buffer_head *ret = NULL;
1286         struct bh_lru *lru;
1287         int i;
1288
1289         check_irqs_on();
1290         bh_lru_lock();
1291         lru = &__get_cpu_var(bh_lrus);
1292         for (i = 0; i < BH_LRU_SIZE; i++) {
1293                 struct buffer_head *bh = lru->bhs[i];
1294
1295                 if (bh && bh->b_bdev == bdev &&
1296                                 bh->b_blocknr == block && bh->b_size == size) {
1297                         if (i) {
1298                                 while (i) {
1299                                         lru->bhs[i] = lru->bhs[i - 1];
1300                                         i--;
1301                                 }
1302                                 lru->bhs[0] = bh;
1303                         }
1304                         get_bh(bh);
1305                         ret = bh;
1306                         break;
1307                 }
1308         }
1309         bh_lru_unlock();
1310         return ret;
1311 }
1312
1313 /*
1314  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1315  * it in the LRU and mark it as accessed.  If it is not present then return
1316  * NULL
1317  */
1318 struct buffer_head *
1319 __find_get_block(struct block_device *bdev, sector_t block, int size)
1320 {
1321         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1322
1323         if (bh == NULL) {
1324                 bh = __find_get_block_slow(bdev, block);
1325                 if (bh)
1326                         bh_lru_install(bh);
1327         }
1328         if (bh)
1329                 touch_buffer(bh);
1330         return bh;
1331 }
1332 EXPORT_SYMBOL(__find_get_block);
1333
1334 /*
1335  * __getblk will locate (and, if necessary, create) the buffer_head
1336  * which corresponds to the passed block_device, block and size. The
1337  * returned buffer has its reference count incremented.
1338  *
1339  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1340  * illegal block number, __getblk() will happily return a buffer_head
1341  * which represents the non-existent block.  Very weird.
1342  *
1343  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1344  * attempt is failing.  FIXME, perhaps?
1345  */
1346 struct buffer_head *
1347 __getblk(struct block_device *bdev, sector_t block, int size)
1348 {
1349         struct buffer_head *bh = __find_get_block(bdev, block, size);
1350
1351         might_sleep();
1352         if (bh == NULL)
1353                 bh = __getblk_slow(bdev, block, size);
1354         return bh;
1355 }
1356 EXPORT_SYMBOL(__getblk);
1357
1358 /*
1359  * Do async read-ahead on a buffer..
1360  */
1361 void __breadahead(struct block_device *bdev, sector_t block, int size)
1362 {
1363         struct buffer_head *bh = __getblk(bdev, block, size);
1364         if (likely(bh)) {
1365                 ll_rw_block(READA, 1, &bh);
1366                 brelse(bh);
1367         }
1368 }
1369 EXPORT_SYMBOL(__breadahead);
1370
1371 /**
1372  *  __bread() - reads a specified block and returns the bh
1373  *  @bdev: the block_device to read from
1374  *  @block: number of block
1375  *  @size: size (in bytes) to read
1376  * 
1377  *  Reads a specified block, and returns buffer head that contains it.
1378  *  It returns NULL if the block was unreadable.
1379  */
1380 struct buffer_head *
1381 __bread(struct block_device *bdev, sector_t block, int size)
1382 {
1383         struct buffer_head *bh = __getblk(bdev, block, size);
1384
1385         if (likely(bh) && !buffer_uptodate(bh))
1386                 bh = __bread_slow(bh);
1387         return bh;
1388 }
1389 EXPORT_SYMBOL(__bread);
1390
1391 /*
1392  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1393  * This doesn't race because it runs in each cpu either in irq
1394  * or with preempt disabled.
1395  */
1396 static void invalidate_bh_lru(void *arg)
1397 {
1398         struct bh_lru *b = &get_cpu_var(bh_lrus);
1399         int i;
1400
1401         for (i = 0; i < BH_LRU_SIZE; i++) {
1402                 brelse(b->bhs[i]);
1403                 b->bhs[i] = NULL;
1404         }
1405         put_cpu_var(bh_lrus);
1406 }
1407         
1408 static void invalidate_bh_lrus(void)
1409 {
1410         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1411 }
1412
1413 void set_bh_page(struct buffer_head *bh,
1414                 struct page *page, unsigned long offset)
1415 {
1416         bh->b_page = page;
1417         BUG_ON(offset >= PAGE_SIZE);
1418         if (PageHighMem(page))
1419                 /*
1420                  * This catches illegal uses and preserves the offset:
1421                  */
1422                 bh->b_data = (char *)(0 + offset);
1423         else
1424                 bh->b_data = page_address(page) + offset;
1425 }
1426 EXPORT_SYMBOL(set_bh_page);
1427
1428 /*
1429  * Called when truncating a buffer on a page completely.
1430  */
1431 static void discard_buffer(struct buffer_head * bh)
1432 {
1433         lock_buffer(bh);
1434         clear_buffer_dirty(bh);
1435         bh->b_bdev = NULL;
1436         clear_buffer_mapped(bh);
1437         clear_buffer_req(bh);
1438         clear_buffer_new(bh);
1439         clear_buffer_delay(bh);
1440         unlock_buffer(bh);
1441 }
1442
1443 /**
1444  * block_invalidatepage - invalidate part of all of a buffer-backed page
1445  *
1446  * @page: the page which is affected
1447  * @offset: the index of the truncation point
1448  *
1449  * block_invalidatepage() is called when all or part of the page has become
1450  * invalidatedby a truncate operation.
1451  *
1452  * block_invalidatepage() does not have to release all buffers, but it must
1453  * ensure that no dirty buffer is left outside @offset and that no I/O
1454  * is underway against any of the blocks which are outside the truncation
1455  * point.  Because the caller is about to free (and possibly reuse) those
1456  * blocks on-disk.
1457  */
1458 void block_invalidatepage(struct page *page, unsigned long offset)
1459 {
1460         struct buffer_head *head, *bh, *next;
1461         unsigned int curr_off = 0;
1462
1463         BUG_ON(!PageLocked(page));
1464         if (!page_has_buffers(page))
1465                 goto out;
1466
1467         head = page_buffers(page);
1468         bh = head;
1469         do {
1470                 unsigned int next_off = curr_off + bh->b_size;
1471                 next = bh->b_this_page;
1472
1473                 /*
1474                  * is this block fully invalidated?
1475                  */
1476                 if (offset <= curr_off)
1477                         discard_buffer(bh);
1478                 curr_off = next_off;
1479                 bh = next;
1480         } while (bh != head);
1481
1482         /*
1483          * We release buffers only if the entire page is being invalidated.
1484          * The get_block cached value has been unconditionally invalidated,
1485          * so real IO is not possible anymore.
1486          */
1487         if (offset == 0)
1488                 try_to_release_page(page, 0);
1489 out:
1490         return;
1491 }
1492 EXPORT_SYMBOL(block_invalidatepage);
1493
1494 /*
1495  * We attach and possibly dirty the buffers atomically wrt
1496  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1497  * is already excluded via the page lock.
1498  */
1499 void create_empty_buffers(struct page *page,
1500                         unsigned long blocksize, unsigned long b_state)
1501 {
1502         struct buffer_head *bh, *head, *tail;
1503
1504         head = alloc_page_buffers(page, blocksize, 1);
1505         bh = head;
1506         do {
1507                 bh->b_state |= b_state;
1508                 tail = bh;
1509                 bh = bh->b_this_page;
1510         } while (bh);
1511         tail->b_this_page = head;
1512
1513         spin_lock(&page->mapping->private_lock);
1514         if (PageUptodate(page) || PageDirty(page)) {
1515                 bh = head;
1516                 do {
1517                         if (PageDirty(page))
1518                                 set_buffer_dirty(bh);
1519                         if (PageUptodate(page))
1520                                 set_buffer_uptodate(bh);
1521                         bh = bh->b_this_page;
1522                 } while (bh != head);
1523         }
1524         attach_page_buffers(page, head);
1525         spin_unlock(&page->mapping->private_lock);
1526 }
1527 EXPORT_SYMBOL(create_empty_buffers);
1528
1529 /*
1530  * We are taking a block for data and we don't want any output from any
1531  * buffer-cache aliases starting from return from that function and
1532  * until the moment when something will explicitly mark the buffer
1533  * dirty (hopefully that will not happen until we will free that block ;-)
1534  * We don't even need to mark it not-uptodate - nobody can expect
1535  * anything from a newly allocated buffer anyway. We used to used
1536  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1537  * don't want to mark the alias unmapped, for example - it would confuse
1538  * anyone who might pick it with bread() afterwards...
1539  *
1540  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1541  * be writeout I/O going on against recently-freed buffers.  We don't
1542  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1543  * only if we really need to.  That happens here.
1544  */
1545 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1546 {
1547         struct buffer_head *old_bh;
1548
1549         might_sleep();
1550
1551         old_bh = __find_get_block_slow(bdev, block);
1552         if (old_bh) {
1553                 clear_buffer_dirty(old_bh);
1554                 wait_on_buffer(old_bh);
1555                 clear_buffer_req(old_bh);
1556                 __brelse(old_bh);
1557         }
1558 }
1559 EXPORT_SYMBOL(unmap_underlying_metadata);
1560
1561 /*
1562  * NOTE! All mapped/uptodate combinations are valid:
1563  *
1564  *      Mapped  Uptodate        Meaning
1565  *
1566  *      No      No              "unknown" - must do get_block()
1567  *      No      Yes             "hole" - zero-filled
1568  *      Yes     No              "allocated" - allocated on disk, not read in
1569  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1570  *
1571  * "Dirty" is valid only with the last case (mapped+uptodate).
1572  */
1573
1574 /*
1575  * While block_write_full_page is writing back the dirty buffers under
1576  * the page lock, whoever dirtied the buffers may decide to clean them
1577  * again at any time.  We handle that by only looking at the buffer
1578  * state inside lock_buffer().
1579  *
1580  * If block_write_full_page() is called for regular writeback
1581  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1582  * locked buffer.   This only can happen if someone has written the buffer
1583  * directly, with submit_bh().  At the address_space level PageWriteback
1584  * prevents this contention from occurring.
1585  */
1586 static int __block_write_full_page(struct inode *inode, struct page *page,
1587                         get_block_t *get_block, struct writeback_control *wbc)
1588 {
1589         int err;
1590         sector_t block;
1591         sector_t last_block;
1592         struct buffer_head *bh, *head;
1593         const unsigned blocksize = 1 << inode->i_blkbits;
1594         int nr_underway = 0;
1595
1596         BUG_ON(!PageLocked(page));
1597
1598         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1599
1600         if (!page_has_buffers(page)) {
1601                 create_empty_buffers(page, blocksize,
1602                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1603         }
1604
1605         /*
1606          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1607          * here, and the (potentially unmapped) buffers may become dirty at
1608          * any time.  If a buffer becomes dirty here after we've inspected it
1609          * then we just miss that fact, and the page stays dirty.
1610          *
1611          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1612          * handle that here by just cleaning them.
1613          */
1614
1615         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1616         head = page_buffers(page);
1617         bh = head;
1618
1619         /*
1620          * Get all the dirty buffers mapped to disk addresses and
1621          * handle any aliases from the underlying blockdev's mapping.
1622          */
1623         do {
1624                 if (block > last_block) {
1625                         /*
1626                          * mapped buffers outside i_size will occur, because
1627                          * this page can be outside i_size when there is a
1628                          * truncate in progress.
1629                          */
1630                         /*
1631                          * The buffer was zeroed by block_write_full_page()
1632                          */
1633                         clear_buffer_dirty(bh);
1634                         set_buffer_uptodate(bh);
1635                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1636                         WARN_ON(bh->b_size != blocksize);
1637                         err = get_block(inode, block, bh, 1);
1638                         if (err)
1639                                 goto recover;
1640                         if (buffer_new(bh)) {
1641                                 /* blockdev mappings never come here */
1642                                 clear_buffer_new(bh);
1643                                 unmap_underlying_metadata(bh->b_bdev,
1644                                                         bh->b_blocknr);
1645                         }
1646                 }
1647                 bh = bh->b_this_page;
1648                 block++;
1649         } while (bh != head);
1650
1651         do {
1652                 if (!buffer_mapped(bh))
1653                         continue;
1654                 /*
1655                  * If it's a fully non-blocking write attempt and we cannot
1656                  * lock the buffer then redirty the page.  Note that this can
1657                  * potentially cause a busy-wait loop from pdflush and kswapd
1658                  * activity, but those code paths have their own higher-level
1659                  * throttling.
1660                  */
1661                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1662                         lock_buffer(bh);
1663                 } else if (test_set_buffer_locked(bh)) {
1664                         redirty_page_for_writepage(wbc, page);
1665                         continue;
1666                 }
1667                 if (test_clear_buffer_dirty(bh)) {
1668                         mark_buffer_async_write(bh);
1669                 } else {
1670                         unlock_buffer(bh);
1671                 }
1672         } while ((bh = bh->b_this_page) != head);
1673
1674         /*
1675          * The page and its buffers are protected by PageWriteback(), so we can
1676          * drop the bh refcounts early.
1677          */
1678         BUG_ON(PageWriteback(page));
1679         set_page_writeback(page);
1680
1681         do {
1682                 struct buffer_head *next = bh->b_this_page;
1683                 if (buffer_async_write(bh)) {
1684                         submit_bh(WRITE, bh);
1685                         nr_underway++;
1686                 }
1687                 bh = next;
1688         } while (bh != head);
1689         unlock_page(page);
1690
1691         err = 0;
1692 done:
1693         if (nr_underway == 0) {
1694                 /*
1695                  * The page was marked dirty, but the buffers were
1696                  * clean.  Someone wrote them back by hand with
1697                  * ll_rw_block/submit_bh.  A rare case.
1698                  */
1699                 int uptodate = 1;
1700                 do {
1701                         if (!buffer_uptodate(bh)) {
1702                                 uptodate = 0;
1703                                 break;
1704                         }
1705                         bh = bh->b_this_page;
1706                 } while (bh != head);
1707                 if (uptodate)
1708                         SetPageUptodate(page);
1709                 end_page_writeback(page);
1710                 /*
1711                  * The page and buffer_heads can be released at any time from
1712                  * here on.
1713                  */
1714                 wbc->pages_skipped++;   /* We didn't write this page */
1715         }
1716         return err;
1717
1718 recover:
1719         /*
1720          * ENOSPC, or some other error.  We may already have added some
1721          * blocks to the file, so we need to write these out to avoid
1722          * exposing stale data.
1723          * The page is currently locked and not marked for writeback
1724          */
1725         bh = head;
1726         /* Recovery: lock and submit the mapped buffers */
1727         do {
1728                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1729                         lock_buffer(bh);
1730                         mark_buffer_async_write(bh);
1731                 } else {
1732                         /*
1733                          * The buffer may have been set dirty during
1734                          * attachment to a dirty page.
1735                          */
1736                         clear_buffer_dirty(bh);
1737                 }
1738         } while ((bh = bh->b_this_page) != head);
1739         SetPageError(page);
1740         BUG_ON(PageWriteback(page));
1741         set_page_writeback(page);
1742         unlock_page(page);
1743         do {
1744                 struct buffer_head *next = bh->b_this_page;
1745                 if (buffer_async_write(bh)) {
1746                         clear_buffer_dirty(bh);
1747                         submit_bh(WRITE, bh);
1748                         nr_underway++;
1749                 }
1750                 bh = next;
1751         } while (bh != head);
1752         goto done;
1753 }
1754
1755 static int __block_prepare_write(struct inode *inode, struct page *page,
1756                 unsigned from, unsigned to, get_block_t *get_block)
1757 {
1758         unsigned block_start, block_end;
1759         sector_t block;
1760         int err = 0;
1761         unsigned blocksize, bbits;
1762         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1763
1764         BUG_ON(!PageLocked(page));
1765         BUG_ON(from > PAGE_CACHE_SIZE);
1766         BUG_ON(to > PAGE_CACHE_SIZE);
1767         BUG_ON(from > to);
1768
1769         blocksize = 1 << inode->i_blkbits;
1770         if (!page_has_buffers(page))
1771                 create_empty_buffers(page, blocksize, 0);
1772         head = page_buffers(page);
1773
1774         bbits = inode->i_blkbits;
1775         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1776
1777         for(bh = head, block_start = 0; bh != head || !block_start;
1778             block++, block_start=block_end, bh = bh->b_this_page) {
1779                 block_end = block_start + blocksize;
1780                 if (block_end <= from || block_start >= to) {
1781                         if (PageUptodate(page)) {
1782                                 if (!buffer_uptodate(bh))
1783                                         set_buffer_uptodate(bh);
1784                         }
1785                         continue;
1786                 }
1787                 if (buffer_new(bh))
1788                         clear_buffer_new(bh);
1789                 if (!buffer_mapped(bh)) {
1790                         WARN_ON(bh->b_size != blocksize);
1791                         err = get_block(inode, block, bh, 1);
1792                         if (err)
1793                                 break;
1794                         if (buffer_new(bh)) {
1795                                 unmap_underlying_metadata(bh->b_bdev,
1796                                                         bh->b_blocknr);
1797                                 if (PageUptodate(page)) {
1798                                         set_buffer_uptodate(bh);
1799                                         continue;
1800                                 }
1801                                 if (block_end > to || block_start < from) {
1802                                         void *kaddr;
1803
1804                                         kaddr = kmap_atomic(page, KM_USER0);
1805                                         if (block_end > to)
1806                                                 memset(kaddr+to, 0,
1807                                                         block_end-to);
1808                                         if (block_start < from)
1809                                                 memset(kaddr+block_start,
1810                                                         0, from-block_start);
1811                                         flush_dcache_page(page);
1812                                         kunmap_atomic(kaddr, KM_USER0);
1813                                 }
1814                                 continue;
1815                         }
1816                 }
1817                 if (PageUptodate(page)) {
1818                         if (!buffer_uptodate(bh))
1819                                 set_buffer_uptodate(bh);
1820                         continue; 
1821                 }
1822                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1823                      (block_start < from || block_end > to)) {
1824                         ll_rw_block(READ, 1, &bh);
1825                         *wait_bh++=bh;
1826                 }
1827         }
1828         /*
1829          * If we issued read requests - let them complete.
1830          */
1831         while(wait_bh > wait) {
1832                 wait_on_buffer(*--wait_bh);
1833                 if (!buffer_uptodate(*wait_bh))
1834                         err = -EIO;
1835         }
1836         if (!err) {
1837                 bh = head;
1838                 do {
1839                         if (buffer_new(bh))
1840                                 clear_buffer_new(bh);
1841                 } while ((bh = bh->b_this_page) != head);
1842                 return 0;
1843         }
1844         /* Error case: */
1845         /*
1846          * Zero out any newly allocated blocks to avoid exposing stale
1847          * data.  If BH_New is set, we know that the block was newly
1848          * allocated in the above loop.
1849          */
1850         bh = head;
1851         block_start = 0;
1852         do {
1853                 block_end = block_start+blocksize;
1854                 if (block_end <= from)
1855                         goto next_bh;
1856                 if (block_start >= to)
1857                         break;
1858                 if (buffer_new(bh)) {
1859                         void *kaddr;
1860
1861                         clear_buffer_new(bh);
1862                         kaddr = kmap_atomic(page, KM_USER0);
1863                         memset(kaddr+block_start, 0, bh->b_size);
1864                         flush_dcache_page(page);
1865                         kunmap_atomic(kaddr, KM_USER0);
1866                         set_buffer_uptodate(bh);
1867                         mark_buffer_dirty(bh);
1868                 }
1869 next_bh:
1870                 block_start = block_end;
1871                 bh = bh->b_this_page;
1872         } while (bh != head);
1873         return err;
1874 }
1875
1876 static int __block_commit_write(struct inode *inode, struct page *page,
1877                 unsigned from, unsigned to)
1878 {
1879         unsigned block_start, block_end;
1880         int partial = 0;
1881         unsigned blocksize;
1882         struct buffer_head *bh, *head;
1883
1884         blocksize = 1 << inode->i_blkbits;
1885
1886         for(bh = head = page_buffers(page), block_start = 0;
1887             bh != head || !block_start;
1888             block_start=block_end, bh = bh->b_this_page) {
1889                 block_end = block_start + blocksize;
1890                 if (block_end <= from || block_start >= to) {
1891                         if (!buffer_uptodate(bh))
1892                                 partial = 1;
1893                 } else {
1894                         set_buffer_uptodate(bh);
1895                         mark_buffer_dirty(bh);
1896                 }
1897         }
1898
1899         /*
1900          * If this is a partial write which happened to make all buffers
1901          * uptodate then we can optimize away a bogus readpage() for
1902          * the next read(). Here we 'discover' whether the page went
1903          * uptodate as a result of this (potentially partial) write.
1904          */
1905         if (!partial)
1906                 SetPageUptodate(page);
1907         return 0;
1908 }
1909
1910 /*
1911  * Generic "read page" function for block devices that have the normal
1912  * get_block functionality. This is most of the block device filesystems.
1913  * Reads the page asynchronously --- the unlock_buffer() and
1914  * set/clear_buffer_uptodate() functions propagate buffer state into the
1915  * page struct once IO has completed.
1916  */
1917 int block_read_full_page(struct page *page, get_block_t *get_block)
1918 {
1919         struct inode *inode = page->mapping->host;
1920         sector_t iblock, lblock;
1921         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1922         unsigned int blocksize;
1923         int nr, i;
1924         int fully_mapped = 1;
1925
1926         BUG_ON(!PageLocked(page));
1927         blocksize = 1 << inode->i_blkbits;
1928         if (!page_has_buffers(page))
1929                 create_empty_buffers(page, blocksize, 0);
1930         head = page_buffers(page);
1931
1932         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1933         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1934         bh = head;
1935         nr = 0;
1936         i = 0;
1937
1938         do {
1939                 if (buffer_uptodate(bh))
1940                         continue;
1941
1942                 if (!buffer_mapped(bh)) {
1943                         int err = 0;
1944
1945                         fully_mapped = 0;
1946                         if (iblock < lblock) {
1947                                 WARN_ON(bh->b_size != blocksize);
1948                                 err = get_block(inode, iblock, bh, 0);
1949                                 if (err)
1950                                         SetPageError(page);
1951                         }
1952                         if (!buffer_mapped(bh)) {
1953                                 void *kaddr = kmap_atomic(page, KM_USER0);
1954                                 memset(kaddr + i * blocksize, 0, blocksize);
1955                                 flush_dcache_page(page);
1956                                 kunmap_atomic(kaddr, KM_USER0);
1957                                 if (!err)
1958                                         set_buffer_uptodate(bh);
1959                                 continue;
1960                         }
1961                         /*
1962                          * get_block() might have updated the buffer
1963                          * synchronously
1964                          */
1965                         if (buffer_uptodate(bh))
1966                                 continue;
1967                 }
1968                 arr[nr++] = bh;
1969         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1970
1971         if (fully_mapped)
1972                 SetPageMappedToDisk(page);
1973
1974         if (!nr) {
1975                 /*
1976                  * All buffers are uptodate - we can set the page uptodate
1977                  * as well. But not if get_block() returned an error.
1978                  */
1979                 if (!PageError(page))
1980                         SetPageUptodate(page);
1981                 unlock_page(page);
1982                 return 0;
1983         }
1984
1985         /* Stage two: lock the buffers */
1986         for (i = 0; i < nr; i++) {
1987                 bh = arr[i];
1988                 lock_buffer(bh);
1989                 mark_buffer_async_read(bh);
1990         }
1991
1992         /*
1993          * Stage 3: start the IO.  Check for uptodateness
1994          * inside the buffer lock in case another process reading
1995          * the underlying blockdev brought it uptodate (the sct fix).
1996          */
1997         for (i = 0; i < nr; i++) {
1998                 bh = arr[i];
1999                 if (buffer_uptodate(bh))
2000                         end_buffer_async_read(bh, 1);
2001                 else
2002                         submit_bh(READ, bh);
2003         }
2004         return 0;
2005 }
2006
2007 /* utility function for filesystems that need to do work on expanding
2008  * truncates.  Uses prepare/commit_write to allow the filesystem to
2009  * deal with the hole.  
2010  */
2011 static int __generic_cont_expand(struct inode *inode, loff_t size,
2012                                  pgoff_t index, unsigned int offset)
2013 {
2014         struct address_space *mapping = inode->i_mapping;
2015         struct page *page;
2016         unsigned long limit;
2017         int err;
2018
2019         err = -EFBIG;
2020         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2021         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2022                 send_sig(SIGXFSZ, current, 0);
2023                 goto out;
2024         }
2025         if (size > inode->i_sb->s_maxbytes)
2026                 goto out;
2027
2028         err = -ENOMEM;
2029         page = grab_cache_page(mapping, index);
2030         if (!page)
2031                 goto out;
2032         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2033         if (err) {
2034                 /*
2035                  * ->prepare_write() may have instantiated a few blocks
2036                  * outside i_size.  Trim these off again.
2037                  */
2038                 unlock_page(page);
2039                 page_cache_release(page);
2040                 vmtruncate(inode, inode->i_size);
2041                 goto out;
2042         }
2043
2044         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2045
2046         unlock_page(page);
2047         page_cache_release(page);
2048         if (err > 0)
2049                 err = 0;
2050 out:
2051         return err;
2052 }
2053
2054 int generic_cont_expand(struct inode *inode, loff_t size)
2055 {
2056         pgoff_t index;
2057         unsigned int offset;
2058
2059         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2060
2061         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2062         ** skip the prepare.  make sure we never send an offset for the start
2063         ** of a block
2064         */
2065         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2066                 /* caller must handle this extra byte. */
2067                 offset++;
2068         }
2069         index = size >> PAGE_CACHE_SHIFT;
2070
2071         return __generic_cont_expand(inode, size, index, offset);
2072 }
2073
2074 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2075 {
2076         loff_t pos = size - 1;
2077         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2078         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2079
2080         /* prepare/commit_write can handle even if from==to==start of block. */
2081         return __generic_cont_expand(inode, size, index, offset);
2082 }
2083
2084 /*
2085  * For moronic filesystems that do not allow holes in file.
2086  * We may have to extend the file.
2087  */
2088
2089 int cont_prepare_write(struct page *page, unsigned offset,
2090                 unsigned to, get_block_t *get_block, loff_t *bytes)
2091 {
2092         struct address_space *mapping = page->mapping;
2093         struct inode *inode = mapping->host;
2094         struct page *new_page;
2095         pgoff_t pgpos;
2096         long status;
2097         unsigned zerofrom;
2098         unsigned blocksize = 1 << inode->i_blkbits;
2099         void *kaddr;
2100
2101         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2102                 status = -ENOMEM;
2103                 new_page = grab_cache_page(mapping, pgpos);
2104                 if (!new_page)
2105                         goto out;
2106                 /* we might sleep */
2107                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2108                         unlock_page(new_page);
2109                         page_cache_release(new_page);
2110                         continue;
2111                 }
2112                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2113                 if (zerofrom & (blocksize-1)) {
2114                         *bytes |= (blocksize-1);
2115                         (*bytes)++;
2116                 }
2117                 status = __block_prepare_write(inode, new_page, zerofrom,
2118                                                 PAGE_CACHE_SIZE, get_block);
2119                 if (status)
2120                         goto out_unmap;
2121                 kaddr = kmap_atomic(new_page, KM_USER0);
2122                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2123                 flush_dcache_page(new_page);
2124                 kunmap_atomic(kaddr, KM_USER0);
2125                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2126                 unlock_page(new_page);
2127                 page_cache_release(new_page);
2128         }
2129
2130         if (page->index < pgpos) {
2131                 /* completely inside the area */
2132                 zerofrom = offset;
2133         } else {
2134                 /* page covers the boundary, find the boundary offset */
2135                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2136
2137                 /* if we will expand the thing last block will be filled */
2138                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2139                         *bytes |= (blocksize-1);
2140                         (*bytes)++;
2141                 }
2142
2143                 /* starting below the boundary? Nothing to zero out */
2144                 if (offset <= zerofrom)
2145                         zerofrom = offset;
2146         }
2147         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2148         if (status)
2149                 goto out1;
2150         if (zerofrom < offset) {
2151                 kaddr = kmap_atomic(page, KM_USER0);
2152                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2153                 flush_dcache_page(page);
2154                 kunmap_atomic(kaddr, KM_USER0);
2155                 __block_commit_write(inode, page, zerofrom, offset);
2156         }
2157         return 0;
2158 out1:
2159         ClearPageUptodate(page);
2160         return status;
2161
2162 out_unmap:
2163         ClearPageUptodate(new_page);
2164         unlock_page(new_page);
2165         page_cache_release(new_page);
2166 out:
2167         return status;
2168 }
2169
2170 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2171                         get_block_t *get_block)
2172 {
2173         struct inode *inode = page->mapping->host;
2174         int err = __block_prepare_write(inode, page, from, to, get_block);
2175         if (err)
2176                 ClearPageUptodate(page);
2177         return err;
2178 }
2179
2180 int block_commit_write(struct page *page, unsigned from, unsigned to)
2181 {
2182         struct inode *inode = page->mapping->host;
2183         __block_commit_write(inode,page,from,to);
2184         return 0;
2185 }
2186
2187 int generic_commit_write(struct file *file, struct page *page,
2188                 unsigned from, unsigned to)
2189 {
2190         struct inode *inode = page->mapping->host;
2191         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2192         __block_commit_write(inode,page,from,to);
2193         /*
2194          * No need to use i_size_read() here, the i_size
2195          * cannot change under us because we hold i_mutex.
2196          */
2197         if (pos > inode->i_size) {
2198                 i_size_write(inode, pos);
2199                 mark_inode_dirty(inode);
2200         }
2201         return 0;
2202 }
2203
2204
2205 /*
2206  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2207  * immediately, while under the page lock.  So it needs a special end_io
2208  * handler which does not touch the bh after unlocking it.
2209  *
2210  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2211  * a race there is benign: unlock_buffer() only use the bh's address for
2212  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2213  * itself.
2214  */
2215 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2216 {
2217         if (uptodate) {
2218                 set_buffer_uptodate(bh);
2219         } else {
2220                 /* This happens, due to failed READA attempts. */
2221                 clear_buffer_uptodate(bh);
2222         }
2223         unlock_buffer(bh);
2224 }
2225
2226 /*
2227  * On entry, the page is fully not uptodate.
2228  * On exit the page is fully uptodate in the areas outside (from,to)
2229  */
2230 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2231                         get_block_t *get_block)
2232 {
2233         struct inode *inode = page->mapping->host;
2234         const unsigned blkbits = inode->i_blkbits;
2235         const unsigned blocksize = 1 << blkbits;
2236         struct buffer_head map_bh;
2237         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2238         unsigned block_in_page;
2239         unsigned block_start;
2240         sector_t block_in_file;
2241         char *kaddr;
2242         int nr_reads = 0;
2243         int i;
2244         int ret = 0;
2245         int is_mapped_to_disk = 1;
2246         int dirtied_it = 0;
2247
2248         if (PageMappedToDisk(page))
2249                 return 0;
2250
2251         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2252         map_bh.b_page = page;
2253
2254         /*
2255          * We loop across all blocks in the page, whether or not they are
2256          * part of the affected region.  This is so we can discover if the
2257          * page is fully mapped-to-disk.
2258          */
2259         for (block_start = 0, block_in_page = 0;
2260                   block_start < PAGE_CACHE_SIZE;
2261                   block_in_page++, block_start += blocksize) {
2262                 unsigned block_end = block_start + blocksize;
2263                 int create;
2264
2265                 map_bh.b_state = 0;
2266                 create = 1;
2267                 if (block_start >= to)
2268                         create = 0;
2269                 map_bh.b_size = blocksize;
2270                 ret = get_block(inode, block_in_file + block_in_page,
2271                                         &map_bh, create);
2272                 if (ret)
2273                         goto failed;
2274                 if (!buffer_mapped(&map_bh))
2275                         is_mapped_to_disk = 0;
2276                 if (buffer_new(&map_bh))
2277                         unmap_underlying_metadata(map_bh.b_bdev,
2278                                                         map_bh.b_blocknr);
2279                 if (PageUptodate(page))
2280                         continue;
2281                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2282                         kaddr = kmap_atomic(page, KM_USER0);
2283                         if (block_start < from) {
2284                                 memset(kaddr+block_start, 0, from-block_start);
2285                                 dirtied_it = 1;
2286                         }
2287                         if (block_end > to) {
2288                                 memset(kaddr + to, 0, block_end - to);
2289                                 dirtied_it = 1;
2290                         }
2291                         flush_dcache_page(page);
2292                         kunmap_atomic(kaddr, KM_USER0);
2293                         continue;
2294                 }
2295                 if (buffer_uptodate(&map_bh))
2296                         continue;       /* reiserfs does this */
2297                 if (block_start < from || block_end > to) {
2298                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2299
2300                         if (!bh) {
2301                                 ret = -ENOMEM;
2302                                 goto failed;
2303                         }
2304                         bh->b_state = map_bh.b_state;
2305                         atomic_set(&bh->b_count, 0);
2306                         bh->b_this_page = NULL;
2307                         bh->b_page = page;
2308                         bh->b_blocknr = map_bh.b_blocknr;
2309                         bh->b_size = blocksize;
2310                         bh->b_data = (char *)(long)block_start;
2311                         bh->b_bdev = map_bh.b_bdev;
2312                         bh->b_private = NULL;
2313                         read_bh[nr_reads++] = bh;
2314                 }
2315         }
2316
2317         if (nr_reads) {
2318                 struct buffer_head *bh;
2319
2320                 /*
2321                  * The page is locked, so these buffers are protected from
2322                  * any VM or truncate activity.  Hence we don't need to care
2323                  * for the buffer_head refcounts.
2324                  */
2325                 for (i = 0; i < nr_reads; i++) {
2326                         bh = read_bh[i];
2327                         lock_buffer(bh);
2328                         bh->b_end_io = end_buffer_read_nobh;
2329                         submit_bh(READ, bh);
2330                 }
2331                 for (i = 0; i < nr_reads; i++) {
2332                         bh = read_bh[i];
2333                         wait_on_buffer(bh);
2334                         if (!buffer_uptodate(bh))
2335                                 ret = -EIO;
2336                         free_buffer_head(bh);
2337                         read_bh[i] = NULL;
2338                 }
2339                 if (ret)
2340                         goto failed;
2341         }
2342
2343         if (is_mapped_to_disk)
2344                 SetPageMappedToDisk(page);
2345         SetPageUptodate(page);
2346
2347         /*
2348          * Setting the page dirty here isn't necessary for the prepare_write
2349          * function - commit_write will do that.  But if/when this function is
2350          * used within the pagefault handler to ensure that all mmapped pages
2351          * have backing space in the filesystem, we will need to dirty the page
2352          * if its contents were altered.
2353          */
2354         if (dirtied_it)
2355                 set_page_dirty(page);
2356
2357         return 0;
2358
2359 failed:
2360         for (i = 0; i < nr_reads; i++) {
2361                 if (read_bh[i])
2362                         free_buffer_head(read_bh[i]);
2363         }
2364
2365         /*
2366          * Error recovery is pretty slack.  Clear the page and mark it dirty
2367          * so we'll later zero out any blocks which _were_ allocated.
2368          */
2369         kaddr = kmap_atomic(page, KM_USER0);
2370         memset(kaddr, 0, PAGE_CACHE_SIZE);
2371         flush_dcache_page(page);
2372         kunmap_atomic(kaddr, KM_USER0);
2373         SetPageUptodate(page);
2374         set_page_dirty(page);
2375         return ret;
2376 }
2377 EXPORT_SYMBOL(nobh_prepare_write);
2378
2379 int nobh_commit_write(struct file *file, struct page *page,
2380                 unsigned from, unsigned to)
2381 {
2382         struct inode *inode = page->mapping->host;
2383         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2384
2385         set_page_dirty(page);
2386         if (pos > inode->i_size) {
2387                 i_size_write(inode, pos);
2388                 mark_inode_dirty(inode);
2389         }
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(nobh_commit_write);
2393
2394 /*
2395  * nobh_writepage() - based on block_full_write_page() except
2396  * that it tries to operate without attaching bufferheads to
2397  * the page.
2398  */
2399 int nobh_writepage(struct page *page, get_block_t *get_block,
2400                         struct writeback_control *wbc)
2401 {
2402         struct inode * const inode = page->mapping->host;
2403         loff_t i_size = i_size_read(inode);
2404         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2405         unsigned offset;
2406         void *kaddr;
2407         int ret;
2408
2409         /* Is the page fully inside i_size? */
2410         if (page->index < end_index)
2411                 goto out;
2412
2413         /* Is the page fully outside i_size? (truncate in progress) */
2414         offset = i_size & (PAGE_CACHE_SIZE-1);
2415         if (page->index >= end_index+1 || !offset) {
2416                 /*
2417                  * The page may have dirty, unmapped buffers.  For example,
2418                  * they may have been added in ext3_writepage().  Make them
2419                  * freeable here, so the page does not leak.
2420                  */
2421 #if 0
2422                 /* Not really sure about this  - do we need this ? */
2423                 if (page->mapping->a_ops->invalidatepage)
2424                         page->mapping->a_ops->invalidatepage(page, offset);
2425 #endif
2426                 unlock_page(page);
2427                 return 0; /* don't care */
2428         }
2429
2430         /*
2431          * The page straddles i_size.  It must be zeroed out on each and every
2432          * writepage invocation because it may be mmapped.  "A file is mapped
2433          * in multiples of the page size.  For a file that is not a multiple of
2434          * the  page size, the remaining memory is zeroed when mapped, and
2435          * writes to that region are not written out to the file."
2436          */
2437         kaddr = kmap_atomic(page, KM_USER0);
2438         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2439         flush_dcache_page(page);
2440         kunmap_atomic(kaddr, KM_USER0);
2441 out:
2442         ret = mpage_writepage(page, get_block, wbc);
2443         if (ret == -EAGAIN)
2444                 ret = __block_write_full_page(inode, page, get_block, wbc);
2445         return ret;
2446 }
2447 EXPORT_SYMBOL(nobh_writepage);
2448
2449 /*
2450  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2451  */
2452 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2453 {
2454         struct inode *inode = mapping->host;
2455         unsigned blocksize = 1 << inode->i_blkbits;
2456         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2457         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2458         unsigned to;
2459         struct page *page;
2460         const struct address_space_operations *a_ops = mapping->a_ops;
2461         char *kaddr;
2462         int ret = 0;
2463
2464         if ((offset & (blocksize - 1)) == 0)
2465                 goto out;
2466
2467         ret = -ENOMEM;
2468         page = grab_cache_page(mapping, index);
2469         if (!page)
2470                 goto out;
2471
2472         to = (offset + blocksize) & ~(blocksize - 1);
2473         ret = a_ops->prepare_write(NULL, page, offset, to);
2474         if (ret == 0) {
2475                 kaddr = kmap_atomic(page, KM_USER0);
2476                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2477                 flush_dcache_page(page);
2478                 kunmap_atomic(kaddr, KM_USER0);
2479                 set_page_dirty(page);
2480         }
2481         unlock_page(page);
2482         page_cache_release(page);
2483 out:
2484         return ret;
2485 }
2486 EXPORT_SYMBOL(nobh_truncate_page);
2487
2488 int block_truncate_page(struct address_space *mapping,
2489                         loff_t from, get_block_t *get_block)
2490 {
2491         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2492         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2493         unsigned blocksize;
2494         sector_t iblock;
2495         unsigned length, pos;
2496         struct inode *inode = mapping->host;
2497         struct page *page;
2498         struct buffer_head *bh;
2499         void *kaddr;
2500         int err;
2501
2502         blocksize = 1 << inode->i_blkbits;
2503         length = offset & (blocksize - 1);
2504
2505         /* Block boundary? Nothing to do */
2506         if (!length)
2507                 return 0;
2508
2509         length = blocksize - length;
2510         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2511         
2512         page = grab_cache_page(mapping, index);
2513         err = -ENOMEM;
2514         if (!page)
2515                 goto out;
2516
2517         if (!page_has_buffers(page))
2518                 create_empty_buffers(page, blocksize, 0);
2519
2520         /* Find the buffer that contains "offset" */
2521         bh = page_buffers(page);
2522         pos = blocksize;
2523         while (offset >= pos) {
2524                 bh = bh->b_this_page;
2525                 iblock++;
2526                 pos += blocksize;
2527         }
2528
2529         err = 0;
2530         if (!buffer_mapped(bh)) {
2531                 WARN_ON(bh->b_size != blocksize);
2532                 err = get_block(inode, iblock, bh, 0);
2533                 if (err)
2534                         goto unlock;
2535                 /* unmapped? It's a hole - nothing to do */
2536                 if (!buffer_mapped(bh))
2537                         goto unlock;
2538         }
2539
2540         /* Ok, it's mapped. Make sure it's up-to-date */
2541         if (PageUptodate(page))
2542                 set_buffer_uptodate(bh);
2543
2544         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2545                 err = -EIO;
2546                 ll_rw_block(READ, 1, &bh);
2547                 wait_on_buffer(bh);
2548                 /* Uhhuh. Read error. Complain and punt. */
2549                 if (!buffer_uptodate(bh))
2550                         goto unlock;
2551         }
2552
2553         kaddr = kmap_atomic(page, KM_USER0);
2554         memset(kaddr + offset, 0, length);
2555         flush_dcache_page(page);
2556         kunmap_atomic(kaddr, KM_USER0);
2557
2558         mark_buffer_dirty(bh);
2559         err = 0;
2560
2561 unlock:
2562         unlock_page(page);
2563         page_cache_release(page);
2564 out:
2565         return err;
2566 }
2567
2568 /*
2569  * The generic ->writepage function for buffer-backed address_spaces
2570  */
2571 int block_write_full_page(struct page *page, get_block_t *get_block,
2572                         struct writeback_control *wbc)
2573 {
2574         struct inode * const inode = page->mapping->host;
2575         loff_t i_size = i_size_read(inode);
2576         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2577         unsigned offset;
2578         void *kaddr;
2579
2580         /* Is the page fully inside i_size? */
2581         if (page->index < end_index)
2582                 return __block_write_full_page(inode, page, get_block, wbc);
2583
2584         /* Is the page fully outside i_size? (truncate in progress) */
2585         offset = i_size & (PAGE_CACHE_SIZE-1);
2586         if (page->index >= end_index+1 || !offset) {
2587                 /*
2588                  * The page may have dirty, unmapped buffers.  For example,
2589                  * they may have been added in ext3_writepage().  Make them
2590                  * freeable here, so the page does not leak.
2591                  */
2592                 do_invalidatepage(page, 0);
2593                 unlock_page(page);
2594                 return 0; /* don't care */
2595         }
2596
2597         /*
2598          * The page straddles i_size.  It must be zeroed out on each and every
2599          * writepage invokation because it may be mmapped.  "A file is mapped
2600          * in multiples of the page size.  For a file that is not a multiple of
2601          * the  page size, the remaining memory is zeroed when mapped, and
2602          * writes to that region are not written out to the file."
2603          */
2604         kaddr = kmap_atomic(page, KM_USER0);
2605         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2606         flush_dcache_page(page);
2607         kunmap_atomic(kaddr, KM_USER0);
2608         return __block_write_full_page(inode, page, get_block, wbc);
2609 }
2610
2611 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2612                             get_block_t *get_block)
2613 {
2614         struct buffer_head tmp;
2615         struct inode *inode = mapping->host;
2616         tmp.b_state = 0;
2617         tmp.b_blocknr = 0;
2618         tmp.b_size = 1 << inode->i_blkbits;
2619         get_block(inode, block, &tmp, 0);
2620         return tmp.b_blocknr;
2621 }
2622
2623 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2624 {
2625         struct buffer_head *bh = bio->bi_private;
2626
2627         if (bio->bi_size)
2628                 return 1;
2629
2630         if (err == -EOPNOTSUPP) {
2631                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2632                 set_bit(BH_Eopnotsupp, &bh->b_state);
2633         }
2634
2635         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2636         bio_put(bio);
2637         return 0;
2638 }
2639
2640 int submit_bh(int rw, struct buffer_head * bh)
2641 {
2642         struct bio *bio;
2643         int ret = 0;
2644
2645         BUG_ON(!buffer_locked(bh));
2646         BUG_ON(!buffer_mapped(bh));
2647         BUG_ON(!bh->b_end_io);
2648
2649         if (buffer_ordered(bh) && (rw == WRITE))
2650                 rw = WRITE_BARRIER;
2651
2652         /*
2653          * Only clear out a write error when rewriting, should this
2654          * include WRITE_SYNC as well?
2655          */
2656         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2657                 clear_buffer_write_io_error(bh);
2658
2659         /*
2660          * from here on down, it's all bio -- do the initial mapping,
2661          * submit_bio -> generic_make_request may further map this bio around
2662          */
2663         bio = bio_alloc(GFP_NOIO, 1);
2664
2665         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2666         bio->bi_bdev = bh->b_bdev;
2667         bio->bi_io_vec[0].bv_page = bh->b_page;
2668         bio->bi_io_vec[0].bv_len = bh->b_size;
2669         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2670
2671         bio->bi_vcnt = 1;
2672         bio->bi_idx = 0;
2673         bio->bi_size = bh->b_size;
2674
2675         bio->bi_end_io = end_bio_bh_io_sync;
2676         bio->bi_private = bh;
2677
2678         bio_get(bio);
2679         submit_bio(rw, bio);
2680
2681         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2682                 ret = -EOPNOTSUPP;
2683
2684         bio_put(bio);
2685         return ret;
2686 }
2687
2688 /**
2689  * ll_rw_block: low-level access to block devices (DEPRECATED)
2690  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2691  * @nr: number of &struct buffer_heads in the array
2692  * @bhs: array of pointers to &struct buffer_head
2693  *
2694  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2695  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2696  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2697  * are sent to disk. The fourth %READA option is described in the documentation
2698  * for generic_make_request() which ll_rw_block() calls.
2699  *
2700  * This function drops any buffer that it cannot get a lock on (with the
2701  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2702  * clean when doing a write request, and any buffer that appears to be
2703  * up-to-date when doing read request.  Further it marks as clean buffers that
2704  * are processed for writing (the buffer cache won't assume that they are
2705  * actually clean until the buffer gets unlocked).
2706  *
2707  * ll_rw_block sets b_end_io to simple completion handler that marks
2708  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2709  * any waiters. 
2710  *
2711  * All of the buffers must be for the same device, and must also be a
2712  * multiple of the current approved size for the device.
2713  */
2714 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2715 {
2716         int i;
2717
2718         for (i = 0; i < nr; i++) {
2719                 struct buffer_head *bh = bhs[i];
2720
2721                 if (rw == SWRITE)
2722                         lock_buffer(bh);
2723                 else if (test_set_buffer_locked(bh))
2724                         continue;
2725
2726                 if (rw == WRITE || rw == SWRITE) {
2727                         if (test_clear_buffer_dirty(bh)) {
2728                                 bh->b_end_io = end_buffer_write_sync;
2729                                 get_bh(bh);
2730                                 submit_bh(WRITE, bh);
2731                                 continue;
2732                         }
2733                 } else {
2734                         if (!buffer_uptodate(bh)) {
2735                                 bh->b_end_io = end_buffer_read_sync;
2736                                 get_bh(bh);
2737                                 submit_bh(rw, bh);
2738                                 continue;
2739                         }
2740                 }
2741                 unlock_buffer(bh);
2742         }
2743 }
2744
2745 /*
2746  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2747  * and then start new I/O and then wait upon it.  The caller must have a ref on
2748  * the buffer_head.
2749  */
2750 int sync_dirty_buffer(struct buffer_head *bh)
2751 {
2752         int ret = 0;
2753
2754         WARN_ON(atomic_read(&bh->b_count) < 1);
2755         lock_buffer(bh);
2756         if (test_clear_buffer_dirty(bh)) {
2757                 get_bh(bh);
2758                 bh->b_end_io = end_buffer_write_sync;
2759                 ret = submit_bh(WRITE, bh);
2760                 wait_on_buffer(bh);
2761                 if (buffer_eopnotsupp(bh)) {
2762                         clear_buffer_eopnotsupp(bh);
2763                         ret = -EOPNOTSUPP;
2764                 }
2765                 if (!ret && !buffer_uptodate(bh))
2766                         ret = -EIO;
2767         } else {
2768                 unlock_buffer(bh);
2769         }
2770         return ret;
2771 }
2772
2773 /*
2774  * try_to_free_buffers() checks if all the buffers on this particular page
2775  * are unused, and releases them if so.
2776  *
2777  * Exclusion against try_to_free_buffers may be obtained by either
2778  * locking the page or by holding its mapping's private_lock.
2779  *
2780  * If the page is dirty but all the buffers are clean then we need to
2781  * be sure to mark the page clean as well.  This is because the page
2782  * may be against a block device, and a later reattachment of buffers
2783  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2784  * filesystem data on the same device.
2785  *
2786  * The same applies to regular filesystem pages: if all the buffers are
2787  * clean then we set the page clean and proceed.  To do that, we require
2788  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2789  * private_lock.
2790  *
2791  * try_to_free_buffers() is non-blocking.
2792  */
2793 static inline int buffer_busy(struct buffer_head *bh)
2794 {
2795         return atomic_read(&bh->b_count) |
2796                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2797 }
2798
2799 static int
2800 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2801 {
2802         struct buffer_head *head = page_buffers(page);
2803         struct buffer_head *bh;
2804
2805         bh = head;
2806         do {
2807                 if (buffer_write_io_error(bh) && page->mapping)
2808                         set_bit(AS_EIO, &page->mapping->flags);
2809                 if (buffer_busy(bh))
2810                         goto failed;
2811                 bh = bh->b_this_page;
2812         } while (bh != head);
2813
2814         do {
2815                 struct buffer_head *next = bh->b_this_page;
2816
2817                 if (!list_empty(&bh->b_assoc_buffers))
2818                         __remove_assoc_queue(bh);
2819                 bh = next;
2820         } while (bh != head);
2821         *buffers_to_free = head;
2822         __clear_page_buffers(page);
2823         return 1;
2824 failed:
2825         return 0;
2826 }
2827
2828 int try_to_free_buffers(struct page *page)
2829 {
2830         struct address_space * const mapping = page->mapping;
2831         struct buffer_head *buffers_to_free = NULL;
2832         int ret = 0;
2833
2834         BUG_ON(!PageLocked(page));
2835         if (PageWriteback(page))
2836                 return 0;
2837
2838         if (mapping == NULL) {          /* can this still happen? */
2839                 ret = drop_buffers(page, &buffers_to_free);
2840                 goto out;
2841         }
2842
2843         spin_lock(&mapping->private_lock);
2844         ret = drop_buffers(page, &buffers_to_free);
2845         spin_unlock(&mapping->private_lock);
2846         if (ret) {
2847                 /*
2848                  * If the filesystem writes its buffers by hand (eg ext3)
2849                  * then we can have clean buffers against a dirty page.  We
2850                  * clean the page here; otherwise later reattachment of buffers
2851                  * could encounter a non-uptodate page, which is unresolvable.
2852                  * This only applies in the rare case where try_to_free_buffers
2853                  * succeeds but the page is not freed.
2854                  */
2855                 clear_page_dirty(page);
2856         }
2857 out:
2858         if (buffers_to_free) {
2859                 struct buffer_head *bh = buffers_to_free;
2860
2861                 do {
2862                         struct buffer_head *next = bh->b_this_page;
2863                         free_buffer_head(bh);
2864                         bh = next;
2865                 } while (bh != buffers_to_free);
2866         }
2867         return ret;
2868 }
2869 EXPORT_SYMBOL(try_to_free_buffers);
2870
2871 void block_sync_page(struct page *page)
2872 {
2873         struct address_space *mapping;
2874
2875         smp_mb();
2876         mapping = page_mapping(page);
2877         if (mapping)
2878                 blk_run_backing_dev(mapping->backing_dev_info, page);
2879 }
2880
2881 /*
2882  * There are no bdflush tunables left.  But distributions are
2883  * still running obsolete flush daemons, so we terminate them here.
2884  *
2885  * Use of bdflush() is deprecated and will be removed in a future kernel.
2886  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2887  */
2888 asmlinkage long sys_bdflush(int func, long data)
2889 {
2890         static int msg_count;
2891
2892         if (!capable(CAP_SYS_ADMIN))
2893                 return -EPERM;
2894
2895         if (msg_count < 5) {
2896                 msg_count++;
2897                 printk(KERN_INFO
2898                         "warning: process `%s' used the obsolete bdflush"
2899                         " system call\n", current->comm);
2900                 printk(KERN_INFO "Fix your initscripts?\n");
2901         }
2902
2903         if (func == 1)
2904                 do_exit(0);
2905         return 0;
2906 }
2907
2908 /*
2909  * Buffer-head allocation
2910  */
2911 static kmem_cache_t *bh_cachep;
2912
2913 /*
2914  * Once the number of bh's in the machine exceeds this level, we start
2915  * stripping them in writeback.
2916  */
2917 static int max_buffer_heads;
2918
2919 int buffer_heads_over_limit;
2920
2921 struct bh_accounting {
2922         int nr;                 /* Number of live bh's */
2923         int ratelimit;          /* Limit cacheline bouncing */
2924 };
2925
2926 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2927
2928 static void recalc_bh_state(void)
2929 {
2930         int i;
2931         int tot = 0;
2932
2933         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2934                 return;
2935         __get_cpu_var(bh_accounting).ratelimit = 0;
2936         for_each_online_cpu(i)
2937                 tot += per_cpu(bh_accounting, i).nr;
2938         buffer_heads_over_limit = (tot > max_buffer_heads);
2939 }
2940         
2941 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2942 {
2943         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2944         if (ret) {
2945                 get_cpu_var(bh_accounting).nr++;
2946                 recalc_bh_state();
2947                 put_cpu_var(bh_accounting);
2948         }
2949         return ret;
2950 }
2951 EXPORT_SYMBOL(alloc_buffer_head);
2952
2953 void free_buffer_head(struct buffer_head *bh)
2954 {
2955         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2956         kmem_cache_free(bh_cachep, bh);
2957         get_cpu_var(bh_accounting).nr--;
2958         recalc_bh_state();
2959         put_cpu_var(bh_accounting);
2960 }
2961 EXPORT_SYMBOL(free_buffer_head);
2962
2963 static void
2964 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
2965 {
2966         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2967                             SLAB_CTOR_CONSTRUCTOR) {
2968                 struct buffer_head * bh = (struct buffer_head *)data;
2969
2970                 memset(bh, 0, sizeof(*bh));
2971                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2972         }
2973 }
2974
2975 #ifdef CONFIG_HOTPLUG_CPU
2976 static void buffer_exit_cpu(int cpu)
2977 {
2978         int i;
2979         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2980
2981         for (i = 0; i < BH_LRU_SIZE; i++) {
2982                 brelse(b->bhs[i]);
2983                 b->bhs[i] = NULL;
2984         }
2985         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2986         per_cpu(bh_accounting, cpu).nr = 0;
2987         put_cpu_var(bh_accounting);
2988 }
2989
2990 static int buffer_cpu_notify(struct notifier_block *self,
2991                               unsigned long action, void *hcpu)
2992 {
2993         if (action == CPU_DEAD)
2994                 buffer_exit_cpu((unsigned long)hcpu);
2995         return NOTIFY_OK;
2996 }
2997 #endif /* CONFIG_HOTPLUG_CPU */
2998
2999 void __init buffer_init(void)
3000 {
3001         int nrpages;
3002
3003         bh_cachep = kmem_cache_create("buffer_head",
3004                                         sizeof(struct buffer_head), 0,
3005                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3006                                         SLAB_MEM_SPREAD),
3007                                         init_buffer_head,
3008                                         NULL);
3009
3010         /*
3011          * Limit the bh occupancy to 10% of ZONE_NORMAL
3012          */
3013         nrpages = (nr_free_buffer_pages() * 10) / 100;
3014         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3015         hotcpu_notifier(buffer_cpu_notify, 0);
3016 }
3017
3018 EXPORT_SYMBOL(__bforget);
3019 EXPORT_SYMBOL(__brelse);
3020 EXPORT_SYMBOL(__wait_on_buffer);
3021 EXPORT_SYMBOL(block_commit_write);
3022 EXPORT_SYMBOL(block_prepare_write);
3023 EXPORT_SYMBOL(block_read_full_page);
3024 EXPORT_SYMBOL(block_sync_page);
3025 EXPORT_SYMBOL(block_truncate_page);
3026 EXPORT_SYMBOL(block_write_full_page);
3027 EXPORT_SYMBOL(cont_prepare_write);
3028 EXPORT_SYMBOL(end_buffer_read_sync);
3029 EXPORT_SYMBOL(end_buffer_write_sync);
3030 EXPORT_SYMBOL(file_fsync);
3031 EXPORT_SYMBOL(fsync_bdev);
3032 EXPORT_SYMBOL(generic_block_bmap);
3033 EXPORT_SYMBOL(generic_commit_write);
3034 EXPORT_SYMBOL(generic_cont_expand);
3035 EXPORT_SYMBOL(generic_cont_expand_simple);
3036 EXPORT_SYMBOL(init_buffer);
3037 EXPORT_SYMBOL(invalidate_bdev);
3038 EXPORT_SYMBOL(ll_rw_block);
3039 EXPORT_SYMBOL(mark_buffer_dirty);
3040 EXPORT_SYMBOL(submit_bh);
3041 EXPORT_SYMBOL(sync_dirty_buffer);
3042 EXPORT_SYMBOL(unlock_buffer);