2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation, version 2.
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/spinlock.h>
27 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/audit.h>
31 #include <linux/mutex.h>
41 #include "conditional.h"
44 extern void selnl_notify_policyload(u32 seqno);
45 unsigned int policydb_loaded_version;
47 static DEFINE_RWLOCK(policy_rwlock);
48 #define POLICY_RDLOCK read_lock(&policy_rwlock)
49 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
50 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
51 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
53 static DEFINE_MUTEX(load_mutex);
54 #define LOAD_LOCK mutex_lock(&load_mutex)
55 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
57 static struct sidtab sidtab;
58 struct policydb policydb;
59 int ss_initialized = 0;
62 * The largest sequence number that has been used when
63 * providing an access decision to the access vector cache.
64 * The sequence number only changes when a policy change
67 static u32 latest_granting = 0;
69 /* Forward declaration. */
70 static int context_struct_to_string(struct context *context, char **scontext,
74 * Return the boolean value of a constraint expression
75 * when it is applied to the specified source and target
78 * xcontext is a special beast... It is used by the validatetrans rules
79 * only. For these rules, scontext is the context before the transition,
80 * tcontext is the context after the transition, and xcontext is the context
81 * of the process performing the transition. All other callers of
82 * constraint_expr_eval should pass in NULL for xcontext.
84 static int constraint_expr_eval(struct context *scontext,
85 struct context *tcontext,
86 struct context *xcontext,
87 struct constraint_expr *cexpr)
91 struct role_datum *r1, *r2;
92 struct mls_level *l1, *l2;
93 struct constraint_expr *e;
94 int s[CEXPR_MAXDEPTH];
97 for (e = cexpr; e; e = e->next) {
98 switch (e->expr_type) {
114 if (sp == (CEXPR_MAXDEPTH-1))
118 val1 = scontext->user;
119 val2 = tcontext->user;
122 val1 = scontext->type;
123 val2 = tcontext->type;
126 val1 = scontext->role;
127 val2 = tcontext->role;
128 r1 = policydb.role_val_to_struct[val1 - 1];
129 r2 = policydb.role_val_to_struct[val2 - 1];
132 s[++sp] = ebitmap_get_bit(&r1->dominates,
136 s[++sp] = ebitmap_get_bit(&r2->dominates,
140 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
142 !ebitmap_get_bit(&r2->dominates,
150 l1 = &(scontext->range.level[0]);
151 l2 = &(tcontext->range.level[0]);
154 l1 = &(scontext->range.level[0]);
155 l2 = &(tcontext->range.level[1]);
158 l1 = &(scontext->range.level[1]);
159 l2 = &(tcontext->range.level[0]);
162 l1 = &(scontext->range.level[1]);
163 l2 = &(tcontext->range.level[1]);
166 l1 = &(scontext->range.level[0]);
167 l2 = &(scontext->range.level[1]);
170 l1 = &(tcontext->range.level[0]);
171 l2 = &(tcontext->range.level[1]);
176 s[++sp] = mls_level_eq(l1, l2);
179 s[++sp] = !mls_level_eq(l1, l2);
182 s[++sp] = mls_level_dom(l1, l2);
185 s[++sp] = mls_level_dom(l2, l1);
188 s[++sp] = mls_level_incomp(l2, l1);
202 s[++sp] = (val1 == val2);
205 s[++sp] = (val1 != val2);
213 if (sp == (CEXPR_MAXDEPTH-1))
216 if (e->attr & CEXPR_TARGET)
218 else if (e->attr & CEXPR_XTARGET) {
225 if (e->attr & CEXPR_USER)
227 else if (e->attr & CEXPR_ROLE)
229 else if (e->attr & CEXPR_TYPE)
238 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
241 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
259 * Compute access vectors based on a context structure pair for
260 * the permissions in a particular class.
262 static int context_struct_compute_av(struct context *scontext,
263 struct context *tcontext,
266 struct av_decision *avd)
268 struct constraint_node *constraint;
269 struct role_allow *ra;
270 struct avtab_key avkey;
271 struct avtab_node *node;
272 struct class_datum *tclass_datum;
273 struct ebitmap *sattr, *tattr;
274 struct ebitmap_node *snode, *tnode;
278 * Remap extended Netlink classes for old policy versions.
279 * Do this here rather than socket_type_to_security_class()
280 * in case a newer policy version is loaded, allowing sockets
281 * to remain in the correct class.
283 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
284 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
285 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
286 tclass = SECCLASS_NETLINK_SOCKET;
288 if (!tclass || tclass > policydb.p_classes.nprim) {
289 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
293 tclass_datum = policydb.class_val_to_struct[tclass - 1];
296 * Initialize the access vectors to the default values.
299 avd->decided = 0xffffffff;
301 avd->auditdeny = 0xffffffff;
302 avd->seqno = latest_granting;
305 * If a specific type enforcement rule was defined for
306 * this permission check, then use it.
308 avkey.target_class = tclass;
309 avkey.specified = AVTAB_AV;
310 sattr = &policydb.type_attr_map[scontext->type - 1];
311 tattr = &policydb.type_attr_map[tcontext->type - 1];
312 ebitmap_for_each_bit(sattr, snode, i) {
313 if (!ebitmap_node_get_bit(snode, i))
315 ebitmap_for_each_bit(tattr, tnode, j) {
316 if (!ebitmap_node_get_bit(tnode, j))
318 avkey.source_type = i + 1;
319 avkey.target_type = j + 1;
320 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
322 node = avtab_search_node_next(node, avkey.specified)) {
323 if (node->key.specified == AVTAB_ALLOWED)
324 avd->allowed |= node->datum.data;
325 else if (node->key.specified == AVTAB_AUDITALLOW)
326 avd->auditallow |= node->datum.data;
327 else if (node->key.specified == AVTAB_AUDITDENY)
328 avd->auditdeny &= node->datum.data;
331 /* Check conditional av table for additional permissions */
332 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
338 * Remove any permissions prohibited by a constraint (this includes
341 constraint = tclass_datum->constraints;
343 if ((constraint->permissions & (avd->allowed)) &&
344 !constraint_expr_eval(scontext, tcontext, NULL,
346 avd->allowed = (avd->allowed) & ~(constraint->permissions);
348 constraint = constraint->next;
352 * If checking process transition permission and the
353 * role is changing, then check the (current_role, new_role)
356 if (tclass == SECCLASS_PROCESS &&
357 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
358 scontext->role != tcontext->role) {
359 for (ra = policydb.role_allow; ra; ra = ra->next) {
360 if (scontext->role == ra->role &&
361 tcontext->role == ra->new_role)
365 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
366 PROCESS__DYNTRANSITION);
372 static int security_validtrans_handle_fail(struct context *ocontext,
373 struct context *ncontext,
374 struct context *tcontext,
377 char *o = NULL, *n = NULL, *t = NULL;
378 u32 olen, nlen, tlen;
380 if (context_struct_to_string(ocontext, &o, &olen) < 0)
382 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
384 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
386 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
387 "security_validate_transition: denied for"
388 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
389 o, n, t, policydb.p_class_val_to_name[tclass-1]);
395 if (!selinux_enforcing)
400 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
403 struct context *ocontext;
404 struct context *ncontext;
405 struct context *tcontext;
406 struct class_datum *tclass_datum;
407 struct constraint_node *constraint;
416 * Remap extended Netlink classes for old policy versions.
417 * Do this here rather than socket_type_to_security_class()
418 * in case a newer policy version is loaded, allowing sockets
419 * to remain in the correct class.
421 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
422 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
423 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
424 tclass = SECCLASS_NETLINK_SOCKET;
426 if (!tclass || tclass > policydb.p_classes.nprim) {
427 printk(KERN_ERR "security_validate_transition: "
428 "unrecognized class %d\n", tclass);
432 tclass_datum = policydb.class_val_to_struct[tclass - 1];
434 ocontext = sidtab_search(&sidtab, oldsid);
436 printk(KERN_ERR "security_validate_transition: "
437 " unrecognized SID %d\n", oldsid);
442 ncontext = sidtab_search(&sidtab, newsid);
444 printk(KERN_ERR "security_validate_transition: "
445 " unrecognized SID %d\n", newsid);
450 tcontext = sidtab_search(&sidtab, tasksid);
452 printk(KERN_ERR "security_validate_transition: "
453 " unrecognized SID %d\n", tasksid);
458 constraint = tclass_datum->validatetrans;
460 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
462 rc = security_validtrans_handle_fail(ocontext, ncontext,
466 constraint = constraint->next;
475 * security_compute_av - Compute access vector decisions.
476 * @ssid: source security identifier
477 * @tsid: target security identifier
478 * @tclass: target security class
479 * @requested: requested permissions
480 * @avd: access vector decisions
482 * Compute a set of access vector decisions based on the
483 * SID pair (@ssid, @tsid) for the permissions in @tclass.
484 * Return -%EINVAL if any of the parameters are invalid or %0
485 * if the access vector decisions were computed successfully.
487 int security_compute_av(u32 ssid,
491 struct av_decision *avd)
493 struct context *scontext = NULL, *tcontext = NULL;
496 if (!ss_initialized) {
497 avd->allowed = 0xffffffff;
498 avd->decided = 0xffffffff;
500 avd->auditdeny = 0xffffffff;
501 avd->seqno = latest_granting;
507 scontext = sidtab_search(&sidtab, ssid);
509 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
514 tcontext = sidtab_search(&sidtab, tsid);
516 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
522 rc = context_struct_compute_av(scontext, tcontext, tclass,
530 * Write the security context string representation of
531 * the context structure `context' into a dynamically
532 * allocated string of the correct size. Set `*scontext'
533 * to point to this string and set `*scontext_len' to
534 * the length of the string.
536 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
543 /* Compute the size of the context. */
544 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
545 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
546 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
547 *scontext_len += mls_compute_context_len(context);
549 /* Allocate space for the context; caller must free this space. */
550 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
554 *scontext = scontextp;
557 * Copy the user name, role name and type name into the context.
559 sprintf(scontextp, "%s:%s:%s",
560 policydb.p_user_val_to_name[context->user - 1],
561 policydb.p_role_val_to_name[context->role - 1],
562 policydb.p_type_val_to_name[context->type - 1]);
563 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
564 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
565 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
567 mls_sid_to_context(context, &scontextp);
574 #include "initial_sid_to_string.h"
577 * security_sid_to_context - Obtain a context for a given SID.
578 * @sid: security identifier, SID
579 * @scontext: security context
580 * @scontext_len: length in bytes
582 * Write the string representation of the context associated with @sid
583 * into a dynamically allocated string of the correct size. Set @scontext
584 * to point to this string and set @scontext_len to the length of the string.
586 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
588 struct context *context;
591 if (!ss_initialized) {
592 if (sid <= SECINITSID_NUM) {
595 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
596 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
601 strcpy(scontextp, initial_sid_to_string[sid]);
602 *scontext = scontextp;
605 printk(KERN_ERR "security_sid_to_context: called before initial "
606 "load_policy on unknown SID %d\n", sid);
611 context = sidtab_search(&sidtab, sid);
613 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
618 rc = context_struct_to_string(context, scontext, scontext_len);
626 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
629 struct context context;
630 struct role_datum *role;
631 struct type_datum *typdatum;
632 struct user_datum *usrdatum;
633 char *scontextp, *p, oldc;
636 if (!ss_initialized) {
639 for (i = 1; i < SECINITSID_NUM; i++) {
640 if (!strcmp(initial_sid_to_string[i], scontext)) {
645 *sid = SECINITSID_KERNEL;
650 /* Copy the string so that we can modify the copy as we parse it.
651 The string should already by null terminated, but we append a
652 null suffix to the copy to avoid problems with the existing
653 attr package, which doesn't view the null terminator as part
654 of the attribute value. */
655 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
660 memcpy(scontext2, scontext, scontext_len);
661 scontext2[scontext_len] = 0;
663 context_init(&context);
668 /* Parse the security context. */
671 scontextp = (char *) scontext2;
673 /* Extract the user. */
675 while (*p && *p != ':')
683 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
687 context.user = usrdatum->value;
691 while (*p && *p != ':')
699 role = hashtab_search(policydb.p_roles.table, scontextp);
702 context.role = role->value;
706 while (*p && *p != ':')
711 typdatum = hashtab_search(policydb.p_types.table, scontextp);
715 context.type = typdatum->value;
717 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
721 if ((p - scontext2) < scontext_len) {
726 /* Check the validity of the new context. */
727 if (!policydb_context_isvalid(&policydb, &context)) {
731 /* Obtain the new sid. */
732 rc = sidtab_context_to_sid(&sidtab, &context, sid);
735 context_destroy(&context);
742 * security_context_to_sid - Obtain a SID for a given security context.
743 * @scontext: security context
744 * @scontext_len: length in bytes
745 * @sid: security identifier, SID
747 * Obtains a SID associated with the security context that
748 * has the string representation specified by @scontext.
749 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
750 * memory is available, or 0 on success.
752 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
754 return security_context_to_sid_core(scontext, scontext_len,
759 * security_context_to_sid_default - Obtain a SID for a given security context,
760 * falling back to specified default if needed.
762 * @scontext: security context
763 * @scontext_len: length in bytes
764 * @sid: security identifier, SID
765 * @def_sid: default SID to assign on errror
767 * Obtains a SID associated with the security context that
768 * has the string representation specified by @scontext.
769 * The default SID is passed to the MLS layer to be used to allow
770 * kernel labeling of the MLS field if the MLS field is not present
771 * (for upgrading to MLS without full relabel).
772 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
773 * memory is available, or 0 on success.
775 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
777 return security_context_to_sid_core(scontext, scontext_len,
781 static int compute_sid_handle_invalid_context(
782 struct context *scontext,
783 struct context *tcontext,
785 struct context *newcontext)
787 char *s = NULL, *t = NULL, *n = NULL;
788 u32 slen, tlen, nlen;
790 if (context_struct_to_string(scontext, &s, &slen) < 0)
792 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
794 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
796 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
797 "security_compute_sid: invalid context %s"
801 n, s, t, policydb.p_class_val_to_name[tclass-1]);
806 if (!selinux_enforcing)
811 static int security_compute_sid(u32 ssid,
817 struct context *scontext = NULL, *tcontext = NULL, newcontext;
818 struct role_trans *roletr = NULL;
819 struct avtab_key avkey;
820 struct avtab_datum *avdatum;
821 struct avtab_node *node;
824 if (!ss_initialized) {
826 case SECCLASS_PROCESS:
836 context_init(&newcontext);
840 scontext = sidtab_search(&sidtab, ssid);
842 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
847 tcontext = sidtab_search(&sidtab, tsid);
849 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
855 /* Set the user identity. */
857 case AVTAB_TRANSITION:
859 /* Use the process user identity. */
860 newcontext.user = scontext->user;
863 /* Use the related object owner. */
864 newcontext.user = tcontext->user;
868 /* Set the role and type to default values. */
870 case SECCLASS_PROCESS:
871 /* Use the current role and type of process. */
872 newcontext.role = scontext->role;
873 newcontext.type = scontext->type;
876 /* Use the well-defined object role. */
877 newcontext.role = OBJECT_R_VAL;
878 /* Use the type of the related object. */
879 newcontext.type = tcontext->type;
882 /* Look for a type transition/member/change rule. */
883 avkey.source_type = scontext->type;
884 avkey.target_type = tcontext->type;
885 avkey.target_class = tclass;
886 avkey.specified = specified;
887 avdatum = avtab_search(&policydb.te_avtab, &avkey);
889 /* If no permanent rule, also check for enabled conditional rules */
891 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
892 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
893 if (node->key.specified & AVTAB_ENABLED) {
894 avdatum = &node->datum;
901 /* Use the type from the type transition/member/change rule. */
902 newcontext.type = avdatum->data;
905 /* Check for class-specific changes. */
907 case SECCLASS_PROCESS:
908 if (specified & AVTAB_TRANSITION) {
909 /* Look for a role transition rule. */
910 for (roletr = policydb.role_tr; roletr;
911 roletr = roletr->next) {
912 if (roletr->role == scontext->role &&
913 roletr->type == tcontext->type) {
914 /* Use the role transition rule. */
915 newcontext.role = roletr->new_role;
925 /* Set the MLS attributes.
926 This is done last because it may allocate memory. */
927 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
931 /* Check the validity of the context. */
932 if (!policydb_context_isvalid(&policydb, &newcontext)) {
933 rc = compute_sid_handle_invalid_context(scontext,
940 /* Obtain the sid for the context. */
941 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
944 context_destroy(&newcontext);
950 * security_transition_sid - Compute the SID for a new subject/object.
951 * @ssid: source security identifier
952 * @tsid: target security identifier
953 * @tclass: target security class
954 * @out_sid: security identifier for new subject/object
956 * Compute a SID to use for labeling a new subject or object in the
957 * class @tclass based on a SID pair (@ssid, @tsid).
958 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
959 * if insufficient memory is available, or %0 if the new SID was
960 * computed successfully.
962 int security_transition_sid(u32 ssid,
967 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
971 * security_member_sid - Compute the SID for member selection.
972 * @ssid: source security identifier
973 * @tsid: target security identifier
974 * @tclass: target security class
975 * @out_sid: security identifier for selected member
977 * Compute a SID to use when selecting a member of a polyinstantiated
978 * object of class @tclass based on a SID pair (@ssid, @tsid).
979 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
980 * if insufficient memory is available, or %0 if the SID was
981 * computed successfully.
983 int security_member_sid(u32 ssid,
988 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
992 * security_change_sid - Compute the SID for object relabeling.
993 * @ssid: source security identifier
994 * @tsid: target security identifier
995 * @tclass: target security class
996 * @out_sid: security identifier for selected member
998 * Compute a SID to use for relabeling an object of class @tclass
999 * based on a SID pair (@ssid, @tsid).
1000 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1001 * if insufficient memory is available, or %0 if the SID was
1002 * computed successfully.
1004 int security_change_sid(u32 ssid,
1009 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1013 * Verify that each permission that is defined under the
1014 * existing policy is still defined with the same value
1015 * in the new policy.
1017 static int validate_perm(void *key, void *datum, void *p)
1020 struct perm_datum *perdatum, *perdatum2;
1027 perdatum2 = hashtab_search(h, key);
1029 printk(KERN_ERR "security: permission %s disappeared",
1034 if (perdatum->value != perdatum2->value) {
1035 printk(KERN_ERR "security: the value of permission %s changed",
1044 * Verify that each class that is defined under the
1045 * existing policy is still defined with the same
1046 * attributes in the new policy.
1048 static int validate_class(void *key, void *datum, void *p)
1050 struct policydb *newp;
1051 struct class_datum *cladatum, *cladatum2;
1057 cladatum2 = hashtab_search(newp->p_classes.table, key);
1059 printk(KERN_ERR "security: class %s disappeared\n",
1064 if (cladatum->value != cladatum2->value) {
1065 printk(KERN_ERR "security: the value of class %s changed\n",
1070 if ((cladatum->comdatum && !cladatum2->comdatum) ||
1071 (!cladatum->comdatum && cladatum2->comdatum)) {
1072 printk(KERN_ERR "security: the inherits clause for the access "
1073 "vector definition for class %s changed\n", (char *)key);
1077 if (cladatum->comdatum) {
1078 rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1079 cladatum2->comdatum->permissions.table);
1081 printk(" in the access vector definition for class "
1082 "%s\n", (char *)key);
1086 rc = hashtab_map(cladatum->permissions.table, validate_perm,
1087 cladatum2->permissions.table);
1089 printk(" in access vector definition for class %s\n",
1095 /* Clone the SID into the new SID table. */
1096 static int clone_sid(u32 sid,
1097 struct context *context,
1100 struct sidtab *s = arg;
1102 return sidtab_insert(s, sid, context);
1105 static inline int convert_context_handle_invalid_context(struct context *context)
1109 if (selinux_enforcing) {
1115 context_struct_to_string(context, &s, &len);
1116 printk(KERN_ERR "security: context %s is invalid\n", s);
1122 struct convert_context_args {
1123 struct policydb *oldp;
1124 struct policydb *newp;
1128 * Convert the values in the security context
1129 * structure `c' from the values specified
1130 * in the policy `p->oldp' to the values specified
1131 * in the policy `p->newp'. Verify that the
1132 * context is valid under the new policy.
1134 static int convert_context(u32 key,
1138 struct convert_context_args *args;
1139 struct context oldc;
1140 struct role_datum *role;
1141 struct type_datum *typdatum;
1142 struct user_datum *usrdatum;
1149 rc = context_cpy(&oldc, c);
1155 /* Convert the user. */
1156 usrdatum = hashtab_search(args->newp->p_users.table,
1157 args->oldp->p_user_val_to_name[c->user - 1]);
1161 c->user = usrdatum->value;
1163 /* Convert the role. */
1164 role = hashtab_search(args->newp->p_roles.table,
1165 args->oldp->p_role_val_to_name[c->role - 1]);
1169 c->role = role->value;
1171 /* Convert the type. */
1172 typdatum = hashtab_search(args->newp->p_types.table,
1173 args->oldp->p_type_val_to_name[c->type - 1]);
1177 c->type = typdatum->value;
1179 rc = mls_convert_context(args->oldp, args->newp, c);
1183 /* Check the validity of the new context. */
1184 if (!policydb_context_isvalid(args->newp, c)) {
1185 rc = convert_context_handle_invalid_context(&oldc);
1190 context_destroy(&oldc);
1194 context_struct_to_string(&oldc, &s, &len);
1195 context_destroy(&oldc);
1196 printk(KERN_ERR "security: invalidating context %s\n", s);
1201 extern void selinux_complete_init(void);
1204 * security_load_policy - Load a security policy configuration.
1205 * @data: binary policy data
1206 * @len: length of data in bytes
1208 * Load a new set of security policy configuration data,
1209 * validate it and convert the SID table as necessary.
1210 * This function will flush the access vector cache after
1211 * loading the new policy.
1213 int security_load_policy(void *data, size_t len)
1215 struct policydb oldpolicydb, newpolicydb;
1216 struct sidtab oldsidtab, newsidtab;
1217 struct convert_context_args args;
1220 struct policy_file file = { data, len }, *fp = &file;
1224 if (!ss_initialized) {
1226 if (policydb_read(&policydb, fp)) {
1228 avtab_cache_destroy();
1231 if (policydb_load_isids(&policydb, &sidtab)) {
1233 policydb_destroy(&policydb);
1234 avtab_cache_destroy();
1237 policydb_loaded_version = policydb.policyvers;
1239 seqno = ++latest_granting;
1241 selinux_complete_init();
1242 avc_ss_reset(seqno);
1243 selnl_notify_policyload(seqno);
1248 sidtab_hash_eval(&sidtab, "sids");
1251 if (policydb_read(&newpolicydb, fp)) {
1256 sidtab_init(&newsidtab);
1258 /* Verify that the existing classes did not change. */
1259 if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1260 printk(KERN_ERR "security: the definition of an existing "
1266 /* Clone the SID table. */
1267 sidtab_shutdown(&sidtab);
1268 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1273 /* Convert the internal representations of contexts
1274 in the new SID table and remove invalid SIDs. */
1275 args.oldp = &policydb;
1276 args.newp = &newpolicydb;
1277 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1279 /* Save the old policydb and SID table to free later. */
1280 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1281 sidtab_set(&oldsidtab, &sidtab);
1283 /* Install the new policydb and SID table. */
1285 memcpy(&policydb, &newpolicydb, sizeof policydb);
1286 sidtab_set(&sidtab, &newsidtab);
1287 seqno = ++latest_granting;
1288 policydb_loaded_version = policydb.policyvers;
1292 /* Free the old policydb and SID table. */
1293 policydb_destroy(&oldpolicydb);
1294 sidtab_destroy(&oldsidtab);
1296 avc_ss_reset(seqno);
1297 selnl_notify_policyload(seqno);
1303 sidtab_destroy(&newsidtab);
1304 policydb_destroy(&newpolicydb);
1310 * security_port_sid - Obtain the SID for a port.
1311 * @domain: communication domain aka address family
1312 * @type: socket type
1313 * @protocol: protocol number
1314 * @port: port number
1315 * @out_sid: security identifier
1317 int security_port_sid(u16 domain,
1328 c = policydb.ocontexts[OCON_PORT];
1330 if (c->u.port.protocol == protocol &&
1331 c->u.port.low_port <= port &&
1332 c->u.port.high_port >= port)
1339 rc = sidtab_context_to_sid(&sidtab,
1345 *out_sid = c->sid[0];
1347 *out_sid = SECINITSID_PORT;
1356 * security_netif_sid - Obtain the SID for a network interface.
1357 * @name: interface name
1358 * @if_sid: interface SID
1359 * @msg_sid: default SID for received packets
1361 int security_netif_sid(char *name,
1370 c = policydb.ocontexts[OCON_NETIF];
1372 if (strcmp(name, c->u.name) == 0)
1378 if (!c->sid[0] || !c->sid[1]) {
1379 rc = sidtab_context_to_sid(&sidtab,
1384 rc = sidtab_context_to_sid(&sidtab,
1390 *if_sid = c->sid[0];
1391 *msg_sid = c->sid[1];
1393 *if_sid = SECINITSID_NETIF;
1394 *msg_sid = SECINITSID_NETMSG;
1402 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1406 for(i = 0; i < 4; i++)
1407 if(addr[i] != (input[i] & mask[i])) {
1416 * security_node_sid - Obtain the SID for a node (host).
1417 * @domain: communication domain aka address family
1419 * @addrlen: address length in bytes
1420 * @out_sid: security identifier
1422 int security_node_sid(u16 domain,
1436 if (addrlen != sizeof(u32)) {
1441 addr = *((u32 *)addrp);
1443 c = policydb.ocontexts[OCON_NODE];
1445 if (c->u.node.addr == (addr & c->u.node.mask))
1453 if (addrlen != sizeof(u64) * 2) {
1457 c = policydb.ocontexts[OCON_NODE6];
1459 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1467 *out_sid = SECINITSID_NODE;
1473 rc = sidtab_context_to_sid(&sidtab,
1479 *out_sid = c->sid[0];
1481 *out_sid = SECINITSID_NODE;
1492 * security_get_user_sids - Obtain reachable SIDs for a user.
1493 * @fromsid: starting SID
1494 * @username: username
1495 * @sids: array of reachable SIDs for user
1496 * @nel: number of elements in @sids
1498 * Generate the set of SIDs for legal security contexts
1499 * for a given user that can be reached by @fromsid.
1500 * Set *@sids to point to a dynamically allocated
1501 * array containing the set of SIDs. Set *@nel to the
1502 * number of elements in the array.
1505 int security_get_user_sids(u32 fromsid,
1510 struct context *fromcon, usercon;
1511 u32 *mysids, *mysids2, sid;
1512 u32 mynel = 0, maxnel = SIDS_NEL;
1513 struct user_datum *user;
1514 struct role_datum *role;
1515 struct av_decision avd;
1516 struct ebitmap_node *rnode, *tnode;
1519 if (!ss_initialized) {
1527 fromcon = sidtab_search(&sidtab, fromsid);
1533 user = hashtab_search(policydb.p_users.table, username);
1538 usercon.user = user->value;
1540 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1546 ebitmap_for_each_bit(&user->roles, rnode, i) {
1547 if (!ebitmap_node_get_bit(rnode, i))
1549 role = policydb.role_val_to_struct[i];
1551 ebitmap_for_each_bit(&role->types, tnode, j) {
1552 if (!ebitmap_node_get_bit(tnode, j))
1556 if (mls_setup_user_range(fromcon, user, &usercon))
1559 rc = context_struct_compute_av(fromcon, &usercon,
1561 PROCESS__TRANSITION,
1563 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1565 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1570 if (mynel < maxnel) {
1571 mysids[mynel++] = sid;
1574 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1580 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1583 mysids[mynel++] = sid;
1598 * security_genfs_sid - Obtain a SID for a file in a filesystem
1599 * @fstype: filesystem type
1600 * @path: path from root of mount
1601 * @sclass: file security class
1602 * @sid: SID for path
1604 * Obtain a SID to use for a file in a filesystem that
1605 * cannot support xattr or use a fixed labeling behavior like
1606 * transition SIDs or task SIDs.
1608 int security_genfs_sid(const char *fstype,
1614 struct genfs *genfs;
1616 int rc = 0, cmp = 0;
1620 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1621 cmp = strcmp(fstype, genfs->fstype);
1626 if (!genfs || cmp) {
1627 *sid = SECINITSID_UNLABELED;
1632 for (c = genfs->head; c; c = c->next) {
1633 len = strlen(c->u.name);
1634 if ((!c->v.sclass || sclass == c->v.sclass) &&
1635 (strncmp(c->u.name, path, len) == 0))
1640 *sid = SECINITSID_UNLABELED;
1646 rc = sidtab_context_to_sid(&sidtab,
1660 * security_fs_use - Determine how to handle labeling for a filesystem.
1661 * @fstype: filesystem type
1662 * @behavior: labeling behavior
1663 * @sid: SID for filesystem (superblock)
1665 int security_fs_use(
1667 unsigned int *behavior,
1675 c = policydb.ocontexts[OCON_FSUSE];
1677 if (strcmp(fstype, c->u.name) == 0)
1683 *behavior = c->v.behavior;
1685 rc = sidtab_context_to_sid(&sidtab,
1693 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1695 *behavior = SECURITY_FS_USE_NONE;
1698 *behavior = SECURITY_FS_USE_GENFS;
1707 int security_get_bools(int *len, char ***names, int **values)
1709 int i, rc = -ENOMEM;
1715 *len = policydb.p_bools.nprim;
1721 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1725 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1729 for (i = 0; i < *len; i++) {
1731 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1732 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1733 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1736 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1737 (*names)[i][name_len - 1] = 0;
1745 for (i = 0; i < *len; i++)
1753 int security_set_bools(int len, int *values)
1756 int lenp, seqno = 0;
1757 struct cond_node *cur;
1761 lenp = policydb.p_bools.nprim;
1767 for (i = 0; i < len; i++) {
1768 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1769 audit_log(current->audit_context, GFP_ATOMIC,
1770 AUDIT_MAC_CONFIG_CHANGE,
1771 "bool=%s val=%d old_val=%d auid=%u",
1772 policydb.p_bool_val_to_name[i],
1774 policydb.bool_val_to_struct[i]->state,
1775 audit_get_loginuid(current->audit_context));
1778 policydb.bool_val_to_struct[i]->state = 1;
1780 policydb.bool_val_to_struct[i]->state = 0;
1784 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1785 rc = evaluate_cond_node(&policydb, cur);
1790 seqno = ++latest_granting;
1795 avc_ss_reset(seqno);
1796 selnl_notify_policyload(seqno);
1801 int security_get_bool_value(int bool)
1808 len = policydb.p_bools.nprim;
1814 rc = policydb.bool_val_to_struct[bool]->state;
1820 struct selinux_audit_rule {
1822 struct context au_ctxt;
1825 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1828 context_destroy(&rule->au_ctxt);
1833 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1834 struct selinux_audit_rule **rule)
1836 struct selinux_audit_rule *tmprule;
1837 struct role_datum *roledatum;
1838 struct type_datum *typedatum;
1839 struct user_datum *userdatum;
1844 if (!ss_initialized)
1848 case AUDIT_SUBJ_USER:
1849 case AUDIT_SUBJ_ROLE:
1850 case AUDIT_SUBJ_TYPE:
1851 case AUDIT_OBJ_USER:
1852 case AUDIT_OBJ_ROLE:
1853 case AUDIT_OBJ_TYPE:
1854 /* only 'equals' and 'not equals' fit user, role, and type */
1855 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1858 case AUDIT_SUBJ_SEN:
1859 case AUDIT_SUBJ_CLR:
1860 case AUDIT_OBJ_LEV_LOW:
1861 case AUDIT_OBJ_LEV_HIGH:
1862 /* we do not allow a range, indicated by the presense of '-' */
1863 if (strchr(rulestr, '-'))
1867 /* only the above fields are valid */
1871 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
1875 context_init(&tmprule->au_ctxt);
1879 tmprule->au_seqno = latest_granting;
1882 case AUDIT_SUBJ_USER:
1883 case AUDIT_OBJ_USER:
1884 userdatum = hashtab_search(policydb.p_users.table, rulestr);
1888 tmprule->au_ctxt.user = userdatum->value;
1890 case AUDIT_SUBJ_ROLE:
1891 case AUDIT_OBJ_ROLE:
1892 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
1896 tmprule->au_ctxt.role = roledatum->value;
1898 case AUDIT_SUBJ_TYPE:
1899 case AUDIT_OBJ_TYPE:
1900 typedatum = hashtab_search(policydb.p_types.table, rulestr);
1904 tmprule->au_ctxt.type = typedatum->value;
1906 case AUDIT_SUBJ_SEN:
1907 case AUDIT_SUBJ_CLR:
1908 case AUDIT_OBJ_LEV_LOW:
1909 case AUDIT_OBJ_LEV_HIGH:
1910 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
1917 selinux_audit_rule_free(tmprule);
1926 int selinux_audit_rule_match(u32 ctxid, u32 field, u32 op,
1927 struct selinux_audit_rule *rule,
1928 struct audit_context *actx)
1930 struct context *ctxt;
1931 struct mls_level *level;
1935 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1936 "selinux_audit_rule_match: missing rule\n");
1942 if (rule->au_seqno < latest_granting) {
1943 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1944 "selinux_audit_rule_match: stale rule\n");
1949 ctxt = sidtab_search(&sidtab, ctxid);
1951 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1952 "selinux_audit_rule_match: unrecognized SID %d\n",
1958 /* a field/op pair that is not caught here will simply fall through
1961 case AUDIT_SUBJ_USER:
1962 case AUDIT_OBJ_USER:
1965 match = (ctxt->user == rule->au_ctxt.user);
1967 case AUDIT_NOT_EQUAL:
1968 match = (ctxt->user != rule->au_ctxt.user);
1972 case AUDIT_SUBJ_ROLE:
1973 case AUDIT_OBJ_ROLE:
1976 match = (ctxt->role == rule->au_ctxt.role);
1978 case AUDIT_NOT_EQUAL:
1979 match = (ctxt->role != rule->au_ctxt.role);
1983 case AUDIT_SUBJ_TYPE:
1984 case AUDIT_OBJ_TYPE:
1987 match = (ctxt->type == rule->au_ctxt.type);
1989 case AUDIT_NOT_EQUAL:
1990 match = (ctxt->type != rule->au_ctxt.type);
1994 case AUDIT_SUBJ_SEN:
1995 case AUDIT_SUBJ_CLR:
1996 case AUDIT_OBJ_LEV_LOW:
1997 case AUDIT_OBJ_LEV_HIGH:
1998 level = ((field == AUDIT_SUBJ_SEN ||
1999 field == AUDIT_OBJ_LEV_LOW) ?
2000 &ctxt->range.level[0] : &ctxt->range.level[1]);
2003 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2006 case AUDIT_NOT_EQUAL:
2007 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2010 case AUDIT_LESS_THAN:
2011 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2013 !mls_level_eq(&rule->au_ctxt.range.level[0],
2016 case AUDIT_LESS_THAN_OR_EQUAL:
2017 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2020 case AUDIT_GREATER_THAN:
2021 match = (mls_level_dom(level,
2022 &rule->au_ctxt.range.level[0]) &&
2023 !mls_level_eq(level,
2024 &rule->au_ctxt.range.level[0]));
2026 case AUDIT_GREATER_THAN_OR_EQUAL:
2027 match = mls_level_dom(level,
2028 &rule->au_ctxt.range.level[0]);
2038 static int (*aurule_callback)(void) = NULL;
2040 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2041 u16 class, u32 perms, u32 *retained)
2045 if (event == AVC_CALLBACK_RESET && aurule_callback)
2046 err = aurule_callback();
2050 static int __init aurule_init(void)
2054 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2055 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2057 panic("avc_add_callback() failed, error %d\n", err);
2061 __initcall(aurule_init);
2063 void selinux_audit_set_callback(int (*callback)(void))
2065 aurule_callback = callback;