KVM: pending irq save/restore
[linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41
42 #include <asm/processor.h>
43 #include <asm/msr.h>
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <asm/desc.h>
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 static DEFINE_SPINLOCK(kvm_lock);
52 static LIST_HEAD(vm_list);
53
54 static cpumask_t cpus_hardware_enabled;
55
56 struct kvm_arch_ops *kvm_arch_ops;
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
63
64 static struct kvm_stats_debugfs_item {
65         const char *name;
66         int offset;
67         struct dentry *dentry;
68 } debugfs_entries[] = {
69         { "pf_fixed", STAT_OFFSET(pf_fixed) },
70         { "pf_guest", STAT_OFFSET(pf_guest) },
71         { "tlb_flush", STAT_OFFSET(tlb_flush) },
72         { "invlpg", STAT_OFFSET(invlpg) },
73         { "exits", STAT_OFFSET(exits) },
74         { "io_exits", STAT_OFFSET(io_exits) },
75         { "mmio_exits", STAT_OFFSET(mmio_exits) },
76         { "signal_exits", STAT_OFFSET(signal_exits) },
77         { "irq_window", STAT_OFFSET(irq_window_exits) },
78         { "halt_exits", STAT_OFFSET(halt_exits) },
79         { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
80         { "request_irq", STAT_OFFSET(request_irq_exits) },
81         { "irq_exits", STAT_OFFSET(irq_exits) },
82         { "light_exits", STAT_OFFSET(light_exits) },
83         { "efer_reload", STAT_OFFSET(efer_reload) },
84         { NULL }
85 };
86
87 static struct dentry *debugfs_dir;
88
89 #define MAX_IO_MSRS 256
90
91 #define CR0_RESERVED_BITS                                               \
92         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
93                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
94                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
95 #define CR4_RESERVED_BITS                                               \
96         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
97                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
98                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
99                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
100
101 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
102 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
103
104 #ifdef CONFIG_X86_64
105 // LDT or TSS descriptor in the GDT. 16 bytes.
106 struct segment_descriptor_64 {
107         struct segment_descriptor s;
108         u32 base_higher;
109         u32 pad_zero;
110 };
111
112 #endif
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116
117 unsigned long segment_base(u16 selector)
118 {
119         struct descriptor_table gdt;
120         struct segment_descriptor *d;
121         unsigned long table_base;
122         typedef unsigned long ul;
123         unsigned long v;
124
125         if (selector == 0)
126                 return 0;
127
128         asm ("sgdt %0" : "=m"(gdt));
129         table_base = gdt.base;
130
131         if (selector & 4) {           /* from ldt */
132                 u16 ldt_selector;
133
134                 asm ("sldt %0" : "=g"(ldt_selector));
135                 table_base = segment_base(ldt_selector);
136         }
137         d = (struct segment_descriptor *)(table_base + (selector & ~7));
138         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
139 #ifdef CONFIG_X86_64
140         if (d->system == 0
141             && (d->type == 2 || d->type == 9 || d->type == 11))
142                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
143 #endif
144         return v;
145 }
146 EXPORT_SYMBOL_GPL(segment_base);
147
148 static inline int valid_vcpu(int n)
149 {
150         return likely(n >= 0 && n < KVM_MAX_VCPUS);
151 }
152
153 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
154 {
155         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
156                 return;
157
158         vcpu->guest_fpu_loaded = 1;
159         fx_save(&vcpu->host_fx_image);
160         fx_restore(&vcpu->guest_fx_image);
161 }
162 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
163
164 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
165 {
166         if (!vcpu->guest_fpu_loaded)
167                 return;
168
169         vcpu->guest_fpu_loaded = 0;
170         fx_save(&vcpu->guest_fx_image);
171         fx_restore(&vcpu->host_fx_image);
172 }
173 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
174
175 /*
176  * Switches to specified vcpu, until a matching vcpu_put()
177  */
178 static void vcpu_load(struct kvm_vcpu *vcpu)
179 {
180         int cpu;
181
182         mutex_lock(&vcpu->mutex);
183         cpu = get_cpu();
184         preempt_notifier_register(&vcpu->preempt_notifier);
185         kvm_arch_ops->vcpu_load(vcpu, cpu);
186         put_cpu();
187 }
188
189 static void vcpu_put(struct kvm_vcpu *vcpu)
190 {
191         preempt_disable();
192         kvm_arch_ops->vcpu_put(vcpu);
193         preempt_notifier_unregister(&vcpu->preempt_notifier);
194         preempt_enable();
195         mutex_unlock(&vcpu->mutex);
196 }
197
198 static void ack_flush(void *_completed)
199 {
200         atomic_t *completed = _completed;
201
202         atomic_inc(completed);
203 }
204
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207         int i, cpu, needed;
208         cpumask_t cpus;
209         struct kvm_vcpu *vcpu;
210         atomic_t completed;
211
212         atomic_set(&completed, 0);
213         cpus_clear(cpus);
214         needed = 0;
215         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
216                 vcpu = kvm->vcpus[i];
217                 if (!vcpu)
218                         continue;
219                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
220                         continue;
221                 cpu = vcpu->cpu;
222                 if (cpu != -1 && cpu != raw_smp_processor_id())
223                         if (!cpu_isset(cpu, cpus)) {
224                                 cpu_set(cpu, cpus);
225                                 ++needed;
226                         }
227         }
228
229         /*
230          * We really want smp_call_function_mask() here.  But that's not
231          * available, so ipi all cpus in parallel and wait for them
232          * to complete.
233          */
234         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
235                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
236         while (atomic_read(&completed) != needed) {
237                 cpu_relax();
238                 barrier();
239         }
240 }
241
242 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
243 {
244         struct page *page;
245         int r;
246
247         mutex_init(&vcpu->mutex);
248         vcpu->cpu = -1;
249         vcpu->mmu.root_hpa = INVALID_PAGE;
250         vcpu->kvm = kvm;
251         vcpu->vcpu_id = id;
252         init_waitqueue_head(&vcpu->wq);
253
254         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
255         if (!page) {
256                 r = -ENOMEM;
257                 goto fail;
258         }
259         vcpu->run = page_address(page);
260
261         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
262         if (!page) {
263                 r = -ENOMEM;
264                 goto fail_free_run;
265         }
266         vcpu->pio_data = page_address(page);
267
268         r = kvm_mmu_create(vcpu);
269         if (r < 0)
270                 goto fail_free_pio_data;
271
272         return 0;
273
274 fail_free_pio_data:
275         free_page((unsigned long)vcpu->pio_data);
276 fail_free_run:
277         free_page((unsigned long)vcpu->run);
278 fail:
279         return -ENOMEM;
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
282
283 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
284 {
285         kvm_mmu_destroy(vcpu);
286         kvm_free_apic(vcpu->apic);
287         free_page((unsigned long)vcpu->pio_data);
288         free_page((unsigned long)vcpu->run);
289 }
290 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
291
292 static struct kvm *kvm_create_vm(void)
293 {
294         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
295
296         if (!kvm)
297                 return ERR_PTR(-ENOMEM);
298
299         kvm_io_bus_init(&kvm->pio_bus);
300         mutex_init(&kvm->lock);
301         INIT_LIST_HEAD(&kvm->active_mmu_pages);
302         kvm_io_bus_init(&kvm->mmio_bus);
303         spin_lock(&kvm_lock);
304         list_add(&kvm->vm_list, &vm_list);
305         spin_unlock(&kvm_lock);
306         return kvm;
307 }
308
309 /*
310  * Free any memory in @free but not in @dont.
311  */
312 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
313                                   struct kvm_memory_slot *dont)
314 {
315         int i;
316
317         if (!dont || free->phys_mem != dont->phys_mem)
318                 if (free->phys_mem) {
319                         for (i = 0; i < free->npages; ++i)
320                                 if (free->phys_mem[i])
321                                         __free_page(free->phys_mem[i]);
322                         vfree(free->phys_mem);
323                 }
324
325         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
326                 vfree(free->dirty_bitmap);
327
328         free->phys_mem = NULL;
329         free->npages = 0;
330         free->dirty_bitmap = NULL;
331 }
332
333 static void kvm_free_physmem(struct kvm *kvm)
334 {
335         int i;
336
337         for (i = 0; i < kvm->nmemslots; ++i)
338                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
339 }
340
341 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
342 {
343         int i;
344
345         for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
346                 if (vcpu->pio.guest_pages[i]) {
347                         __free_page(vcpu->pio.guest_pages[i]);
348                         vcpu->pio.guest_pages[i] = NULL;
349                 }
350 }
351
352 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
353 {
354         vcpu_load(vcpu);
355         kvm_mmu_unload(vcpu);
356         vcpu_put(vcpu);
357 }
358
359 static void kvm_free_vcpus(struct kvm *kvm)
360 {
361         unsigned int i;
362
363         /*
364          * Unpin any mmu pages first.
365          */
366         for (i = 0; i < KVM_MAX_VCPUS; ++i)
367                 if (kvm->vcpus[i])
368                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
369         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
370                 if (kvm->vcpus[i]) {
371                         kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
372                         kvm->vcpus[i] = NULL;
373                 }
374         }
375
376 }
377
378 static void kvm_destroy_vm(struct kvm *kvm)
379 {
380         spin_lock(&kvm_lock);
381         list_del(&kvm->vm_list);
382         spin_unlock(&kvm_lock);
383         kvm_io_bus_destroy(&kvm->pio_bus);
384         kvm_io_bus_destroy(&kvm->mmio_bus);
385         kfree(kvm->vpic);
386         kfree(kvm->vioapic);
387         kvm_free_vcpus(kvm);
388         kvm_free_physmem(kvm);
389         kfree(kvm);
390 }
391
392 static int kvm_vm_release(struct inode *inode, struct file *filp)
393 {
394         struct kvm *kvm = filp->private_data;
395
396         kvm_destroy_vm(kvm);
397         return 0;
398 }
399
400 static void inject_gp(struct kvm_vcpu *vcpu)
401 {
402         kvm_arch_ops->inject_gp(vcpu, 0);
403 }
404
405 /*
406  * Load the pae pdptrs.  Return true is they are all valid.
407  */
408 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
409 {
410         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
411         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
412         int i;
413         u64 *pdpt;
414         int ret;
415         struct page *page;
416         u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
417
418         mutex_lock(&vcpu->kvm->lock);
419         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
420         if (!page) {
421                 ret = 0;
422                 goto out;
423         }
424
425         pdpt = kmap_atomic(page, KM_USER0);
426         memcpy(pdpte, pdpt+offset, sizeof(pdpte));
427         kunmap_atomic(pdpt, KM_USER0);
428
429         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
430                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
431                         ret = 0;
432                         goto out;
433                 }
434         }
435         ret = 1;
436
437         memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
438 out:
439         mutex_unlock(&vcpu->kvm->lock);
440
441         return ret;
442 }
443
444 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
445 {
446         if (cr0 & CR0_RESERVED_BITS) {
447                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
448                        cr0, vcpu->cr0);
449                 inject_gp(vcpu);
450                 return;
451         }
452
453         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
454                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
455                 inject_gp(vcpu);
456                 return;
457         }
458
459         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
460                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
461                        "and a clear PE flag\n");
462                 inject_gp(vcpu);
463                 return;
464         }
465
466         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
467 #ifdef CONFIG_X86_64
468                 if ((vcpu->shadow_efer & EFER_LME)) {
469                         int cs_db, cs_l;
470
471                         if (!is_pae(vcpu)) {
472                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
473                                        "in long mode while PAE is disabled\n");
474                                 inject_gp(vcpu);
475                                 return;
476                         }
477                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
478                         if (cs_l) {
479                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
480                                        "in long mode while CS.L == 1\n");
481                                 inject_gp(vcpu);
482                                 return;
483
484                         }
485                 } else
486 #endif
487                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
488                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
489                                "reserved bits\n");
490                         inject_gp(vcpu);
491                         return;
492                 }
493
494         }
495
496         kvm_arch_ops->set_cr0(vcpu, cr0);
497         vcpu->cr0 = cr0;
498
499         mutex_lock(&vcpu->kvm->lock);
500         kvm_mmu_reset_context(vcpu);
501         mutex_unlock(&vcpu->kvm->lock);
502         return;
503 }
504 EXPORT_SYMBOL_GPL(set_cr0);
505
506 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
507 {
508         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
509 }
510 EXPORT_SYMBOL_GPL(lmsw);
511
512 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
513 {
514         if (cr4 & CR4_RESERVED_BITS) {
515                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
516                 inject_gp(vcpu);
517                 return;
518         }
519
520         if (is_long_mode(vcpu)) {
521                 if (!(cr4 & X86_CR4_PAE)) {
522                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
523                                "in long mode\n");
524                         inject_gp(vcpu);
525                         return;
526                 }
527         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
528                    && !load_pdptrs(vcpu, vcpu->cr3)) {
529                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
530                 inject_gp(vcpu);
531                 return;
532         }
533
534         if (cr4 & X86_CR4_VMXE) {
535                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
536                 inject_gp(vcpu);
537                 return;
538         }
539         kvm_arch_ops->set_cr4(vcpu, cr4);
540         mutex_lock(&vcpu->kvm->lock);
541         kvm_mmu_reset_context(vcpu);
542         mutex_unlock(&vcpu->kvm->lock);
543 }
544 EXPORT_SYMBOL_GPL(set_cr4);
545
546 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
547 {
548         if (is_long_mode(vcpu)) {
549                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
550                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
551                         inject_gp(vcpu);
552                         return;
553                 }
554         } else {
555                 if (is_pae(vcpu)) {
556                         if (cr3 & CR3_PAE_RESERVED_BITS) {
557                                 printk(KERN_DEBUG
558                                        "set_cr3: #GP, reserved bits\n");
559                                 inject_gp(vcpu);
560                                 return;
561                         }
562                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
563                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
564                                        "reserved bits\n");
565                                 inject_gp(vcpu);
566                                 return;
567                         }
568                 } else {
569                         if (cr3 & CR3_NONPAE_RESERVED_BITS) {
570                                 printk(KERN_DEBUG
571                                        "set_cr3: #GP, reserved bits\n");
572                                 inject_gp(vcpu);
573                                 return;
574                         }
575                 }
576         }
577
578         mutex_lock(&vcpu->kvm->lock);
579         /*
580          * Does the new cr3 value map to physical memory? (Note, we
581          * catch an invalid cr3 even in real-mode, because it would
582          * cause trouble later on when we turn on paging anyway.)
583          *
584          * A real CPU would silently accept an invalid cr3 and would
585          * attempt to use it - with largely undefined (and often hard
586          * to debug) behavior on the guest side.
587          */
588         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
589                 inject_gp(vcpu);
590         else {
591                 vcpu->cr3 = cr3;
592                 vcpu->mmu.new_cr3(vcpu);
593         }
594         mutex_unlock(&vcpu->kvm->lock);
595 }
596 EXPORT_SYMBOL_GPL(set_cr3);
597
598 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
599 {
600         if (cr8 & CR8_RESERVED_BITS) {
601                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
602                 inject_gp(vcpu);
603                 return;
604         }
605         if (irqchip_in_kernel(vcpu->kvm))
606                 kvm_lapic_set_tpr(vcpu, cr8);
607         else
608                 vcpu->cr8 = cr8;
609 }
610 EXPORT_SYMBOL_GPL(set_cr8);
611
612 unsigned long get_cr8(struct kvm_vcpu *vcpu)
613 {
614         if (irqchip_in_kernel(vcpu->kvm))
615                 return kvm_lapic_get_cr8(vcpu);
616         else
617                 return vcpu->cr8;
618 }
619 EXPORT_SYMBOL_GPL(get_cr8);
620
621 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
622 {
623         if (irqchip_in_kernel(vcpu->kvm))
624                 return vcpu->apic_base;
625         else
626                 return vcpu->apic_base;
627 }
628 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
629
630 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
631 {
632         /* TODO: reserve bits check */
633         if (irqchip_in_kernel(vcpu->kvm))
634                 kvm_lapic_set_base(vcpu, data);
635         else
636                 vcpu->apic_base = data;
637 }
638 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
639
640 void fx_init(struct kvm_vcpu *vcpu)
641 {
642         unsigned after_mxcsr_mask;
643
644         /* Initialize guest FPU by resetting ours and saving into guest's */
645         preempt_disable();
646         fx_save(&vcpu->host_fx_image);
647         fpu_init();
648         fx_save(&vcpu->guest_fx_image);
649         fx_restore(&vcpu->host_fx_image);
650         preempt_enable();
651
652         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
653         vcpu->guest_fx_image.mxcsr = 0x1f80;
654         memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
655                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
656 }
657 EXPORT_SYMBOL_GPL(fx_init);
658
659 /*
660  * Allocate some memory and give it an address in the guest physical address
661  * space.
662  *
663  * Discontiguous memory is allowed, mostly for framebuffers.
664  */
665 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
666                                           struct kvm_memory_region *mem)
667 {
668         int r;
669         gfn_t base_gfn;
670         unsigned long npages;
671         unsigned long i;
672         struct kvm_memory_slot *memslot;
673         struct kvm_memory_slot old, new;
674         int memory_config_version;
675
676         r = -EINVAL;
677         /* General sanity checks */
678         if (mem->memory_size & (PAGE_SIZE - 1))
679                 goto out;
680         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
681                 goto out;
682         if (mem->slot >= KVM_MEMORY_SLOTS)
683                 goto out;
684         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
685                 goto out;
686
687         memslot = &kvm->memslots[mem->slot];
688         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
689         npages = mem->memory_size >> PAGE_SHIFT;
690
691         if (!npages)
692                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
693
694 raced:
695         mutex_lock(&kvm->lock);
696
697         memory_config_version = kvm->memory_config_version;
698         new = old = *memslot;
699
700         new.base_gfn = base_gfn;
701         new.npages = npages;
702         new.flags = mem->flags;
703
704         /* Disallow changing a memory slot's size. */
705         r = -EINVAL;
706         if (npages && old.npages && npages != old.npages)
707                 goto out_unlock;
708
709         /* Check for overlaps */
710         r = -EEXIST;
711         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
712                 struct kvm_memory_slot *s = &kvm->memslots[i];
713
714                 if (s == memslot)
715                         continue;
716                 if (!((base_gfn + npages <= s->base_gfn) ||
717                       (base_gfn >= s->base_gfn + s->npages)))
718                         goto out_unlock;
719         }
720         /*
721          * Do memory allocations outside lock.  memory_config_version will
722          * detect any races.
723          */
724         mutex_unlock(&kvm->lock);
725
726         /* Deallocate if slot is being removed */
727         if (!npages)
728                 new.phys_mem = NULL;
729
730         /* Free page dirty bitmap if unneeded */
731         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
732                 new.dirty_bitmap = NULL;
733
734         r = -ENOMEM;
735
736         /* Allocate if a slot is being created */
737         if (npages && !new.phys_mem) {
738                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
739
740                 if (!new.phys_mem)
741                         goto out_free;
742
743                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
744                 for (i = 0; i < npages; ++i) {
745                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
746                                                      | __GFP_ZERO);
747                         if (!new.phys_mem[i])
748                                 goto out_free;
749                         set_page_private(new.phys_mem[i],0);
750                 }
751         }
752
753         /* Allocate page dirty bitmap if needed */
754         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
755                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
756
757                 new.dirty_bitmap = vmalloc(dirty_bytes);
758                 if (!new.dirty_bitmap)
759                         goto out_free;
760                 memset(new.dirty_bitmap, 0, dirty_bytes);
761         }
762
763         mutex_lock(&kvm->lock);
764
765         if (memory_config_version != kvm->memory_config_version) {
766                 mutex_unlock(&kvm->lock);
767                 kvm_free_physmem_slot(&new, &old);
768                 goto raced;
769         }
770
771         r = -EAGAIN;
772         if (kvm->busy)
773                 goto out_unlock;
774
775         if (mem->slot >= kvm->nmemslots)
776                 kvm->nmemslots = mem->slot + 1;
777
778         *memslot = new;
779         ++kvm->memory_config_version;
780
781         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
782         kvm_flush_remote_tlbs(kvm);
783
784         mutex_unlock(&kvm->lock);
785
786         kvm_free_physmem_slot(&old, &new);
787         return 0;
788
789 out_unlock:
790         mutex_unlock(&kvm->lock);
791 out_free:
792         kvm_free_physmem_slot(&new, &old);
793 out:
794         return r;
795 }
796
797 /*
798  * Get (and clear) the dirty memory log for a memory slot.
799  */
800 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
801                                       struct kvm_dirty_log *log)
802 {
803         struct kvm_memory_slot *memslot;
804         int r, i;
805         int n;
806         unsigned long any = 0;
807
808         mutex_lock(&kvm->lock);
809
810         /*
811          * Prevent changes to guest memory configuration even while the lock
812          * is not taken.
813          */
814         ++kvm->busy;
815         mutex_unlock(&kvm->lock);
816         r = -EINVAL;
817         if (log->slot >= KVM_MEMORY_SLOTS)
818                 goto out;
819
820         memslot = &kvm->memslots[log->slot];
821         r = -ENOENT;
822         if (!memslot->dirty_bitmap)
823                 goto out;
824
825         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
826
827         for (i = 0; !any && i < n/sizeof(long); ++i)
828                 any = memslot->dirty_bitmap[i];
829
830         r = -EFAULT;
831         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
832                 goto out;
833
834         /* If nothing is dirty, don't bother messing with page tables. */
835         if (any) {
836                 mutex_lock(&kvm->lock);
837                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
838                 kvm_flush_remote_tlbs(kvm);
839                 memset(memslot->dirty_bitmap, 0, n);
840                 mutex_unlock(&kvm->lock);
841         }
842
843         r = 0;
844
845 out:
846         mutex_lock(&kvm->lock);
847         --kvm->busy;
848         mutex_unlock(&kvm->lock);
849         return r;
850 }
851
852 /*
853  * Set a new alias region.  Aliases map a portion of physical memory into
854  * another portion.  This is useful for memory windows, for example the PC
855  * VGA region.
856  */
857 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
858                                          struct kvm_memory_alias *alias)
859 {
860         int r, n;
861         struct kvm_mem_alias *p;
862
863         r = -EINVAL;
864         /* General sanity checks */
865         if (alias->memory_size & (PAGE_SIZE - 1))
866                 goto out;
867         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
868                 goto out;
869         if (alias->slot >= KVM_ALIAS_SLOTS)
870                 goto out;
871         if (alias->guest_phys_addr + alias->memory_size
872             < alias->guest_phys_addr)
873                 goto out;
874         if (alias->target_phys_addr + alias->memory_size
875             < alias->target_phys_addr)
876                 goto out;
877
878         mutex_lock(&kvm->lock);
879
880         p = &kvm->aliases[alias->slot];
881         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
882         p->npages = alias->memory_size >> PAGE_SHIFT;
883         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
884
885         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
886                 if (kvm->aliases[n - 1].npages)
887                         break;
888         kvm->naliases = n;
889
890         kvm_mmu_zap_all(kvm);
891
892         mutex_unlock(&kvm->lock);
893
894         return 0;
895
896 out:
897         return r;
898 }
899
900 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
901 {
902         int r;
903
904         r = 0;
905         switch (chip->chip_id) {
906         case KVM_IRQCHIP_PIC_MASTER:
907                 memcpy (&chip->chip.pic,
908                         &pic_irqchip(kvm)->pics[0],
909                         sizeof(struct kvm_pic_state));
910                 break;
911         case KVM_IRQCHIP_PIC_SLAVE:
912                 memcpy (&chip->chip.pic,
913                         &pic_irqchip(kvm)->pics[1],
914                         sizeof(struct kvm_pic_state));
915                 break;
916         case KVM_IRQCHIP_IOAPIC:
917                 memcpy (&chip->chip.ioapic,
918                         ioapic_irqchip(kvm),
919                         sizeof(struct kvm_ioapic_state));
920                 break;
921         default:
922                 r = -EINVAL;
923                 break;
924         }
925         return r;
926 }
927
928 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
929 {
930         int r;
931
932         r = 0;
933         switch (chip->chip_id) {
934         case KVM_IRQCHIP_PIC_MASTER:
935                 memcpy (&pic_irqchip(kvm)->pics[0],
936                         &chip->chip.pic,
937                         sizeof(struct kvm_pic_state));
938                 break;
939         case KVM_IRQCHIP_PIC_SLAVE:
940                 memcpy (&pic_irqchip(kvm)->pics[1],
941                         &chip->chip.pic,
942                         sizeof(struct kvm_pic_state));
943                 break;
944         case KVM_IRQCHIP_IOAPIC:
945                 memcpy (ioapic_irqchip(kvm),
946                         &chip->chip.ioapic,
947                         sizeof(struct kvm_ioapic_state));
948                 break;
949         default:
950                 r = -EINVAL;
951                 break;
952         }
953         kvm_pic_update_irq(pic_irqchip(kvm));
954         return r;
955 }
956
957 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
958 {
959         int i;
960         struct kvm_mem_alias *alias;
961
962         for (i = 0; i < kvm->naliases; ++i) {
963                 alias = &kvm->aliases[i];
964                 if (gfn >= alias->base_gfn
965                     && gfn < alias->base_gfn + alias->npages)
966                         return alias->target_gfn + gfn - alias->base_gfn;
967         }
968         return gfn;
969 }
970
971 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
972 {
973         int i;
974
975         for (i = 0; i < kvm->nmemslots; ++i) {
976                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
977
978                 if (gfn >= memslot->base_gfn
979                     && gfn < memslot->base_gfn + memslot->npages)
980                         return memslot;
981         }
982         return NULL;
983 }
984
985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
986 {
987         gfn = unalias_gfn(kvm, gfn);
988         return __gfn_to_memslot(kvm, gfn);
989 }
990
991 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
992 {
993         struct kvm_memory_slot *slot;
994
995         gfn = unalias_gfn(kvm, gfn);
996         slot = __gfn_to_memslot(kvm, gfn);
997         if (!slot)
998                 return NULL;
999         return slot->phys_mem[gfn - slot->base_gfn];
1000 }
1001 EXPORT_SYMBOL_GPL(gfn_to_page);
1002
1003 /* WARNING: Does not work on aliased pages. */
1004 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1005 {
1006         struct kvm_memory_slot *memslot;
1007
1008         memslot = __gfn_to_memslot(kvm, gfn);
1009         if (memslot && memslot->dirty_bitmap) {
1010                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1011
1012                 /* avoid RMW */
1013                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1014                         set_bit(rel_gfn, memslot->dirty_bitmap);
1015         }
1016 }
1017
1018 int emulator_read_std(unsigned long addr,
1019                              void *val,
1020                              unsigned int bytes,
1021                              struct kvm_vcpu *vcpu)
1022 {
1023         void *data = val;
1024
1025         while (bytes) {
1026                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1027                 unsigned offset = addr & (PAGE_SIZE-1);
1028                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1029                 unsigned long pfn;
1030                 struct page *page;
1031                 void *page_virt;
1032
1033                 if (gpa == UNMAPPED_GVA)
1034                         return X86EMUL_PROPAGATE_FAULT;
1035                 pfn = gpa >> PAGE_SHIFT;
1036                 page = gfn_to_page(vcpu->kvm, pfn);
1037                 if (!page)
1038                         return X86EMUL_UNHANDLEABLE;
1039                 page_virt = kmap_atomic(page, KM_USER0);
1040
1041                 memcpy(data, page_virt + offset, tocopy);
1042
1043                 kunmap_atomic(page_virt, KM_USER0);
1044
1045                 bytes -= tocopy;
1046                 data += tocopy;
1047                 addr += tocopy;
1048         }
1049
1050         return X86EMUL_CONTINUE;
1051 }
1052 EXPORT_SYMBOL_GPL(emulator_read_std);
1053
1054 static int emulator_write_std(unsigned long addr,
1055                               const void *val,
1056                               unsigned int bytes,
1057                               struct kvm_vcpu *vcpu)
1058 {
1059         pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1060         return X86EMUL_UNHANDLEABLE;
1061 }
1062
1063 /*
1064  * Only apic need an MMIO device hook, so shortcut now..
1065  */
1066 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1067                                                 gpa_t addr)
1068 {
1069         struct kvm_io_device *dev;
1070
1071         if (vcpu->apic) {
1072                 dev = &vcpu->apic->dev;
1073                 if (dev->in_range(dev, addr))
1074                         return dev;
1075         }
1076         return NULL;
1077 }
1078
1079 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1080                                                 gpa_t addr)
1081 {
1082         struct kvm_io_device *dev;
1083
1084         dev = vcpu_find_pervcpu_dev(vcpu, addr);
1085         if (dev == NULL)
1086                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1087         return dev;
1088 }
1089
1090 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1091                                                gpa_t addr)
1092 {
1093         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1094 }
1095
1096 static int emulator_read_emulated(unsigned long addr,
1097                                   void *val,
1098                                   unsigned int bytes,
1099                                   struct kvm_vcpu *vcpu)
1100 {
1101         struct kvm_io_device *mmio_dev;
1102         gpa_t                 gpa;
1103
1104         if (vcpu->mmio_read_completed) {
1105                 memcpy(val, vcpu->mmio_data, bytes);
1106                 vcpu->mmio_read_completed = 0;
1107                 return X86EMUL_CONTINUE;
1108         } else if (emulator_read_std(addr, val, bytes, vcpu)
1109                    == X86EMUL_CONTINUE)
1110                 return X86EMUL_CONTINUE;
1111
1112         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1113         if (gpa == UNMAPPED_GVA)
1114                 return X86EMUL_PROPAGATE_FAULT;
1115
1116         /*
1117          * Is this MMIO handled locally?
1118          */
1119         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1120         if (mmio_dev) {
1121                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1122                 return X86EMUL_CONTINUE;
1123         }
1124
1125         vcpu->mmio_needed = 1;
1126         vcpu->mmio_phys_addr = gpa;
1127         vcpu->mmio_size = bytes;
1128         vcpu->mmio_is_write = 0;
1129
1130         return X86EMUL_UNHANDLEABLE;
1131 }
1132
1133 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1134                                const void *val, int bytes)
1135 {
1136         struct page *page;
1137         void *virt;
1138
1139         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1140                 return 0;
1141         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1142         if (!page)
1143                 return 0;
1144         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1145         virt = kmap_atomic(page, KM_USER0);
1146         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1147         memcpy(virt + offset_in_page(gpa), val, bytes);
1148         kunmap_atomic(virt, KM_USER0);
1149         return 1;
1150 }
1151
1152 static int emulator_write_emulated_onepage(unsigned long addr,
1153                                            const void *val,
1154                                            unsigned int bytes,
1155                                            struct kvm_vcpu *vcpu)
1156 {
1157         struct kvm_io_device *mmio_dev;
1158         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1159
1160         if (gpa == UNMAPPED_GVA) {
1161                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1162                 return X86EMUL_PROPAGATE_FAULT;
1163         }
1164
1165         if (emulator_write_phys(vcpu, gpa, val, bytes))
1166                 return X86EMUL_CONTINUE;
1167
1168         /*
1169          * Is this MMIO handled locally?
1170          */
1171         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1172         if (mmio_dev) {
1173                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1174                 return X86EMUL_CONTINUE;
1175         }
1176
1177         vcpu->mmio_needed = 1;
1178         vcpu->mmio_phys_addr = gpa;
1179         vcpu->mmio_size = bytes;
1180         vcpu->mmio_is_write = 1;
1181         memcpy(vcpu->mmio_data, val, bytes);
1182
1183         return X86EMUL_CONTINUE;
1184 }
1185
1186 int emulator_write_emulated(unsigned long addr,
1187                                    const void *val,
1188                                    unsigned int bytes,
1189                                    struct kvm_vcpu *vcpu)
1190 {
1191         /* Crossing a page boundary? */
1192         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1193                 int rc, now;
1194
1195                 now = -addr & ~PAGE_MASK;
1196                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1197                 if (rc != X86EMUL_CONTINUE)
1198                         return rc;
1199                 addr += now;
1200                 val += now;
1201                 bytes -= now;
1202         }
1203         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1204 }
1205 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1206
1207 static int emulator_cmpxchg_emulated(unsigned long addr,
1208                                      const void *old,
1209                                      const void *new,
1210                                      unsigned int bytes,
1211                                      struct kvm_vcpu *vcpu)
1212 {
1213         static int reported;
1214
1215         if (!reported) {
1216                 reported = 1;
1217                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1218         }
1219         return emulator_write_emulated(addr, new, bytes, vcpu);
1220 }
1221
1222 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1223 {
1224         return kvm_arch_ops->get_segment_base(vcpu, seg);
1225 }
1226
1227 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1228 {
1229         return X86EMUL_CONTINUE;
1230 }
1231
1232 int emulate_clts(struct kvm_vcpu *vcpu)
1233 {
1234         unsigned long cr0;
1235
1236         cr0 = vcpu->cr0 & ~X86_CR0_TS;
1237         kvm_arch_ops->set_cr0(vcpu, cr0);
1238         return X86EMUL_CONTINUE;
1239 }
1240
1241 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1242 {
1243         struct kvm_vcpu *vcpu = ctxt->vcpu;
1244
1245         switch (dr) {
1246         case 0 ... 3:
1247                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1248                 return X86EMUL_CONTINUE;
1249         default:
1250                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1251                 return X86EMUL_UNHANDLEABLE;
1252         }
1253 }
1254
1255 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1256 {
1257         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1258         int exception;
1259
1260         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1261         if (exception) {
1262                 /* FIXME: better handling */
1263                 return X86EMUL_UNHANDLEABLE;
1264         }
1265         return X86EMUL_CONTINUE;
1266 }
1267
1268 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1269 {
1270         static int reported;
1271         u8 opcodes[4];
1272         unsigned long rip = ctxt->vcpu->rip;
1273         unsigned long rip_linear;
1274
1275         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1276
1277         if (reported)
1278                 return;
1279
1280         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1281
1282         printk(KERN_ERR "emulation failed but !mmio_needed?"
1283                " rip %lx %02x %02x %02x %02x\n",
1284                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1285         reported = 1;
1286 }
1287
1288 struct x86_emulate_ops emulate_ops = {
1289         .read_std            = emulator_read_std,
1290         .write_std           = emulator_write_std,
1291         .read_emulated       = emulator_read_emulated,
1292         .write_emulated      = emulator_write_emulated,
1293         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1294 };
1295
1296 int emulate_instruction(struct kvm_vcpu *vcpu,
1297                         struct kvm_run *run,
1298                         unsigned long cr2,
1299                         u16 error_code)
1300 {
1301         struct x86_emulate_ctxt emulate_ctxt;
1302         int r;
1303         int cs_db, cs_l;
1304
1305         vcpu->mmio_fault_cr2 = cr2;
1306         kvm_arch_ops->cache_regs(vcpu);
1307
1308         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1309
1310         emulate_ctxt.vcpu = vcpu;
1311         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1312         emulate_ctxt.cr2 = cr2;
1313         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1314                 ? X86EMUL_MODE_REAL : cs_l
1315                 ? X86EMUL_MODE_PROT64 : cs_db
1316                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1317
1318         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1319                 emulate_ctxt.cs_base = 0;
1320                 emulate_ctxt.ds_base = 0;
1321                 emulate_ctxt.es_base = 0;
1322                 emulate_ctxt.ss_base = 0;
1323         } else {
1324                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1325                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1326                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1327                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1328         }
1329
1330         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1331         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1332
1333         vcpu->mmio_is_write = 0;
1334         vcpu->pio.string = 0;
1335         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1336         if (vcpu->pio.string)
1337                 return EMULATE_DO_MMIO;
1338
1339         if ((r || vcpu->mmio_is_write) && run) {
1340                 run->exit_reason = KVM_EXIT_MMIO;
1341                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1342                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1343                 run->mmio.len = vcpu->mmio_size;
1344                 run->mmio.is_write = vcpu->mmio_is_write;
1345         }
1346
1347         if (r) {
1348                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1349                         return EMULATE_DONE;
1350                 if (!vcpu->mmio_needed) {
1351                         report_emulation_failure(&emulate_ctxt);
1352                         return EMULATE_FAIL;
1353                 }
1354                 return EMULATE_DO_MMIO;
1355         }
1356
1357         kvm_arch_ops->decache_regs(vcpu);
1358         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1359
1360         if (vcpu->mmio_is_write) {
1361                 vcpu->mmio_needed = 0;
1362                 return EMULATE_DO_MMIO;
1363         }
1364
1365         return EMULATE_DONE;
1366 }
1367 EXPORT_SYMBOL_GPL(emulate_instruction);
1368
1369 /*
1370  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1371  */
1372 static void kvm_vcpu_kernel_halt(struct kvm_vcpu *vcpu)
1373 {
1374         DECLARE_WAITQUEUE(wait, current);
1375
1376         add_wait_queue(&vcpu->wq, &wait);
1377
1378         /*
1379          * We will block until either an interrupt or a signal wakes us up
1380          */
1381         while(!(irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))
1382               && !vcpu->irq_summary
1383               && !signal_pending(current)) {
1384                 set_current_state(TASK_INTERRUPTIBLE);
1385                 vcpu_put(vcpu);
1386                 schedule();
1387                 vcpu_load(vcpu);
1388         }
1389
1390         remove_wait_queue(&vcpu->wq, &wait);
1391         set_current_state(TASK_RUNNING);
1392 }
1393
1394 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1395 {
1396         ++vcpu->stat.halt_exits;
1397         if (irqchip_in_kernel(vcpu->kvm)) {
1398                 kvm_vcpu_kernel_halt(vcpu);
1399                 return 1;
1400         } else {
1401                 vcpu->run->exit_reason = KVM_EXIT_HLT;
1402                 return 0;
1403         }
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1406
1407 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1408 {
1409         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1410
1411         kvm_arch_ops->cache_regs(vcpu);
1412         ret = -KVM_EINVAL;
1413 #ifdef CONFIG_X86_64
1414         if (is_long_mode(vcpu)) {
1415                 nr = vcpu->regs[VCPU_REGS_RAX];
1416                 a0 = vcpu->regs[VCPU_REGS_RDI];
1417                 a1 = vcpu->regs[VCPU_REGS_RSI];
1418                 a2 = vcpu->regs[VCPU_REGS_RDX];
1419                 a3 = vcpu->regs[VCPU_REGS_RCX];
1420                 a4 = vcpu->regs[VCPU_REGS_R8];
1421                 a5 = vcpu->regs[VCPU_REGS_R9];
1422         } else
1423 #endif
1424         {
1425                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1426                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1427                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1428                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1429                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1430                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1431                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1432         }
1433         switch (nr) {
1434         default:
1435                 run->hypercall.nr = nr;
1436                 run->hypercall.args[0] = a0;
1437                 run->hypercall.args[1] = a1;
1438                 run->hypercall.args[2] = a2;
1439                 run->hypercall.args[3] = a3;
1440                 run->hypercall.args[4] = a4;
1441                 run->hypercall.args[5] = a5;
1442                 run->hypercall.ret = ret;
1443                 run->hypercall.longmode = is_long_mode(vcpu);
1444                 kvm_arch_ops->decache_regs(vcpu);
1445                 return 0;
1446         }
1447         vcpu->regs[VCPU_REGS_RAX] = ret;
1448         kvm_arch_ops->decache_regs(vcpu);
1449         return 1;
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_hypercall);
1452
1453 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1454 {
1455         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1456 }
1457
1458 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1459 {
1460         struct descriptor_table dt = { limit, base };
1461
1462         kvm_arch_ops->set_gdt(vcpu, &dt);
1463 }
1464
1465 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1466 {
1467         struct descriptor_table dt = { limit, base };
1468
1469         kvm_arch_ops->set_idt(vcpu, &dt);
1470 }
1471
1472 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1473                    unsigned long *rflags)
1474 {
1475         lmsw(vcpu, msw);
1476         *rflags = kvm_arch_ops->get_rflags(vcpu);
1477 }
1478
1479 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1480 {
1481         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1482         switch (cr) {
1483         case 0:
1484                 return vcpu->cr0;
1485         case 2:
1486                 return vcpu->cr2;
1487         case 3:
1488                 return vcpu->cr3;
1489         case 4:
1490                 return vcpu->cr4;
1491         default:
1492                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1493                 return 0;
1494         }
1495 }
1496
1497 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1498                      unsigned long *rflags)
1499 {
1500         switch (cr) {
1501         case 0:
1502                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1503                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1504                 break;
1505         case 2:
1506                 vcpu->cr2 = val;
1507                 break;
1508         case 3:
1509                 set_cr3(vcpu, val);
1510                 break;
1511         case 4:
1512                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1513                 break;
1514         default:
1515                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1516         }
1517 }
1518
1519 /*
1520  * Register the para guest with the host:
1521  */
1522 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1523 {
1524         struct kvm_vcpu_para_state *para_state;
1525         hpa_t para_state_hpa, hypercall_hpa;
1526         struct page *para_state_page;
1527         unsigned char *hypercall;
1528         gpa_t hypercall_gpa;
1529
1530         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1531         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1532
1533         /*
1534          * Needs to be page aligned:
1535          */
1536         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1537                 goto err_gp;
1538
1539         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1540         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1541         if (is_error_hpa(para_state_hpa))
1542                 goto err_gp;
1543
1544         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1545         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1546         para_state = kmap(para_state_page);
1547
1548         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1549         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1550
1551         para_state->host_version = KVM_PARA_API_VERSION;
1552         /*
1553          * We cannot support guests that try to register themselves
1554          * with a newer API version than the host supports:
1555          */
1556         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1557                 para_state->ret = -KVM_EINVAL;
1558                 goto err_kunmap_skip;
1559         }
1560
1561         hypercall_gpa = para_state->hypercall_gpa;
1562         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1563         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1564         if (is_error_hpa(hypercall_hpa)) {
1565                 para_state->ret = -KVM_EINVAL;
1566                 goto err_kunmap_skip;
1567         }
1568
1569         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1570         vcpu->para_state_page = para_state_page;
1571         vcpu->para_state_gpa = para_state_gpa;
1572         vcpu->hypercall_gpa = hypercall_gpa;
1573
1574         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1575         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1576                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1577         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1578         kunmap_atomic(hypercall, KM_USER1);
1579
1580         para_state->ret = 0;
1581 err_kunmap_skip:
1582         kunmap(para_state_page);
1583         return 0;
1584 err_gp:
1585         return 1;
1586 }
1587
1588 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1589 {
1590         u64 data;
1591
1592         switch (msr) {
1593         case 0xc0010010: /* SYSCFG */
1594         case 0xc0010015: /* HWCR */
1595         case MSR_IA32_PLATFORM_ID:
1596         case MSR_IA32_P5_MC_ADDR:
1597         case MSR_IA32_P5_MC_TYPE:
1598         case MSR_IA32_MC0_CTL:
1599         case MSR_IA32_MCG_STATUS:
1600         case MSR_IA32_MCG_CAP:
1601         case MSR_IA32_MC0_MISC:
1602         case MSR_IA32_MC0_MISC+4:
1603         case MSR_IA32_MC0_MISC+8:
1604         case MSR_IA32_MC0_MISC+12:
1605         case MSR_IA32_MC0_MISC+16:
1606         case MSR_IA32_UCODE_REV:
1607         case MSR_IA32_PERF_STATUS:
1608         case MSR_IA32_EBL_CR_POWERON:
1609                 /* MTRR registers */
1610         case 0xfe:
1611         case 0x200 ... 0x2ff:
1612                 data = 0;
1613                 break;
1614         case 0xcd: /* fsb frequency */
1615                 data = 3;
1616                 break;
1617         case MSR_IA32_APICBASE:
1618                 data = kvm_get_apic_base(vcpu);
1619                 break;
1620         case MSR_IA32_MISC_ENABLE:
1621                 data = vcpu->ia32_misc_enable_msr;
1622                 break;
1623 #ifdef CONFIG_X86_64
1624         case MSR_EFER:
1625                 data = vcpu->shadow_efer;
1626                 break;
1627 #endif
1628         default:
1629                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1630                 return 1;
1631         }
1632         *pdata = data;
1633         return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1636
1637 /*
1638  * Reads an msr value (of 'msr_index') into 'pdata'.
1639  * Returns 0 on success, non-0 otherwise.
1640  * Assumes vcpu_load() was already called.
1641  */
1642 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1643 {
1644         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1645 }
1646
1647 #ifdef CONFIG_X86_64
1648
1649 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651         if (efer & EFER_RESERVED_BITS) {
1652                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1653                        efer);
1654                 inject_gp(vcpu);
1655                 return;
1656         }
1657
1658         if (is_paging(vcpu)
1659             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1660                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1661                 inject_gp(vcpu);
1662                 return;
1663         }
1664
1665         kvm_arch_ops->set_efer(vcpu, efer);
1666
1667         efer &= ~EFER_LMA;
1668         efer |= vcpu->shadow_efer & EFER_LMA;
1669
1670         vcpu->shadow_efer = efer;
1671 }
1672
1673 #endif
1674
1675 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1676 {
1677         switch (msr) {
1678 #ifdef CONFIG_X86_64
1679         case MSR_EFER:
1680                 set_efer(vcpu, data);
1681                 break;
1682 #endif
1683         case MSR_IA32_MC0_STATUS:
1684                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1685                        __FUNCTION__, data);
1686                 break;
1687         case MSR_IA32_MCG_STATUS:
1688                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1689                         __FUNCTION__, data);
1690                 break;
1691         case MSR_IA32_UCODE_REV:
1692         case MSR_IA32_UCODE_WRITE:
1693         case 0x200 ... 0x2ff: /* MTRRs */
1694                 break;
1695         case MSR_IA32_APICBASE:
1696                 kvm_set_apic_base(vcpu, data);
1697                 break;
1698         case MSR_IA32_MISC_ENABLE:
1699                 vcpu->ia32_misc_enable_msr = data;
1700                 break;
1701         /*
1702          * This is the 'probe whether the host is KVM' logic:
1703          */
1704         case MSR_KVM_API_MAGIC:
1705                 return vcpu_register_para(vcpu, data);
1706
1707         default:
1708                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1709                 return 1;
1710         }
1711         return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1714
1715 /*
1716  * Writes msr value into into the appropriate "register".
1717  * Returns 0 on success, non-0 otherwise.
1718  * Assumes vcpu_load() was already called.
1719  */
1720 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1721 {
1722         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1723 }
1724
1725 void kvm_resched(struct kvm_vcpu *vcpu)
1726 {
1727         if (!need_resched())
1728                 return;
1729         cond_resched();
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_resched);
1732
1733 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1734 {
1735         int i;
1736         u32 function;
1737         struct kvm_cpuid_entry *e, *best;
1738
1739         kvm_arch_ops->cache_regs(vcpu);
1740         function = vcpu->regs[VCPU_REGS_RAX];
1741         vcpu->regs[VCPU_REGS_RAX] = 0;
1742         vcpu->regs[VCPU_REGS_RBX] = 0;
1743         vcpu->regs[VCPU_REGS_RCX] = 0;
1744         vcpu->regs[VCPU_REGS_RDX] = 0;
1745         best = NULL;
1746         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1747                 e = &vcpu->cpuid_entries[i];
1748                 if (e->function == function) {
1749                         best = e;
1750                         break;
1751                 }
1752                 /*
1753                  * Both basic or both extended?
1754                  */
1755                 if (((e->function ^ function) & 0x80000000) == 0)
1756                         if (!best || e->function > best->function)
1757                                 best = e;
1758         }
1759         if (best) {
1760                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1761                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1762                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1763                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1764         }
1765         kvm_arch_ops->decache_regs(vcpu);
1766         kvm_arch_ops->skip_emulated_instruction(vcpu);
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1769
1770 static int pio_copy_data(struct kvm_vcpu *vcpu)
1771 {
1772         void *p = vcpu->pio_data;
1773         void *q;
1774         unsigned bytes;
1775         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1776
1777         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1778                  PAGE_KERNEL);
1779         if (!q) {
1780                 free_pio_guest_pages(vcpu);
1781                 return -ENOMEM;
1782         }
1783         q += vcpu->pio.guest_page_offset;
1784         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1785         if (vcpu->pio.in)
1786                 memcpy(q, p, bytes);
1787         else
1788                 memcpy(p, q, bytes);
1789         q -= vcpu->pio.guest_page_offset;
1790         vunmap(q);
1791         free_pio_guest_pages(vcpu);
1792         return 0;
1793 }
1794
1795 static int complete_pio(struct kvm_vcpu *vcpu)
1796 {
1797         struct kvm_pio_request *io = &vcpu->pio;
1798         long delta;
1799         int r;
1800
1801         kvm_arch_ops->cache_regs(vcpu);
1802
1803         if (!io->string) {
1804                 if (io->in)
1805                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1806                                io->size);
1807         } else {
1808                 if (io->in) {
1809                         r = pio_copy_data(vcpu);
1810                         if (r) {
1811                                 kvm_arch_ops->cache_regs(vcpu);
1812                                 return r;
1813                         }
1814                 }
1815
1816                 delta = 1;
1817                 if (io->rep) {
1818                         delta *= io->cur_count;
1819                         /*
1820                          * The size of the register should really depend on
1821                          * current address size.
1822                          */
1823                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1824                 }
1825                 if (io->down)
1826                         delta = -delta;
1827                 delta *= io->size;
1828                 if (io->in)
1829                         vcpu->regs[VCPU_REGS_RDI] += delta;
1830                 else
1831                         vcpu->regs[VCPU_REGS_RSI] += delta;
1832         }
1833
1834         kvm_arch_ops->decache_regs(vcpu);
1835
1836         io->count -= io->cur_count;
1837         io->cur_count = 0;
1838
1839         if (!io->count)
1840                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1841         return 0;
1842 }
1843
1844 static void kernel_pio(struct kvm_io_device *pio_dev,
1845                        struct kvm_vcpu *vcpu,
1846                        void *pd)
1847 {
1848         /* TODO: String I/O for in kernel device */
1849
1850         mutex_lock(&vcpu->kvm->lock);
1851         if (vcpu->pio.in)
1852                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1853                                   vcpu->pio.size,
1854                                   pd);
1855         else
1856                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1857                                    vcpu->pio.size,
1858                                    pd);
1859         mutex_unlock(&vcpu->kvm->lock);
1860 }
1861
1862 static void pio_string_write(struct kvm_io_device *pio_dev,
1863                              struct kvm_vcpu *vcpu)
1864 {
1865         struct kvm_pio_request *io = &vcpu->pio;
1866         void *pd = vcpu->pio_data;
1867         int i;
1868
1869         mutex_lock(&vcpu->kvm->lock);
1870         for (i = 0; i < io->cur_count; i++) {
1871                 kvm_iodevice_write(pio_dev, io->port,
1872                                    io->size,
1873                                    pd);
1874                 pd += io->size;
1875         }
1876         mutex_unlock(&vcpu->kvm->lock);
1877 }
1878
1879 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1880                   int size, unsigned port)
1881 {
1882         struct kvm_io_device *pio_dev;
1883
1884         vcpu->run->exit_reason = KVM_EXIT_IO;
1885         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1886         vcpu->run->io.size = vcpu->pio.size = size;
1887         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1888         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1889         vcpu->run->io.port = vcpu->pio.port = port;
1890         vcpu->pio.in = in;
1891         vcpu->pio.string = 0;
1892         vcpu->pio.down = 0;
1893         vcpu->pio.guest_page_offset = 0;
1894         vcpu->pio.rep = 0;
1895
1896         kvm_arch_ops->cache_regs(vcpu);
1897         memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1898         kvm_arch_ops->decache_regs(vcpu);
1899
1900         pio_dev = vcpu_find_pio_dev(vcpu, port);
1901         if (pio_dev) {
1902                 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1903                 complete_pio(vcpu);
1904                 return 1;
1905         }
1906         return 0;
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1909
1910 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1911                   int size, unsigned long count, int down,
1912                   gva_t address, int rep, unsigned port)
1913 {
1914         unsigned now, in_page;
1915         int i, ret = 0;
1916         int nr_pages = 1;
1917         struct page *page;
1918         struct kvm_io_device *pio_dev;
1919
1920         vcpu->run->exit_reason = KVM_EXIT_IO;
1921         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1922         vcpu->run->io.size = vcpu->pio.size = size;
1923         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1924         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1925         vcpu->run->io.port = vcpu->pio.port = port;
1926         vcpu->pio.in = in;
1927         vcpu->pio.string = 1;
1928         vcpu->pio.down = down;
1929         vcpu->pio.guest_page_offset = offset_in_page(address);
1930         vcpu->pio.rep = rep;
1931
1932         if (!count) {
1933                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1934                 return 1;
1935         }
1936
1937         if (!down)
1938                 in_page = PAGE_SIZE - offset_in_page(address);
1939         else
1940                 in_page = offset_in_page(address) + size;
1941         now = min(count, (unsigned long)in_page / size);
1942         if (!now) {
1943                 /*
1944                  * String I/O straddles page boundary.  Pin two guest pages
1945                  * so that we satisfy atomicity constraints.  Do just one
1946                  * transaction to avoid complexity.
1947                  */
1948                 nr_pages = 2;
1949                 now = 1;
1950         }
1951         if (down) {
1952                 /*
1953                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1954                  */
1955                 pr_unimpl(vcpu, "guest string pio down\n");
1956                 inject_gp(vcpu);
1957                 return 1;
1958         }
1959         vcpu->run->io.count = now;
1960         vcpu->pio.cur_count = now;
1961
1962         for (i = 0; i < nr_pages; ++i) {
1963                 mutex_lock(&vcpu->kvm->lock);
1964                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1965                 if (page)
1966                         get_page(page);
1967                 vcpu->pio.guest_pages[i] = page;
1968                 mutex_unlock(&vcpu->kvm->lock);
1969                 if (!page) {
1970                         inject_gp(vcpu);
1971                         free_pio_guest_pages(vcpu);
1972                         return 1;
1973                 }
1974         }
1975
1976         pio_dev = vcpu_find_pio_dev(vcpu, port);
1977         if (!vcpu->pio.in) {
1978                 /* string PIO write */
1979                 ret = pio_copy_data(vcpu);
1980                 if (ret >= 0 && pio_dev) {
1981                         pio_string_write(pio_dev, vcpu);
1982                         complete_pio(vcpu);
1983                         if (vcpu->pio.count == 0)
1984                                 ret = 1;
1985                 }
1986         } else if (pio_dev)
1987                 pr_unimpl(vcpu, "no string pio read support yet, "
1988                        "port %x size %d count %ld\n",
1989                         port, size, count);
1990
1991         return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1994
1995 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1996 {
1997         int r;
1998         sigset_t sigsaved;
1999
2000         vcpu_load(vcpu);
2001
2002         if (vcpu->sigset_active)
2003                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2004
2005         /* re-sync apic's tpr */
2006         set_cr8(vcpu, kvm_run->cr8);
2007
2008         if (vcpu->pio.cur_count) {
2009                 r = complete_pio(vcpu);
2010                 if (r)
2011                         goto out;
2012         }
2013
2014         if (vcpu->mmio_needed) {
2015                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2016                 vcpu->mmio_read_completed = 1;
2017                 vcpu->mmio_needed = 0;
2018                 r = emulate_instruction(vcpu, kvm_run,
2019                                         vcpu->mmio_fault_cr2, 0);
2020                 if (r == EMULATE_DO_MMIO) {
2021                         /*
2022                          * Read-modify-write.  Back to userspace.
2023                          */
2024                         r = 0;
2025                         goto out;
2026                 }
2027         }
2028
2029         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2030                 kvm_arch_ops->cache_regs(vcpu);
2031                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2032                 kvm_arch_ops->decache_regs(vcpu);
2033         }
2034
2035         r = kvm_arch_ops->run(vcpu, kvm_run);
2036
2037 out:
2038         if (vcpu->sigset_active)
2039                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2040
2041         vcpu_put(vcpu);
2042         return r;
2043 }
2044
2045 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2046                                    struct kvm_regs *regs)
2047 {
2048         vcpu_load(vcpu);
2049
2050         kvm_arch_ops->cache_regs(vcpu);
2051
2052         regs->rax = vcpu->regs[VCPU_REGS_RAX];
2053         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2054         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2055         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2056         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2057         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2058         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2059         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2060 #ifdef CONFIG_X86_64
2061         regs->r8 = vcpu->regs[VCPU_REGS_R8];
2062         regs->r9 = vcpu->regs[VCPU_REGS_R9];
2063         regs->r10 = vcpu->regs[VCPU_REGS_R10];
2064         regs->r11 = vcpu->regs[VCPU_REGS_R11];
2065         regs->r12 = vcpu->regs[VCPU_REGS_R12];
2066         regs->r13 = vcpu->regs[VCPU_REGS_R13];
2067         regs->r14 = vcpu->regs[VCPU_REGS_R14];
2068         regs->r15 = vcpu->regs[VCPU_REGS_R15];
2069 #endif
2070
2071         regs->rip = vcpu->rip;
2072         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2073
2074         /*
2075          * Don't leak debug flags in case they were set for guest debugging
2076          */
2077         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2078                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2079
2080         vcpu_put(vcpu);
2081
2082         return 0;
2083 }
2084
2085 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2086                                    struct kvm_regs *regs)
2087 {
2088         vcpu_load(vcpu);
2089
2090         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2091         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2092         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2093         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2094         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2095         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2096         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2097         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2098 #ifdef CONFIG_X86_64
2099         vcpu->regs[VCPU_REGS_R8] = regs->r8;
2100         vcpu->regs[VCPU_REGS_R9] = regs->r9;
2101         vcpu->regs[VCPU_REGS_R10] = regs->r10;
2102         vcpu->regs[VCPU_REGS_R11] = regs->r11;
2103         vcpu->regs[VCPU_REGS_R12] = regs->r12;
2104         vcpu->regs[VCPU_REGS_R13] = regs->r13;
2105         vcpu->regs[VCPU_REGS_R14] = regs->r14;
2106         vcpu->regs[VCPU_REGS_R15] = regs->r15;
2107 #endif
2108
2109         vcpu->rip = regs->rip;
2110         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2111
2112         kvm_arch_ops->decache_regs(vcpu);
2113
2114         vcpu_put(vcpu);
2115
2116         return 0;
2117 }
2118
2119 static void get_segment(struct kvm_vcpu *vcpu,
2120                         struct kvm_segment *var, int seg)
2121 {
2122         return kvm_arch_ops->get_segment(vcpu, var, seg);
2123 }
2124
2125 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2126                                     struct kvm_sregs *sregs)
2127 {
2128         struct descriptor_table dt;
2129         int pending_vec;
2130
2131         vcpu_load(vcpu);
2132
2133         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2134         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2135         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2136         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2137         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2138         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2139
2140         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2141         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2142
2143         kvm_arch_ops->get_idt(vcpu, &dt);
2144         sregs->idt.limit = dt.limit;
2145         sregs->idt.base = dt.base;
2146         kvm_arch_ops->get_gdt(vcpu, &dt);
2147         sregs->gdt.limit = dt.limit;
2148         sregs->gdt.base = dt.base;
2149
2150         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2151         sregs->cr0 = vcpu->cr0;
2152         sregs->cr2 = vcpu->cr2;
2153         sregs->cr3 = vcpu->cr3;
2154         sregs->cr4 = vcpu->cr4;
2155         sregs->cr8 = get_cr8(vcpu);
2156         sregs->efer = vcpu->shadow_efer;
2157         sregs->apic_base = kvm_get_apic_base(vcpu);
2158
2159         if (irqchip_in_kernel(vcpu->kvm)) {
2160                 memset(sregs->interrupt_bitmap, 0,
2161                        sizeof sregs->interrupt_bitmap);
2162                 pending_vec = kvm_arch_ops->get_irq(vcpu);
2163                 if (pending_vec >= 0)
2164                         set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2165         } else
2166                 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2167                        sizeof sregs->interrupt_bitmap);
2168
2169         vcpu_put(vcpu);
2170
2171         return 0;
2172 }
2173
2174 static void set_segment(struct kvm_vcpu *vcpu,
2175                         struct kvm_segment *var, int seg)
2176 {
2177         return kvm_arch_ops->set_segment(vcpu, var, seg);
2178 }
2179
2180 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2181                                     struct kvm_sregs *sregs)
2182 {
2183         int mmu_reset_needed = 0;
2184         int i, pending_vec, max_bits;
2185         struct descriptor_table dt;
2186
2187         vcpu_load(vcpu);
2188
2189         dt.limit = sregs->idt.limit;
2190         dt.base = sregs->idt.base;
2191         kvm_arch_ops->set_idt(vcpu, &dt);
2192         dt.limit = sregs->gdt.limit;
2193         dt.base = sregs->gdt.base;
2194         kvm_arch_ops->set_gdt(vcpu, &dt);
2195
2196         vcpu->cr2 = sregs->cr2;
2197         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2198         vcpu->cr3 = sregs->cr3;
2199
2200         set_cr8(vcpu, sregs->cr8);
2201
2202         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2203 #ifdef CONFIG_X86_64
2204         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2205 #endif
2206         kvm_set_apic_base(vcpu, sregs->apic_base);
2207
2208         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2209
2210         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2211         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2212
2213         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2214         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2215         if (!is_long_mode(vcpu) && is_pae(vcpu))
2216                 load_pdptrs(vcpu, vcpu->cr3);
2217
2218         if (mmu_reset_needed)
2219                 kvm_mmu_reset_context(vcpu);
2220
2221         if (!irqchip_in_kernel(vcpu->kvm)) {
2222                 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2223                        sizeof vcpu->irq_pending);
2224                 vcpu->irq_summary = 0;
2225                 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2226                         if (vcpu->irq_pending[i])
2227                                 __set_bit(i, &vcpu->irq_summary);
2228         } else {
2229                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2230                 pending_vec = find_first_bit(
2231                         (const unsigned long *)sregs->interrupt_bitmap,
2232                         max_bits);
2233                 /* Only pending external irq is handled here */
2234                 if (pending_vec < max_bits) {
2235                         kvm_arch_ops->set_irq(vcpu, pending_vec);
2236                         printk("Set back pending irq %d\n", pending_vec);
2237                 }
2238         }
2239
2240         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2241         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2242         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2243         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2244         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2245         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2246
2247         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2248         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2249
2250         vcpu_put(vcpu);
2251
2252         return 0;
2253 }
2254
2255 /*
2256  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2257  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2258  *
2259  * This list is modified at module load time to reflect the
2260  * capabilities of the host cpu.
2261  */
2262 static u32 msrs_to_save[] = {
2263         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2264         MSR_K6_STAR,
2265 #ifdef CONFIG_X86_64
2266         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2267 #endif
2268         MSR_IA32_TIME_STAMP_COUNTER,
2269 };
2270
2271 static unsigned num_msrs_to_save;
2272
2273 static u32 emulated_msrs[] = {
2274         MSR_IA32_MISC_ENABLE,
2275 };
2276
2277 static __init void kvm_init_msr_list(void)
2278 {
2279         u32 dummy[2];
2280         unsigned i, j;
2281
2282         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2283                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2284                         continue;
2285                 if (j < i)
2286                         msrs_to_save[j] = msrs_to_save[i];
2287                 j++;
2288         }
2289         num_msrs_to_save = j;
2290 }
2291
2292 /*
2293  * Adapt set_msr() to msr_io()'s calling convention
2294  */
2295 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2296 {
2297         return kvm_set_msr(vcpu, index, *data);
2298 }
2299
2300 /*
2301  * Read or write a bunch of msrs. All parameters are kernel addresses.
2302  *
2303  * @return number of msrs set successfully.
2304  */
2305 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2306                     struct kvm_msr_entry *entries,
2307                     int (*do_msr)(struct kvm_vcpu *vcpu,
2308                                   unsigned index, u64 *data))
2309 {
2310         int i;
2311
2312         vcpu_load(vcpu);
2313
2314         for (i = 0; i < msrs->nmsrs; ++i)
2315                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2316                         break;
2317
2318         vcpu_put(vcpu);
2319
2320         return i;
2321 }
2322
2323 /*
2324  * Read or write a bunch of msrs. Parameters are user addresses.
2325  *
2326  * @return number of msrs set successfully.
2327  */
2328 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2329                   int (*do_msr)(struct kvm_vcpu *vcpu,
2330                                 unsigned index, u64 *data),
2331                   int writeback)
2332 {
2333         struct kvm_msrs msrs;
2334         struct kvm_msr_entry *entries;
2335         int r, n;
2336         unsigned size;
2337
2338         r = -EFAULT;
2339         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2340                 goto out;
2341
2342         r = -E2BIG;
2343         if (msrs.nmsrs >= MAX_IO_MSRS)
2344                 goto out;
2345
2346         r = -ENOMEM;
2347         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2348         entries = vmalloc(size);
2349         if (!entries)
2350                 goto out;
2351
2352         r = -EFAULT;
2353         if (copy_from_user(entries, user_msrs->entries, size))
2354                 goto out_free;
2355
2356         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2357         if (r < 0)
2358                 goto out_free;
2359
2360         r = -EFAULT;
2361         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2362                 goto out_free;
2363
2364         r = n;
2365
2366 out_free:
2367         vfree(entries);
2368 out:
2369         return r;
2370 }
2371
2372 /*
2373  * Translate a guest virtual address to a guest physical address.
2374  */
2375 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2376                                     struct kvm_translation *tr)
2377 {
2378         unsigned long vaddr = tr->linear_address;
2379         gpa_t gpa;
2380
2381         vcpu_load(vcpu);
2382         mutex_lock(&vcpu->kvm->lock);
2383         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2384         tr->physical_address = gpa;
2385         tr->valid = gpa != UNMAPPED_GVA;
2386         tr->writeable = 1;
2387         tr->usermode = 0;
2388         mutex_unlock(&vcpu->kvm->lock);
2389         vcpu_put(vcpu);
2390
2391         return 0;
2392 }
2393
2394 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2395                                     struct kvm_interrupt *irq)
2396 {
2397         if (irq->irq < 0 || irq->irq >= 256)
2398                 return -EINVAL;
2399         if (irqchip_in_kernel(vcpu->kvm))
2400                 return -ENXIO;
2401         vcpu_load(vcpu);
2402
2403         set_bit(irq->irq, vcpu->irq_pending);
2404         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2405
2406         vcpu_put(vcpu);
2407
2408         return 0;
2409 }
2410
2411 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2412                                       struct kvm_debug_guest *dbg)
2413 {
2414         int r;
2415
2416         vcpu_load(vcpu);
2417
2418         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2419
2420         vcpu_put(vcpu);
2421
2422         return r;
2423 }
2424
2425 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2426                                     unsigned long address,
2427                                     int *type)
2428 {
2429         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2430         unsigned long pgoff;
2431         struct page *page;
2432
2433         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2434         if (pgoff == 0)
2435                 page = virt_to_page(vcpu->run);
2436         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2437                 page = virt_to_page(vcpu->pio_data);
2438         else
2439                 return NOPAGE_SIGBUS;
2440         get_page(page);
2441         if (type != NULL)
2442                 *type = VM_FAULT_MINOR;
2443
2444         return page;
2445 }
2446
2447 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2448         .nopage = kvm_vcpu_nopage,
2449 };
2450
2451 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2452 {
2453         vma->vm_ops = &kvm_vcpu_vm_ops;
2454         return 0;
2455 }
2456
2457 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2458 {
2459         struct kvm_vcpu *vcpu = filp->private_data;
2460
2461         fput(vcpu->kvm->filp);
2462         return 0;
2463 }
2464
2465 static struct file_operations kvm_vcpu_fops = {
2466         .release        = kvm_vcpu_release,
2467         .unlocked_ioctl = kvm_vcpu_ioctl,
2468         .compat_ioctl   = kvm_vcpu_ioctl,
2469         .mmap           = kvm_vcpu_mmap,
2470 };
2471
2472 /*
2473  * Allocates an inode for the vcpu.
2474  */
2475 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2476 {
2477         int fd, r;
2478         struct inode *inode;
2479         struct file *file;
2480
2481         r = anon_inode_getfd(&fd, &inode, &file,
2482                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2483         if (r)
2484                 return r;
2485         atomic_inc(&vcpu->kvm->filp->f_count);
2486         return fd;
2487 }
2488
2489 /*
2490  * Creates some virtual cpus.  Good luck creating more than one.
2491  */
2492 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2493 {
2494         int r;
2495         struct kvm_vcpu *vcpu;
2496
2497         if (!valid_vcpu(n))
2498                 return -EINVAL;
2499
2500         vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2501         if (IS_ERR(vcpu))
2502                 return PTR_ERR(vcpu);
2503
2504         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2505
2506         /* We do fxsave: this must be aligned. */
2507         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2508
2509         vcpu_load(vcpu);
2510         r = kvm_mmu_setup(vcpu);
2511         vcpu_put(vcpu);
2512         if (r < 0)
2513                 goto free_vcpu;
2514
2515         mutex_lock(&kvm->lock);
2516         if (kvm->vcpus[n]) {
2517                 r = -EEXIST;
2518                 mutex_unlock(&kvm->lock);
2519                 goto mmu_unload;
2520         }
2521         kvm->vcpus[n] = vcpu;
2522         mutex_unlock(&kvm->lock);
2523
2524         /* Now it's all set up, let userspace reach it */
2525         r = create_vcpu_fd(vcpu);
2526         if (r < 0)
2527                 goto unlink;
2528         return r;
2529
2530 unlink:
2531         mutex_lock(&kvm->lock);
2532         kvm->vcpus[n] = NULL;
2533         mutex_unlock(&kvm->lock);
2534
2535 mmu_unload:
2536         vcpu_load(vcpu);
2537         kvm_mmu_unload(vcpu);
2538         vcpu_put(vcpu);
2539
2540 free_vcpu:
2541         kvm_arch_ops->vcpu_free(vcpu);
2542         return r;
2543 }
2544
2545 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2546 {
2547         u64 efer;
2548         int i;
2549         struct kvm_cpuid_entry *e, *entry;
2550
2551         rdmsrl(MSR_EFER, efer);
2552         entry = NULL;
2553         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2554                 e = &vcpu->cpuid_entries[i];
2555                 if (e->function == 0x80000001) {
2556                         entry = e;
2557                         break;
2558                 }
2559         }
2560         if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2561                 entry->edx &= ~(1 << 20);
2562                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2563         }
2564 }
2565
2566 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2567                                     struct kvm_cpuid *cpuid,
2568                                     struct kvm_cpuid_entry __user *entries)
2569 {
2570         int r;
2571
2572         r = -E2BIG;
2573         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2574                 goto out;
2575         r = -EFAULT;
2576         if (copy_from_user(&vcpu->cpuid_entries, entries,
2577                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2578                 goto out;
2579         vcpu->cpuid_nent = cpuid->nent;
2580         cpuid_fix_nx_cap(vcpu);
2581         return 0;
2582
2583 out:
2584         return r;
2585 }
2586
2587 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2588 {
2589         if (sigset) {
2590                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2591                 vcpu->sigset_active = 1;
2592                 vcpu->sigset = *sigset;
2593         } else
2594                 vcpu->sigset_active = 0;
2595         return 0;
2596 }
2597
2598 /*
2599  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2600  * we have asm/x86/processor.h
2601  */
2602 struct fxsave {
2603         u16     cwd;
2604         u16     swd;
2605         u16     twd;
2606         u16     fop;
2607         u64     rip;
2608         u64     rdp;
2609         u32     mxcsr;
2610         u32     mxcsr_mask;
2611         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2612 #ifdef CONFIG_X86_64
2613         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2614 #else
2615         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2616 #endif
2617 };
2618
2619 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2620 {
2621         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2622
2623         vcpu_load(vcpu);
2624
2625         memcpy(fpu->fpr, fxsave->st_space, 128);
2626         fpu->fcw = fxsave->cwd;
2627         fpu->fsw = fxsave->swd;
2628         fpu->ftwx = fxsave->twd;
2629         fpu->last_opcode = fxsave->fop;
2630         fpu->last_ip = fxsave->rip;
2631         fpu->last_dp = fxsave->rdp;
2632         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2633
2634         vcpu_put(vcpu);
2635
2636         return 0;
2637 }
2638
2639 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2640 {
2641         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2642
2643         vcpu_load(vcpu);
2644
2645         memcpy(fxsave->st_space, fpu->fpr, 128);
2646         fxsave->cwd = fpu->fcw;
2647         fxsave->swd = fpu->fsw;
2648         fxsave->twd = fpu->ftwx;
2649         fxsave->fop = fpu->last_opcode;
2650         fxsave->rip = fpu->last_ip;
2651         fxsave->rdp = fpu->last_dp;
2652         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2653
2654         vcpu_put(vcpu);
2655
2656         return 0;
2657 }
2658
2659 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2660                                     struct kvm_lapic_state *s)
2661 {
2662         vcpu_load(vcpu);
2663         memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2664         vcpu_put(vcpu);
2665
2666         return 0;
2667 }
2668
2669 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2670                                     struct kvm_lapic_state *s)
2671 {
2672         vcpu_load(vcpu);
2673         memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2674         kvm_apic_post_state_restore(vcpu);
2675         vcpu_put(vcpu);
2676
2677         return 0;
2678 }
2679
2680 static long kvm_vcpu_ioctl(struct file *filp,
2681                            unsigned int ioctl, unsigned long arg)
2682 {
2683         struct kvm_vcpu *vcpu = filp->private_data;
2684         void __user *argp = (void __user *)arg;
2685         int r = -EINVAL;
2686
2687         switch (ioctl) {
2688         case KVM_RUN:
2689                 r = -EINVAL;
2690                 if (arg)
2691                         goto out;
2692                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2693                 break;
2694         case KVM_GET_REGS: {
2695                 struct kvm_regs kvm_regs;
2696
2697                 memset(&kvm_regs, 0, sizeof kvm_regs);
2698                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2699                 if (r)
2700                         goto out;
2701                 r = -EFAULT;
2702                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2703                         goto out;
2704                 r = 0;
2705                 break;
2706         }
2707         case KVM_SET_REGS: {
2708                 struct kvm_regs kvm_regs;
2709
2710                 r = -EFAULT;
2711                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2712                         goto out;
2713                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2714                 if (r)
2715                         goto out;
2716                 r = 0;
2717                 break;
2718         }
2719         case KVM_GET_SREGS: {
2720                 struct kvm_sregs kvm_sregs;
2721
2722                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2723                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2724                 if (r)
2725                         goto out;
2726                 r = -EFAULT;
2727                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_SET_SREGS: {
2733                 struct kvm_sregs kvm_sregs;
2734
2735                 r = -EFAULT;
2736                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2737                         goto out;
2738                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2739                 if (r)
2740                         goto out;
2741                 r = 0;
2742                 break;
2743         }
2744         case KVM_TRANSLATE: {
2745                 struct kvm_translation tr;
2746
2747                 r = -EFAULT;
2748                 if (copy_from_user(&tr, argp, sizeof tr))
2749                         goto out;
2750                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2751                 if (r)
2752                         goto out;
2753                 r = -EFAULT;
2754                 if (copy_to_user(argp, &tr, sizeof tr))
2755                         goto out;
2756                 r = 0;
2757                 break;
2758         }
2759         case KVM_INTERRUPT: {
2760                 struct kvm_interrupt irq;
2761
2762                 r = -EFAULT;
2763                 if (copy_from_user(&irq, argp, sizeof irq))
2764                         goto out;
2765                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2766                 if (r)
2767                         goto out;
2768                 r = 0;
2769                 break;
2770         }
2771         case KVM_DEBUG_GUEST: {
2772                 struct kvm_debug_guest dbg;
2773
2774                 r = -EFAULT;
2775                 if (copy_from_user(&dbg, argp, sizeof dbg))
2776                         goto out;
2777                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2778                 if (r)
2779                         goto out;
2780                 r = 0;
2781                 break;
2782         }
2783         case KVM_GET_MSRS:
2784                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2785                 break;
2786         case KVM_SET_MSRS:
2787                 r = msr_io(vcpu, argp, do_set_msr, 0);
2788                 break;
2789         case KVM_SET_CPUID: {
2790                 struct kvm_cpuid __user *cpuid_arg = argp;
2791                 struct kvm_cpuid cpuid;
2792
2793                 r = -EFAULT;
2794                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2795                         goto out;
2796                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2797                 if (r)
2798                         goto out;
2799                 break;
2800         }
2801         case KVM_SET_SIGNAL_MASK: {
2802                 struct kvm_signal_mask __user *sigmask_arg = argp;
2803                 struct kvm_signal_mask kvm_sigmask;
2804                 sigset_t sigset, *p;
2805
2806                 p = NULL;
2807                 if (argp) {
2808                         r = -EFAULT;
2809                         if (copy_from_user(&kvm_sigmask, argp,
2810                                            sizeof kvm_sigmask))
2811                                 goto out;
2812                         r = -EINVAL;
2813                         if (kvm_sigmask.len != sizeof sigset)
2814                                 goto out;
2815                         r = -EFAULT;
2816                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2817                                            sizeof sigset))
2818                                 goto out;
2819                         p = &sigset;
2820                 }
2821                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2822                 break;
2823         }
2824         case KVM_GET_FPU: {
2825                 struct kvm_fpu fpu;
2826
2827                 memset(&fpu, 0, sizeof fpu);
2828                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2829                 if (r)
2830                         goto out;
2831                 r = -EFAULT;
2832                 if (copy_to_user(argp, &fpu, sizeof fpu))
2833                         goto out;
2834                 r = 0;
2835                 break;
2836         }
2837         case KVM_SET_FPU: {
2838                 struct kvm_fpu fpu;
2839
2840                 r = -EFAULT;
2841                 if (copy_from_user(&fpu, argp, sizeof fpu))
2842                         goto out;
2843                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2844                 if (r)
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_GET_LAPIC: {
2850                 struct kvm_lapic_state lapic;
2851
2852                 memset(&lapic, 0, sizeof lapic);
2853                 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2854                 if (r)
2855                         goto out;
2856                 r = -EFAULT;
2857                 if (copy_to_user(argp, &lapic, sizeof lapic))
2858                         goto out;
2859                 r = 0;
2860                 break;
2861         }
2862         case KVM_SET_LAPIC: {
2863                 struct kvm_lapic_state lapic;
2864
2865                 r = -EFAULT;
2866                 if (copy_from_user(&lapic, argp, sizeof lapic))
2867                         goto out;
2868                 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2869                 if (r)
2870                         goto out;
2871                 r = 0;
2872                 break;
2873         }
2874         default:
2875                 ;
2876         }
2877 out:
2878         return r;
2879 }
2880
2881 static long kvm_vm_ioctl(struct file *filp,
2882                            unsigned int ioctl, unsigned long arg)
2883 {
2884         struct kvm *kvm = filp->private_data;
2885         void __user *argp = (void __user *)arg;
2886         int r = -EINVAL;
2887
2888         switch (ioctl) {
2889         case KVM_CREATE_VCPU:
2890                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2891                 if (r < 0)
2892                         goto out;
2893                 break;
2894         case KVM_SET_MEMORY_REGION: {
2895                 struct kvm_memory_region kvm_mem;
2896
2897                 r = -EFAULT;
2898                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2899                         goto out;
2900                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2901                 if (r)
2902                         goto out;
2903                 break;
2904         }
2905         case KVM_GET_DIRTY_LOG: {
2906                 struct kvm_dirty_log log;
2907
2908                 r = -EFAULT;
2909                 if (copy_from_user(&log, argp, sizeof log))
2910                         goto out;
2911                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2912                 if (r)
2913                         goto out;
2914                 break;
2915         }
2916         case KVM_SET_MEMORY_ALIAS: {
2917                 struct kvm_memory_alias alias;
2918
2919                 r = -EFAULT;
2920                 if (copy_from_user(&alias, argp, sizeof alias))
2921                         goto out;
2922                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2923                 if (r)
2924                         goto out;
2925                 break;
2926         }
2927         case KVM_CREATE_IRQCHIP:
2928                 r = -ENOMEM;
2929                 kvm->vpic = kvm_create_pic(kvm);
2930                 if (kvm->vpic) {
2931                         r = kvm_ioapic_init(kvm);
2932                         if (r) {
2933                                 kfree(kvm->vpic);
2934                                 kvm->vpic = NULL;
2935                                 goto out;
2936                         }
2937                 }
2938                 else
2939                         goto out;
2940                 break;
2941         case KVM_IRQ_LINE: {
2942                 struct kvm_irq_level irq_event;
2943
2944                 r = -EFAULT;
2945                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2946                         goto out;
2947                 if (irqchip_in_kernel(kvm)) {
2948                         mutex_lock(&kvm->lock);
2949                         if (irq_event.irq < 16)
2950                                 kvm_pic_set_irq(pic_irqchip(kvm),
2951                                         irq_event.irq,
2952                                         irq_event.level);
2953                         kvm_ioapic_set_irq(kvm->vioapic,
2954                                         irq_event.irq,
2955                                         irq_event.level);
2956                         mutex_unlock(&kvm->lock);
2957                         r = 0;
2958                 }
2959                 break;
2960         }
2961         case KVM_GET_IRQCHIP: {
2962                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2963                 struct kvm_irqchip chip;
2964
2965                 r = -EFAULT;
2966                 if (copy_from_user(&chip, argp, sizeof chip))
2967                         goto out;
2968                 r = -ENXIO;
2969                 if (!irqchip_in_kernel(kvm))
2970                         goto out;
2971                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
2972                 if (r)
2973                         goto out;
2974                 r = -EFAULT;
2975                 if (copy_to_user(argp, &chip, sizeof chip))
2976                         goto out;
2977                 r = 0;
2978                 break;
2979         }
2980         case KVM_SET_IRQCHIP: {
2981                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2982                 struct kvm_irqchip chip;
2983
2984                 r = -EFAULT;
2985                 if (copy_from_user(&chip, argp, sizeof chip))
2986                         goto out;
2987                 r = -ENXIO;
2988                 if (!irqchip_in_kernel(kvm))
2989                         goto out;
2990                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
2991                 if (r)
2992                         goto out;
2993                 r = 0;
2994                 break;
2995         }
2996         default:
2997                 ;
2998         }
2999 out:
3000         return r;
3001 }
3002
3003 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3004                                   unsigned long address,
3005                                   int *type)
3006 {
3007         struct kvm *kvm = vma->vm_file->private_data;
3008         unsigned long pgoff;
3009         struct page *page;
3010
3011         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3012         page = gfn_to_page(kvm, pgoff);
3013         if (!page)
3014                 return NOPAGE_SIGBUS;
3015         get_page(page);
3016         if (type != NULL)
3017                 *type = VM_FAULT_MINOR;
3018
3019         return page;
3020 }
3021
3022 static struct vm_operations_struct kvm_vm_vm_ops = {
3023         .nopage = kvm_vm_nopage,
3024 };
3025
3026 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3027 {
3028         vma->vm_ops = &kvm_vm_vm_ops;
3029         return 0;
3030 }
3031
3032 static struct file_operations kvm_vm_fops = {
3033         .release        = kvm_vm_release,
3034         .unlocked_ioctl = kvm_vm_ioctl,
3035         .compat_ioctl   = kvm_vm_ioctl,
3036         .mmap           = kvm_vm_mmap,
3037 };
3038
3039 static int kvm_dev_ioctl_create_vm(void)
3040 {
3041         int fd, r;
3042         struct inode *inode;
3043         struct file *file;
3044         struct kvm *kvm;
3045
3046         kvm = kvm_create_vm();
3047         if (IS_ERR(kvm))
3048                 return PTR_ERR(kvm);
3049         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3050         if (r) {
3051                 kvm_destroy_vm(kvm);
3052                 return r;
3053         }
3054
3055         kvm->filp = file;
3056
3057         return fd;
3058 }
3059
3060 static long kvm_dev_ioctl(struct file *filp,
3061                           unsigned int ioctl, unsigned long arg)
3062 {
3063         void __user *argp = (void __user *)arg;
3064         long r = -EINVAL;
3065
3066         switch (ioctl) {
3067         case KVM_GET_API_VERSION:
3068                 r = -EINVAL;
3069                 if (arg)
3070                         goto out;
3071                 r = KVM_API_VERSION;
3072                 break;
3073         case KVM_CREATE_VM:
3074                 r = -EINVAL;
3075                 if (arg)
3076                         goto out;
3077                 r = kvm_dev_ioctl_create_vm();
3078                 break;
3079         case KVM_GET_MSR_INDEX_LIST: {
3080                 struct kvm_msr_list __user *user_msr_list = argp;
3081                 struct kvm_msr_list msr_list;
3082                 unsigned n;
3083
3084                 r = -EFAULT;
3085                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3086                         goto out;
3087                 n = msr_list.nmsrs;
3088                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3089                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3090                         goto out;
3091                 r = -E2BIG;
3092                 if (n < num_msrs_to_save)
3093                         goto out;
3094                 r = -EFAULT;
3095                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3096                                  num_msrs_to_save * sizeof(u32)))
3097                         goto out;
3098                 if (copy_to_user(user_msr_list->indices
3099                                  + num_msrs_to_save * sizeof(u32),
3100                                  &emulated_msrs,
3101                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3102                         goto out;
3103                 r = 0;
3104                 break;
3105         }
3106         case KVM_CHECK_EXTENSION: {
3107                 int ext = (long)argp;
3108
3109                 switch (ext) {
3110                 case KVM_CAP_IRQCHIP:
3111                 case KVM_CAP_HLT:
3112                         r = 1;
3113                         break;
3114                 default:
3115                         r = 0;
3116                         break;
3117                 }
3118                 break;
3119         }
3120         case KVM_GET_VCPU_MMAP_SIZE:
3121                 r = -EINVAL;
3122                 if (arg)
3123                         goto out;
3124                 r = 2 * PAGE_SIZE;
3125                 break;
3126         default:
3127                 ;
3128         }
3129 out:
3130         return r;
3131 }
3132
3133 static struct file_operations kvm_chardev_ops = {
3134         .unlocked_ioctl = kvm_dev_ioctl,
3135         .compat_ioctl   = kvm_dev_ioctl,
3136 };
3137
3138 static struct miscdevice kvm_dev = {
3139         KVM_MINOR,
3140         "kvm",
3141         &kvm_chardev_ops,
3142 };
3143
3144 /*
3145  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3146  * cached on it.
3147  */
3148 static void decache_vcpus_on_cpu(int cpu)
3149 {
3150         struct kvm *vm;
3151         struct kvm_vcpu *vcpu;
3152         int i;
3153
3154         spin_lock(&kvm_lock);
3155         list_for_each_entry(vm, &vm_list, vm_list)
3156                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3157                         vcpu = vm->vcpus[i];
3158                         if (!vcpu)
3159                                 continue;
3160                         /*
3161                          * If the vcpu is locked, then it is running on some
3162                          * other cpu and therefore it is not cached on the
3163                          * cpu in question.
3164                          *
3165                          * If it's not locked, check the last cpu it executed
3166                          * on.
3167                          */
3168                         if (mutex_trylock(&vcpu->mutex)) {
3169                                 if (vcpu->cpu == cpu) {
3170                                         kvm_arch_ops->vcpu_decache(vcpu);
3171                                         vcpu->cpu = -1;
3172                                 }
3173                                 mutex_unlock(&vcpu->mutex);
3174                         }
3175                 }
3176         spin_unlock(&kvm_lock);
3177 }
3178
3179 static void hardware_enable(void *junk)
3180 {
3181         int cpu = raw_smp_processor_id();
3182
3183         if (cpu_isset(cpu, cpus_hardware_enabled))
3184                 return;
3185         cpu_set(cpu, cpus_hardware_enabled);
3186         kvm_arch_ops->hardware_enable(NULL);
3187 }
3188
3189 static void hardware_disable(void *junk)
3190 {
3191         int cpu = raw_smp_processor_id();
3192
3193         if (!cpu_isset(cpu, cpus_hardware_enabled))
3194                 return;
3195         cpu_clear(cpu, cpus_hardware_enabled);
3196         decache_vcpus_on_cpu(cpu);
3197         kvm_arch_ops->hardware_disable(NULL);
3198 }
3199
3200 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3201                            void *v)
3202 {
3203         int cpu = (long)v;
3204
3205         switch (val) {
3206         case CPU_DYING:
3207         case CPU_DYING_FROZEN:
3208                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3209                        cpu);
3210                 hardware_disable(NULL);
3211                 break;
3212         case CPU_UP_CANCELED:
3213         case CPU_UP_CANCELED_FROZEN:
3214                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3215                        cpu);
3216                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3217                 break;
3218         case CPU_ONLINE:
3219         case CPU_ONLINE_FROZEN:
3220                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3221                        cpu);
3222                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3223                 break;
3224         }
3225         return NOTIFY_OK;
3226 }
3227
3228 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3229                        void *v)
3230 {
3231         if (val == SYS_RESTART) {
3232                 /*
3233                  * Some (well, at least mine) BIOSes hang on reboot if
3234                  * in vmx root mode.
3235                  */
3236                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3237                 on_each_cpu(hardware_disable, NULL, 0, 1);
3238         }
3239         return NOTIFY_OK;
3240 }
3241
3242 static struct notifier_block kvm_reboot_notifier = {
3243         .notifier_call = kvm_reboot,
3244         .priority = 0,
3245 };
3246
3247 void kvm_io_bus_init(struct kvm_io_bus *bus)
3248 {
3249         memset(bus, 0, sizeof(*bus));
3250 }
3251
3252 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3253 {
3254         int i;
3255
3256         for (i = 0; i < bus->dev_count; i++) {
3257                 struct kvm_io_device *pos = bus->devs[i];
3258
3259                 kvm_iodevice_destructor(pos);
3260         }
3261 }
3262
3263 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3264 {
3265         int i;
3266
3267         for (i = 0; i < bus->dev_count; i++) {
3268                 struct kvm_io_device *pos = bus->devs[i];
3269
3270                 if (pos->in_range(pos, addr))
3271                         return pos;
3272         }
3273
3274         return NULL;
3275 }
3276
3277 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3278 {
3279         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3280
3281         bus->devs[bus->dev_count++] = dev;
3282 }
3283
3284 static struct notifier_block kvm_cpu_notifier = {
3285         .notifier_call = kvm_cpu_hotplug,
3286         .priority = 20, /* must be > scheduler priority */
3287 };
3288
3289 static u64 stat_get(void *_offset)
3290 {
3291         unsigned offset = (long)_offset;
3292         u64 total = 0;
3293         struct kvm *kvm;
3294         struct kvm_vcpu *vcpu;
3295         int i;
3296
3297         spin_lock(&kvm_lock);
3298         list_for_each_entry(kvm, &vm_list, vm_list)
3299                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3300                         vcpu = kvm->vcpus[i];
3301                         if (vcpu)
3302                                 total += *(u32 *)((void *)vcpu + offset);
3303                 }
3304         spin_unlock(&kvm_lock);
3305         return total;
3306 }
3307
3308 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3309
3310 static __init void kvm_init_debug(void)
3311 {
3312         struct kvm_stats_debugfs_item *p;
3313
3314         debugfs_dir = debugfs_create_dir("kvm", NULL);
3315         for (p = debugfs_entries; p->name; ++p)
3316                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3317                                                 (void *)(long)p->offset,
3318                                                 &stat_fops);
3319 }
3320
3321 static void kvm_exit_debug(void)
3322 {
3323         struct kvm_stats_debugfs_item *p;
3324
3325         for (p = debugfs_entries; p->name; ++p)
3326                 debugfs_remove(p->dentry);
3327         debugfs_remove(debugfs_dir);
3328 }
3329
3330 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3331 {
3332         hardware_disable(NULL);
3333         return 0;
3334 }
3335
3336 static int kvm_resume(struct sys_device *dev)
3337 {
3338         hardware_enable(NULL);
3339         return 0;
3340 }
3341
3342 static struct sysdev_class kvm_sysdev_class = {
3343         set_kset_name("kvm"),
3344         .suspend = kvm_suspend,
3345         .resume = kvm_resume,
3346 };
3347
3348 static struct sys_device kvm_sysdev = {
3349         .id = 0,
3350         .cls = &kvm_sysdev_class,
3351 };
3352
3353 hpa_t bad_page_address;
3354
3355 static inline
3356 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3357 {
3358         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3359 }
3360
3361 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3362 {
3363         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3364
3365         kvm_arch_ops->vcpu_load(vcpu, cpu);
3366 }
3367
3368 static void kvm_sched_out(struct preempt_notifier *pn,
3369                           struct task_struct *next)
3370 {
3371         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3372
3373         kvm_arch_ops->vcpu_put(vcpu);
3374 }
3375
3376 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3377                   struct module *module)
3378 {
3379         int r;
3380         int cpu;
3381
3382         if (kvm_arch_ops) {
3383                 printk(KERN_ERR "kvm: already loaded the other module\n");
3384                 return -EEXIST;
3385         }
3386
3387         if (!ops->cpu_has_kvm_support()) {
3388                 printk(KERN_ERR "kvm: no hardware support\n");
3389                 return -EOPNOTSUPP;
3390         }
3391         if (ops->disabled_by_bios()) {
3392                 printk(KERN_ERR "kvm: disabled by bios\n");
3393                 return -EOPNOTSUPP;
3394         }
3395
3396         kvm_arch_ops = ops;
3397
3398         r = kvm_arch_ops->hardware_setup();
3399         if (r < 0)
3400                 goto out;
3401
3402         for_each_online_cpu(cpu) {
3403                 smp_call_function_single(cpu,
3404                                 kvm_arch_ops->check_processor_compatibility,
3405                                 &r, 0, 1);
3406                 if (r < 0)
3407                         goto out_free_0;
3408         }
3409
3410         on_each_cpu(hardware_enable, NULL, 0, 1);
3411         r = register_cpu_notifier(&kvm_cpu_notifier);
3412         if (r)
3413                 goto out_free_1;
3414         register_reboot_notifier(&kvm_reboot_notifier);
3415
3416         r = sysdev_class_register(&kvm_sysdev_class);
3417         if (r)
3418                 goto out_free_2;
3419
3420         r = sysdev_register(&kvm_sysdev);
3421         if (r)
3422                 goto out_free_3;
3423
3424         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3425         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3426                                            __alignof__(struct kvm_vcpu), 0, 0);
3427         if (!kvm_vcpu_cache) {
3428                 r = -ENOMEM;
3429                 goto out_free_4;
3430         }
3431
3432         kvm_chardev_ops.owner = module;
3433
3434         r = misc_register(&kvm_dev);
3435         if (r) {
3436                 printk (KERN_ERR "kvm: misc device register failed\n");
3437                 goto out_free;
3438         }
3439
3440         kvm_preempt_ops.sched_in = kvm_sched_in;
3441         kvm_preempt_ops.sched_out = kvm_sched_out;
3442
3443         return r;
3444
3445 out_free:
3446         kmem_cache_destroy(kvm_vcpu_cache);
3447 out_free_4:
3448         sysdev_unregister(&kvm_sysdev);
3449 out_free_3:
3450         sysdev_class_unregister(&kvm_sysdev_class);
3451 out_free_2:
3452         unregister_reboot_notifier(&kvm_reboot_notifier);
3453         unregister_cpu_notifier(&kvm_cpu_notifier);
3454 out_free_1:
3455         on_each_cpu(hardware_disable, NULL, 0, 1);
3456 out_free_0:
3457         kvm_arch_ops->hardware_unsetup();
3458 out:
3459         kvm_arch_ops = NULL;
3460         return r;
3461 }
3462
3463 void kvm_exit_arch(void)
3464 {
3465         misc_deregister(&kvm_dev);
3466         kmem_cache_destroy(kvm_vcpu_cache);
3467         sysdev_unregister(&kvm_sysdev);
3468         sysdev_class_unregister(&kvm_sysdev_class);
3469         unregister_reboot_notifier(&kvm_reboot_notifier);
3470         unregister_cpu_notifier(&kvm_cpu_notifier);
3471         on_each_cpu(hardware_disable, NULL, 0, 1);
3472         kvm_arch_ops->hardware_unsetup();
3473         kvm_arch_ops = NULL;
3474 }
3475
3476 static __init int kvm_init(void)
3477 {
3478         static struct page *bad_page;
3479         int r;
3480
3481         r = kvm_mmu_module_init();
3482         if (r)
3483                 goto out4;
3484
3485         kvm_init_debug();
3486
3487         kvm_init_msr_list();
3488
3489         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3490                 r = -ENOMEM;
3491                 goto out;
3492         }
3493
3494         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3495         memset(__va(bad_page_address), 0, PAGE_SIZE);
3496
3497         return 0;
3498
3499 out:
3500         kvm_exit_debug();
3501         kvm_mmu_module_exit();
3502 out4:
3503         return r;
3504 }
3505
3506 static __exit void kvm_exit(void)
3507 {
3508         kvm_exit_debug();
3509         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3510         kvm_mmu_module_exit();
3511 }
3512
3513 module_init(kvm_init)
3514 module_exit(kvm_exit)
3515
3516 EXPORT_SYMBOL_GPL(kvm_init_arch);
3517 EXPORT_SYMBOL_GPL(kvm_exit_arch);