4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
76 unsigned long num_physpages;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
102 #ifndef track_pfn_vma_new
104 * Interface that can be used by architecture code to keep track of
105 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
107 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
108 * for physical range indicated by pfn and size.
110 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot,
111 unsigned long pfn, unsigned long size)
117 #ifndef track_pfn_vma_copy
119 * Interface that can be used by architecture code to keep track of
120 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
122 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
123 * copied through copy_page_range().
125 int track_pfn_vma_copy(struct vm_area_struct *vma)
131 #ifndef untrack_pfn_vma
133 * Interface that can be used by architecture code to keep track of
134 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
136 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
137 * untrack can be called for a specific region indicated by pfn and size or
138 * can be for the entire vma (in which case size can be zero).
140 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
146 static int __init disable_randmaps(char *s)
148 randomize_va_space = 0;
151 __setup("norandmaps", disable_randmaps);
155 * If a p?d_bad entry is found while walking page tables, report
156 * the error, before resetting entry to p?d_none. Usually (but
157 * very seldom) called out from the p?d_none_or_clear_bad macros.
160 void pgd_clear_bad(pgd_t *pgd)
166 void pud_clear_bad(pud_t *pud)
172 void pmd_clear_bad(pmd_t *pmd)
179 * Note: this doesn't free the actual pages themselves. That
180 * has been handled earlier when unmapping all the memory regions.
182 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
184 pgtable_t token = pmd_pgtable(*pmd);
186 pte_free_tlb(tlb, token);
190 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
191 unsigned long addr, unsigned long end,
192 unsigned long floor, unsigned long ceiling)
199 pmd = pmd_offset(pud, addr);
201 next = pmd_addr_end(addr, end);
202 if (pmd_none_or_clear_bad(pmd))
204 free_pte_range(tlb, pmd);
205 } while (pmd++, addr = next, addr != end);
215 if (end - 1 > ceiling - 1)
218 pmd = pmd_offset(pud, start);
220 pmd_free_tlb(tlb, pmd);
223 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
232 pud = pud_offset(pgd, addr);
234 next = pud_addr_end(addr, end);
235 if (pud_none_or_clear_bad(pud))
237 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
238 } while (pud++, addr = next, addr != end);
244 ceiling &= PGDIR_MASK;
248 if (end - 1 > ceiling - 1)
251 pud = pud_offset(pgd, start);
253 pud_free_tlb(tlb, pud);
257 * This function frees user-level page tables of a process.
259 * Must be called with pagetable lock held.
261 void free_pgd_range(struct mmu_gather *tlb,
262 unsigned long addr, unsigned long end,
263 unsigned long floor, unsigned long ceiling)
270 * The next few lines have given us lots of grief...
272 * Why are we testing PMD* at this top level? Because often
273 * there will be no work to do at all, and we'd prefer not to
274 * go all the way down to the bottom just to discover that.
276 * Why all these "- 1"s? Because 0 represents both the bottom
277 * of the address space and the top of it (using -1 for the
278 * top wouldn't help much: the masks would do the wrong thing).
279 * The rule is that addr 0 and floor 0 refer to the bottom of
280 * the address space, but end 0 and ceiling 0 refer to the top
281 * Comparisons need to use "end - 1" and "ceiling - 1" (though
282 * that end 0 case should be mythical).
284 * Wherever addr is brought up or ceiling brought down, we must
285 * be careful to reject "the opposite 0" before it confuses the
286 * subsequent tests. But what about where end is brought down
287 * by PMD_SIZE below? no, end can't go down to 0 there.
289 * Whereas we round start (addr) and ceiling down, by different
290 * masks at different levels, in order to test whether a table
291 * now has no other vmas using it, so can be freed, we don't
292 * bother to round floor or end up - the tests don't need that.
306 if (end - 1 > ceiling - 1)
312 pgd = pgd_offset(tlb->mm, addr);
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
317 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
318 } while (pgd++, addr = next, addr != end);
321 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
322 unsigned long floor, unsigned long ceiling)
325 struct vm_area_struct *next = vma->vm_next;
326 unsigned long addr = vma->vm_start;
329 * Hide vma from rmap and vmtruncate before freeing pgtables
331 anon_vma_unlink(vma);
332 unlink_file_vma(vma);
334 if (is_vm_hugetlb_page(vma)) {
335 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
336 floor, next? next->vm_start: ceiling);
339 * Optimization: gather nearby vmas into one call down
341 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
342 && !is_vm_hugetlb_page(next)) {
345 anon_vma_unlink(vma);
346 unlink_file_vma(vma);
348 free_pgd_range(tlb, addr, vma->vm_end,
349 floor, next? next->vm_start: ceiling);
355 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
357 pgtable_t new = pte_alloc_one(mm, address);
362 * Ensure all pte setup (eg. pte page lock and page clearing) are
363 * visible before the pte is made visible to other CPUs by being
364 * put into page tables.
366 * The other side of the story is the pointer chasing in the page
367 * table walking code (when walking the page table without locking;
368 * ie. most of the time). Fortunately, these data accesses consist
369 * of a chain of data-dependent loads, meaning most CPUs (alpha
370 * being the notable exception) will already guarantee loads are
371 * seen in-order. See the alpha page table accessors for the
372 * smp_read_barrier_depends() barriers in page table walking code.
374 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
376 spin_lock(&mm->page_table_lock);
377 if (!pmd_present(*pmd)) { /* Has another populated it ? */
379 pmd_populate(mm, pmd, new);
382 spin_unlock(&mm->page_table_lock);
388 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
390 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
394 smp_wmb(); /* See comment in __pte_alloc */
396 spin_lock(&init_mm.page_table_lock);
397 if (!pmd_present(*pmd)) { /* Has another populated it ? */
398 pmd_populate_kernel(&init_mm, pmd, new);
401 spin_unlock(&init_mm.page_table_lock);
403 pte_free_kernel(&init_mm, new);
407 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
410 add_mm_counter(mm, file_rss, file_rss);
412 add_mm_counter(mm, anon_rss, anon_rss);
416 * This function is called to print an error when a bad pte
417 * is found. For example, we might have a PFN-mapped pte in
418 * a region that doesn't allow it.
420 * The calling function must still handle the error.
422 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
425 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
426 "vm_flags = %lx, vaddr = %lx\n",
427 (long long)pte_val(pte),
428 (vma->vm_mm == current->mm ? current->comm : "???"),
429 vma->vm_flags, vaddr);
433 static inline int is_cow_mapping(unsigned int flags)
435 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
439 * vm_normal_page -- This function gets the "struct page" associated with a pte.
441 * "Special" mappings do not wish to be associated with a "struct page" (either
442 * it doesn't exist, or it exists but they don't want to touch it). In this
443 * case, NULL is returned here. "Normal" mappings do have a struct page.
445 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
446 * pte bit, in which case this function is trivial. Secondly, an architecture
447 * may not have a spare pte bit, which requires a more complicated scheme,
450 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
451 * special mapping (even if there are underlying and valid "struct pages").
452 * COWed pages of a VM_PFNMAP are always normal.
454 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
455 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
456 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
457 * mapping will always honor the rule
459 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
461 * And for normal mappings this is false.
463 * This restricts such mappings to be a linear translation from virtual address
464 * to pfn. To get around this restriction, we allow arbitrary mappings so long
465 * as the vma is not a COW mapping; in that case, we know that all ptes are
466 * special (because none can have been COWed).
469 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
471 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
472 * page" backing, however the difference is that _all_ pages with a struct
473 * page (that is, those where pfn_valid is true) are refcounted and considered
474 * normal pages by the VM. The disadvantage is that pages are refcounted
475 * (which can be slower and simply not an option for some PFNMAP users). The
476 * advantage is that we don't have to follow the strict linearity rule of
477 * PFNMAP mappings in order to support COWable mappings.
480 #ifdef __HAVE_ARCH_PTE_SPECIAL
481 # define HAVE_PTE_SPECIAL 1
483 # define HAVE_PTE_SPECIAL 0
485 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
490 if (HAVE_PTE_SPECIAL) {
491 if (likely(!pte_special(pte))) {
492 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
493 return pte_page(pte);
495 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
499 /* !HAVE_PTE_SPECIAL case follows: */
503 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
504 if (vma->vm_flags & VM_MIXEDMAP) {
510 off = (addr - vma->vm_start) >> PAGE_SHIFT;
511 if (pfn == vma->vm_pgoff + off)
513 if (!is_cow_mapping(vma->vm_flags))
518 VM_BUG_ON(!pfn_valid(pfn));
521 * NOTE! We still have PageReserved() pages in the page tables.
523 * eg. VDSO mappings can cause them to exist.
526 return pfn_to_page(pfn);
530 * copy one vm_area from one task to the other. Assumes the page tables
531 * already present in the new task to be cleared in the whole range
532 * covered by this vma.
536 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
538 unsigned long addr, int *rss)
540 unsigned long vm_flags = vma->vm_flags;
541 pte_t pte = *src_pte;
544 /* pte contains position in swap or file, so copy. */
545 if (unlikely(!pte_present(pte))) {
546 if (!pte_file(pte)) {
547 swp_entry_t entry = pte_to_swp_entry(pte);
549 swap_duplicate(entry);
550 /* make sure dst_mm is on swapoff's mmlist. */
551 if (unlikely(list_empty(&dst_mm->mmlist))) {
552 spin_lock(&mmlist_lock);
553 if (list_empty(&dst_mm->mmlist))
554 list_add(&dst_mm->mmlist,
556 spin_unlock(&mmlist_lock);
558 if (is_write_migration_entry(entry) &&
559 is_cow_mapping(vm_flags)) {
561 * COW mappings require pages in both parent
562 * and child to be set to read.
564 make_migration_entry_read(&entry);
565 pte = swp_entry_to_pte(entry);
566 set_pte_at(src_mm, addr, src_pte, pte);
573 * If it's a COW mapping, write protect it both
574 * in the parent and the child
576 if (is_cow_mapping(vm_flags)) {
577 ptep_set_wrprotect(src_mm, addr, src_pte);
578 pte = pte_wrprotect(pte);
582 * If it's a shared mapping, mark it clean in
585 if (vm_flags & VM_SHARED)
586 pte = pte_mkclean(pte);
587 pte = pte_mkold(pte);
589 page = vm_normal_page(vma, addr, pte);
592 page_dup_rmap(page, vma, addr);
593 rss[!!PageAnon(page)]++;
597 set_pte_at(dst_mm, addr, dst_pte, pte);
600 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
601 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end)
604 pte_t *src_pte, *dst_pte;
605 spinlock_t *src_ptl, *dst_ptl;
611 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
614 src_pte = pte_offset_map_nested(src_pmd, addr);
615 src_ptl = pte_lockptr(src_mm, src_pmd);
616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
617 arch_enter_lazy_mmu_mode();
621 * We are holding two locks at this point - either of them
622 * could generate latencies in another task on another CPU.
624 if (progress >= 32) {
626 if (need_resched() ||
627 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
630 if (pte_none(*src_pte)) {
634 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
636 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
638 arch_leave_lazy_mmu_mode();
639 spin_unlock(src_ptl);
640 pte_unmap_nested(src_pte - 1);
641 add_mm_rss(dst_mm, rss[0], rss[1]);
642 pte_unmap_unlock(dst_pte - 1, dst_ptl);
649 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
651 unsigned long addr, unsigned long end)
653 pmd_t *src_pmd, *dst_pmd;
656 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
659 src_pmd = pmd_offset(src_pud, addr);
661 next = pmd_addr_end(addr, end);
662 if (pmd_none_or_clear_bad(src_pmd))
664 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
667 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
671 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
673 unsigned long addr, unsigned long end)
675 pud_t *src_pud, *dst_pud;
678 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
681 src_pud = pud_offset(src_pgd, addr);
683 next = pud_addr_end(addr, end);
684 if (pud_none_or_clear_bad(src_pud))
686 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
689 } while (dst_pud++, src_pud++, addr = next, addr != end);
693 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694 struct vm_area_struct *vma)
696 pgd_t *src_pgd, *dst_pgd;
698 unsigned long addr = vma->vm_start;
699 unsigned long end = vma->vm_end;
703 * Don't copy ptes where a page fault will fill them correctly.
704 * Fork becomes much lighter when there are big shared or private
705 * readonly mappings. The tradeoff is that copy_page_range is more
706 * efficient than faulting.
708 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
713 if (is_vm_hugetlb_page(vma))
714 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
716 if (is_pfn_mapping(vma)) {
718 * We do not free on error cases below as remove_vma
719 * gets called on error from higher level routine
721 ret = track_pfn_vma_copy(vma);
727 * We need to invalidate the secondary MMU mappings only when
728 * there could be a permission downgrade on the ptes of the
729 * parent mm. And a permission downgrade will only happen if
730 * is_cow_mapping() returns true.
732 if (is_cow_mapping(vma->vm_flags))
733 mmu_notifier_invalidate_range_start(src_mm, addr, end);
736 dst_pgd = pgd_offset(dst_mm, addr);
737 src_pgd = pgd_offset(src_mm, addr);
739 next = pgd_addr_end(addr, end);
740 if (pgd_none_or_clear_bad(src_pgd))
742 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
747 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
749 if (is_cow_mapping(vma->vm_flags))
750 mmu_notifier_invalidate_range_end(src_mm,
755 static unsigned long zap_pte_range(struct mmu_gather *tlb,
756 struct vm_area_struct *vma, pmd_t *pmd,
757 unsigned long addr, unsigned long end,
758 long *zap_work, struct zap_details *details)
760 struct mm_struct *mm = tlb->mm;
766 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
767 arch_enter_lazy_mmu_mode();
770 if (pte_none(ptent)) {
775 (*zap_work) -= PAGE_SIZE;
777 if (pte_present(ptent)) {
780 page = vm_normal_page(vma, addr, ptent);
781 if (unlikely(details) && page) {
783 * unmap_shared_mapping_pages() wants to
784 * invalidate cache without truncating:
785 * unmap shared but keep private pages.
787 if (details->check_mapping &&
788 details->check_mapping != page->mapping)
791 * Each page->index must be checked when
792 * invalidating or truncating nonlinear.
794 if (details->nonlinear_vma &&
795 (page->index < details->first_index ||
796 page->index > details->last_index))
799 ptent = ptep_get_and_clear_full(mm, addr, pte,
801 tlb_remove_tlb_entry(tlb, pte, addr);
804 if (unlikely(details) && details->nonlinear_vma
805 && linear_page_index(details->nonlinear_vma,
806 addr) != page->index)
807 set_pte_at(mm, addr, pte,
808 pgoff_to_pte(page->index));
812 if (pte_dirty(ptent))
813 set_page_dirty(page);
814 if (pte_young(ptent))
815 SetPageReferenced(page);
818 page_remove_rmap(page, vma);
819 tlb_remove_page(tlb, page);
823 * If details->check_mapping, we leave swap entries;
824 * if details->nonlinear_vma, we leave file entries.
826 if (unlikely(details))
828 if (!pte_file(ptent))
829 free_swap_and_cache(pte_to_swp_entry(ptent));
830 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
831 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
833 add_mm_rss(mm, file_rss, anon_rss);
834 arch_leave_lazy_mmu_mode();
835 pte_unmap_unlock(pte - 1, ptl);
840 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
841 struct vm_area_struct *vma, pud_t *pud,
842 unsigned long addr, unsigned long end,
843 long *zap_work, struct zap_details *details)
848 pmd = pmd_offset(pud, addr);
850 next = pmd_addr_end(addr, end);
851 if (pmd_none_or_clear_bad(pmd)) {
855 next = zap_pte_range(tlb, vma, pmd, addr, next,
857 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
862 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
863 struct vm_area_struct *vma, pgd_t *pgd,
864 unsigned long addr, unsigned long end,
865 long *zap_work, struct zap_details *details)
870 pud = pud_offset(pgd, addr);
872 next = pud_addr_end(addr, end);
873 if (pud_none_or_clear_bad(pud)) {
877 next = zap_pmd_range(tlb, vma, pud, addr, next,
879 } while (pud++, addr = next, (addr != end && *zap_work > 0));
884 static unsigned long unmap_page_range(struct mmu_gather *tlb,
885 struct vm_area_struct *vma,
886 unsigned long addr, unsigned long end,
887 long *zap_work, struct zap_details *details)
892 if (details && !details->check_mapping && !details->nonlinear_vma)
896 tlb_start_vma(tlb, vma);
897 pgd = pgd_offset(vma->vm_mm, addr);
899 next = pgd_addr_end(addr, end);
900 if (pgd_none_or_clear_bad(pgd)) {
904 next = zap_pud_range(tlb, vma, pgd, addr, next,
906 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
907 tlb_end_vma(tlb, vma);
912 #ifdef CONFIG_PREEMPT
913 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
915 /* No preempt: go for improved straight-line efficiency */
916 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
920 * unmap_vmas - unmap a range of memory covered by a list of vma's
921 * @tlbp: address of the caller's struct mmu_gather
922 * @vma: the starting vma
923 * @start_addr: virtual address at which to start unmapping
924 * @end_addr: virtual address at which to end unmapping
925 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
926 * @details: details of nonlinear truncation or shared cache invalidation
928 * Returns the end address of the unmapping (restart addr if interrupted).
930 * Unmap all pages in the vma list.
932 * We aim to not hold locks for too long (for scheduling latency reasons).
933 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
934 * return the ending mmu_gather to the caller.
936 * Only addresses between `start' and `end' will be unmapped.
938 * The VMA list must be sorted in ascending virtual address order.
940 * unmap_vmas() assumes that the caller will flush the whole unmapped address
941 * range after unmap_vmas() returns. So the only responsibility here is to
942 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
943 * drops the lock and schedules.
945 unsigned long unmap_vmas(struct mmu_gather **tlbp,
946 struct vm_area_struct *vma, unsigned long start_addr,
947 unsigned long end_addr, unsigned long *nr_accounted,
948 struct zap_details *details)
950 long zap_work = ZAP_BLOCK_SIZE;
951 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
952 int tlb_start_valid = 0;
953 unsigned long start = start_addr;
954 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
955 int fullmm = (*tlbp)->fullmm;
956 struct mm_struct *mm = vma->vm_mm;
958 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
959 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
962 start = max(vma->vm_start, start_addr);
963 if (start >= vma->vm_end)
965 end = min(vma->vm_end, end_addr);
966 if (end <= vma->vm_start)
969 if (vma->vm_flags & VM_ACCOUNT)
970 *nr_accounted += (end - start) >> PAGE_SHIFT;
972 if (is_pfn_mapping(vma))
973 untrack_pfn_vma(vma, 0, 0);
975 while (start != end) {
976 if (!tlb_start_valid) {
981 if (unlikely(is_vm_hugetlb_page(vma))) {
983 * It is undesirable to test vma->vm_file as it
984 * should be non-null for valid hugetlb area.
985 * However, vm_file will be NULL in the error
986 * cleanup path of do_mmap_pgoff. When
987 * hugetlbfs ->mmap method fails,
988 * do_mmap_pgoff() nullifies vma->vm_file
989 * before calling this function to clean up.
990 * Since no pte has actually been setup, it is
991 * safe to do nothing in this case.
994 unmap_hugepage_range(vma, start, end, NULL);
995 zap_work -= (end - start) /
996 pages_per_huge_page(hstate_vma(vma));
1001 start = unmap_page_range(*tlbp, vma,
1002 start, end, &zap_work, details);
1005 BUG_ON(start != end);
1009 tlb_finish_mmu(*tlbp, tlb_start, start);
1011 if (need_resched() ||
1012 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1020 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1021 tlb_start_valid = 0;
1022 zap_work = ZAP_BLOCK_SIZE;
1026 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1027 return start; /* which is now the end (or restart) address */
1031 * zap_page_range - remove user pages in a given range
1032 * @vma: vm_area_struct holding the applicable pages
1033 * @address: starting address of pages to zap
1034 * @size: number of bytes to zap
1035 * @details: details of nonlinear truncation or shared cache invalidation
1037 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1038 unsigned long size, struct zap_details *details)
1040 struct mm_struct *mm = vma->vm_mm;
1041 struct mmu_gather *tlb;
1042 unsigned long end = address + size;
1043 unsigned long nr_accounted = 0;
1046 tlb = tlb_gather_mmu(mm, 0);
1047 update_hiwater_rss(mm);
1048 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1050 tlb_finish_mmu(tlb, address, end);
1055 * zap_vma_ptes - remove ptes mapping the vma
1056 * @vma: vm_area_struct holding ptes to be zapped
1057 * @address: starting address of pages to zap
1058 * @size: number of bytes to zap
1060 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1062 * The entire address range must be fully contained within the vma.
1064 * Returns 0 if successful.
1066 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1069 if (address < vma->vm_start || address + size > vma->vm_end ||
1070 !(vma->vm_flags & VM_PFNMAP))
1072 zap_page_range(vma, address, size, NULL);
1075 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1078 * Do a quick page-table lookup for a single page.
1080 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1089 struct mm_struct *mm = vma->vm_mm;
1091 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1092 if (!IS_ERR(page)) {
1093 BUG_ON(flags & FOLL_GET);
1098 pgd = pgd_offset(mm, address);
1099 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1102 pud = pud_offset(pgd, address);
1105 if (pud_huge(*pud)) {
1106 BUG_ON(flags & FOLL_GET);
1107 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1110 if (unlikely(pud_bad(*pud)))
1113 pmd = pmd_offset(pud, address);
1116 if (pmd_huge(*pmd)) {
1117 BUG_ON(flags & FOLL_GET);
1118 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1121 if (unlikely(pmd_bad(*pmd)))
1124 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1127 if (!pte_present(pte))
1129 if ((flags & FOLL_WRITE) && !pte_write(pte))
1131 page = vm_normal_page(vma, address, pte);
1132 if (unlikely(!page))
1135 if (flags & FOLL_GET)
1137 if (flags & FOLL_TOUCH) {
1138 if ((flags & FOLL_WRITE) &&
1139 !pte_dirty(pte) && !PageDirty(page))
1140 set_page_dirty(page);
1141 mark_page_accessed(page);
1144 pte_unmap_unlock(ptep, ptl);
1149 pte_unmap_unlock(ptep, ptl);
1150 return ERR_PTR(-EFAULT);
1153 pte_unmap_unlock(ptep, ptl);
1156 /* Fall through to ZERO_PAGE handling */
1159 * When core dumping an enormous anonymous area that nobody
1160 * has touched so far, we don't want to allocate page tables.
1162 if (flags & FOLL_ANON) {
1163 page = ZERO_PAGE(0);
1164 if (flags & FOLL_GET)
1166 BUG_ON(flags & FOLL_WRITE);
1171 int follow_pfnmap_pte(struct vm_area_struct *vma, unsigned long address,
1180 struct mm_struct *mm = vma->vm_mm;
1182 if (!is_pfn_mapping(vma))
1186 pgd = pgd_offset(mm, address);
1187 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1190 pud = pud_offset(pgd, address);
1191 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
1194 pmd = pmd_offset(pud, address);
1195 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
1198 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1201 if (!pte_present(pte))
1205 pte_unmap_unlock(ptep, ptl);
1209 pte_unmap_unlock(ptep, ptl);
1214 /* Can we do the FOLL_ANON optimization? */
1215 static inline int use_zero_page(struct vm_area_struct *vma)
1218 * We don't want to optimize FOLL_ANON for make_pages_present()
1219 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1220 * we want to get the page from the page tables to make sure
1221 * that we serialize and update with any other user of that
1224 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1227 * And if we have a fault routine, it's not an anonymous region.
1229 return !vma->vm_ops || !vma->vm_ops->fault;
1234 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, int len, int flags,
1236 struct page **pages, struct vm_area_struct **vmas)
1239 unsigned int vm_flags = 0;
1240 int write = !!(flags & GUP_FLAGS_WRITE);
1241 int force = !!(flags & GUP_FLAGS_FORCE);
1242 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1247 * Require read or write permissions.
1248 * If 'force' is set, we only require the "MAY" flags.
1250 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1251 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1255 struct vm_area_struct *vma;
1256 unsigned int foll_flags;
1258 vma = find_extend_vma(mm, start);
1259 if (!vma && in_gate_area(tsk, start)) {
1260 unsigned long pg = start & PAGE_MASK;
1261 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1267 /* user gate pages are read-only */
1268 if (!ignore && write)
1269 return i ? : -EFAULT;
1271 pgd = pgd_offset_k(pg);
1273 pgd = pgd_offset_gate(mm, pg);
1274 BUG_ON(pgd_none(*pgd));
1275 pud = pud_offset(pgd, pg);
1276 BUG_ON(pud_none(*pud));
1277 pmd = pmd_offset(pud, pg);
1279 return i ? : -EFAULT;
1280 pte = pte_offset_map(pmd, pg);
1281 if (pte_none(*pte)) {
1283 return i ? : -EFAULT;
1286 struct page *page = vm_normal_page(gate_vma, start, *pte);
1301 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1302 (!ignore && !(vm_flags & vma->vm_flags)))
1303 return i ? : -EFAULT;
1305 if (is_vm_hugetlb_page(vma)) {
1306 i = follow_hugetlb_page(mm, vma, pages, vmas,
1307 &start, &len, i, write);
1311 foll_flags = FOLL_TOUCH;
1313 foll_flags |= FOLL_GET;
1314 if (!write && use_zero_page(vma))
1315 foll_flags |= FOLL_ANON;
1321 * If tsk is ooming, cut off its access to large memory
1322 * allocations. It has a pending SIGKILL, but it can't
1323 * be processed until returning to user space.
1325 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1326 return i ? i : -ENOMEM;
1329 foll_flags |= FOLL_WRITE;
1332 while (!(page = follow_page(vma, start, foll_flags))) {
1334 ret = handle_mm_fault(mm, vma, start,
1335 foll_flags & FOLL_WRITE);
1336 if (ret & VM_FAULT_ERROR) {
1337 if (ret & VM_FAULT_OOM)
1338 return i ? i : -ENOMEM;
1339 else if (ret & VM_FAULT_SIGBUS)
1340 return i ? i : -EFAULT;
1343 if (ret & VM_FAULT_MAJOR)
1349 * The VM_FAULT_WRITE bit tells us that
1350 * do_wp_page has broken COW when necessary,
1351 * even if maybe_mkwrite decided not to set
1352 * pte_write. We can thus safely do subsequent
1353 * page lookups as if they were reads.
1355 if (ret & VM_FAULT_WRITE)
1356 foll_flags &= ~FOLL_WRITE;
1361 return i ? i : PTR_ERR(page);
1365 flush_anon_page(vma, page, start);
1366 flush_dcache_page(page);
1373 } while (len && start < vma->vm_end);
1378 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1379 unsigned long start, int len, int write, int force,
1380 struct page **pages, struct vm_area_struct **vmas)
1385 flags |= GUP_FLAGS_WRITE;
1387 flags |= GUP_FLAGS_FORCE;
1389 return __get_user_pages(tsk, mm,
1394 EXPORT_SYMBOL(get_user_pages);
1396 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1399 pgd_t * pgd = pgd_offset(mm, addr);
1400 pud_t * pud = pud_alloc(mm, pgd, addr);
1402 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1404 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1410 * This is the old fallback for page remapping.
1412 * For historical reasons, it only allows reserved pages. Only
1413 * old drivers should use this, and they needed to mark their
1414 * pages reserved for the old functions anyway.
1416 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1417 struct page *page, pgprot_t prot)
1419 struct mm_struct *mm = vma->vm_mm;
1428 flush_dcache_page(page);
1429 pte = get_locked_pte(mm, addr, &ptl);
1433 if (!pte_none(*pte))
1436 /* Ok, finally just insert the thing.. */
1438 inc_mm_counter(mm, file_rss);
1439 page_add_file_rmap(page);
1440 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1443 pte_unmap_unlock(pte, ptl);
1446 pte_unmap_unlock(pte, ptl);
1452 * vm_insert_page - insert single page into user vma
1453 * @vma: user vma to map to
1454 * @addr: target user address of this page
1455 * @page: source kernel page
1457 * This allows drivers to insert individual pages they've allocated
1460 * The page has to be a nice clean _individual_ kernel allocation.
1461 * If you allocate a compound page, you need to have marked it as
1462 * such (__GFP_COMP), or manually just split the page up yourself
1463 * (see split_page()).
1465 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1466 * took an arbitrary page protection parameter. This doesn't allow
1467 * that. Your vma protection will have to be set up correctly, which
1468 * means that if you want a shared writable mapping, you'd better
1469 * ask for a shared writable mapping!
1471 * The page does not need to be reserved.
1473 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1476 if (addr < vma->vm_start || addr >= vma->vm_end)
1478 if (!page_count(page))
1480 vma->vm_flags |= VM_INSERTPAGE;
1481 return insert_page(vma, addr, page, vma->vm_page_prot);
1483 EXPORT_SYMBOL(vm_insert_page);
1485 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1486 unsigned long pfn, pgprot_t prot)
1488 struct mm_struct *mm = vma->vm_mm;
1494 pte = get_locked_pte(mm, addr, &ptl);
1498 if (!pte_none(*pte))
1501 /* Ok, finally just insert the thing.. */
1502 entry = pte_mkspecial(pfn_pte(pfn, prot));
1503 set_pte_at(mm, addr, pte, entry);
1504 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1508 pte_unmap_unlock(pte, ptl);
1514 * vm_insert_pfn - insert single pfn into user vma
1515 * @vma: user vma to map to
1516 * @addr: target user address of this page
1517 * @pfn: source kernel pfn
1519 * Similar to vm_inert_page, this allows drivers to insert individual pages
1520 * they've allocated into a user vma. Same comments apply.
1522 * This function should only be called from a vm_ops->fault handler, and
1523 * in that case the handler should return NULL.
1525 * vma cannot be a COW mapping.
1527 * As this is called only for pages that do not currently exist, we
1528 * do not need to flush old virtual caches or the TLB.
1530 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1535 * Technically, architectures with pte_special can avoid all these
1536 * restrictions (same for remap_pfn_range). However we would like
1537 * consistency in testing and feature parity among all, so we should
1538 * try to keep these invariants in place for everybody.
1540 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1541 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1542 (VM_PFNMAP|VM_MIXEDMAP));
1543 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1544 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1546 if (addr < vma->vm_start || addr >= vma->vm_end)
1548 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1551 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1554 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1558 EXPORT_SYMBOL(vm_insert_pfn);
1560 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1563 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1565 if (addr < vma->vm_start || addr >= vma->vm_end)
1569 * If we don't have pte special, then we have to use the pfn_valid()
1570 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1571 * refcount the page if pfn_valid is true (hence insert_page rather
1574 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1577 page = pfn_to_page(pfn);
1578 return insert_page(vma, addr, page, vma->vm_page_prot);
1580 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1582 EXPORT_SYMBOL(vm_insert_mixed);
1585 * maps a range of physical memory into the requested pages. the old
1586 * mappings are removed. any references to nonexistent pages results
1587 * in null mappings (currently treated as "copy-on-access")
1589 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1590 unsigned long addr, unsigned long end,
1591 unsigned long pfn, pgprot_t prot)
1596 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1599 arch_enter_lazy_mmu_mode();
1601 BUG_ON(!pte_none(*pte));
1602 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1604 } while (pte++, addr += PAGE_SIZE, addr != end);
1605 arch_leave_lazy_mmu_mode();
1606 pte_unmap_unlock(pte - 1, ptl);
1610 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1611 unsigned long addr, unsigned long end,
1612 unsigned long pfn, pgprot_t prot)
1617 pfn -= addr >> PAGE_SHIFT;
1618 pmd = pmd_alloc(mm, pud, addr);
1622 next = pmd_addr_end(addr, end);
1623 if (remap_pte_range(mm, pmd, addr, next,
1624 pfn + (addr >> PAGE_SHIFT), prot))
1626 } while (pmd++, addr = next, addr != end);
1630 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1631 unsigned long addr, unsigned long end,
1632 unsigned long pfn, pgprot_t prot)
1637 pfn -= addr >> PAGE_SHIFT;
1638 pud = pud_alloc(mm, pgd, addr);
1642 next = pud_addr_end(addr, end);
1643 if (remap_pmd_range(mm, pud, addr, next,
1644 pfn + (addr >> PAGE_SHIFT), prot))
1646 } while (pud++, addr = next, addr != end);
1651 * remap_pfn_range - remap kernel memory to userspace
1652 * @vma: user vma to map to
1653 * @addr: target user address to start at
1654 * @pfn: physical address of kernel memory
1655 * @size: size of map area
1656 * @prot: page protection flags for this mapping
1658 * Note: this is only safe if the mm semaphore is held when called.
1660 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1661 unsigned long pfn, unsigned long size, pgprot_t prot)
1665 unsigned long end = addr + PAGE_ALIGN(size);
1666 struct mm_struct *mm = vma->vm_mm;
1670 * Physically remapped pages are special. Tell the
1671 * rest of the world about it:
1672 * VM_IO tells people not to look at these pages
1673 * (accesses can have side effects).
1674 * VM_RESERVED is specified all over the place, because
1675 * in 2.4 it kept swapout's vma scan off this vma; but
1676 * in 2.6 the LRU scan won't even find its pages, so this
1677 * flag means no more than count its pages in reserved_vm,
1678 * and omit it from core dump, even when VM_IO turned off.
1679 * VM_PFNMAP tells the core MM that the base pages are just
1680 * raw PFN mappings, and do not have a "struct page" associated
1683 * There's a horrible special case to handle copy-on-write
1684 * behaviour that some programs depend on. We mark the "original"
1685 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1687 if (addr == vma->vm_start && end == vma->vm_end)
1688 vma->vm_pgoff = pfn;
1689 else if (is_cow_mapping(vma->vm_flags))
1692 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1694 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1698 BUG_ON(addr >= end);
1699 pfn -= addr >> PAGE_SHIFT;
1700 pgd = pgd_offset(mm, addr);
1701 flush_cache_range(vma, addr, end);
1703 next = pgd_addr_end(addr, end);
1704 err = remap_pud_range(mm, pgd, addr, next,
1705 pfn + (addr >> PAGE_SHIFT), prot);
1708 } while (pgd++, addr = next, addr != end);
1711 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1715 EXPORT_SYMBOL(remap_pfn_range);
1717 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1718 unsigned long addr, unsigned long end,
1719 pte_fn_t fn, void *data)
1724 spinlock_t *uninitialized_var(ptl);
1726 pte = (mm == &init_mm) ?
1727 pte_alloc_kernel(pmd, addr) :
1728 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1732 BUG_ON(pmd_huge(*pmd));
1734 token = pmd_pgtable(*pmd);
1737 err = fn(pte, token, addr, data);
1740 } while (pte++, addr += PAGE_SIZE, addr != end);
1743 pte_unmap_unlock(pte-1, ptl);
1747 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1748 unsigned long addr, unsigned long end,
1749 pte_fn_t fn, void *data)
1755 BUG_ON(pud_huge(*pud));
1757 pmd = pmd_alloc(mm, pud, addr);
1761 next = pmd_addr_end(addr, end);
1762 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1765 } while (pmd++, addr = next, addr != end);
1769 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1770 unsigned long addr, unsigned long end,
1771 pte_fn_t fn, void *data)
1777 pud = pud_alloc(mm, pgd, addr);
1781 next = pud_addr_end(addr, end);
1782 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1785 } while (pud++, addr = next, addr != end);
1790 * Scan a region of virtual memory, filling in page tables as necessary
1791 * and calling a provided function on each leaf page table.
1793 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1794 unsigned long size, pte_fn_t fn, void *data)
1798 unsigned long start = addr, end = addr + size;
1801 BUG_ON(addr >= end);
1802 mmu_notifier_invalidate_range_start(mm, start, end);
1803 pgd = pgd_offset(mm, addr);
1805 next = pgd_addr_end(addr, end);
1806 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1809 } while (pgd++, addr = next, addr != end);
1810 mmu_notifier_invalidate_range_end(mm, start, end);
1813 EXPORT_SYMBOL_GPL(apply_to_page_range);
1816 * handle_pte_fault chooses page fault handler according to an entry
1817 * which was read non-atomically. Before making any commitment, on
1818 * those architectures or configurations (e.g. i386 with PAE) which
1819 * might give a mix of unmatched parts, do_swap_page and do_file_page
1820 * must check under lock before unmapping the pte and proceeding
1821 * (but do_wp_page is only called after already making such a check;
1822 * and do_anonymous_page and do_no_page can safely check later on).
1824 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1825 pte_t *page_table, pte_t orig_pte)
1828 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1829 if (sizeof(pte_t) > sizeof(unsigned long)) {
1830 spinlock_t *ptl = pte_lockptr(mm, pmd);
1832 same = pte_same(*page_table, orig_pte);
1836 pte_unmap(page_table);
1841 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1842 * servicing faults for write access. In the normal case, do always want
1843 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1844 * that do not have writing enabled, when used by access_process_vm.
1846 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1848 if (likely(vma->vm_flags & VM_WRITE))
1849 pte = pte_mkwrite(pte);
1853 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1856 * If the source page was a PFN mapping, we don't have
1857 * a "struct page" for it. We do a best-effort copy by
1858 * just copying from the original user address. If that
1859 * fails, we just zero-fill it. Live with it.
1861 if (unlikely(!src)) {
1862 void *kaddr = kmap_atomic(dst, KM_USER0);
1863 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1866 * This really shouldn't fail, because the page is there
1867 * in the page tables. But it might just be unreadable,
1868 * in which case we just give up and fill the result with
1871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1872 memset(kaddr, 0, PAGE_SIZE);
1873 kunmap_atomic(kaddr, KM_USER0);
1874 flush_dcache_page(dst);
1876 copy_user_highpage(dst, src, va, vma);
1880 * This routine handles present pages, when users try to write
1881 * to a shared page. It is done by copying the page to a new address
1882 * and decrementing the shared-page counter for the old page.
1884 * Note that this routine assumes that the protection checks have been
1885 * done by the caller (the low-level page fault routine in most cases).
1886 * Thus we can safely just mark it writable once we've done any necessary
1889 * We also mark the page dirty at this point even though the page will
1890 * change only once the write actually happens. This avoids a few races,
1891 * and potentially makes it more efficient.
1893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1894 * but allow concurrent faults), with pte both mapped and locked.
1895 * We return with mmap_sem still held, but pte unmapped and unlocked.
1897 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1898 unsigned long address, pte_t *page_table, pmd_t *pmd,
1899 spinlock_t *ptl, pte_t orig_pte)
1901 struct page *old_page, *new_page;
1903 int reuse = 0, ret = 0;
1904 int page_mkwrite = 0;
1905 struct page *dirty_page = NULL;
1907 old_page = vm_normal_page(vma, address, orig_pte);
1910 * VM_MIXEDMAP !pfn_valid() case
1912 * We should not cow pages in a shared writeable mapping.
1913 * Just mark the pages writable as we can't do any dirty
1914 * accounting on raw pfn maps.
1916 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1917 (VM_WRITE|VM_SHARED))
1923 * Take out anonymous pages first, anonymous shared vmas are
1924 * not dirty accountable.
1926 if (PageAnon(old_page)) {
1927 if (trylock_page(old_page)) {
1928 reuse = can_share_swap_page(old_page);
1929 unlock_page(old_page);
1931 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1932 (VM_WRITE|VM_SHARED))) {
1934 * Only catch write-faults on shared writable pages,
1935 * read-only shared pages can get COWed by
1936 * get_user_pages(.write=1, .force=1).
1938 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1940 * Notify the address space that the page is about to
1941 * become writable so that it can prohibit this or wait
1942 * for the page to get into an appropriate state.
1944 * We do this without the lock held, so that it can
1945 * sleep if it needs to.
1947 page_cache_get(old_page);
1948 pte_unmap_unlock(page_table, ptl);
1950 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1951 goto unwritable_page;
1954 * Since we dropped the lock we need to revalidate
1955 * the PTE as someone else may have changed it. If
1956 * they did, we just return, as we can count on the
1957 * MMU to tell us if they didn't also make it writable.
1959 page_table = pte_offset_map_lock(mm, pmd, address,
1961 page_cache_release(old_page);
1962 if (!pte_same(*page_table, orig_pte))
1967 dirty_page = old_page;
1968 get_page(dirty_page);
1974 flush_cache_page(vma, address, pte_pfn(orig_pte));
1975 entry = pte_mkyoung(orig_pte);
1976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1977 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1978 update_mmu_cache(vma, address, entry);
1979 ret |= VM_FAULT_WRITE;
1984 * Ok, we need to copy. Oh, well..
1986 page_cache_get(old_page);
1988 pte_unmap_unlock(page_table, ptl);
1990 if (unlikely(anon_vma_prepare(vma)))
1992 VM_BUG_ON(old_page == ZERO_PAGE(0));
1993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1997 * Don't let another task, with possibly unlocked vma,
1998 * keep the mlocked page.
2000 if (vma->vm_flags & VM_LOCKED) {
2001 lock_page(old_page); /* for LRU manipulation */
2002 clear_page_mlock(old_page);
2003 unlock_page(old_page);
2005 cow_user_page(new_page, old_page, address, vma);
2006 __SetPageUptodate(new_page);
2008 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2012 * Re-check the pte - we dropped the lock
2014 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2015 if (likely(pte_same(*page_table, orig_pte))) {
2017 if (!PageAnon(old_page)) {
2018 dec_mm_counter(mm, file_rss);
2019 inc_mm_counter(mm, anon_rss);
2022 inc_mm_counter(mm, anon_rss);
2023 flush_cache_page(vma, address, pte_pfn(orig_pte));
2024 entry = mk_pte(new_page, vma->vm_page_prot);
2025 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2027 * Clear the pte entry and flush it first, before updating the
2028 * pte with the new entry. This will avoid a race condition
2029 * seen in the presence of one thread doing SMC and another
2032 ptep_clear_flush_notify(vma, address, page_table);
2033 SetPageSwapBacked(new_page);
2034 lru_cache_add_active_or_unevictable(new_page, vma);
2035 page_add_new_anon_rmap(new_page, vma, address);
2037 //TODO: is this safe? do_anonymous_page() does it this way.
2038 set_pte_at(mm, address, page_table, entry);
2039 update_mmu_cache(vma, address, entry);
2042 * Only after switching the pte to the new page may
2043 * we remove the mapcount here. Otherwise another
2044 * process may come and find the rmap count decremented
2045 * before the pte is switched to the new page, and
2046 * "reuse" the old page writing into it while our pte
2047 * here still points into it and can be read by other
2050 * The critical issue is to order this
2051 * page_remove_rmap with the ptp_clear_flush above.
2052 * Those stores are ordered by (if nothing else,)
2053 * the barrier present in the atomic_add_negative
2054 * in page_remove_rmap.
2056 * Then the TLB flush in ptep_clear_flush ensures that
2057 * no process can access the old page before the
2058 * decremented mapcount is visible. And the old page
2059 * cannot be reused until after the decremented
2060 * mapcount is visible. So transitively, TLBs to
2061 * old page will be flushed before it can be reused.
2063 page_remove_rmap(old_page, vma);
2066 /* Free the old page.. */
2067 new_page = old_page;
2068 ret |= VM_FAULT_WRITE;
2070 mem_cgroup_uncharge_page(new_page);
2073 page_cache_release(new_page);
2075 page_cache_release(old_page);
2077 pte_unmap_unlock(page_table, ptl);
2080 file_update_time(vma->vm_file);
2083 * Yes, Virginia, this is actually required to prevent a race
2084 * with clear_page_dirty_for_io() from clearing the page dirty
2085 * bit after it clear all dirty ptes, but before a racing
2086 * do_wp_page installs a dirty pte.
2088 * do_no_page is protected similarly.
2090 wait_on_page_locked(dirty_page);
2091 set_page_dirty_balance(dirty_page, page_mkwrite);
2092 put_page(dirty_page);
2096 page_cache_release(new_page);
2099 page_cache_release(old_page);
2100 return VM_FAULT_OOM;
2103 page_cache_release(old_page);
2104 return VM_FAULT_SIGBUS;
2108 * Helper functions for unmap_mapping_range().
2110 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2112 * We have to restart searching the prio_tree whenever we drop the lock,
2113 * since the iterator is only valid while the lock is held, and anyway
2114 * a later vma might be split and reinserted earlier while lock dropped.
2116 * The list of nonlinear vmas could be handled more efficiently, using
2117 * a placeholder, but handle it in the same way until a need is shown.
2118 * It is important to search the prio_tree before nonlinear list: a vma
2119 * may become nonlinear and be shifted from prio_tree to nonlinear list
2120 * while the lock is dropped; but never shifted from list to prio_tree.
2122 * In order to make forward progress despite restarting the search,
2123 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2124 * quickly skip it next time around. Since the prio_tree search only
2125 * shows us those vmas affected by unmapping the range in question, we
2126 * can't efficiently keep all vmas in step with mapping->truncate_count:
2127 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2128 * mapping->truncate_count and vma->vm_truncate_count are protected by
2131 * In order to make forward progress despite repeatedly restarting some
2132 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2133 * and restart from that address when we reach that vma again. It might
2134 * have been split or merged, shrunk or extended, but never shifted: so
2135 * restart_addr remains valid so long as it remains in the vma's range.
2136 * unmap_mapping_range forces truncate_count to leap over page-aligned
2137 * values so we can save vma's restart_addr in its truncate_count field.
2139 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2141 static void reset_vma_truncate_counts(struct address_space *mapping)
2143 struct vm_area_struct *vma;
2144 struct prio_tree_iter iter;
2146 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2147 vma->vm_truncate_count = 0;
2148 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2149 vma->vm_truncate_count = 0;
2152 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2153 unsigned long start_addr, unsigned long end_addr,
2154 struct zap_details *details)
2156 unsigned long restart_addr;
2160 * files that support invalidating or truncating portions of the
2161 * file from under mmaped areas must have their ->fault function
2162 * return a locked page (and set VM_FAULT_LOCKED in the return).
2163 * This provides synchronisation against concurrent unmapping here.
2167 restart_addr = vma->vm_truncate_count;
2168 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2169 start_addr = restart_addr;
2170 if (start_addr >= end_addr) {
2171 /* Top of vma has been split off since last time */
2172 vma->vm_truncate_count = details->truncate_count;
2177 restart_addr = zap_page_range(vma, start_addr,
2178 end_addr - start_addr, details);
2179 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2181 if (restart_addr >= end_addr) {
2182 /* We have now completed this vma: mark it so */
2183 vma->vm_truncate_count = details->truncate_count;
2187 /* Note restart_addr in vma's truncate_count field */
2188 vma->vm_truncate_count = restart_addr;
2193 spin_unlock(details->i_mmap_lock);
2195 spin_lock(details->i_mmap_lock);
2199 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2200 struct zap_details *details)
2202 struct vm_area_struct *vma;
2203 struct prio_tree_iter iter;
2204 pgoff_t vba, vea, zba, zea;
2207 vma_prio_tree_foreach(vma, &iter, root,
2208 details->first_index, details->last_index) {
2209 /* Skip quickly over those we have already dealt with */
2210 if (vma->vm_truncate_count == details->truncate_count)
2213 vba = vma->vm_pgoff;
2214 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2215 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2216 zba = details->first_index;
2219 zea = details->last_index;
2223 if (unmap_mapping_range_vma(vma,
2224 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2225 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2231 static inline void unmap_mapping_range_list(struct list_head *head,
2232 struct zap_details *details)
2234 struct vm_area_struct *vma;
2237 * In nonlinear VMAs there is no correspondence between virtual address
2238 * offset and file offset. So we must perform an exhaustive search
2239 * across *all* the pages in each nonlinear VMA, not just the pages
2240 * whose virtual address lies outside the file truncation point.
2243 list_for_each_entry(vma, head, shared.vm_set.list) {
2244 /* Skip quickly over those we have already dealt with */
2245 if (vma->vm_truncate_count == details->truncate_count)
2247 details->nonlinear_vma = vma;
2248 if (unmap_mapping_range_vma(vma, vma->vm_start,
2249 vma->vm_end, details) < 0)
2255 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2256 * @mapping: the address space containing mmaps to be unmapped.
2257 * @holebegin: byte in first page to unmap, relative to the start of
2258 * the underlying file. This will be rounded down to a PAGE_SIZE
2259 * boundary. Note that this is different from vmtruncate(), which
2260 * must keep the partial page. In contrast, we must get rid of
2262 * @holelen: size of prospective hole in bytes. This will be rounded
2263 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2265 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2266 * but 0 when invalidating pagecache, don't throw away private data.
2268 void unmap_mapping_range(struct address_space *mapping,
2269 loff_t const holebegin, loff_t const holelen, int even_cows)
2271 struct zap_details details;
2272 pgoff_t hba = holebegin >> PAGE_SHIFT;
2273 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2275 /* Check for overflow. */
2276 if (sizeof(holelen) > sizeof(hlen)) {
2278 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279 if (holeend & ~(long long)ULONG_MAX)
2280 hlen = ULONG_MAX - hba + 1;
2283 details.check_mapping = even_cows? NULL: mapping;
2284 details.nonlinear_vma = NULL;
2285 details.first_index = hba;
2286 details.last_index = hba + hlen - 1;
2287 if (details.last_index < details.first_index)
2288 details.last_index = ULONG_MAX;
2289 details.i_mmap_lock = &mapping->i_mmap_lock;
2291 spin_lock(&mapping->i_mmap_lock);
2293 /* Protect against endless unmapping loops */
2294 mapping->truncate_count++;
2295 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2296 if (mapping->truncate_count == 0)
2297 reset_vma_truncate_counts(mapping);
2298 mapping->truncate_count++;
2300 details.truncate_count = mapping->truncate_count;
2302 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2303 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2304 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2305 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2306 spin_unlock(&mapping->i_mmap_lock);
2308 EXPORT_SYMBOL(unmap_mapping_range);
2311 * vmtruncate - unmap mappings "freed" by truncate() syscall
2312 * @inode: inode of the file used
2313 * @offset: file offset to start truncating
2315 * NOTE! We have to be ready to update the memory sharing
2316 * between the file and the memory map for a potential last
2317 * incomplete page. Ugly, but necessary.
2319 int vmtruncate(struct inode * inode, loff_t offset)
2321 if (inode->i_size < offset) {
2322 unsigned long limit;
2324 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2325 if (limit != RLIM_INFINITY && offset > limit)
2327 if (offset > inode->i_sb->s_maxbytes)
2329 i_size_write(inode, offset);
2331 struct address_space *mapping = inode->i_mapping;
2334 * truncation of in-use swapfiles is disallowed - it would
2335 * cause subsequent swapout to scribble on the now-freed
2338 if (IS_SWAPFILE(inode))
2340 i_size_write(inode, offset);
2343 * unmap_mapping_range is called twice, first simply for
2344 * efficiency so that truncate_inode_pages does fewer
2345 * single-page unmaps. However after this first call, and
2346 * before truncate_inode_pages finishes, it is possible for
2347 * private pages to be COWed, which remain after
2348 * truncate_inode_pages finishes, hence the second
2349 * unmap_mapping_range call must be made for correctness.
2351 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2352 truncate_inode_pages(mapping, offset);
2353 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2356 if (inode->i_op && inode->i_op->truncate)
2357 inode->i_op->truncate(inode);
2361 send_sig(SIGXFSZ, current, 0);
2365 EXPORT_SYMBOL(vmtruncate);
2367 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2369 struct address_space *mapping = inode->i_mapping;
2372 * If the underlying filesystem is not going to provide
2373 * a way to truncate a range of blocks (punch a hole) -
2374 * we should return failure right now.
2376 if (!inode->i_op || !inode->i_op->truncate_range)
2379 mutex_lock(&inode->i_mutex);
2380 down_write(&inode->i_alloc_sem);
2381 unmap_mapping_range(mapping, offset, (end - offset), 1);
2382 truncate_inode_pages_range(mapping, offset, end);
2383 unmap_mapping_range(mapping, offset, (end - offset), 1);
2384 inode->i_op->truncate_range(inode, offset, end);
2385 up_write(&inode->i_alloc_sem);
2386 mutex_unlock(&inode->i_mutex);
2392 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2393 * but allow concurrent faults), and pte mapped but not yet locked.
2394 * We return with mmap_sem still held, but pte unmapped and unlocked.
2396 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397 unsigned long address, pte_t *page_table, pmd_t *pmd,
2398 int write_access, pte_t orig_pte)
2406 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2409 entry = pte_to_swp_entry(orig_pte);
2410 if (is_migration_entry(entry)) {
2411 migration_entry_wait(mm, pmd, address);
2414 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2415 page = lookup_swap_cache(entry);
2417 grab_swap_token(); /* Contend for token _before_ read-in */
2418 page = swapin_readahead(entry,
2419 GFP_HIGHUSER_MOVABLE, vma, address);
2422 * Back out if somebody else faulted in this pte
2423 * while we released the pte lock.
2425 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2426 if (likely(pte_same(*page_table, orig_pte)))
2428 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2432 /* Had to read the page from swap area: Major fault */
2433 ret = VM_FAULT_MAJOR;
2434 count_vm_event(PGMAJFAULT);
2437 mark_page_accessed(page);
2440 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2442 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2449 * Back out if somebody else already faulted in this pte.
2451 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2452 if (unlikely(!pte_same(*page_table, orig_pte)))
2455 if (unlikely(!PageUptodate(page))) {
2456 ret = VM_FAULT_SIGBUS;
2460 /* The page isn't present yet, go ahead with the fault. */
2462 inc_mm_counter(mm, anon_rss);
2463 pte = mk_pte(page, vma->vm_page_prot);
2464 if (write_access && can_share_swap_page(page)) {
2465 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2469 flush_icache_page(vma, page);
2470 set_pte_at(mm, address, page_table, pte);
2471 page_add_anon_rmap(page, vma, address);
2474 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2475 remove_exclusive_swap_page(page);
2479 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2480 if (ret & VM_FAULT_ERROR)
2481 ret &= VM_FAULT_ERROR;
2485 /* No need to invalidate - it was non-present before */
2486 update_mmu_cache(vma, address, pte);
2488 pte_unmap_unlock(page_table, ptl);
2492 mem_cgroup_uncharge_page(page);
2493 pte_unmap_unlock(page_table, ptl);
2495 page_cache_release(page);
2500 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2501 * but allow concurrent faults), and pte mapped but not yet locked.
2502 * We return with mmap_sem still held, but pte unmapped and unlocked.
2504 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2505 unsigned long address, pte_t *page_table, pmd_t *pmd,
2512 /* Allocate our own private page. */
2513 pte_unmap(page_table);
2515 if (unlikely(anon_vma_prepare(vma)))
2517 page = alloc_zeroed_user_highpage_movable(vma, address);
2520 __SetPageUptodate(page);
2522 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2525 entry = mk_pte(page, vma->vm_page_prot);
2526 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2528 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2529 if (!pte_none(*page_table))
2531 inc_mm_counter(mm, anon_rss);
2532 SetPageSwapBacked(page);
2533 lru_cache_add_active_or_unevictable(page, vma);
2534 page_add_new_anon_rmap(page, vma, address);
2535 set_pte_at(mm, address, page_table, entry);
2537 /* No need to invalidate - it was non-present before */
2538 update_mmu_cache(vma, address, entry);
2540 pte_unmap_unlock(page_table, ptl);
2543 mem_cgroup_uncharge_page(page);
2544 page_cache_release(page);
2547 page_cache_release(page);
2549 return VM_FAULT_OOM;
2553 * __do_fault() tries to create a new page mapping. It aggressively
2554 * tries to share with existing pages, but makes a separate copy if
2555 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2556 * the next page fault.
2558 * As this is called only for pages that do not currently exist, we
2559 * do not need to flush old virtual caches or the TLB.
2561 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2562 * but allow concurrent faults), and pte neither mapped nor locked.
2563 * We return with mmap_sem still held, but pte unmapped and unlocked.
2565 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2566 unsigned long address, pmd_t *pmd,
2567 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2575 struct page *dirty_page = NULL;
2576 struct vm_fault vmf;
2578 int page_mkwrite = 0;
2580 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2585 ret = vma->vm_ops->fault(vma, &vmf);
2586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2590 * For consistency in subsequent calls, make the faulted page always
2593 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2594 lock_page(vmf.page);
2596 VM_BUG_ON(!PageLocked(vmf.page));
2599 * Should we do an early C-O-W break?
2602 if (flags & FAULT_FLAG_WRITE) {
2603 if (!(vma->vm_flags & VM_SHARED)) {
2605 if (unlikely(anon_vma_prepare(vma))) {
2609 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2615 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2617 page_cache_release(page);
2622 * Don't let another task, with possibly unlocked vma,
2623 * keep the mlocked page.
2625 if (vma->vm_flags & VM_LOCKED)
2626 clear_page_mlock(vmf.page);
2627 copy_user_highpage(page, vmf.page, address, vma);
2628 __SetPageUptodate(page);
2631 * If the page will be shareable, see if the backing
2632 * address space wants to know that the page is about
2633 * to become writable
2635 if (vma->vm_ops->page_mkwrite) {
2637 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2638 ret = VM_FAULT_SIGBUS;
2639 anon = 1; /* no anon but release vmf.page */
2644 * XXX: this is not quite right (racy vs
2645 * invalidate) to unlock and relock the page
2646 * like this, however a better fix requires
2647 * reworking page_mkwrite locking API, which
2648 * is better done later.
2650 if (!page->mapping) {
2652 anon = 1; /* no anon but release vmf.page */
2661 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2664 * This silly early PAGE_DIRTY setting removes a race
2665 * due to the bad i386 page protection. But it's valid
2666 * for other architectures too.
2668 * Note that if write_access is true, we either now have
2669 * an exclusive copy of the page, or this is a shared mapping,
2670 * so we can make it writable and dirty to avoid having to
2671 * handle that later.
2673 /* Only go through if we didn't race with anybody else... */
2674 if (likely(pte_same(*page_table, orig_pte))) {
2675 flush_icache_page(vma, page);
2676 entry = mk_pte(page, vma->vm_page_prot);
2677 if (flags & FAULT_FLAG_WRITE)
2678 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2680 inc_mm_counter(mm, anon_rss);
2681 SetPageSwapBacked(page);
2682 lru_cache_add_active_or_unevictable(page, vma);
2683 page_add_new_anon_rmap(page, vma, address);
2685 inc_mm_counter(mm, file_rss);
2686 page_add_file_rmap(page);
2687 if (flags & FAULT_FLAG_WRITE) {
2689 get_page(dirty_page);
2692 //TODO: is this safe? do_anonymous_page() does it this way.
2693 set_pte_at(mm, address, page_table, entry);
2695 /* no need to invalidate: a not-present page won't be cached */
2696 update_mmu_cache(vma, address, entry);
2699 mem_cgroup_uncharge_page(page);
2701 page_cache_release(page);
2703 anon = 1; /* no anon but release faulted_page */
2706 pte_unmap_unlock(page_table, ptl);
2709 unlock_page(vmf.page);
2712 page_cache_release(vmf.page);
2713 else if (dirty_page) {
2715 file_update_time(vma->vm_file);
2717 set_page_dirty_balance(dirty_page, page_mkwrite);
2718 put_page(dirty_page);
2724 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2725 unsigned long address, pte_t *page_table, pmd_t *pmd,
2726 int write_access, pte_t orig_pte)
2728 pgoff_t pgoff = (((address & PAGE_MASK)
2729 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2730 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2732 pte_unmap(page_table);
2733 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2737 * Fault of a previously existing named mapping. Repopulate the pte
2738 * from the encoded file_pte if possible. This enables swappable
2741 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2742 * but allow concurrent faults), and pte mapped but not yet locked.
2743 * We return with mmap_sem still held, but pte unmapped and unlocked.
2745 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2746 unsigned long address, pte_t *page_table, pmd_t *pmd,
2747 int write_access, pte_t orig_pte)
2749 unsigned int flags = FAULT_FLAG_NONLINEAR |
2750 (write_access ? FAULT_FLAG_WRITE : 0);
2753 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2756 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2757 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2759 * Page table corrupted: show pte and kill process.
2761 print_bad_pte(vma, orig_pte, address);
2762 return VM_FAULT_OOM;
2765 pgoff = pte_to_pgoff(orig_pte);
2766 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2770 * These routines also need to handle stuff like marking pages dirty
2771 * and/or accessed for architectures that don't do it in hardware (most
2772 * RISC architectures). The early dirtying is also good on the i386.
2774 * There is also a hook called "update_mmu_cache()" that architectures
2775 * with external mmu caches can use to update those (ie the Sparc or
2776 * PowerPC hashed page tables that act as extended TLBs).
2778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2779 * but allow concurrent faults), and pte mapped but not yet locked.
2780 * We return with mmap_sem still held, but pte unmapped and unlocked.
2782 static inline int handle_pte_fault(struct mm_struct *mm,
2783 struct vm_area_struct *vma, unsigned long address,
2784 pte_t *pte, pmd_t *pmd, int write_access)
2790 if (!pte_present(entry)) {
2791 if (pte_none(entry)) {
2793 if (likely(vma->vm_ops->fault))
2794 return do_linear_fault(mm, vma, address,
2795 pte, pmd, write_access, entry);
2797 return do_anonymous_page(mm, vma, address,
2798 pte, pmd, write_access);
2800 if (pte_file(entry))
2801 return do_nonlinear_fault(mm, vma, address,
2802 pte, pmd, write_access, entry);
2803 return do_swap_page(mm, vma, address,
2804 pte, pmd, write_access, entry);
2807 ptl = pte_lockptr(mm, pmd);
2809 if (unlikely(!pte_same(*pte, entry)))
2812 if (!pte_write(entry))
2813 return do_wp_page(mm, vma, address,
2814 pte, pmd, ptl, entry);
2815 entry = pte_mkdirty(entry);
2817 entry = pte_mkyoung(entry);
2818 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2819 update_mmu_cache(vma, address, entry);
2822 * This is needed only for protection faults but the arch code
2823 * is not yet telling us if this is a protection fault or not.
2824 * This still avoids useless tlb flushes for .text page faults
2828 flush_tlb_page(vma, address);
2831 pte_unmap_unlock(pte, ptl);
2836 * By the time we get here, we already hold the mm semaphore
2838 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2839 unsigned long address, int write_access)
2846 __set_current_state(TASK_RUNNING);
2848 count_vm_event(PGFAULT);
2850 if (unlikely(is_vm_hugetlb_page(vma)))
2851 return hugetlb_fault(mm, vma, address, write_access);
2853 pgd = pgd_offset(mm, address);
2854 pud = pud_alloc(mm, pgd, address);
2856 return VM_FAULT_OOM;
2857 pmd = pmd_alloc(mm, pud, address);
2859 return VM_FAULT_OOM;
2860 pte = pte_alloc_map(mm, pmd, address);
2862 return VM_FAULT_OOM;
2864 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2867 #ifndef __PAGETABLE_PUD_FOLDED
2869 * Allocate page upper directory.
2870 * We've already handled the fast-path in-line.
2872 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2874 pud_t *new = pud_alloc_one(mm, address);
2878 smp_wmb(); /* See comment in __pte_alloc */
2880 spin_lock(&mm->page_table_lock);
2881 if (pgd_present(*pgd)) /* Another has populated it */
2884 pgd_populate(mm, pgd, new);
2885 spin_unlock(&mm->page_table_lock);
2888 #endif /* __PAGETABLE_PUD_FOLDED */
2890 #ifndef __PAGETABLE_PMD_FOLDED
2892 * Allocate page middle directory.
2893 * We've already handled the fast-path in-line.
2895 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2897 pmd_t *new = pmd_alloc_one(mm, address);
2901 smp_wmb(); /* See comment in __pte_alloc */
2903 spin_lock(&mm->page_table_lock);
2904 #ifndef __ARCH_HAS_4LEVEL_HACK
2905 if (pud_present(*pud)) /* Another has populated it */
2908 pud_populate(mm, pud, new);
2910 if (pgd_present(*pud)) /* Another has populated it */
2913 pgd_populate(mm, pud, new);
2914 #endif /* __ARCH_HAS_4LEVEL_HACK */
2915 spin_unlock(&mm->page_table_lock);
2918 #endif /* __PAGETABLE_PMD_FOLDED */
2920 int make_pages_present(unsigned long addr, unsigned long end)
2922 int ret, len, write;
2923 struct vm_area_struct * vma;
2925 vma = find_vma(current->mm, addr);
2928 write = (vma->vm_flags & VM_WRITE) != 0;
2929 BUG_ON(addr >= end);
2930 BUG_ON(end > vma->vm_end);
2931 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2932 ret = get_user_pages(current, current->mm, addr,
2933 len, write, 0, NULL, NULL);
2936 return ret == len ? 0 : -EFAULT;
2939 #if !defined(__HAVE_ARCH_GATE_AREA)
2941 #if defined(AT_SYSINFO_EHDR)
2942 static struct vm_area_struct gate_vma;
2944 static int __init gate_vma_init(void)
2946 gate_vma.vm_mm = NULL;
2947 gate_vma.vm_start = FIXADDR_USER_START;
2948 gate_vma.vm_end = FIXADDR_USER_END;
2949 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2950 gate_vma.vm_page_prot = __P101;
2952 * Make sure the vDSO gets into every core dump.
2953 * Dumping its contents makes post-mortem fully interpretable later
2954 * without matching up the same kernel and hardware config to see
2955 * what PC values meant.
2957 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2960 __initcall(gate_vma_init);
2963 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2965 #ifdef AT_SYSINFO_EHDR
2972 int in_gate_area_no_task(unsigned long addr)
2974 #ifdef AT_SYSINFO_EHDR
2975 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2981 #endif /* __HAVE_ARCH_GATE_AREA */
2983 #ifdef CONFIG_HAVE_IOREMAP_PROT
2984 static resource_size_t follow_phys(struct vm_area_struct *vma,
2985 unsigned long address, unsigned int flags,
2986 unsigned long *prot)
2993 resource_size_t phys_addr = 0;
2994 struct mm_struct *mm = vma->vm_mm;
2996 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2998 pgd = pgd_offset(mm, address);
2999 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3002 pud = pud_offset(pgd, address);
3003 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3006 pmd = pmd_offset(pud, address);
3007 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3010 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3014 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3019 if (!pte_present(pte))
3021 if ((flags & FOLL_WRITE) && !pte_write(pte))
3023 phys_addr = pte_pfn(pte);
3024 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3026 *prot = pgprot_val(pte_pgprot(pte));
3029 pte_unmap_unlock(ptep, ptl);
3036 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3037 void *buf, int len, int write)
3039 resource_size_t phys_addr;
3040 unsigned long prot = 0;
3042 int offset = addr & (PAGE_SIZE-1);
3044 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3047 phys_addr = follow_phys(vma, addr, write, &prot);
3052 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3054 memcpy_toio(maddr + offset, buf, len);
3056 memcpy_fromio(buf, maddr + offset, len);
3064 * Access another process' address space.
3065 * Source/target buffer must be kernel space,
3066 * Do not walk the page table directly, use get_user_pages
3068 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3070 struct mm_struct *mm;
3071 struct vm_area_struct *vma;
3072 void *old_buf = buf;
3074 mm = get_task_mm(tsk);
3078 down_read(&mm->mmap_sem);
3079 /* ignore errors, just check how much was successfully transferred */
3081 int bytes, ret, offset;
3083 struct page *page = NULL;
3085 ret = get_user_pages(tsk, mm, addr, 1,
3086 write, 1, &page, &vma);
3089 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3090 * we can access using slightly different code.
3092 #ifdef CONFIG_HAVE_IOREMAP_PROT
3093 vma = find_vma(mm, addr);
3096 if (vma->vm_ops && vma->vm_ops->access)
3097 ret = vma->vm_ops->access(vma, addr, buf,
3105 offset = addr & (PAGE_SIZE-1);
3106 if (bytes > PAGE_SIZE-offset)
3107 bytes = PAGE_SIZE-offset;
3111 copy_to_user_page(vma, page, addr,
3112 maddr + offset, buf, bytes);
3113 set_page_dirty_lock(page);
3115 copy_from_user_page(vma, page, addr,
3116 buf, maddr + offset, bytes);
3119 page_cache_release(page);
3125 up_read(&mm->mmap_sem);
3128 return buf - old_buf;
3132 * Print the name of a VMA.
3134 void print_vma_addr(char *prefix, unsigned long ip)
3136 struct mm_struct *mm = current->mm;
3137 struct vm_area_struct *vma;
3140 * Do not print if we are in atomic
3141 * contexts (in exception stacks, etc.):
3143 if (preempt_count())
3146 down_read(&mm->mmap_sem);
3147 vma = find_vma(mm, ip);
3148 if (vma && vma->vm_file) {
3149 struct file *f = vma->vm_file;
3150 char *buf = (char *)__get_free_page(GFP_KERNEL);
3154 p = d_path(&f->f_path, buf, PAGE_SIZE);
3157 s = strrchr(p, '/');
3160 printk("%s%s[%lx+%lx]", prefix, p,
3162 vma->vm_end - vma->vm_start);
3163 free_page((unsigned long)buf);
3166 up_read(¤t->mm->mmap_sem);